
IS THE GRAVITATIONAL QUANTIZATION ANOTHER
CONSEQUENCE FROM GENERAL RELATIVITY?

JAUME GINÉ

Abstract. In this paper we show that the perturbation of the
Newton’s inverse square law that gives the Schwarzschild solution
for the case of a punctual or spherical and homogeneous mass has
a similar form as the development with respect to the delay of
the retarded scalar potential proposed in [12, 13]. This observa-
tion suggests the possibility that the gravitational quantization is
another consequence from General Relativity.

1. Introduction

The anomalous precession of the Mercury’s perihelion was first no-
ticed in 1859, when the French astronomer Le Verrier observed that
the perihelion of the planet Mercury precesses at a slightly faster rate
than the one that can be accounted by Newtonian mechanics with the
distribution of masses of the solar system.

Einstein found that the extra precession unavoidably arises from the
fundamental principles of General Relativity, see [4, 5]. The general
problem of the integration of the Einstein equations, given by

(1) Rµν − 1

2
Rgµν =

8πG

c4
Tµν ,

where Rµν is the Ricci tensor, R is the Ricci scalar, gµν is the metric
tensor and Tµν is the stress-energy tensor, is extremely difficult and the
determination of the explicit solutions is only possible in a restricted
number of cases. One of the most important is the Schwarzschild so-
lution for the case of a punctual mass or spherical and homogeneous
and with the assumption that the limit values in the infinite of the gµν

are the galilean values. A way to determine the relativistic prediction
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for the advance of an elliptical orbit from the Schwarzschild solution
in a very comprehensible and clear form is given in [17, 22]. We repro-
duce here the computations to obtain the perturbation of the Newton’s
inverse-square law.

To determine the motion of planets and light rays in a Schwartzschild
spacetime we must first find the geodesic equations. This is best done
by working from the Lagrangian

L =
1

c

[
−gµν

dxµ

dτ

dxν

dτ

]1/2

.

Assuming that the orbits remain permanently in the equatorial plane
(as in Newtonian theory ) i.e. Θ = π/2, the Lagrangian is:

L =





(
1− 2GM

c2r

) (
dt

dτ

)2

− 1

c2




(
1− 2GM

c2r

)−1
(

dr

dτ

)2

+ r2

(
dθ

dτ

)2







1/2

From Euler-Lagrange equations we obtain the energy conservation and
the angular momentum conservation given by

(
1− 2GM

c2r

)
dt

dτ
= k,

dθ

dτ
=

h

r2
,

where k and h are constants of integration, determined by the initial
conditions of the orbit. Remember that L = ε with ε = 1 for time-
like orbits and ε = 0 for null orbits. Hence, we can substitute these
derivatives into the Lagrangian to obtain

ε2 =

(
k2r

r − 2M

)
−

(
r

r − 2M

) (
dr

dτ

)2

− h2

r2
,

taking c = G = 1. Isolating (dr/dτ)2 from the above expression, we
have

(2)

(
dr

dτ

)2

=
2Mh2

r3
− h2

r2
+

2εM

r
+ k2 − ε2.

If we differentiate equation (2) with respect to τ and we divide by
2(dr/dτ), see [17], we obtain

(3)
d2r

dτ 2
= −ε2M

r2
+

h2

r3
− 3Mh2

r4
.

Let ω = dθ/dτ be the proper angular speed, taking into account that
h = ωr2, the above equation can be written as

(4)
d2r

dτ 2
= −ε2M

r2
+ ω2(r − 3M).
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Obviously, if ω = 0 we obtain the Newton’s inverse-square law for
radial gravitational acceleration. If ω is non–zero the term rω2 corre-
sponds to the Newtonian centripetal acceleration. Hence, defining the
tangential velocity vt = ωr, this term would be equal to the classical
v2

t /r. Following the reasonings of [17], this term serves to offset the
inward pull of gravity, but in the relativistic version we find not w2r
but w2(r− 3M). For values of r much greater than 3M this difference
can be neglected, but clearly if r approaches 3M we can expect to see
non–classical effects, and of course if r becomes less than 3M we would
expect a completely un–classical behavior. In fact, this corresponds to
the cases when an orbiting particle spirals into the center, which never
happens in classical theory.

In a similar way as in the resolution of the classical case, if we intro-
duce the change of variable u(θ) = 1/r(τ), equation (3) becomes

(5)

(
1 + 6

(
M

h

)2
)

d2u

dθ2
+ u =

(
M

h2
+

3M3

h4

)
+ 3M

(
d2u

dθ2

)2

,

where we have taken ε = 1 for a timelike orbit. The value of d2u/dθ2 in
typical astronomical problems is numerically quite small (many orders
of magnitude less than 1), so the quantity 3M(d2u/dθ2)2 on the right
hand side will be negligible for planetary motions, see [17].

2. post-Newtonian approximations of the General
Relativity

Einstein’s equations may be written in a very simple way, which
leads straightly to the analogy with Maxwell equations, if we consider
the so called weak field approximation. We can use this kind of linear
approximation if we deal with a central mass whose gravitational field is
weak and, if the central mass is rotating, its rotation is not relativistic.
We are interested in the general linear solution of the gravitational field
equations (1). We assume that a global background inertial frame with
coordinates xµ = (ct,x) and Minkowski metric ηµν is perturbed by due
to the presence of the central mass in such a way that gµν = ηµν+hµν(x),
where |hµ,ν | ¿ 1 is a small perturbation of the Minkowski metric. Then
we define h̄µν = hµν− 1

2
ηµνh, where h is the trace of hµν , i.e., h = ηµνhµν .

Hence, expanding the field equations (1) in powers of h̄µν and taking
the linear order terms, we obtain

(6) ¤h̄µν = −16πG

c4
Tµν ,
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where we have imposed the Lorentz gauge condition h̄µν ,ν = 0. The
linearized field equations (6) are similar to the Maxwell equations

¤Aµ = 4πjµ ,

where the role of the electromagnetic four-vector potential Aµ is played
by the tensor potential h̄µν , and the role of the four-current jµ is played
by the stress-energy tensor Tµν . The special retarded solution of equa-
tion (6) is given by

h̄µν =
4G

c4

∫ Tµν(t− |x− x′|/c ,x′)
|x− x′| d3x′ .

Defining the matter density ρ and the matter current j = ρv from
T00 = ρc2 and T0i = cji, and assuming that the central mass consists
on a finite distribution of slowly moving matter with |v| ¿ c, we have
that |h̄00| À |h̄ij| and |h̄0j| À |h̄ij|. Moreover, h̄00 = 4φg/c

2 and
h̄0j = −2Aj/c

2, where φg is the gravitoelectric potential and Ag is the
gravitomagnetic vector potential given by

φg ∼ GM

r
, Ag ∼ G

c

J× x

r3
,

where r = |x|, and J is the angular momentum of the central mass.
Hence, under these conditions, the space-time metric has the form

(7) ds2 = −c2(1− 2
φg

c2
)dt2 − 4

c
(Ag · dx)dt + (1 + 2

φg

c2
)δijdxidxj.

This linear approximation of the gravitational field equations is known
as Gravitoelectromagnetism (GEM), see [16].

If we consider the case of a non-rotating central mass, i.e., J ≡ 0,
and taking into account that φg ∼ GM/r we have that the metric (7)
takes the form

(8) ds2 = −c2(1− 2
GM

c2r
)dt2 + (1 + 2

GM

c2r
)δijdxidxj,

and is called the post-Newtonian metric, which is a particular case of
the PPN metric, see for instance in [19] pag. 1097. The derivation of
the perihelion shift in the PPN formalism can be checked in [19] pag.
1115. In the case of the post-Newtonian metric (8), it gives the result

δφ0 ≡ 4

3
· 6πM

a(1− e2)
,

where a is the semi-major axis, e is the eccentricity of the ellipse and the
correct value of the General relativity is 6πM/(a(1−e2)). In the case of
a rotating mass, J 6≡ 0, we have that the gravitomagnetic component
is not zero and it is possible to derive the most famous gravitomagnetic
effect which is the Lense-Thirring effect. At the beginning of the 20th
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century, J. Lense and H. Thiring [15], studied the effects of rotating
masses within the Relativistic Theory of Gravitation. Their starting
intention was to incorporate Mach’s principle into General Relativity
Theory.

Hence, the excess of motion of Mercury’s perihelion is not explained
only in terms of a relativistic gravitoelectric correction to the New-
tonian gravitational potential of the Sun. In fact, we must take into
account second orders in M/r in the Schwarzchild metric

ds2 = −
(
1− 2M

r

)
dt2 +

dr2

1− 2M/r
+ r2(dθ2 + sin2 ΘdΘ2).

where we have taken c = G = 1. First we transform to isotropic
coordinates, and then we expand the metric coefficients in powers of
M/r to obtain a more accurate post-Newtonian approximation

ds2 = −
[
1− 2

M

r
+ 2

(
M

r

)2
]
dt2+

[
1 + 2

M

r

]
[dr2+r2(dθ2+sin2 ΘdΘ2)].

With this approximation the correct value of the General Relativity is
obtained, see [19] pag. 1110. Hence, including second order in M/r the
more accurate post-Newtonian approximation explains the anomalous
precession of Mercury’s perihelion. This more accurate post-Newtonian
approximation is a particular case of the PPN formalism which also has
associated retarded solutions, see [19].

3. Weber-type potentials

Before the beginnings of the General Relativity of Eintein, several
tries to explain the anomalous precession of Mercury’s perihelion had
place. At the end of the 19th century, theoretical physicists were in-
vestigating modifications of the Coulomb inverse–square law. For in-
stance, Gauss and Weber introduced a velocity–dependent potential
to represent the electromagnetic field, consistent with the finite prop-
agation speed of changes in the field. The application of this velocity–
dependent potential to the gravitation was immediately. Several physi-
cists proposed different gravitational potentials based on finite propa-
gation speed in order to account for Mercury’s orbital precession, see
for instance [20, 21] for a review of these proposals.

In 1870 F.G. Holzmuller [6] proposed a law of gravitation of the same
form that the electrodynamic Weber’s law, given by

F =
Gm1m2

r2

(
1− ṙ2

h2
+

2rr̈

h2

)
.
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where h is the finite propagation speed. Later, F. Tisserand [25] had
used this law to study the anomalous precession of Mercury’s perihelion
and he explained only 14.1 arc seconds per century. In 1898, P. Gerber
proposed a velocity–dependent potential that predicts exactly the ob-
served value for the anomalous precession of Mercury’s perihelion, see
[7, 8].

The form of the proposed force laws are based, in general, in to do
a parallelism between the electromagnetism and the gravitation and
to propose what is known as gravitational field with a gravitoelectric
component and with a gravitomagnetic component, see [3, 16] and
references therein. These lines of research were abandoned when it
was definitively implanted Einstein’s Relativity Theory. Recently, in
[12, 13] it have been shown that all these laws are, in fact, developments
until a certain order of a retarded potential. The basic equation of
motion proposed by the Weber models is

(9)
d2r

dt2
= −GM

r3

[
1 +

ξ

c2
(r r̈ − α ṙ2)

]
r ,

where r is the relative radius vector of the particle with respect to the
central mass, see [24]. The last term on the right-hand side of (9)
is called the gravitational Weber force per unit of mass. We remark
that the Weber’s law of electrodynamic action corresponds to α = 1/2
and ξ = 1, see [2]. With α = 1/2, (9) is the expression adopted by
Assis, see [1], who needed to fix ξ = 6 to obtain the right advance of
the perihelion of the planets. Moreover, in [12] it was shown that (9)
with α = 1/2 and ξ = 6 is an approximation of the Gerber’s potential
proposed in 1898 which is, in fact, an approximation of the simple
retarded potential

V = − M

r(t− τ − r(t−τ)
c

)
≈ − M

r(t− τ)

r(t)

r(t− τ)

≈ −M

r

1
(
1− ṙ

c

)2 ≈ −M

r

[
1 +

2ṙ

c
+

3ṙ2

c2

]
,(10)

where the delay τ is equal to r(t)/c. Taking into account that the term
ṙ/c of (10) cancels in the computation of the associated force, we have
that

(11) V ≈ −M

r

[
1 +

3ṙ2

c2

]
.

A law of motion of type (9) was first proposed by Tisserand [25] with
α = 1/2 and ξ = 2. Moreover, in [13], it was shown that this Weber
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type force (9) with α = 1/2 and ξ = 2 gives the correct value of the
gravitational deflection of fast particles of General Relativity.

The expansion in powers of ṙ/c of the gravitational force law associ-
ated to the velocity-dependent potential function (10) is given by

(12) f = −M

r2

(
1− 3ṙ2

c2
+

6rr̈

c2
+ . . .

)
.

The radial and tangential components of the point’s acceleration in
polar coordinates are:

ar = r̈ − rω2, at = rω̇ + 2ṙω.

The conservation of the angular momentum gives at = 0. Equating the
radial acceleration with the radial specific force, we get

(13) r̈ − rω2 = −M

r2
(1− 3ṙ2 + 6rr̈).

If we define, as before, u(θ) = 1/r(t), then equation (13) becomes

(14) (1 + 6Mu)
d2u

dθ2
+ u =

M

h2


1− 3h2

(
du

dθ

)2

 ,

The quantities inside the parentheses are both nearly equal to unity,
because the terms added to or subtracted from 1 are many orders of
magnitude less than 1 (for astronomical orbits). Moreover, as before,
the quantity 3h2(du/dθ)2 will be negligible for planetary motions, see
the computations in [18].

4. How is it possible that two so different theories
explain the same phenomenon?

In General Relativity the gravitational field is described by 10 func-
tions, the components of the symmetrical tensor Gµν = Rµν − 1

2
Rgµν .

On the other hand, the Weber-type potentials derived from retarded
potentials are scalar potentials. The answer to this question is straight-
forward because in terms of the variable u = 1/r the equations of mo-
tion (5) and (14) are only quite different in the negligible terms, taking
into account that r ≈ h2/m for small perturbations of closed orbits.

5. Is it possible a coherent inertia theory?

In [14], the inertial force proposed by Sciama, in a simple case, is
derived from the Assis’ inertia theory based in the introduction of a
Weber type force. The origin of the inertial force is totally justified
taking into account that the Weber force is, in fact, an approximation
of a simple retarded potential, see [12, 13]. The way how inertial forces
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are also derived from some solutions of the general relativistic equations
is presented in [26], see also [14]. The consequences of the present work
show that the theory of inertia of Assis is not included in the framework
of General Relativity. The perturbation of the Newton’s inverse square
law that gives the Schwarzschild solution for the case of a punctual or
spherical and homogeneous mass has a similar form as the development
with respect to the delay of the retarded scalar potential proposed in
[12, 13]. However, it is not exactly the same as we will see in the
following section. Anyway, the limit of the weak gravitational field of
the General Relativity gives an effective scalar potential which is the
approximation to the Einstein’s field equations for this case.

6. The effective scalar potential

We have seen (see section 1) that in the particular case of the Mer-
cury’s perihelion problem, the General Relativity reduces to a Newtonian-
like potential. The solution associated to the Schwarzchild space-metric
gives the following radial equation component

r̈ − rω2 = −M

r2
− 3Mh2

c2r4
,

see equation (4). Hence, we obtain an effective radial force perturbation
of the Newton’s inverse-square law of the form

(15) Fr = −M

r2
− 3Mh2

c2r4
.

This radial force (15) has the associated potential energy given by

U = −M

r
− Mh2

c2r3
,

where Fr = −dU/dr. If we consider that h = r2ω we have that

(16) U = −M

r

(
1 +

r2ω2

c2

)
.

We now consider the unperturbed Keplerian ellipse

(17) r =
a(1− e2)

1 + e cos θ
=

p

1 + e cos θ
,

where a is the semi-major axis, e is the eccentricity of the ellipse,
and p is the semi-lactus rectum of the Keplerian ellipse. Notice that
e ∈ [0, 1) and when e = 0 we have a circle. We are going to evaluate the
value of the tangential velocity vt = rω in the unperturbed Keplerian



GRAVITATIONAL QUANTIZATION FROM GENERAL RELATIVITY 9

ellipse which will be an approximation of the tangential velocity of the
perturbed orbit. From equation (17) we have

(18) ṙ =
p e θ̇ sin θ

(1 + e cos θ)2
=

r2 e ω sin θ

p
=

h e sin θ

p
.

Therefore, we obtain that

(19) r2ω2 =
h2

r2
=

h2

p2
(1 + e cos θ)2 =

(1 + e cos θ)2ṙ2

e2 sin2 θ
.

Hence, the potential energy (16) takes the form

(20) U ≈ −M

r


1 +

(
1 + e cos θ

e sin θ

)2
ṙ2

c2


 ,

which has a similar form to (11). On the other hand, the potential
energy (16) is the first approximation of the potential energy

(21) U = − M

r
(
1− r2ω2

c2

) = − M

r
(
1− v2 sin2 θ

c2

) ,

where rω = rθ̇ = vt = v sin θ. This potential function (21) is also
similar to the Gravitational Lienard-Wiechert potential given in [3]
page 5, for a flat Minkowski space-time.

Therefore, in the limit case of weak gravitational field the General
Relativity gives an effective scalar potential of the form (16). This ef-
fective potential (16) explains the anomalous precession of Mercury’s
perihelion. The correct value of the gravitational deflection of fast par-
ticles of General Relativity is also explained from equation (4) taking
ε = 0 to consider a null orbit, see [23].

7. The retarded potentials from General Relativity

The Parametrized Post-Newtonian approximation (PPN formalism)
to Einstein’s equation gives a PPN space-metric which has special re-
tarded solutions where the delay associated to the speed of the gravita-
tional interaction appears. The more accurate post-Newtonian approx-
imation to General Relativity (which is a particular case of the PPN
formalism) is obtained in [19] page 1089. Setting gµν = ηµν + hµν . We
have h00 = 2U − 2U2 + 4Ψ + O(ε6), h0j = −7Vj/2−Wj/2 + O(ε5), and
hij = 2Uδij + O(ε4) where

U(x, t) =
∫ ρ0(x

′, t)
|x− x′| d3x′,
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Ψ(x, t) =
∫ ρ0(x

′, t)ψ(x′, t)
|x− x′| d3x′,

Vj(x, t) =
∫ ρ0(x

′, t)vj(x
′, t)

|x− x′| d3x′,

Wj(x, t) =
∫ ρ0(x

′, t)[(x− x′) · ν(x′, t)](xj − x′j)

|x− x′|3 d3x′,

with ψ = ν 2 + U + Π/2 + 3p/(2ρ0) and where ρ0 is the baryon ”mass”
density, Π is the specific internal energy density and p is the pressure.
All these potentials appear because we approximate the retarded inte-
grals by expansions in the time derivatives; thus we have for instance

∫ ρ0(x
′, t− |x− x′|)
|x− x′| d3x′ =

∫ [
ρ0(x

′, t)
|x− x′| −

∂ρ0(x
′, t)

∂t
+ · · ·

]
d3x′.

Hence, all the potentials U , Ψ, Vj and Wj come from the Einstein’s field
equation where the delay appears in a natural way. Everything points
out that, for amenable situations, General Relativity would reduce to
retarded Newtonian-like potentials if we do not do expansions with
respect to the delay.

8. Concluding remarks

The present paper is the last in a series of works where it has been
shown that the retarded potentials can also explain some primordial
phenomena of the General Relativity and the Quantum mechanics and
the connections between them, see [9, 10, 11, 12, 13]. This paper show
that, in fact, these exact retarded potentials do not appear in the clas-
sical General Relativity Theory. The possibility that these retarded
potentials would be an alternative theory to the General Relativity is
an absurdity due to the quantity of experimental tests in accordance
with the General Relativity. Anyway, in the classical General Rela-
tivity, the delay due to the finite propagation velocity appears in a
natural way and this fact suggests the possibility to find the connec-
tion between the General Relativity and the Quantum mechanics and
also to demonstrate that, in fact, the gravitational quantization is an-
other consequence of General Relativity. This conviction is based in
what happens in the alternative simple theory of retarded potentials of
Weber-type. In this theory, the approximation to the retarded poten-
tial is given by the velocity dependent potential (11). Moreover, this
potential function (11) is of Weber-type which has associated a Weber-
type force of the form (9) with α = 1/2 and ξ = 6. On the other hand,
as we have seen, this potential function (11) is the approximation of
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the the simplest retarded potential (10). And this retarded potential
(10) has the associated force of the form

(22) f = − M

[r(t− τ)]2
(1 + · · · ),

The form of this associated force justifies the introduction in [10, 11]
of the retarded inverse square force to explain the the quantized Bohr
atomic model and the gravitational quantification with an explanation
of the modified Titius–Bode law, respectively. These two works give
models too simple to show that it is possible to obtain the quantization
from a retarded force of the form (22). For the electromagnetic classical
field, in the ideal case of a point–charge particle, the resulting retarded
potentials are the Liénard–Wiechert potentials. From the Lorentz force
associated to these Liénard–Wiechert potentials we must find the ori-
gin of the quantum mechanics in the general case. However, the correct
quantization of the gravitational field must be obtained using the Ein-
stein’s field equation and the delay, which appears in a natural way in
the Einstein’s field equation. However, it is difficult to work with the
Einstein’s field equations to deduce this consequence and it is still an
open problem.
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[9] J. Giné, On the classical descriptions of the quantum phenomena in the
harmonic oscillator and in a charged particle under the coulomb force, Chaos
Solitons Fractals 26 (2005), no. 5, 1259–1266.
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