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We present several classes of planar polynomial Hamilton systems and their
polynomial perturbations leading to vanishing of the first Melnikov integral.
We discuss the form of higher order Melnikov integrals. In particular, we
present new examples where the second order Melnikov integral is not an
Abelian integral.

Key Words: Higher order Melnikov integral, Abelian integral.

1. INTRODUCTION

It is well known that the problem of limit cycles for a polynomial per-
turbation XH + εV, of a polynomial Hamiltonian vector field XH leads to
the so called Poincaré–Pontryagin integral (see [1])

Iω(h) =
∫

γh

ω, (1)

where γh is a continuous family of ovals of the curves H(x, y) = h and the
polynomial-form ω is associated to the vector field V via the Pfaff equation

dH − εω = 0 (2)
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for phase curves. But there are situations (which we present in detail
in further sections) where the integral (1) vanishes identically, but the
Poincaré return map is not identity. In such cases one obtains an expansion
of the increment ∆H (along a trajectory near γh) in powers of ε of the form

∆H = εkMk(h) + O(εk+1)

where Mk 6≡ 0 is called the higher-order Melnikov function, or the principal
Poincaré–Pontryagin integral (like in [14] or [5]).

It is easy to express Mk via iterated integrals. Consider M2 for example.
Then equation (2) has the approximate first integral Hε = H−εH1, where
H1(P ) =

∫ P

P0
ω and the integration is along a path in the curve γh joining

a fixed point P0 = P0(h) (the intersection point of γh with a fixed section
S) with P. Then the increment of Hε equals

∆Hε ≈ ε

∫

Hε=h

ω = ε2

∫

γh

H1
dω

dH
+O(ε3) = ε2

∫

γh

dω

dH

∫ P

P0

ω+O(ε3). (3)

(Above dω
dH is the Gelfand–Leray residue form, see [2].)

The interest in the higher order Melnikov functions arose when in 1996
J.-P. Françoise [4] gave an extremely simple algorithm for successive calcu-
lation of the higher Melnikov functions in form of Abelian integrals. The
Françoise’s algorithm works under so-called ∗-property :

if Iω(h) ≡ 0 then ω = fdH + dH1 (4)

for some polynomials f and H1. Then the function H1 in (3) becomes a
polynomial, dω

dH = df , and we get

M2 =
∫

γh

H1df = −
∫

γh

fdH1 = −
∫

γh

fω. (5)

If M2 ≡ 0 then we can again use the ∗-property and repeat the above
calculations. In essence the Françoise’s algorithm allows to calculate suc-
cessive approximations to the supposed first integral and integrating factor.

Probably the simplest example of a Hamiltonian function without the
∗-property is the following elliptic Hamiltonian

H(x, y) = y2 ± (x2 − 1)2 = f1f2, (6)

where f1,2 = y±√∓1(x2−1). Then the 1-form η = xydx satisfies
∫

γh
η ≡ 0,

but
∫

δ±(h)
η 6≡ 0, where γh is a cycle in the complex curve defined by H = h
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vanishing at x = y = 0 and δ±(h) are cycles vanishing at x = ±1, y = 0
( see [2]). A. Jebrane, P. Mardešić and M. Pelletier [10, 11] extended the
Françoise’s algorithm to polynomial perturbations of the equation dH = 0
for the Hamiltonian (6). (In fact they considered H(x, y) = y2 + (x2− 1)2,
but there is no essential difference between the two cases.) They showed
the property (4) but with f and H1 depending on x, y,H−1 and on the
auxiliary angle function

φ = log(f1/f2). (7)

The latter function satisfies dφ = 8η−2d[y(x2−1)]. Moreover, it turned out
any higher order Melnikov function is an Abelian integral (see also [5, 6]).

Another case is the so-called Hamiltonian triangle

H = f1f2f3 (8)

where fi are affine functions. It was was considered by M. Uribe [13].
He showed that the higher order Melnikov functions are combinations of
tree basic integrals I0, I1, and I∗, where I0, I1 are Abelian integrals and
I∗ =

∫
log f1d(log f2/f3). The coefficients of these combinations depend on

h and 1/h.
The case of quadratic perturbations of the situation (8) was firstly stud-

ied by the second author in [15]. There the integral I∗ appeared for the
first time. I. Iliev in [7] showed that the integral I∗ has a singularity at
h = 0 of the form

c0 + c1h log2 h + . . . . (9)

(see also [8]). Since any Abelian integral of the type (1) with a rational
1-form ω has singularities of the form

α0(h) + α1(h) log(h− hc) + . . . (10)

(where the functions α0,1(h) are meromorphic near a singular point hc), it
follows that the function I∗(h) is not an Abelian integral. (The expansion
(10) is a well known consequence of the Picard–Lefeschetz formula, see [2].)

In the subsequent paper [14] Uribe generalized the result from [13] to the
case

H = f1f2 . . . fd (11)

where fi are affine linear functions in general position. He proved existence
of basic Abelian integrals Ii and non-Abelian integrals

I∗i,j =
∫

log(fi)d log(fj), 2 ≤ i < j ≤ d, (12)
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such that Mk belongs to the R[h, 1/h]−module generated by Ii and I∗i,j .

On the other hand, L. Gavrilov proved in [5] that the function Mk(h)
satisfies a linear differential equation with rational coefficients (see also [3]).
In particular, he presented explicitly equations satisfied by the tree basic
integrals for the Hamiltonian (8).

In this paper we look at the higher order Melnikov functions from rather
geometrical point of view. Namely, we try to describe the (linear) space

X = {ω : Iω(h) ≡ 0}.

When H has ∗-property, this space is generated by two subspaces

X1 = {gdH : g ∈ R[x, y]}, X2 = {df : f ∈ R[x, y]}. (13)

Each of them corresponds to forms ω such that the Pfaff equation (2)
has center.

We give examples when X is an algebraic sum of several spaces Xi such
that forms ω ∈ Xi lead to equation (2) with center. (For instance, this
holds in the case (13).) In such situation sometimes M2 is an Abelian
integral and sometimes it is not.

Another source of vanishing of the linear Poincaré–Pontryagin integrals is
a symmetry of the Hamiltonian and of the form ω. This symmetry may act
on dH and on ω in the same or in different ways. Some symmetries of order
2, namely the reflections, are generalized to a so-called rational reversibility
property (introduced in [16]). In the symmetric case the corresponding
equation (2) may have not center. Depending on a kind of the symmetry
the function M2 is or is not an Abelian integral.

2. THE MAP INT AND THE STAR PROPERTY

Let us fix the Hamilton function H(x, y) and a family of its ovals {γh :
h1 ≤ h ≤ h2}, where h1,2 are suitable critical values of H. The linear
Melnikov integral defines a linear map

Intγ : Λ1R2 ⊗ R[x, y] −→ C∞((h1, h2)) (14)

where Λ1R2 ⊗ R[x, y] denotes the space of real polynomial 1-forms. Our
problem is to describe the subspace

X = ker(Int). (15)
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The space X contains the subspaces

X1 = R[x, y] · dH, X2 = d(R[x, y]) (16)

with the intersection X1 ∩ X2 = R[H] · dH. The ∗-property states that
X = X1 + X2.

We note the following

Lemma 1. (i) If ω = gdH ∈ X1 then the equation dH − εω = 0 has H
as first integral with the integral factor R = 1 + εg.

(ii) If ω = dH1 ∈ X2, then the equation dH−εω = 0 has the first integral
H − εH1 with the integral factor R = 1 (it is a Hamiltonian equation).

Yu. Il’yashenko [9] proved that the ∗-property is typical.

Theorem 2 (Il’yashenko). If the Hamiltonian H of degree d is generic,
i.e. has Morse critical points with different critical values and d points at
infinity, then X = X1 + X2.

Example 3. Any quadratic polynomial with center satisfying the as-
sumption of the Il’yashenko theorem is equivalent to x2 + y2. Here the
∗-property can be checked directly.

Problem. Take a cubic Hamiltonian H = x2 + y2 + Ax3 + Bxy2 + Cy3

which satisfies the assumptions of the Il’yashenko theorem and a 1-form

(ax+by)dH +d(αx3 +βx2y+γxy2 +δy3+εx4 +νx3y+θx2y2 +ζxy3+ηy4)

where a, b, α, . . . , η are small. Apply the Françoise’s algorithm and detect
the center conditions near XH in the class of cubic vector fields. These are
algebraic conditions for a, b, . . . , η0.

In the case H = x2 + y2 and quadratic ω the Françoise’s algorithm leads
to the well known Dulac’s center conditions (see [4], [15]).

3. DARBOUX FIRST INTEGRALS

One possibility of not satisfying the assumptions of the Il’yashenko the-
orem is that some critical level is reducible:

H − hc = f1 . . . fd, d ≥ 2, (17)

where f1, . . . , fd are irreducible polynomials. Assume also that the fac-
tors fi are pairwise different (below we remove this restriction). Then the
Darboux function

f1+δ1
1 . . . f1+δd

d (18)
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is a perturbations of the function (17) and constitutes a first integral of the
Pfaff equation

dH + (H − hc)
∑

δjd(log fj) = 0.

Therefore, for any polynomial P the integral of the form P (H)(H −
hc)d(log fj) along a cycle γh is zero.

So we can consider a general perturbation

dH +
d∑

j=1

δjPj(H)(H − hc)d(log fj) + ε1gdH + ε2dH1 = 0 (19)

of the equation dH = 0. H. Movasatti [12] proved that, in the case of
affine linear functions fj in generic position, any perturbation of dH from
X = ker(int) is of the form (19) (see also [14]).

Theorem 4. Take H like in (17) and the perturbation (19).
If d = 2 then M2 is an Abelian integral.
If d ≥ 3 then M2 can be not an Abelian integral. It can contain some

integral I∗ij of the form (12) with a nonzero coefficient, which depends ra-
tionally on h.

Remark 5. Recall that Uribe [13, 14] proved the representation of Mk

as linear combination, with coefficients being Laurent polynomials of h −
hc, of some basic Abelian integrals and the integrals (12), provided fj ’s
are affine-linear functions in generic position. He gave an example when
the coefficient before I∗ij does not vanish. But in the case of Hamiltonian
triangle (i.e. d = 3) and its quadratic perturbations the coefficient before
I∗ = I∗12 − I∗13 in M2 vanishes. In M3 this coefficient is nonzero. The
reason is that the perturbation leading to nonzero I∗-part in M2 must be
of sufficiently high degree (see the proof of Theorem2).

Remark 6. The Hamiltonian (6) considered by Jebrane, Mardešić and
Pelletier is a particular case of (17) with d = 2. Recall that in [11] it was
proved that Mk is an Abelian integral for any k. The proof is essentially
algebraic.

Maybe in general case with H = f1f2 and such that

X = X1 + X2 + R[H] ·Hd(log f1) + R[H] ·Hd(log f2) ,

Mk is an Abelian integral for any k.

Before proving Theorem 4 we interpret the perturbations appearing in
(19).

Lemma 7. The Pfaff equation dH + δ1P1(H)(H − hc)d(log f1) = 0 has
center.
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Proof. We rewrite this equation on the form

dH

Pj(H)(H − hc)
+ δ1d(log f1) = 0.

Here the variables H and f1 are separated and integration gives a first
integral of the type W + δ1 log f1 (with a rational function W ).

Proof of Theorem 4. The form
∑

δj(H − hc)d(log fj) for δ1 = · · · = δd

is proportional to (H − hc)d(log H) = dH. Therefore in the representation
(19) we can choose δd = 0 (like in [14]).

If d = 2, then we get

dH + δ1P1(H)(H − hc)d(log f1) + ε1gdH + ε2dH1.

By Lemma 7 it is enough to show that the terms in M2 before δ1ε1 and
δ2ε2 are Abelian integrals. They are equal to

−P1(h)
∫

H=h

g(H − hc)d(log f1),
∫

H=h

H1
d[P1(H)(H − hc)d(log f1)]

dH

respectively.
Let d ≥ 3 and assume that hc = 0. Take the perturbation

dH + δ1Hd(log f1) + δ2H
2d(log f2) = 0

and calculate the term before δ1δ2 in M2 (note the different powers of H).
Since

dH + δ1Hd(log f1) = f−δ1
1 d(f1+δ1

1 f2 . . . fd) = f−δ1
1 d(Hδ1),

Hδ1 ≈ H · (1 + δ1 log f1), we get the Pfaff equation

dHδ1 + fδ1
1 · δ2H

2d(log f2) = 0.

From this we find that the increment of the function Hδ1 equals

−δ2Φ(h, δ1) = −δ2

∫

Hδ1=h

f2+δ1
1 f2

2 f2
3 . . . f2

dd(log f2)

Here Φ(h, 0) ≡ 0. The linear in δ1 part of Φ equals

δ1

∫

H=h

(f1f2 . . . fd)2 log f1d(log f2)−δ1

∫

H=h

d[(f1f2 . . . fd)2d(log f2)]
dH

H log f1
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= −δ1h
2

∫

H=h

log f1d(log f2).

(Here we have used the formula d[f2
1 . . . f2

dd(log f2)] = 2HdH ∧ d(log f2).
Note that for d = 2 we have log f2 = − log f1 along γh and this proof does
not work.)

In [14] it is proved that in the case of affine-linear fj ’s the integrals I∗ij
are non-Abelian. From this it is easy to conclude that they are non-Abelian
in our case.

Consider now the non-reduced case of the factorization (17):

H − hc = f1+r1
1 . . . f1+rd

d (20)

where some ri > 1, say r1 > 1.
Now some other terms may appear in (19). Namely the factor f1+δ1

1 in
the Darboux integral (18) can replaced by f1+r1+δ1

1 exp(ν1Q(1/f1) where
Q is a polynomial of degree ≤ r1 and δ1, ν1 are small. The general term
which can be added to (19) is

ε0(H − hc)d
(

g

fr1
1 . . . frd

d

)
= ε0ω0

where g is a general polynomial and ε0 is a small parameter.

Lemma 8. The Pfaff equation dH + ε0ω0 = 0 has center.

Proof. This Pfaff equation is equivalent to the equation

d(H − hc)
H − hc

+ ε0d(gf−r1
1 . . . f−rd

d ) = 0.

It has the first integral

fα1
1 . . . fαd

d exp
[
ε0gf−r1

1 . . . f−rd

d

]
. (21)

Functions of the form (21) are called the generalized Darboux functions.
They (and their logarithms) are limits of the Darboux functions (18).

We finish this subsection by remarking that, when the polynomial has
several ‘atypical’ values hci such that the polynomials H−hci are reducible,
then the expansion of the type (19) should contain suitable summands
associated with each critical value.
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4. ROTATIONAL SYMMETRY

There are two series of finite group of symmetries of the plane: the
cyclic groups Cm, of rotations by angles 2πj

m , and the dihedral groups Dm,
generated by two reflections with respect to lines with angle 2π

m between
them.

Vanishing of some linear Melnikov integrals may be caused by such a
symmetry.

Consider firstly the rotation group Cm. Denote by ρ : z → e2πi/mz its
generator where z = x+iy is the complex coordinate, after an identification
of R2 with C. Therefore we assume that

ρ∗H = H, ρ(γh) = γh, (22)

where ρ∗(H) = ρ ◦H. Note that we get ρ∗dH = dH.
The real 1-forms ω = Adx + Bdy can be written in the form

ω = C(z, z̄)dz + C(z, z̄)dz̄ = 2<(Cdz).

We say that a complex form η is a semi-invariant (with respect to the
group Cm) if

ρ∗η = χη · η, (23)

where

χη = χη(ρ) : Cm → S1 ⊂ C is a character (of Cm).

Of course, χη(ρ) = e2πil/m for some integer l and χη(ρk) = χk
η.

Proposition 9. If ω is a real part of a complex form η which is a semi-
invariant with nontrivial character χ 6= 1, then the linear Melnikov integral
of ω along γh vanishes.

Proof. We divide the oval γh which surrounds the origin into m pieces
γ0

h, . . . γm−1
h such that ρ(γj

h) = γj+1
h with preserved orientation. Then

Iη(h) =
m−1∑

j=0

∫

ρj(γ0
h)

η =
m−1∑

j=0

∫

γ0
h

(ρ∗)jη =




m−1∑

j=0

χj
η




∫

γ0
h

η = 0.

Example 10. Let H(x, y) = x2+y2+K(x, y), where K is a homogeneous
quartic polynomial, and let γh for h > 0 be the ovals ovals of H = h around
x = y = 0 for small h. Of course, H and γh are invariant with respect to
the group C2 generated by the central symmetry, ρ(x, y) = (−x,−y). Any
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homogeneous quadratic form ω is a semi-invariant of the group C2 with
χω = −1. Therefore ω ∈ ker(Intγ).

Let us consider the second order Melnikov function associated with per-
turbations of dH by semi-invariant forms.

Let H be Cm−invariant and such that the cycle γh at a critical value
h0 degenerates to a polycycle consisting of non-degenerate saddle points
P0, . . . , Pm−1 and m connections γ0

hc
, . . . , γm−1

hc
between the consecutive

saddles points. Let δ0, . . . , δm−1 be the cycles vanishing at P0, . . . , Pm−1

respectively and such that ρ(δj) = δj+1 (see Figure 1).

FIG. 1.

FIG. 2.
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Let η1 and η2 be two complex 1-forms quasi-invariant with respect to
Cm, with the characters χη1 = ζ1 6= 1 and χη2 = ζ2 6= 1 respectively.
Assume also that

J ′1 =
∫

γ0

dη1

dH
6≡ 0, J2 =

∫

γ0
η2 6≡ 0,

K ′
1 =

∫

δ0

dη1

dH
6≡ 0, K2 =

∫

δ0

η2 6≡ 0, (24)

(in fact, it is enough that K ′
1 6≡ 0, K2 6≡ 0) and

µ := (1 + ζ1){[1 + ζ1ζ2 + · · ·+ (ζ1ζ2)m−2] + ζ1[1 + · · ·+ (ζ1ζ2)m−3] + . . .

+ζm−2
1 6= 0. (25)

Theorem 11. Under the above assumptions the term before ε1ε2 in M2

for the complex Pfaff perturbation dH + ε1η1 + ε2η2 = 0 is not an Abelian
integral.

Proof. Using the iterated integrals (see (3)) we represent our function
in the form

M2 =
∫

γh

dη1

dH
(P )

∫ P

P0(h)

η2 =
∫ ∫

∆

dη1

dH
(P )η2(P ).

Here the initial point P0 = P0(h) is the intersection of γh with the ray
R+Pm−1 and ∆ is a suitable triangular domain like in Figure 2(a). Choos-
ing suitable orientation of δ0 we can assume that the Picard–Lefschetz
transformation corresponding to moving h around the critical value h0 can
be specified as follows (see [2]):

γj → γj + δj , δj → δj , j = 0, 1, . . . , m− 1.

The resulting change in the domain ∆ is presented at Figure 2(b). The
variation of M2 is the union of integrals over the squares δi×δj , the triangles
1
2δi × δj and the rectangles.

The integrals over the squares and the triangles are analytic. We denote
their sum by Φ1(h).

The integrals over the vertical rectangles equal

∫

δi

dη1

dH
.

∫

γj

η2 = ζi
1ζ

j
2 ·K ′

1J2,
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whereas the integrals over the horizontal rectangles are equal
∫

γi

dη1

dH
.

∫

δj

η2 = ζi
1ζ

j
2 · J ′1K2.

Denote by Φ2(h) the sum of integrals over the rectangles. Therefore

Var(M2) = Φ1 + Φ2. (26)

Since Var(K ′
1J2) = Var(J ′1K2) = K ′

1K2, the variation of Φ2 equals K ′
1K2

times the sum of the coefficients ζi
1ζ

j
2 associated with the rectangles. It is

easy to see that the latter sum equals the number µ defined in (25) (see
Figure 2(b)). Thus

Var(Φ1) = 0, Var(Φ2) = µ ·K ′
1K2, (27)

where K ′
1K2 is analytic. We obtain that under assumptions (23) and (24)

the function Φ2 is not analytic, it has a singularity of the form

Φ2(h) = ψ2(h) +
µ

2πi
K ′

1K2 · log(h− h0). (28)

From (26), (27) and (28) it follows that M2 has singularity of the type
log2(h − h0), which excludes the possibility of being an Abelian integral
(compare(10)).

It remains to construct an example satisfying the assumptions of Theo-
rem 11. Unfortunately, in Example 10 above one must have ζ1 = −1 which
implies µ = 0; we do not know whether the integral M2 is Abelian in this
situation.

Example 12. Consider vector fields with the rational symmetry of order
3. Here µ = (1 + ζ1)(1 + ζ1 + ζ1ζ2) is nonzero for ζ2 = ζ2

1 = ζ−1 = e−2πi/3.
Take the following C3−symmetric Hamiltonian function

H(x, y) = 3zz̄ − z3 − z̄3 + az4z̄ + āzz̄4.

For small a ∈ C \ {0} it is close to the Hamiltonian triangle. The corre-
sponding vector field has the saddle vertices P0, P1, P2, which are close to
z = 1, z = ζ = ζ1 = 1±√3

2 and z = ζ2 respectively. The 1-forms

η1 = z̄3dz, η2 = ω̄1

are semi-invariants with the characters ζ1 = ζ and ζ2 = ζ2; so µ 6= 0. It is
not difficult to check that the conditions (23) hold true.
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This and Theorem 11 imply that M2 is not an Abelian integral for the
perturbation

dH − ε(η1 + η̄1) = 0.

Remark 13. In contrast of the cases (of vanishing of Iω) from Section
3, the (real) equation

dH − εω = 0,

where ω is a quasi-invariants of Cm, generally does not have center.

5. REFLECTION SYMMETRY AND REVERSIBILITY

Any dihedral group Dm is generated by reflections, so it contains the
subgroup D1 ≈ Z/2. We can assume that the generator of D1 is the fol-
lowing

σ : (x, y) → (−x, y). (29)

Any D1−invariant Hamilton function is of the form

H = H̃(x2, y) (30)

and the form dH = 2H̃ ′
x2dx + H̃ ′

ydy satisfies σ∗(dH) = dH, i.e. it is
time–reversible. We assume that σ(γh) = γh.

We say that a 1-form ω is time–reversible if σ∗ω = ω.
Note the following easy

Lemma 14. If ω is time–reversible then the Pfaff equation dH − εω = 0
has center. If, additionally, H satisfies kerγ(Int) = {ω0 + gdH + dH1 :
σ∗ω0 = ω0}then M2 is an Abelian integral.

Remark 15. The hyperelliptic Hamilton functions

H(x, y) = y2 + S(x) (31)

are D1−invariant with the reflection τ : (x, y) → (x,−y).
They satisfy the ∗-property. Indeed, any time-reversible 1-form equals

ω = A(x, y2)dx + yB(x, y2)dy. When we replace y2 by H − S(x) and ydy
by 1

2 (dH − S′(x)dx), we shall see that ω = C(x, H)dx ( mod (dH) =
d(D(x, h)) ( mod dH).

The Jebrane–Mardešić–Pelletier’s hamiltonian (6) is invariant with re-
spect to the reflections σ and τ. Therefore the Hamiltonian (6) is degener-
ate in three ways. Here the σ−invariant 1-form xydx does not belong to
X1 + X2 = R[x, y] · dH + d(R[x, y]).
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It would be interesting to know whether M3 is Abelian for generic Hamil-
tonian of the form H = y2 + S(x2); probably not.

A natural generalization of the condition (30) is following. Let Φ : R2 →
R2 be a polynomial mapping which has a fold-type singularity

Φ(x, y) = (X,Y ) = (x2 + . . . , y + . . . )

near (0, 0). Denote by Γ = {det dΦ = 0} the fold curve of Φ. We can put
H(0, 0) = 0.

Assume that

H = H̃ ◦ Φ, (32)

where H̃(X,Y ) is a polynomial such that H̃(0, 0) = 0 and the curve {H̃ =
0} is tangent to Φ(Γ) at (0, 0) from outside of the domain Φ(U), where U is
a neighborhood of (0, 0). In this case we say that H is rationally reversible
by means of Φ.

Following [16] we say that a 1-form ω is rationally reversible by means of
Φ if

ω = Φ∗ω̃, (33)

where ω̃(X,Y ) is a polynomial 1-form in the target space.

Proposition 16. The statements of Lemma 14 hold in the case when
H and ω are both rationally revertible by means of Φ.

Remark 17. Above we presented all known to us mechanisms leading to
the vanishing of Iω. Natural question is whether they generate ker(Intγ)
for any Hamiltonian function H and any family {γh} of its ovals. We think
that this is the case.
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