A Note on Higher Order Melnikov Functions

Ahmed Jebrane
Institut de Mathématiques de Bourgogne, UMR 5584 CNRS, Université de Bourgogne, 9 Av. Alain Savary, BP 47870, 21078 Dijon Cedex, France. E-mail: jebrane@u-bourgogne.fr
and
Henryk Żoła̧dek ${ }^{*}$
Institute of Mathematics, University of Warsaw, ul. Banacha 2, 02-097 Warsaw, Poland.
E-mail: zoladek@mimuw.edu.pl

We present several classes of planar polynomial Hamilton systems and their polynomial perturbations leading to vanishing of the first Melnikov integral. We discuss the form of higher order Melnikov integrals. In particular, we present new examples where the second order Melnikov integral is not an Abelian integral.

Key Words: Higher order Melnikov integral, Abelian integral.

1. INTRODUCTION

It is well known that the problem of limit cycles for a polynomial perturbation $X_{H}+\varepsilon V$, of a polynomial Hamiltonian vector field X_{H} leads to the so called Poincaré-Pontryagin integral (see [1])

$$
\begin{equation*}
I_{\omega}(h)=\int_{\gamma_{h}} \omega \tag{1}
\end{equation*}
$$

where γ_{h} is a continuous family of ovals of the curves $H(x, y)=h$ and the polynomial-form ω is associated to the vector field V via the Pfaff equation

$$
\begin{equation*}
d H-\varepsilon \omega=0 \tag{2}
\end{equation*}
$$

[^0]for phase curves. But there are situations (which we present in detail in further sections) where the integral (1) vanishes identically, but the Poincaré return map is not identity. In such cases one obtains an expansion of the increment ΔH (along a trajectory near γ_{h}) in powers of ε of the form
$$
\Delta H=\varepsilon^{k} M_{k}(h)+O\left(\varepsilon^{k+1}\right)
$$
where $M_{k} \not \equiv 0$ is called the higher-order Melnikov function, or the principal Poincaré-Pontryagin integral (like in [14] or [5]).

It is easy to express M_{k} via iterated integrals. Consider M_{2} for example. Then equation (2) has the approximate first integral $H_{\varepsilon}=H-\varepsilon H_{1}$, where $H_{1}(P)=\int_{P_{0}}^{P} \omega$ and the integration is along a path in the curve γ_{h} joining a fixed point $P_{0}=P_{0}(h)$ (the intersection point of γ_{h} with a fixed section $S)$ with P. Then the increment of H_{ε} equals

$$
\begin{equation*}
\Delta H_{\varepsilon} \approx \varepsilon \int_{H_{\varepsilon}=h} \omega=\varepsilon^{2} \int_{\gamma_{h}} H_{1} \frac{d \omega}{d H}+O\left(\varepsilon^{3}\right)=\varepsilon^{2} \int_{\gamma_{h}} \frac{d \omega}{d H} \int_{P_{0}}^{P} \omega+O\left(\varepsilon^{3}\right) \tag{3}
\end{equation*}
$$

(Above $\frac{d \omega}{d H}$ is the Gelfand-Leray residue form, see [2].)
The interest in the higher order Melnikov functions arose when in 1996 J.-P. Françoise [4] gave an extremely simple algorithm for successive calculation of the higher Melnikov functions in form of Abelian integrals. The Françoise's algorithm works under so-called *-property:

$$
\begin{equation*}
\text { if } \quad I_{\omega}(h) \equiv 0 \quad \text { then } \quad \omega=f d H+d H_{1} \tag{4}
\end{equation*}
$$

for some polynomials f and H_{1}. Then the function H_{1} in (3) becomes a polynomial, $\frac{d \omega}{d H}=d f$, and we get

$$
\begin{equation*}
M_{2}=\int_{\gamma_{h}} H_{1} d f=-\int_{\gamma_{h}} f d H_{1}=-\int_{\gamma_{h}} f \omega . \tag{5}
\end{equation*}
$$

If $M_{2} \equiv 0$ then we can again use the $*$-property and repeat the above calculations. In essence the Françoise's algorithm allows to calculate successive approximations to the supposed first integral and integrating factor.

Probably the simplest example of a Hamiltonian function without the *-property is the following elliptic Hamiltonian

$$
\begin{equation*}
H(x, y)=y^{2} \pm\left(x^{2}-1\right)^{2}=f_{1} f_{2} \tag{6}
\end{equation*}
$$

where $f_{1,2}=y \pm \sqrt{\mp 1}\left(x^{2}-1\right)$. Then the 1-form $\eta=x y d x$ satisfies $\int_{\gamma_{h}} \eta \equiv 0$, but $\int_{\delta_{ \pm}(h)} \eta \not \equiv 0$, where γ_{h} is a cycle in the complex curve defined by $H=h$
vanishing at $x=y=0$ and $\delta_{ \pm}(h)$ are cycles vanishing at $x= \pm 1, y=0$ (see [2]). A. Jebrane, P. Mardešić and M. Pelletier [10, 11] extended the Françoise's algorithm to polynomial perturbations of the equation $d H=0$ for the Hamiltonian (6). (In fact they considered $H(x, y)=y^{2}+\left(x^{2}-1\right)^{2}$, but there is no essential difference between the two cases.) They showed the property (4) but with f and H_{1} depending on x, y, H^{-1} and on the auxiliary angle function

$$
\begin{equation*}
\phi=\log \left(f_{1} / f_{2}\right) \tag{7}
\end{equation*}
$$

The latter function satisfies $d \phi=8 \eta-2 d\left[y\left(x^{2}-1\right)\right]$. Moreover, it turned out any higher order Melnikov function is an Abelian integral (see also [5, 6]).

Another case is the so-called Hamiltonian triangle

$$
\begin{equation*}
H=f_{1} f_{2} f_{3} \tag{8}
\end{equation*}
$$

where f_{i} are affine functions. It was was considered by M. Uribe [13]. He showed that the higher order Melnikov functions are combinations of tree basic integrals I_{0}, I_{1}, and I^{*}, where I_{0}, I_{1} are Abelian integrals and $I^{*}=\int \log f_{1} d\left(\log f_{2} / f_{3}\right)$. The coefficients of these combinations depend on h and $1 / h$.

The case of quadratic perturbations of the situation (8) was firstly studied by the second author in [15]. There the integral I^{*} appeared for the first time. I. Iliev in [7] showed that the integral I^{*} has a singularity at $h=0$ of the form

$$
\begin{equation*}
c_{0}+c_{1} h \log ^{2} h+\ldots \tag{9}
\end{equation*}
$$

(see also [8]). Since any Abelian integral of the type (1) with a rational 1 -form ω has singularities of the form

$$
\begin{equation*}
\alpha_{0}(h)+\alpha_{1}(h) \log \left(h-h_{c}\right)+\ldots \tag{10}
\end{equation*}
$$

(where the functions $\alpha_{0,1}(h)$ are meromorphic near a singular point h_{c}), it follows that the function $I^{*}(h)$ is not an Abelian integral. (The expansion (10) is a well known consequence of the Picard-Lefeschetz formula, see [2].)

In the subsequent paper [14] Uribe generalized the result from [13] to the case

$$
\begin{equation*}
H=f_{1} f_{2} \ldots f_{d} \tag{11}
\end{equation*}
$$

where f_{i} are affine linear functions in general position. He proved existence of basic Abelian integrals I_{i} and non-Abelian integrals

$$
\begin{equation*}
I_{i, j}^{*}=\int \log \left(f_{i}\right) d \log \left(f_{j}\right), \quad 2 \leq i<j \leq d \tag{12}
\end{equation*}
$$

such that M_{k} belongs to the $\mathbb{R}[h, 1 / h]$-module generated by I_{i} and $I_{i, j}^{*}$.
On the other hand, L. Gavrilov proved in [5] that the function $M_{k}(h)$ satisfies a linear differential equation with rational coefficients (see also [3]). In particular, he presented explicitly equations satisfied by the tree basic integrals for the Hamiltonian (8).

In this paper we look at the higher order Melnikov functions from rather geometrical point of view. Namely, we try to describe the (linear) space

$$
\mathcal{X}=\left\{\omega: I_{\omega}(h) \equiv 0\right\} .
$$

When H has *-property, this space is generated by two subspaces

$$
\begin{equation*}
\mathcal{X}_{1}=\{g d H: g \in \mathbb{R}[x, y]\}, \quad \mathcal{X}_{2}=\{d f: f \in \mathbb{R}[x, y]\} . \tag{13}
\end{equation*}
$$

Each of them corresponds to forms ω such that the Pfaff equation (2) has center.

We give examples when \mathcal{X} is an algebraic sum of several spaces \mathcal{X}_{i} such that forms $\omega \in \mathcal{X}_{i}$ lead to equation (2) with center. (For instance, this holds in the case (13).) In such situation sometimes M_{2} is an Abelian integral and sometimes it is not.

Another source of vanishing of the linear Poincaré-Pontryagin integrals is a symmetry of the Hamiltonian and of the form ω. This symmetry may act on $d H$ and on ω in the same or in different ways. Some symmetries of order 2 , namely the reflections, are generalized to a so-called rational reversibility property (introduced in [16]). In the symmetric case the corresponding equation (2) may have not center. Depending on a kind of the symmetry the function M_{2} is or is not an Abelian integral.

2. THE MAP INT AND THE STAR PROPERTY

Let us fix the Hamilton function $H(x, y)$ and a family of its ovals $\left\{\gamma_{h}\right.$: $\left.h_{1} \leq h \leq h_{2}\right\}$, where $h_{1,2}$ are suitable critical values of H. The linear Melnikov integral defines a linear map

$$
\begin{equation*}
\text { Int }_{\gamma}: \Lambda^{1} \mathbb{R}^{2} \otimes \mathbb{R}[x, y] \longrightarrow C^{\infty}\left(\left(h_{1}, h_{2}\right)\right) \tag{14}
\end{equation*}
$$

where $\Lambda^{1} \mathbb{R}^{2} \otimes \mathbb{R}[x, y]$ denotes the space of real polynomial 1-forms. Our problem is to describe the subspace

$$
\begin{equation*}
\mathcal{X}=\operatorname{ker}(\operatorname{Int}) . \tag{15}
\end{equation*}
$$

The space \mathcal{X} contains the subspaces

$$
\begin{equation*}
\mathcal{X}_{1}=\mathbb{R}[x, y] \cdot d H, \quad \mathcal{X}_{2}=d(\mathbb{R}[x, y]) \tag{16}
\end{equation*}
$$

with the intersection $\mathcal{X}_{1} \cap \mathcal{X}_{2}=\mathbb{R}[H] \cdot d H$. The $*$-property states that $\mathcal{X}=\mathcal{X}_{1}+\mathcal{X}_{2}$.

We note the following
Lemma 1. (i) If $\omega=g d H \in \mathcal{X}_{1}$ then the equation $d H-\varepsilon \omega=0$ has H as first integral with the integral factor $R=1+\varepsilon g$.
(ii) If $\omega=d H_{1} \in \mathcal{X}_{2}$, then the equation $d H-\varepsilon \omega=0$ has the first integral $H-\varepsilon H_{1}$ with the integral factor $R=1$ (it is a Hamiltonian equation).

Yu. Il'yashenko [9] proved that the *-property is typical.
Theorem 2 (Il'yashenko). If the Hamiltonian H of degree d is generic, i.e. has Morse critical points with different critical values and d points at infinity, then $\mathcal{X}=\mathcal{X}_{1}+\mathcal{X}_{2}$.

Example 3. Any quadratic polynomial with center satisfying the assumption of the Il'yashenko theorem is equivalent to $x^{2}+y^{2}$. Here the *-property can be checked directly.

Problem. Take a cubic Hamiltonian $H=x^{2}+y^{2}+A x^{3}+B x y^{2}+C y^{3}$ which satisfies the assumptions of the Il'yashenko theorem and a 1 -form
$(a x+b y) d H+d\left(\alpha x^{3}+\beta x^{2} y+\gamma x y^{2}+\delta y^{3}+\varepsilon x^{4}+\nu x^{3} y+\theta x^{2} y^{2}+\zeta x y^{3}+\eta y^{4}\right)$
where $a, b, \alpha, \ldots, \eta$ are small. Apply the Françoise's algorithm and detect the center conditions near \mathcal{X}_{H} in the class of cubic vector fields. These are algebraic conditions for a, b, \ldots, η_{0}.

In the case $H=x^{2}+y^{2}$ and quadratic ω the Françoise's algorithm leads to the well known Dulac's center conditions (see [4], [15]).

3. DARBOUX FIRST INTEGRALS

One possibility of not satisfying the assumptions of the Il'yashenko theorem is that some critical level is reducible:

$$
\begin{equation*}
H-h_{c}=f_{1} \ldots f_{d}, \quad d \geq 2 \tag{17}
\end{equation*}
$$

where f_{1}, \ldots, f_{d} are irreducible polynomials. Assume also that the factors f_{i} are pairwise different (below we remove this restriction). Then the Darboux function

$$
\begin{equation*}
f_{1}^{1+\delta_{1}} \ldots f_{d}^{1+\delta_{d}} \tag{18}
\end{equation*}
$$

is a perturbations of the function (17) and constitutes a first integral of the Pfaff equation

$$
d H+\left(H-h_{c}\right) \sum \delta_{j} d\left(\log f_{j}\right)=0 .
$$

Therefore, for any polynomial P the integral of the form $P(H)(H-$ $\left.h_{c}\right) d\left(\log f_{j}\right)$ along a cycle γ_{h} is zero.

So we can consider a general perturbation

$$
\begin{equation*}
d H+\sum_{j=1}^{d} \delta_{j} P_{j}(H)\left(H-h_{c}\right) d\left(\log f_{j}\right)+\varepsilon_{1} g d H+\varepsilon_{2} d H_{1}=0 \tag{19}
\end{equation*}
$$

of the equation $d H=0 . \mathrm{H}$. Movasatti [12] proved that, in the case of affine linear functions f_{j} in generic position, any perturbation of $d H$ from $\mathcal{X}=\operatorname{ker}(i n t)$ is of the form (19) (see also [14]).

Theorem 4. Take H like in (17) and the perturbation (19).
If $d=2$ then M_{2} is an Abelian integral.
If $d \geq 3$ then M_{2} can be not an Abelian integral. It can contain some integral $I_{i j}^{*}$ of the form (12) with a nonzero coefficient, which depends rationally on h.

Remark 5. Recall that Uribe $[13,14]$ proved the representation of M_{k} as linear combination, with coefficients being Laurent polynomials of $h-$ h_{c}, of some basic Abelian integrals and the integrals (12), provided f_{j} 's are affine-linear functions in generic position. He gave an example when the coefficient before $I_{i j}^{*}$ does not vanish. But in the case of Hamiltonian triangle (i.e. $d=3$) and its quadratic perturbations the coefficient before $I^{*}=I_{12}^{*}-I_{13}^{*}$ in M_{2} vanishes. In M_{3} this coefficient is nonzero. The reason is that the perturbation leading to nonzero I^{*}-part in M_{2} must be of sufficiently high degree (see the proof of Theorem2).

Remark 6. The Hamiltonian (6) considered by Jebrane, Mardešić and Pelletier is a particular case of (17) with $d=2$. Recall that in [11] it was proved that M_{k} is an Abelian integral for any k. The proof is essentially algebraic.

Maybe in general case with $H=f_{1} f_{2}$ and such that

$$
\mathcal{X}=\mathcal{X}_{1}+\mathcal{X}_{2}+\mathbb{R}[H] \cdot H d\left(\log f_{1}\right)+\mathbb{R}[H] \cdot H d\left(\log f_{2}\right)
$$

M_{k} is an Abelian integral for any k.
Before proving Theorem 4 we interpret the perturbations appearing in (19).

Lemma 7. The Pfaff equation $d H+\delta_{1} P_{1}(H)\left(H-h_{c}\right) d\left(\log f_{1}\right)=0$ has center.

Proof. We rewrite this equation on the form

$$
\frac{d H}{P_{j}(H)\left(H-h_{c}\right)}+\delta_{1} d\left(\log f_{1}\right)=0
$$

Here the variables H and f_{1} are separated and integration gives a first integral of the type $W+\delta_{1} \log f_{1}$ (with a rational function W).

Proof of Theorem 4. The form $\sum \delta_{j}\left(H-h_{c}\right) d\left(\log f_{j}\right)$ for $\delta_{1}=\cdots=\delta_{d}$ is proportional to $\left(H-h_{c}\right) d(\log H)=d H$. Therefore in the representation (19) we can choose $\delta_{d}=0$ (like in [14]).

If $d=2$, then we get

$$
d H+\delta_{1} P_{1}(H)\left(H-h_{c}\right) d\left(\log f_{1}\right)+\varepsilon_{1} g d H+\varepsilon_{2} d H_{1} .
$$

By Lemma 7 it is enough to show that the terms in M_{2} before $\delta_{1} \varepsilon_{1}$ and $\delta_{2} \varepsilon_{2}$ are Abelian integrals. They are equal to

$$
-P_{1}(h) \int_{H=h} g\left(H-h_{c}\right) d\left(\log f_{1}\right), \quad \int_{H=h} H_{1} \frac{d\left[P_{1}(H)\left(H-h_{c}\right) d\left(\log f_{1}\right)\right]}{d H}
$$

respectively.
Let $d \geq 3$ and assume that $h_{c}=0$. Take the perturbation

$$
d H+\delta_{1} H d\left(\log f_{1}\right)+\delta_{2} H^{2} d\left(\log f_{2}\right)=0
$$

and calculate the term before $\delta_{1} \delta_{2}$ in M_{2} (note the different powers of H).
Since

$$
d H+\delta_{1} H d\left(\log f_{1}\right)=f_{1}^{-\delta_{1}} d\left(f_{1}^{1+\delta_{1}} f_{2} \ldots f_{d}\right)=f_{1}^{-\delta_{1}} d\left(H_{\delta_{1}}\right),
$$

$H_{\delta_{1}} \approx H \cdot\left(1+\delta_{1} \log f_{1}\right)$, we get the Pfaff equation

$$
d H_{\delta_{1}}+f_{1}^{\delta_{1}} \cdot \delta_{2} H^{2} d\left(\log f_{2}\right)=0
$$

From this we find that the increment of the function $H_{\delta_{1}}$ equals

$$
-\delta_{2} \Phi\left(h, \delta_{1}\right)=-\delta_{2} \int_{H_{\delta_{1}}=h} f_{1}^{2+\delta_{1}} f_{2}^{2} f_{3}^{2} \ldots f_{d}^{2} d\left(\log f_{2}\right)
$$

Here $\Phi(h, 0) \equiv 0$. The linear in δ_{1} part of Φ equals
$\delta_{1} \int_{H=h}\left(f_{1} f_{2} \ldots f_{d}\right)^{2} \log f_{1} d\left(\log f_{2}\right)-\delta_{1} \int_{H=h} \frac{d\left[\left(f_{1} f_{2} \ldots f_{d}\right)^{2} d\left(\log f_{2}\right)\right]}{d H} H \log f_{1}$

$$
=-\delta_{1} h^{2} \int_{H=h} \log f_{1} d\left(\log f_{2}\right)
$$

(Here we have used the formula $d\left[f_{1}^{2} \ldots f_{d}^{2} d\left(\log f_{2}\right)\right]=2 H d H \wedge d\left(\log f_{2}\right)$. Note that for $d=2$ we have $\log f_{2}=-\log f_{1}$ along γ_{h} and this proof does not work.)

In [14] it is proved that in the case of affine-linear f_{j} 's the integrals $I_{i j}^{*}$ are non-Abelian. From this it is easy to conclude that they are non-Abelian in our case.

Consider now the non-reduced case of the factorization (17):

$$
\begin{equation*}
H-h_{c}=f_{1}^{1+r_{1}} \ldots f_{d}^{1+r_{d}} \tag{20}
\end{equation*}
$$

where some $r_{i}>1$, say $r_{1}>1$.
Now some other terms may appear in (19). Namely the factor $f_{1}^{1+\delta_{1}}$ in the Darboux integral (18) can replaced by $f_{1}^{1+r_{1}+\delta_{1}} \exp \left(\nu_{1} Q\left(1 / f_{1}\right)\right.$ where Q is a polynomial of degree $\leq r_{1}$ and δ_{1}, ν_{1} are small. The general term which can be added to (19) is

$$
\varepsilon_{0}\left(H-h_{c}\right) d\left(\frac{g}{f_{1}^{r_{1}} \ldots f_{d}^{r_{d}}}\right)=\varepsilon_{0} \omega_{0}
$$

where g is a general polynomial and ε_{0} is a small parameter.
Lemma 8. The Pfaff equation $d H+\varepsilon_{0} \omega_{0}=0$ has center.
Proof. This Pfaff equation is equivalent to the equation

$$
\frac{d\left(H-h_{c}\right)}{H-h_{c}}+\varepsilon_{0} d\left(g f_{1}^{-r_{1}} \ldots f_{d}^{-r_{d}}\right)=0
$$

It has the first integral

$$
\begin{equation*}
f_{1}^{\alpha_{1}} \ldots f_{d}^{\alpha_{d}} \exp \left[\varepsilon_{0} g f_{1}^{-r_{1}} \ldots f_{d}^{-r_{d}}\right] \tag{21}
\end{equation*}
$$

I
Functions of the form (21) are called the generalized Darboux functions. They (and their logarithms) are limits of the Darboux functions (18).

We finish this subsection by remarking that, when the polynomial has several 'atypical' values $h_{c_{i}}$ such that the polynomials $H-h_{c_{i}}$ are reducible, then the expansion of the type (19) should contain suitable summands associated with each critical value.

4. ROTATIONAL SYMMETRY

There are two series of finite group of symmetries of the plane: the cyclic groups C_{m}, of rotations by angles $\frac{2 \pi j}{m}$, and the dihedral groups D_{m}, generated by two reflections with respect to lines with angle $\frac{2 \pi}{m}$ between them.
Vanishing of some linear Melnikov integrals may be caused by such a symmetry.

Consider firstly the rotation group C_{m}. Denote by $\rho: z \rightarrow e^{2 \pi i / m} z$ its generator where $z=x+i y$ is the complex coordinate, after an identification of \mathbb{R}^{2} with \mathbb{C}. Therefore we assume that

$$
\begin{equation*}
\rho^{*} H=H, \quad \rho\left(\gamma_{h}\right)=\gamma_{h}, \tag{22}
\end{equation*}
$$

where $\rho^{*}(H)=\rho \circ H$. Note that we get $\rho^{*} d H=d H$.
The real 1-forms $\omega=A d x+B d y$ can be written in the form

$$
\omega=C(z, \bar{z}) d z+\overline{C(z, \bar{z})} d \bar{z}=2 \Re(C d z)
$$

We say that a complex form η is a semi-invariant (with respect to the group C_{m}) if

$$
\begin{equation*}
\rho^{*} \eta=\chi_{\eta} \cdot \eta, \tag{23}
\end{equation*}
$$

where

$$
\left.\chi_{\eta}=\chi_{\eta}(\rho): C_{m} \rightarrow S^{1} \subset \mathbb{C} \text { is a character (of } C_{m}\right) .
$$

Of course, $\chi_{\eta}(\rho)=e^{2 \pi i l / m}$ for some integer l and $\chi_{\eta}\left(\rho^{k}\right)=\chi_{\eta}^{k}$.
Proposition 9. If ω is a real part of a complex form η which is a semiinvariant with nontrivial character $\chi \neq 1$, then the linear Melnikov integral of ω along γ_{h} vanishes.

Proof. We divide the oval γ_{h} which surrounds the origin into m pieces $\gamma_{h}^{0}, \ldots \gamma_{h}^{m-1}$ such that $\rho\left(\gamma_{h}^{j}\right)=\gamma_{h}^{j+1}$ with preserved orientation. Then

$$
I_{\eta}(h)=\sum_{j=0}^{m-1} \int_{\rho^{j}\left(\gamma_{h}^{0}\right)} \eta=\sum_{j=0}^{m-1} \int_{\gamma_{h}^{0}}\left(\rho^{*}\right)^{j} \eta=\left(\sum_{j=0}^{m-1} \chi_{\eta}^{j}\right) \int_{\gamma_{h}^{0}} \eta=0 .
$$

I

Example 10. Let $H(x, y)=x^{2}+y^{2}+K(x, y)$, where K is a homogeneous quartic polynomial, and let γ_{h} for $h>0$ be the ovals ovals of $H=h$ around $x=y=0$ for small h. Of course, H and γ_{h} are invariant with respect to the group C_{2} generated by the central symmetry, $\rho(x, y)=(-x,-y)$. Any
homogeneous quadratic form ω is a semi-invariant of the group C_{2} with $\chi_{\omega}=-1$. Therefore $\omega \in \operatorname{ker}\left(\right.$ Int $\left._{\gamma}\right)$.

Let us consider the second order Melnikov function associated with perturbations of $d H$ by semi-invariant forms.

Let H be C_{m}-invariant and such that the cycle γ_{h} at a critical value h_{0} degenerates to a polycycle consisting of non-degenerate saddle points P_{0}, \ldots, P_{m-1} and m connections $\gamma_{h_{c}}^{0}, \ldots, \gamma_{h_{c}}^{m-1}$ between the consecutive saddles points. Let $\delta_{0}, \ldots, \delta_{m-1}$ be the cycles vanishing at P_{0}, \ldots, P_{m-1} respectively and such that $\rho\left(\delta_{j}\right)=\delta_{j+1}$ (see Figure 1).

FIG. 1.

FIG. 2.

Let η_{1} and η_{2} be two complex 1-forms quasi-invariant with respect to C_{m}, with the characters $\chi_{\eta_{1}}=\zeta_{1} \neq 1$ and $\chi_{\eta_{2}}=\zeta_{2} \neq 1$ respectively. Assume also that

$$
\begin{align*}
J_{1}^{\prime} & =\int_{\gamma^{0}} \frac{d \eta_{1}}{d H} \not \equiv 0, \quad J_{2}=\int_{\gamma^{0}} \eta_{2} \not \equiv 0 \\
K_{1}^{\prime} & =\int_{\delta_{0}} \frac{d \eta_{1}}{d H} \not \equiv 0, \quad K_{2}=\int_{\delta_{0}} \eta_{2} \not \equiv 0 \tag{24}
\end{align*}
$$

(in fact, it is enough that $K_{1}^{\prime} \not \equiv 0, K_{2} \not \equiv 0$) and

$$
\begin{align*}
\mu:= & \left(1+\zeta_{1}\right)\left\{\left[1+\zeta_{1} \zeta_{2}+\cdots+\left(\zeta_{1} \zeta_{2}\right)^{m-2}\right]+\zeta_{1}\left[1+\cdots+\left(\zeta_{1} \zeta_{2}\right)^{m-3}\right]+\ldots\right. \\
& +\zeta_{1}^{m-2} \neq 0 . \tag{25}
\end{align*}
$$

Theorem 11. Under the above assumptions the term before $\varepsilon_{1} \varepsilon_{2}$ in M_{2} for the complex Pfaff perturbation $d H+\varepsilon_{1} \eta_{1}+\varepsilon_{2} \eta_{2}=0$ is not an Abelian integral.

Proof. Using the iterated integrals (see (3)) we represent our function in the form

$$
M_{2}=\int_{\gamma_{h}} \frac{d \eta_{1}}{d H}(P) \int_{P_{0}(h)}^{P} \eta_{2}=\iint_{\Delta} \frac{d \eta_{1}}{d H}(P) \eta_{2}(P) .
$$

Here the initial point $P_{0}=P_{0}(h)$ is the intersection of γ_{h} with the ray $\mathbb{R}_{+} P_{m-1}$ and Δ is a suitable triangular domain like in Figure 2(a). Choosing suitable orientation of δ_{0} we can assume that the Picard-Lefschetz transformation corresponding to moving h around the critical value h_{0} can be specified as follows (see [2]):

$$
\gamma^{j} \rightarrow \gamma^{j}+\delta_{j}, \quad \delta_{j} \rightarrow \delta_{j}, \quad j=0,1, \ldots, m-1
$$

The resulting change in the domain Δ is presented at Figure 2(b). The variation of M_{2} is the union of integrals over the squares $\delta_{i} \times \delta_{j}$, the triangles $\frac{1}{2} \delta_{i} \times \delta_{j}$ and the rectangles.
The integrals over the squares and the triangles are analytic. We denote their sum by $\Phi_{1}(h)$.

The integrals over the vertical rectangles equal

$$
\int_{\delta_{i}} \frac{d \eta_{1}}{d H} \cdot \int_{\gamma^{j}} \eta_{2}=\zeta_{1}^{i} \zeta_{2}^{j} \cdot K_{1}^{\prime} J_{2}
$$

whereas the integrals over the horizontal rectangles are equal

$$
\int_{\gamma^{i}} \frac{d \eta_{1}}{d H} \cdot \int_{\delta_{j}} \eta_{2}=\zeta_{1}^{i} \zeta_{2}^{j} \cdot J_{1}^{\prime} K_{2}
$$

Denote by $\Phi_{2}(h)$ the sum of integrals over the rectangles. Therefore

$$
\begin{equation*}
\operatorname{Var}\left(M_{2}\right)=\Phi_{1}+\Phi_{2} \tag{26}
\end{equation*}
$$

Since $\operatorname{Var}\left(K_{1}^{\prime} J_{2}\right)=\operatorname{Var}\left(J_{1}^{\prime} K_{2}\right)=K_{1}^{\prime} K_{2}$, the variation of Φ_{2} equals $K_{1}^{\prime} K_{2}$ times the sum of the coefficients $\zeta_{1}^{i} \zeta_{2}^{j}$ associated with the rectangles. It is easy to see that the latter sum equals the number μ defined in (25) (see Figure 2(b)). Thus

$$
\begin{equation*}
\operatorname{Var}\left(\Phi_{1}\right)=0, \quad \operatorname{Var}\left(\Phi_{2}\right)=\mu \cdot K_{1}^{\prime} K_{2} \tag{27}
\end{equation*}
$$

where $K_{1}^{\prime} K_{2}$ is analytic. We obtain that under assumptions (23) and (24) the function Φ_{2} is not analytic, it has a singularity of the form

$$
\begin{equation*}
\Phi_{2}(h)=\psi_{2}(h)+\frac{\mu}{2 \pi i} K_{1}^{\prime} K_{2} \cdot \log \left(h-h_{0}\right) . \tag{28}
\end{equation*}
$$

From (26), (27) and (28) it follows that M_{2} has singularity of the type $\log ^{2}\left(h-h_{0}\right)$, which excludes the possibility of being an Abelian integral (compare(10)).

It remains to construct an example satisfying the assumptions of Theorem 11. Unfortunately, in Example 10 above one must have $\zeta_{1}=-1$ which implies $\mu=0$; we do not know whether the integral M_{2} is Abelian in this situation.

Example 12. Consider vector fields with the rational symmetry of order
3. Here $\mu=\left(1+\zeta_{1}\right)\left(1+\zeta_{1}+\zeta_{1} \zeta_{2}\right)$ is nonzero for $\zeta_{2}=\zeta_{1}^{2}=\zeta^{-1}=e^{-2 \pi i / 3}$.

Take the following $C_{3}-$ symmetric Hamiltonian function

$$
H(x, y)=3 z \bar{z}-z^{3}-\bar{z}^{3}+a z^{4} \bar{z}+\bar{a} z \bar{z}^{4}
$$

For small $a \in \mathbb{C} \backslash\{0\}$ it is close to the Hamiltonian triangle. The corresponding vector field has the saddle vertices P_{0}, P_{1}, P_{2}, which are close to $z=1, z=\zeta=\zeta_{1}=\frac{1 \pm \sqrt{3}}{2}$ and $z=\zeta^{2}$ respectively. The 1-forms

$$
\eta_{1}=\bar{z}^{3} d z, \quad \eta_{2}=\overline{\omega_{1}}
$$

are semi-invariants with the characters $\zeta_{1}=\zeta$ and $\zeta_{2}=\zeta^{2}$; so $\mu \neq 0$. It is not difficult to check that the conditions (23) hold true.

This and Theorem 11 imply that M_{2} is not an Abelian integral for the perturbation

$$
d H-\varepsilon\left(\eta_{1}+\bar{\eta}_{1}\right)=0
$$

Remark 13. In contrast of the cases (of vanishing of I_{ω}) from Section 3 , the (real) equation

$$
d H-\varepsilon \omega=0
$$

where ω is a quasi-invariants of C_{m}, generally does not have center.

5. REFLECTION SYMMETRY AND REVERSIBILITY

Any dihedral group D_{m} is generated by reflections, so it contains the subgroup $D_{1} \approx \mathbb{Z} / 2$. We can assume that the generator of D_{1} is the following

$$
\begin{equation*}
\sigma:(x, y) \rightarrow(-x, y) \tag{29}
\end{equation*}
$$

Any D_{1}-invariant Hamilton function is of the form

$$
\begin{equation*}
H=\tilde{H}\left(x^{2}, y\right) \tag{30}
\end{equation*}
$$

and the form $d H=2 \tilde{H}_{x^{2}}^{\prime} d x+\tilde{H}_{y}^{\prime} d y$ satisfies $\sigma^{*}(d H)=d H$, i.e. it is time-reversible. We assume that $\sigma\left(\gamma_{h}\right)=\gamma_{h}$.

We say that a 1 -form ω is time-reversible if $\sigma^{*} \omega=\omega$.
Note the following easy
Lemma 14. If ω is time-reversible then the Pfaff equation $d H-\varepsilon \omega=0$ has center. If, additionally, H satisfies $\operatorname{ker}_{\gamma}($ Int $)=\left\{\omega_{0}+g d H+d H_{1}\right.$: $\left.\sigma^{*} \omega_{0}=\omega_{0}\right\}$ then M_{2} is an Abelian integral.

Remark 15. The hyperelliptic Hamilton functions

$$
\begin{equation*}
H(x, y)=y^{2}+S(x) \tag{31}
\end{equation*}
$$

are D_{1}-invariant with the reflection $\tau:(x, y) \rightarrow(x,-y)$.
They satisfy the $*$-property. Indeed, any time-reversible 1 -form equals $\omega=A\left(x, y^{2}\right) d x+y B\left(x, y^{2}\right) d y$. When we replace y^{2} by $H-S(x)$ and $y d y$ by $\frac{1}{2}\left(d H-S^{\prime}(x) d x\right)$, we shall see that $\omega=C(x, H) d x(\bmod (d H)=$ $d(D(x, h))(\bmod d H)$.

The Jebrane-Mardešić-Pelletier's hamiltonian (6) is invariant with respect to the reflections σ and τ. Therefore the Hamiltonian (6) is degenerate in three ways. Here the σ-invariant 1-form $x y d x$ does not belong to $\mathcal{X}_{1}+\mathcal{X}_{2}=\mathbb{R}[x, y] \cdot d H+d(\mathbb{R}[x, y])$.

It would be interesting to know whether M_{3} is Abelian for generic Hamiltonian of the form $H=y^{2}+S\left(x^{2}\right)$; probably not.

A natural generalization of the condition (30) is following. Let $\Phi: \mathbb{R}^{2} \rightarrow$ \mathbb{R}^{2} be a polynomial mapping which has a fold-type singularity

$$
\Phi(x, y)=(X, Y)=\left(x^{2}+\ldots, y+\ldots\right)
$$

near $(0,0)$. Denote by $\Gamma=\{\operatorname{det} d \Phi=0\}$ the fold curve of Φ. We can put $H(0,0)=0$.

Assume that

$$
\begin{equation*}
H=\tilde{H} \circ \Phi, \tag{32}
\end{equation*}
$$

where $\widetilde{H}(X, Y)$ is a polynomial such that $\tilde{H}(0,0)=0$ and the curve $\{\widetilde{H}=$ $0\}$ is tangent to $\Phi(\Gamma)$ at $(0,0)$ from outside of the domain $\Phi(U)$, where U is a neighborhood of $(0,0)$. In this case we say that H is rationally reversible by means of Φ.

Following [16] we say that a 1-form ω is rationally reversible by means of Φ if

$$
\begin{equation*}
\omega=\Phi^{*} \tilde{\omega} \tag{33}
\end{equation*}
$$

where $\tilde{\omega}(X, Y)$ is a polynomial 1-form in the target space.
Proposition 16. The statements of Lemma 14 hold in the case when H and ω are both rationally revertible by means of Φ.

Remark 17. Above we presented all known to us mechanisms leading to the vanishing of I_{ω}. Natural question is whether they generate $\operatorname{ker}\left(I n t_{\gamma}\right)$ for any Hamiltonian function H and any family $\left\{\gamma_{h}\right\}$ of its ovals. We think that this is the case.

ACKNOWLEDGMENT

The results of this paper were obtained during visiting of the second author the Institute Mathématique de Bourgogne in Dijon. He wants to express his gratitude to the institute and to Ahmed Jebrane, Pavao Mardešić and Michelle Pelletier for hospitality and stimulating discussions.

REFERENCES

1. V. I. Arnold, Geometrical methods in the theory of ordinary differential equations, Springer-Verlag, New York, 1988.
2. V. I. Arnold, A. N. Varchenko and S. M. Gusein-Zade, Singularities of Differential Maps, v. 2, Monographs in Mathematics, Birkhäuser, Boston, 1988.
3. M. Bobieński, Contour integrals as Ad-invariant functions on the fundamental group, preprint, University of Warsaw, 2005.
4. J.-P. Françoise, Successive derivatives of a first return map, application to the study of quadratic vector fields. Ergodic Theory Dynam. Syst. 16 (1996), 87-96.
5. L. Gavrilov, Higher order Poincaré-Pontryagin functions and iterated path integral, Annales de la Faculté des Sciences de Toulouse 14 (2005), 663-682.
6. L. Gavrilov, I. D. Iliev, The displacement map associated to polynomial unfoldings of planar Hamiltonian vector fields, American Journal of Mathematics 12 (2005), 1153-1190.
7. I. D. Iliev, The cyclicity of the period annulus of the quadratic Hamiltonian triangle, J. Differential Equations 128 (1996), 309-326.
8. I. D. Iliev, Higher-order Melnikov functions for degenerate cubic hamiltonians, Adv. Differential Equations 1 (1996), 689-708.
9. Yu. S. Il'yashenko, The origin of limit cycles under perturbation of the equation $d w / d z=-R_{z} / R_{w}$, where $R(z, w)$ is a polynomial, Math. USSR Sbornik 78 (1969) 360-373 [Russian: Mat. Sbornik (N. S.) 83(125) (1970), 452-455].
10. A. Jebrane, P. Mardešić and M. Peletier, A generalization of Françoise's algorithm for calculating higher order Melnikov functions, Bull. Sci. Math. 126 (2002), 705-732.
11. A. Jebrane, P. Mardešić and M. Peletier, A note on a generalization of Françoise's algorithm for calculating higher order Melnikov functions, Bull. Sci. Math. 128 (2004), 749-760.
12. H. Movasati, Center conditions: rigidity of logarithmic differential equations, J. Differential Equations 197 (2004), 197-217.
13. M. Uribe, Principal Poincaré-Pontryagin function of polynomial perturbations of the Hamiltonian triangle, J. Dyn. Control Syst. 12 (2006), 109-134.
14. M. Uribe, Principal Poincaré-Pontryagin function associated to polynomial perturbations of a product of $(d+1)$ straight lines, preprint, Université de Bourgogne, 2005.
15. H. ŻOŁA̧DEK, Quadratic systems with center and their perturbations, J. Differential Equations 109 (1994), 223-273.
16. H. Zo乇A̧Dek, The classification of reversible cubic systems with center, Topol. Methods Nonlinear Anal., 4 (1994), 79-136.

[^0]: * Supported by Polish MEN Grant No 1 P03A 01529

