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1. INTRODUCTION AND NOTATION

We are interested in finding the box dimension of spiral trajectories ap-
pearing as solutions of some dynamical systems in R3. This value can be
viewed as a measure of “dimensional concentration” of the spiral near its
limit set. We deal with a class of systems such that the corresponding linear
part has a pure imaginary pair and a simple zero eigenvalues, see Theo-
rems 18 and 20. It is interesting that it is possible to construct dynamical
systems in R3 such that the box dimension of their spiral trajectories is
sensitive on the coefficients of the system, see Proposition 21.

Important role in our study of Minkowski content and box dimension of
a spiral trajectory in R3 is played by the natural two-dimensional surface
containing the spiral near its limit set. According to whether the surface is
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of Lipschitz or of Hölder type near the limit set, we distinguish the following
two cases: Lipschitzian spirals (see Theorem 7) and Hölderian spirals (see
Theorem 9). We also study spirals of focus and limit cycle type. We thus
obtain four types of spirals in R3: Lipschitz-focus spirals, Lipschitz-cycle
spirals, Hölder-focus spirals, and Hölder-cycle spirals. See Figures 1 and 2
on p. 257. Basic tool in the study of spirals in the space is provided by
a general result concerning behaviour of Minkowski contents of a bounded
set under bi-Lipschitz mappings. It turns out that nondegeneracy or de-
generacy of a set defined below is not affected by bi-Lipschitz mappings,
see Theorem 1.

It is interesting that the orthogonal projection of the Hölder-focus spiral
Γ defined in Theorem 9(a) onto (y, z)-plane is the curve Γy,z defined by
y = z1/β sin(z−1/αβ). Using the formula of Tricot [15, p. 122] we obtain
that box dimensions of Γ and its projection Γy,z coincide. In the case of
Lipschitz-focus spiral in Theorem 7(a) this is not the case, see Corollary 11.
From Corollary 11 we also see that only one of coordinate projections Pxy

and Pyz preserves box dimension of the spiral in R3. Generalizations of
graphs of functions like Γy,z appear in Pašić [13] and Pašić, Županović
[12] in the study of box dimensions of graphs of weak solutions of the
one-dimensional p-Laplace equation.

This work is related to the study of spiral trajectories of planar vector
fields, see [19]. Let us mention that in Dupain, Mendès France, and Tricot
[3] the Steinhaus dimension of planar spirals is studied. The question of
box dimension of planar spirals is considered in Tricot [15, p. 122]. General
properties of Minkowski contents of fractal strings and related problems are
treated in He, Lapidus [8], and in Lapidus, van Frankenhuysen [10]. The
role of fractal dimensions in dynamics is described in a survey article by
Županović and Žubrinić [21]. Some of the results of this paper have been
announced without proofs in [20].

The paper is organized as follows:

(1) Introduction and notation
(2) Bi-Lipschitz mappings and Minkowski content
(3) Lipschitzian and Hölderian spirals of focus and limit cycle types in R3

(4) Box dimension of spiral trajectories of some vector fields in R3

(5) Singular integrals generated by spirals in R3.

Now we introduce some notation. Let A be a bounded set in RN , and let
d(x,A) be Euclidean distance from x to A. Then the Minkowski sausage
of radius ε around A is defined as ε-neighbourhood of A, that is, as the set
Aε := {y ∈ RN : d(y, A) < ε}. By lower s-dimensional Minkowski content
of A, s ≥ 0, we mean the following quantity: Ms

∗(A) := lim infε→0
|Aε|
εN−s ,

where | · | denotes N -dimensional Lebesgue measure. Analogously for the
upper s-dimensional Minkowski content of A. The corresponding lower and
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upper box dimensions are denoted by dimBA and dimBA. See Falconer [5]
or Mattila [11].

If A is such that dimBA = dimBA, the common value is denoted by
d := dimB A. Furthermore, if both the upper and lower d-dimensional
Minkowski contents of A are different from 0 and ∞, we say that the set A
has nondegenerate Minkowski contents (or shorter, that A is nondegener-
ate). If in addition to this we have Md

∗(A) = M∗d(A) =: Md(A) ∈ (0,∞),
we say that A is Minkowski measurable. Nondegeneracy assumption on A
is important in the study of singular integrals of the form

∫
Aε

d(x,A)−γdx,
see [17] and [18].

We say that a function F : Ω → Ω′, where Ω, Ω′ ⊆ RN are open sets,
is bi-Lipschitzian if there exist two positive constants C and C such that
C|x − y| ≤ |F (x) − F (y)| ≤ C|x − y| for all x, y ∈ Ω. The constants C
and C will be called lower and upper Lipschitz constants of F respectively.
The Jacobian of a Lipschitz mapping F is JF (x) := det F ′(x), and it is
easy to see to be defined for a.e. x ∈ Ω and measurable. Its L∞-norm will
be denoted by ‖JF ‖∞.

For two functions f, g : I → (0,∞), where I is a subset of R, we say to be
comparable, and write f(r) ' g(r), if there exist two positive constants c
and c such that cg(r) ≤ f(r) ≤ cg(r) for all r ∈ I, that is, f(r)/g(r) ∈ [c, c].
A constant C in proofs may change its value from line to line.

2. BI-LIPSCHITZ MAPPINGS AND MINKOWSKI
CONTENT

The following result refines the known fact that box dimension of a set is
preserved under bi-Lipschitzian mappings, see Falconer [5, p. 44]. In partic-
ular, it shows that nondegeneracy and degeneracy of fractals are preserved
under bi-Lipschitz mappings.

Theorem 1. (Minkowski content under bi-Lipschitz mappings) Let Ω
and Ω′ be open sets in RN , and let F : Ω → Ω′ be a bi-Lipschitz mapping
with lower and upper Lipschitz constants equal to C and C respectively. Let
A be a bounded set such that A ⊆ Ω. Then for all s ≥ 0 we have

1

C
N−s‖JF−1‖∞

M∗s(A) ≤M∗s(F (A)) ≤ ‖JF ‖∞
CN−s

M∗s(A), (1)

and analogously for the lower s-dimensional Minkowski content, that is,
for M∗s replaced with Ms

∗. In particular, we have dimBF (A) = dimBA
and dimBF (A) = dimBA. Furthermore, for all bi-Lipschitz mappings F
we have

‖JF ‖∞ ≤ N !C
N

, ‖JF−1‖∞ ≤ N !C−N . (2)
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Remark 2. Estimate (2) is rough. In some concrete examples the value
of ‖JF ‖∞ can be better estimated, or even precisely computed. For exam-
ple, if F : RN → RN is a similarity of the form F (x) = c · Sx + b, where
c > 0, b ∈ RN , and S is orthogonal matrix, then using Theorem 1 we
conclude that for any bounded set A and all s ≥ 0,

M∗s(F (A)) = csM∗s(A), (3)

and analogously for Ms
∗. This follows easily from C = C = c and JF (x) ≡

cN . In particular, if A is Minkowski measurable, so is F (A) in this case.

The following result, that we shall need in the proof of Theorem 1, is a
simple consequence of the change of variables formula. It is very probably
known in this generality, but we were not able to find it in the literature.

Lemma 3. Let F : Ω → Ω′, where Ω, Ω′ ⊆ RN are open sets, be an
injective Lipschitz mapping. Then for any measurable set E in Ω such that
|E| < ∞ we have

|F (E)| =
∫

E

|JF (x)| dx. (4)

Proof. We use the change of variables formula, see e.g. Evans and
Gariepy [4, p. 108, the case of m = n = N , modified to arbitrary open
domain Ω]: if F : Ω → RN is a Lipschitz function then for any u ∈ L1(Ω)
we have

∫

Ω

u(x) |JF (x)| dx =
∫

F (Ω)


 ∑

x∈F−1(y)

u(x)


 dy, (5)

and the set F−1(y) is at most countable for a.e. y ∈ F (Ω) (so that the sum
is meaningful for a.e. y). Let us define a function u as the characteristic
function of E. Since it is Lebesgue integrable we can apply the change
of variables formula. Note that the sum on the right-hand side is zero if
y /∈ F (E), and 1 if y ∈ F (E), since F is injective on Ω. Therefore,

∫

E

|JF (x)| dx =
∫

F (E)

1 dy = |F (E)|.

Proof of Theorem 1. It is easy to see that for any ε > 0

F (A)Cε ⊆ F (Aε) ⊆ F (A)Cε.
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Indeed, F (Aε) = F (∪x∈ABε(x)) = ∪x∈AF (Bε(x)) ⊆ ∪x∈ABCε(F (x)).
The left-hand inclusion is obtained similarly. Changing ε to ε/C in the
right-hand inclusion, and to ε/C in the left-hand inclusion, and taking
Lebesgue measures, we obtain

|F (Aε/C)| ≤ |F (A)ε| ≤ |F (Aε/C)|.
Now we apply Lemma 3 with E = Aε/C :

|F (Aε/C)| =
∫

Aε/C

|JF (x)| dx ≤ ‖JF ‖∞|Aε/C |.

Dividing this inequality by (ε/C)N−s and taking lim sup as ε → 0, we
obtain

M∗s(F (A)) ≤ ‖JF ‖∞
CN−s

M∗s(A), (6)

which is the right-hand side inequality in (1).
To prove the left-hand side inequality in (1), note that since F is bi-

Lipschitz, than F−1 is bi-Lipschitz too with lower and upper Lipschitz
constants equal to D := C

−1
and D := C−1 respectively. Applying the

same proof as above to the function F−1 instead of F and to the set B =
F (A) instead of A, we get

M∗s(F−1(B)) ≤ ‖JF−1‖∞
DN−s

M∗s(B),

which immediately yields the left-hand side inequality in (1).
To prove the last claim in the theorem, first note that by the Lagrange

expansion of the determinant JF (x) we obtain

|JF (x)| ≤
∑

(j1,...,jN )

N∏

j=1

∣∣∣∣
∂Fj

∂fij

∣∣∣∣ ,

where the sum runs over all N ! permutations of (1, 2, . . . , N), and F =
(F1, . . . , FN ). Since |Fj(x) − Fj(y)| ≤ |F (x) − F (y)| ≤ C|x − y|, we have∣∣∣∂Fj

∂xk

∣∣∣ ≤ C for a.e. x ∈ Ω. Hence, |JF (x)| ≤ N !C
N

a.e. in Ω.

Lemma 4. Let g : RN−1 → R be any Lipschitz function, N ≥ 2, and
define F : RN → RN by F (x, z) := (x, z + g(x)), where x ∈ RN−1 and
z ∈ R. Then F is bi-Lipschitzian and measure preserving, that is, for any
mesurable set E in RN of bounded measure we have

|F (E)| = |E|. (7)
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Furthermore, for any bounded set A in RN we have that dimBF (A) =
dimBA and dimBF (A) = dimBA. The set A is nondegenerate if and only
if F (A) is nondegenerate.

Proof. It is easy to see that F is Lipschitzian, as well as F−1, since
F−1(x, z) = (x, z− g(x)). Next, it is easy to check that the Jacobian JF is
equal to the determinant of a lower triangular matrix with 1’s on the diag-
onal, hence, JF ≡ 1. The claim follows from Lemma 3 and Theorem 1.

Remark 5. The conclusions of the above lemma hold also for more general
bi-Lipschitz functions F : RN → RN of “cascade type”:

F (x) = (x1, x2 + g1(x1), x3 + g2(x1, x2), . . . , xN + gN−1(x1, . . . , xN−1)).

where gi : Ri → R are Lipschitz functions. For N = 3, by defining

F (x, y, z) := (x, y + g1(x), z + g2(x, y)),

where g1 : R → R and g2 : R2 → R are Lipschitz functions, it is easy
to check that F is bi-Lipschitzian, with F−1(x, y, z) = (x, y − g1(x), z −
g2(x, y − g1(x))).

Let A be a bounded subset of RN . Its upper Minkowski content is
defined with respect to the Lebesgue measure in RN , that is, it depends
on N as well. Since also A ⊆ RN+1, it is of interest to know how the
upper Minkowski content of A, defined with respect to RN+1, denoted by
M∗s(A,RN+1), is related to the standard value M∗s(A,RN ) := M∗s(A).
It follows from the following result that nondegeneracy and degeneracy of
A are not affected by the dimension of the ambient Euclidean space.

Proposition 6. Let A be a bounded set in RN . Then for any s ≥ 0,

2
√

N + 1
N+1−s

M∗s(A,RN ) ≤M∗s(A,RN+1) ≤ 2M∗s(A,RN ),

and the same for Ms
∗. In particular, if a planar spiral Γ0 is nondegenerate

in R2, then it is also nondegenerate as a subset of R3.

Proof. Denote by Aε,N the Minkowski sausage of radius ε around A
in RN . Then clearly Aε,N+1 ⊆ Aε,N × (−ε, ε). For T ∈ A we consider
the N + 1-dimensional ball Bε(T ) ⊆ Aε,N+1. The open cube contained in
Bε(T ) centered at T has maximal possible side 2ε/

√
N + 1, hence

A ε√
N+1

,N × (− ε√
N + 1

,
ε√

N + 1
) ⊆ Aε,N+1 ⊆ Aε,N × (−ε, ε),

so that

|A ε√
N+1

,N | · 2ε√
N + 1

≤ |Aε,N+1| ≤ |Aε,N | · 2ε.
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The claim follows by dividing by ε(N+1)−s and taking lim sup as ε → 0.

3. LIPSCHITZIAN AND HÖLDERIAN SPIRALS OF FOCUS
AND LIMIT CYCLE TYPES IN R3

The notions of spatial spirals of focus and limit cycle type in three di-
mensional space should be clear from the context. We do not intend to
define the notion of spiral in R3 precisely. We assume that every spiral in
the space is contained in a two dimensional surface M , and obtained as the
graph of a suitable function h : (ϕ1,∞) → R3, where h(ϕ) ∈ M for each ϕ.
We define ω-set of a spiral Γ in the usual way, as the set ω(Γ) of accumu-
lation points of all sequences h(ϕn) ∈ R3 obtained by letting ϕn → ∞. If
ω(Γ) is a single point, we say that the spiral Γ is of focus type, see Figure
1. If ω(Γ) is bi-Lipschitz homeomorphic to a circle in R3, we say that the
spiral is of the limit cycle type (the corresponding surface is illustrated on
Figure 2).

FIG. 1. Focus spirals of Lipschitz and Hölder types
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FIG. 2. Surfaces containing cycle spirals of Lipschitz and Hölder types

Depending on whether the surface M containing Γ is Lipschitzian (that
is, locally equal to a graph of a Lipschitz function) or Hölderian near ω(Γ),
we say that the spiral is Lipschitzian or Hölderian. We can thus speak
about four types of spirals: Lipschitz-focus spirals, Lipschitz-cycle spirals,
Hölder-focus spirals, and Hölder-cycle spirals. They will be treated in The-
orems 7 and 9, where the standard choice is f(ϕ) = ϕ−α and g(r) = rβ .

Now we assume that h is such that for each ϕ > ϕ1 the set {h(ϕ +
2πt) ∈ Γ : t ∈ [0, 1]} corresponds to one “cycle” of the spiral Γ. If the
rate of convergence of a spiral Γ to its ω-set is of power type, that is,
d(h(ϕ), ω(Γ)) ' ϕ−α, with α > 0, then we say that the spiral Γ is of power
type (or power spiral). Analogously we define exponential and logarithmic
spirals if d(h(ϕ), ω(Γ)) ' e−γϕ and ' (log ϕ)−γ for some γ > 0 respectively.

Theorem 7. (Lipschitzian spirals) Assume that f : [ϕ1,∞) → (0,∞),
ϕ1 > 0, is a decreasing function of class C2, such that

f(ϕ) ' ϕ−α, |f ′(ϕ)| ' ϕ−α−1, |f ′′(ϕ)| ≤ Mϕ−α, (8)

for some positive constant M .
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(a) Let Γ be a Lipschitz-focus spiral in R3 defined in cylindrical coordi-
nates by

r = f(ϕ), ϕ ≥ ϕ1, z = g(r cos ϕ, r sin ϕ), (9)

where g : R2 → R is any given Lipschitz function defined in Cartesian
coordinates. If α ∈ (0, 1) then

dimB Γ =
2

1 + α
, (10)

and Γ is nondegenerate.
(b) Let Γ be a Lipschitz-cycle spiral on the cylinder r = 1 in R3, defined

by

r = 1, ϕ ≥ ϕ1, z = f(ϕ). (11)

Then for any α > 0 we have that

dimB Γ =
2 + α

1 + α
, (12)

and Γ is nondegenerate.

Proof. (a) Let F : R3 → R3 be defined by F (x, y, z) = (x, y, z+g(x, y)).
Denoting by Γ0 the spiral in R2 defined in polar coordinates by r = f(ϕ), it
is clear that Γ = F (Γ0). Since dimB Γ0 = 2

1+α and Γ0 is nondegenerate set
as a subset of R2 (see [19, Theorem 5]), hence also in R3 (see Proposition 6),
the claim follows from Theorem 1.

(b) Let Ω be 1
2 -neighbourhood of the circle defined by r = 1, z = 0 in

R3. This set is a three-dimensional solid torus. Let us define a mapping
F : Ω → Ω which represents a rotation of x ∈ Ω around central circle of Ω
for the angle π/2 in positive direction with respect to standard orientation
of the circle. The rotation of x ∈ Ω is performed inside two dimensional
plane spanned by x and the z-axis (vertical axis). It is clear that this
mapping is bi-Lipschitzian. Furthermore, if Γ0 is the spiral in (x, y)-plane
defined by r = 1 − f(ϕ), where ϕ ≥ ϕ1, and ϕ1 is large enough, so that
f(ϕ) < 1/2, then Γ0 ⊆ Ω and Γ = f(Γ0). The claim follows from the fact
that dimB Γ0 = 2+α

1+α , see [19, Theorem 5], using Theorem 1.

Remark 8. Note that the dimension 2/(1+α) for spirals in R3 represents
an extension of the corresponding result due to Tricot for planar spirals
r = ϕ−α, ϕ ≥ ϕ1 > 0, when α ∈ (0, 1), see [15, p. 121].

From Theorem 7 we know that for functions z = g(x, y) of the form z =
rβ = (x2+y2)β/2 with β ≥ 1 (Lipschitzian case) we have that for any spiral
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Γ0 in (x, y)-plane having box dimension equal to d0, the corresponding
spiral Γ := F (Γ0), where F (x, y, z) := (x, y, z + g(x, y)), has the same box
dimension. This is not the case for β ∈ (0, 1), that is, when g is Hölderian
function in two variables, as the following result shows.

Theorem 9. (Hölderian spirals) Assume that β ∈ (0, 1). Let f : [ϕ1,∞) →
(0,∞), ϕ1 > 0, be a decreasing function of class C2 satisfying (8). Assume
that g : (0, f(ϕ1)) → (0,∞) is a function of class C2 such that

g(r) ' rβ , g′(r) ' rβ−1, |g′′(r)| ' rβ−2. (13)

(a) Let Γ be a Hölder-focus spiral defined by r = f(ϕ), ϕ ∈ [ϕ1,∞),
z = g(r), and α ∈ (0, 1) in (8). Then

dimB Γ =
2− α(1− β)

1 + αβ
, (14)

and Γ is nondegenerate.
(b) Let Γ be a Hölder-cycle spiral defined by r = 1− f(ϕ), ϕ ∈ [ϕ1,∞),

z = g(|1− r|), α > 0 in (8). Then

dimB Γ =
2 + αβ

1 + αβ
, (15)

and Γ is nondegenerate.

Proof. (a) Let us consider the height function of the spiral Γ, defined by
z(ϕ) := g(f(ϕ)). We say that the Minkowski sausage Γε has the property
of vertical separation at ϕ if z(ϕ)−z(ϕ+2π) = g(f(ϕ))−g(f(ϕ+2π)) ≥ 2ε.
By the Lagrange mean value theorem the condition of vertical separation is
fulfilled when c(ϕ + 2π)−αβ−1 ≥ 2ε, that is, for ϕ ≤ ϕ(ε) := Cε−1/(αβ+1).
The condition of horizontal separation of Γε is then also satisfied for such ϕ
since the distance of the corresponding point on Γ from z-axis is f(ϕ(ε)) ≥
Cεα/(αβ+1) > ε (note that α < αβ + 1). Now we estimate the volume of
Γε from below, denoting r(ϕ) := f(ϕ), and using Weyl’s tube formula, see
Gray [6, p. 6]:

|Γε| ≥ ε2π

∫ ϕ(ε)

ϕ1

√
r(ϕ)2 + r′(ϕ)2 + z′(ϕ)2 dϕ

≥ ε2π

∫ ϕ(ε)

ϕ1

r(ϕ) dϕ ≥ Cε2

∫ ϕ(ε)

ϕ1

ϕ−α dϕ (16)

≥ Cε2 · (ε−1/(αβ+1))1−α,

where we have used that α ∈ (0, 1). For the applicability of Weyl’s formula
we have to check that the radius of curvature R(Γ, ϕ) of spiral Γ at the point
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corresponding to ϕ is larger than ε for all ϕ ≤ ϕ(ε). To this end, denoting
~r(ϕ) = x(ϕ)~i + y(ϕ)~j + z(ϕ)~k, and x(ϕ) = f(ϕ) cos ϕ, y(ϕ) = f(ϕ) sin ϕ,
we use the following well known formula from differential geometry:

R(Γ, ϕ) =
|~r(ϕ)′|3

|~r(ϕ)′ × ~r(ϕ)′′| .

From |~r(ϕ)′|3 = (f(ϕ)2 + f ′(ϕ)2 + z′(ϕ)2)3/2 ≥ f(ϕ)3 ≥ C · ϕ−3α and
|~r(ϕ)′ × ~r(ϕ)′′| ≤ |~r(ϕ)′| · |~r(ϕ)′′| ≤ C · ϕ−2α we conclude that

R(Γ, ϕ) ≥ C · ϕ−α ≥ C · ϕ(ε)−α = C · εα/(αβ+1) > ε, ∀ϕ ≤ ϕ(ε),

where C is a positive constant independent of ε. Using (16) we get

Ms
∗(Γ) := lim inf

ε→0

|Γε|
ε3−s

≥ C · εs− 2−α(1−β)
αβ+1 .

Since Ms
∗(Γ) = ∞ for s < 2−α(1−β)

αβ+1 , we have

dimBΓ ≥ 2− α(1− β)
αβ + 1

. (17)

To obtain the upper bound of |Γε| we first consider ϕ’s for which we
have vertical overlapping: z(ϕ) − z(ϕ + 2π) ≤ 2ε. Using the Lagrange
theorem we obtain that this holds for ϕ ≥ ϕ(ε) := Cε−1/(αβ+1). Since for
all ϕ ≥ ϕ1 we have r(ϕ) = f(ϕ) ≤ Cϕ−α, |r′(ϕ)| ≤ Cϕ−α−1 ≤ Cϕ−α, and
|z′(ϕ)| = Cf(ϕ)β−1|f ′(ϕ)| ≤ Cϕ−αβ−1 ≤ Cϕ−α, we get

|Γ(ϕ1, ϕ(ε))ε| ≤ πε2

∫ ϕ(ε)

ϕ1

√
r(ϕ)2 + r′(ϕ)2 + z′(ϕ)2 dϕ + Cε3

≤ Cε2

∫ ϕ(ε)

ϕ1

ϕ−α dϕ + Cε3 ≤ C(ε2− 1−α
αβ+1 + ε3),

where Γ(ϕ1, ϕ1(ε)) denotes the part of Γ corresponding to ϕ ∈ (ϕ1, ϕ1(ε)).
Let us denote by S(z1, z2), z1 < z2, the part of the surface z = g(r)

for which z ∈ (z1, z2). Its radial ε-neighbourhood (radial with respect to
z-axis) will be denoted by S(z1, z2)ε,rad:

S(z1, z2)ε,rad := {(r, ϕ, z) ∈ R3 : z1 < z < z2, ϕ ≥ ϕ1,

r ∈ (max{g−1(z)− ε, 0}, g−1(z) + ε)}. (18)

Due to β ∈ (0, 1) we have that there exists γ > 0 such that g′(r) ≥ γ for
all r ∈ (0, f(ϕ1)). Therefore, for a fixed ε0 > 0 there exists a > 1 such that
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for all ε ∈ (0, ε0) and all ϕ1, ϕ2 ∈ (0, z(ϕ1)) we have

|Γ(ϕ1, ϕ2)ε| ≤ |S(z(ϕ2)− ε, z(ϕ1) + ε)aε,rad|. (19)

The set Γ(ϕ(ε),∞)ε can be included in the set S(ϕ(ε)−ε,∞)aε,rad∪Baε(0),
having the shape of a funnel (note that g′(+0) = ∞ due to β < 1, so that
the part of Γ(ϕ(ε),∞)ε corresponding to z < 0 is contained in Baε(0)).
Using (19) we obtain that its part where f(ϕ) ≥ aε, with a > 1 fixed, that
is, for ϕ ≤ ϕ1(ε) := Cε−1/α, has the volume (here ϕ(ε) < ϕ1(ε) for ε small
enough, and the spiral Γ is on the surface r = g−1(z)):

|Γ(ϕ(ε), ϕ1(ε))ε| ≤ |S(z(ϕ1(ε))− ε, z(ϕ(ε)) + ε)aε,rad|

= π

∫ z(ϕ(ε))+ε

z(ϕ1(ε))−ε

[(r(z) + aε)2 − (r(z)− aε)2] dz

≤ Cε

∫ Cεαβ/(αβ+1)+ε

Cεβ−ε

g−1(z) dz

≤ Cε

∫ 2Cεαβ/(αβ+1)

Cεβ/2

z1/β dz ≤ Cε1+
α(1+β)
αβ+1 ,

where we have again used that β ∈ (0, 1).
The volume of the trunk of the funnel can be estimated by

|Γ(ϕ1(ε),∞)ε| ≤ π

∫ z(ϕ1(ε))+ε

0

(r(z) + aε)2dz + |Baε(0)|

≤ C

∫ Cεβ

0

(z1/β + aε)2dz + Cε3 = C(ε2+β + ε3).

Dividing |Γε| ≤ |Γ(ϕ1, ϕ(ε))ε|+ |Γ(ϕ(ε), ϕ1(ε))ε|+ |Γ(ϕ1(ε),∞)ε| by ε3−s

and taking lim sup as ε → 0, we obtain M∗s(Γ) = 0 for s > 2−α(1−β)
αβ+1 ,

hence dimBΓ ≤ 2−α(1−β)
αβ+1 . This together with (17) proves the claim.

(b) We extend the definition of g to r = 0, defining g(0) = 0. It is easy
to see that if we “project” our spatial spiral Γ onto the cylinder r = 1 in
radial direction (that is, the line joining a point on Γ and the corresponding
projection on the cylinder is perpendicular with and intersecting z-axis),
then we obtain the spatial spiral Γ1 defined by r = 1, ϕ ≥ ϕ1, z = g(f(ϕ)).
Therefore using Theorem 7(b) we obtain that dimB Γ1 = 2+αβ

1+αβ . Indeed,
conditions (8) are satisfied with g ◦ f instead of f , and with αβ instead of
α. For example, let us check the condition corresponding to the last one
in (8):

|(g ◦ f)′′(ϕ)| ≤ |g′′(f(ϕ))| f ′(ϕ)2 + g′(f(ϕ)) |f ′′(ϕ)|
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≤ C(f(ϕ)β−2ϕ2α−2 + f(ϕ)β−1ϕ−α−1)
≤ C(ϕαβ−2 + ϕαβ−1) ≤ Cϕ−αβ .

Now consider the mapping of the part of the cylinder r = 1, z ∈ (0, 1)
onto the part of the surface |z| = g(|1−r|), r ∈ (1/2, 1), using radial projec-
tion F from the cylinder to the surface, defined in cylindrical coordinates
(r, ϕ, z):

F (1, ϕ, z) := (1− g−1(|z|), ϕ, z).

We extend F to the mapping of a neighbourhood of the cylinder onto a
neighbourhood of the surface. Defining

Ω := {(r, ϕ, z) ∈ R3 : r ∈ (
1
2
,
3
2
), ϕ ∈ R, z ∈ (−1, 1)}

we let

F : Ω → F (Ω), F (r, ϕ, z) := (r − g−1(|z|), ϕ, z).

Since also F−1(r, ϕ, z) := (r+g−1(|z|), ϕ, z), then due to β ∈ (0, 1) we have
that F is bi-Lipschitzian, see Lemma 4. Indeed, the function r = g−1(z),
z ∈ (0, z1) is Lipschitzian, since

[g−1(z)]′ = g′(r)−1 ≤ Cr1−β ≤ Cz
1
β−1,

so that Lip(g−1) ≤ C supz∈(0,z1) z
1
β−1 < ∞ due to β ∈ (0, 1). Hence, using

Theorem 1 we conclude that dimB Γ = dimB Γ1, and Γ is nondegenerate.

Remark 10. Comparing explicit expressions of box dimensions, it is easy
to see that under conditions of Theorem 9(a) we have dimB Γ > dimB Γ0.
Since Γ0 is equal to the orthogonal projection of Γ onto (x, y)-plane, namely,
Γ0 = P (Γ), this inequality is in accordance with the fact that dimB P (Γ) ≤
dimB Γ for Lipschitz mapping P , see Falconer [5, p. 44].

The following corollary shows an interesting phenomenon: when project-
ing a spiral Γ appearing in Theorems 7 and 9 onto horizontal and vertical
planes, then one of these projections has box dimension equal to dimB Γ,
while the other projection has box dimension less than dimB Γ.

Corollary 11. (Projections of spirals) Let Γ be a spiral in R3. Let Γy,z

be its orthogonal projection onto (y, z)-plane (or onto any vertical plane),
and let Γ0 be the orthogonal projection of Γ onto (x, y)-plane.

(a) For Γ in Theorem 7(a) we have dimB Γ = dimB Γ0 = 2
1+α and

dimB Γ > dimB Γy,z.
(b) For Γ in Theorem 9(a) we have dimB Γ = dimB Γy,z = 2 − α(1+β)

1+αβ
and dimB Γ > dimB Γ0.
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(c) For Γ in Theorem 7(b) we have dimB Γ = dimB Γy,z = 2+α
1+α and

dimB Γ > dimB Γ0.
(d) For Γ in Theorem 9(b) we have dimB Γ = dimB Γy,z = 2+αβ

1+αβ and
dimB Γ > dimB Γ0.

Proof. For the sake of simplicity we provide the proof for f(ϕ) := ϕ−α

and g(r) = rβ . We consider the case (b) only. Other cases are treated sim-
ilarly. The orthogonal projection of Hölder-focus spiral Γ defined in Theo-
rem 9(a) onto (y, z)-plane is the curve Γy,z defined by y = z1/β sin(z−1/αβ).
According to the formula of Tricot [15, p. 122] box dimension of the graph
of the function y = zα1 sin(z−β1) is equal to

dimB(Graph y(z)) = 2− 1 + α1

1 + β1
,

provided 0 < α1 < β1. Using this result we obtain that

dimB Γy,z = 2− α(1 + β)
1 + αβ

,

which is equal to dimB Γ, see Theorem 9(a).

Remark 12. Note that the limiting case of β = 1 in Theorems 9(a) and
(b) corresponds to the Lipschitzian case in Theorems 7(a) and (b), so that
dimB Γ = 2

1+α and 2+α
1+α respectively. It is interesting that for β → 0 we

have that dimB Γ → 2− α in Theorem 9(a), and dimB Γ → 2 in Theorem
9(b).

Remark 13. It is easy to see that box dimensions of Hölderian spirals
computed in Theorem 9, see (14) and (15), viewed as functions of β ∈ (0, 1),
are decreasing. In other words, the more irregular the surface z = g(r) ' rβ

near the origin (i.e. the sharper the spike at r = 0), the larger the dimension
of the spiral Γ.

Proposition 14. Let Γ be a spiral in R3 defined by r = ϕ−α, ϕ ≥ ϕ1,
z = rβ, with α > 1 and β > 0. Then Γ is rectifiable. In particular,
dimB Γ = 1. The same conclusion holds in the case of exponential spiral,
that is, r = ec0ϕ with c0 < 0, ϕ ≥ ϕ1, z = rβ. The result also holds for more
general spirals of power or exponential type defined via r = f(ϕ) ' ec0ϕ,
where c0 < 0, ϕ ∈ [ϕ1,∞), and z = g(r) ' rβ.

Proof. It is clear that the planar spiral Γ0 defined by r = ϕ−α, ϕ ≥ ϕ1, is
rectifiable, hence for β ≥ 1 (Lipschitzian case) the spiral Γ is also rectifiable,
see Theorem 1. It remains to show by direct computation that also in
Hölderian case, that is, for β ∈ (0, 1), the spiral Γ remains rectifiable.
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Parametrizing Γ by ϕ ≥ ϕ1 we have that its length is

l(Γ) =
∫ ∞

ϕ1

√
r(ϕ)2 + r′(ϕ)2 + z′(ϕ)2 dϕ

=
∫ ∞

ϕ1

ϕ−α−1
√

ϕ2 + α2 + β2ϕ2α(1−β) dϕ.

We assume without loss of generality that ϕ1 ≥ 1. In the case when α(1−
β) ≥ 1 we have ϕ2 ≤ ϕ2α(1−β), so that l(Γ) ≤ C

∫∞
ϕ1

ϕ−α−1ϕα(1−β)dϕ < ∞.
In the case of α(1 − β) < 1 we have ϕ2 ≥ ϕ2α(1−β), so that l(Γ) ≤

C
∫∞

ϕ1
ϕ−αdϕ < ∞, since α > 1.

Remark 15. Using Theorem 1 we can obtain a large class of new spatial
spirals. It suffices to take any bi-Lipschitz mapping F defined on a neigh-
bourhood of spiral Γ appearing in Theorem 7 or 9, and to consider the
spiral F (Γ).

Remark 16. Versions of Theorems 7 and 9 can be stated for discontinous
functions f as well, say locally constant. Hence, Γ may consist of a count-
able family of circles around z-axis, lying on the radial surface z = g(r).

Remark 17. For logarithmic spirals Γ defined by r = f(ϕ) ' (log ϕ)−γ ,
where γ > 0, ϕ ≥ ϕ1, and z = g(r) ' rβ , β > 0, we have dimB Γ = 2. This
follows from Theorem 1 using [19, Theorem 11].

4. BOX DIMENSION OF SPIRAL TRAJECTORIES
OF SOME VECTOR FIELDS IN R3

This section is devoted to some dynamical systems with spiral solutions.
In particular, we consider a system such that its linear part in Cartesian
coordinates has a conjugate pair ±ωi of pure imaginary eigenvalues with
ω > 0, and the third eigenvalue is equal to zero. The corresponding normal
form in cylindrical coordinates is:

ṙ = a1rz + a2r
3 + a3rz

2 + O(|r, z|)4
ϕ̇ = ω + O(|r, z|)2 (20)
ż = b1r

2 + b2z
2 + b3r

2z + b4z
3 + O(|r, z|)4,

where ai and bi ∈ R are coefficients of the system. Such systems are
treated in Guckenheimer-Holmes [7, Section 7.4]. In the sequel the value
of ω will be normalized to ω = 1.

We generalize our results concerning spiral trajectories of planar vector
fields from [19] to systems in R3 using the normal form for such systems,
see [7]. We shall describe a class of dynamical systems in R3 for which
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the novelty consists in nontrivial dependence of box dimension of spiral
trajectories on the coefficients of the systems, see Proposition 21. We were
not able to detect a planar system having this property.

We consider the following system, which is a special case of (19) when
c0 = 0:

ṙ = c0r + c1r
3 + . . . + cmr2m+1

ϕ̇ = 1 (21)
ż = d2z

2 + . . . + dnzn.

where m,n ∈ N and ci, di ∈ R. The first two equations represent a
standard planar Hopf-Takens bifurcation model obtained from polynomial
system in Cartesian coordinates, see Takens [14]. See also Caubergh, Du-
mortier [1], Caubergh, Françoise [2] for some generalizations of Takens’
results. Our aim is to generalize the results stated in [19, Theorems 9 and
10] concerning box dimensions of spiral trajectories of planar vector fields
to the case of vector fields in R3.

Theorem 18. (Spiral solutions of focus type) Let Γ be a part of a tra-
jectory of (20) near the origin.

1.Assume that c0 6= 0. Then the spiral Γ is of exponential type, hence
dimB Γ = 1.

2.Let k and p be fixed positive integers, 1 ≤ k ≤ m, 2 ≤ p ≤ n, such that
c0 = . . . = ck−1 = 0, d2 = . . . = dp−1 = 0, and ckdp > 0.

(i)If 2k + 1 ≥ p then Γ is a power, Lipschitz-focus and nondegenerate
spiral with

dimB Γ = 2− 2
2k + 1

.

(ii)If 2k + 1 < p then Γ is a power, Hölder-focus and nondegenerate
spiral with

dimB Γ = 2− 2k + p− 1
2kp

.

Proof. We use Theorems 7(a) and 9(a). Let us assume that initial point
of the spiral Γ is (ϕ1, r1, z1). We first consider the case of (1). Assume that
ck < 0 and dp < 0, in which case the spiral tends to the origin and the spiral
Γ0, obtained as vertical projection of Γ onto the (x, y)-plane, has positive
orientation when ϕ →∞. The proof is based on the idea explained in [19,
the proof of Theorem 9]. The solution of the planar system defined by the
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first two equations in (20) is

ϕ =
∫ r

r1

dr

r2k+1(ck + ck+1r2 + . . . + cmr2(m−k))
+ ϕ1, r ∈ (0, r1],

that is, ϕ = Φ(r), Φ ∈ C2(0, r1). In the same way as in [19, Theorem 9] we
conclude that

Φ(r) ' r−2k, |Φ′(r)| ' r−2k−1, |Φ′′(r)| ' r−2k−2 (22)

for all r ∈ (0, r1]. The spiral Γ0 in (x, y)-plane defined by r = f(ϕ),
where f := Φ−1, satisfies conditions of Theorem 7(a), see the proof of [19,
Theorem 9].

Now we analogously consider the system defined by the last two equations
in (20). Let ϕ = Ψ(z) be the solution, where

Ψ(z) :=
∫ z

z1

dz

zp(dp + dp+1z + . . . + dnzn−p)
+ ϕ1, z ∈ (0, z1].

We have that

Ψ(z) ' z−p+1, |Ψ′(z)| ' z−p, |Ψ′′(z)| ' z−p−1, (23)

for all z ∈ (0, z1]. Let us introduce the surface z = g(r) containing the
spiral Γ, defined by Φ(r) = Ψ(z) near the origin, that is,

z = g(r), g := Ψ−1 ◦ Φ.

We consider the corresponding curve z = g(r) in a fixed (r, z)-plane defined
in parametric form by Φ(r) = ϕ, Ψ(z) = ϕ, that is, r = Φ−1(ϕ), z =
Ψ−1(ϕ), by viewing ϕ as a parameter. Using (22) and (23) we check that
g satisfies the conditions of Theorem 7(a). First, denoting β := 2k/(p− 1)
we have

g(r) = Ψ−1(Φ(r)) ' Φ(r)−
1

p−1 ' rβ .

Next,

g′(r) =
Φ′(r)
Ψ′(z)

' r−2k−1

z−p
' r−2k−1+βp = rβ−1.

Furthermore,

|g′′(r)| ≤ |Φ′′(r)Ψ′(z)|+ |Φ′(r)Ψ′′(z)z′(r)|
Ψ′(z)2
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≤ C
r−2k−2z−p + r−2k−1z−p−1rβ−1

z−2p

≤ C(r−2k−2zp + rβ−2k−2zp−1) ≤ C(r−2k−2+βp + rβ−2k−2+(p−1)β)
≤ Crβ−2.

Claims (2a) and (2b) in the theorem now follow from Theorems 7(a) and
9(a) respectively.

The case of ck > 0 and dp > 0, where Γ0 has negative orientation when
ϕ → −∞, is treated similarly. If ckdp < 0 then Γ does not tend to the
origin.

If we have exponential spiral in case (1) of the theorem, it is treated
similarly as above. The only difference in the proof is the moment when we
need to check that the rectifiable spiral Γ0 in (x, y)-plane remains rectifiable
even though the surface can be of Hölder type, see Proposition 14.

Remark 19. Theorem 18 can be proved also for more general systems
than the one treated in (20). Here we concentrate only on polynomial
vector fields in Cartesian coordinates in R3, so that we can have only odd
exponents on r-s on the right-hand side of the first equation in (20).

Theorem 20. (Spiral solutions of limit cycle type) Let the system (20)
have limit cycle r = a of multiplicity j, 1 ≤ j ≤ m. By Γ1 and Γ2 we denote
the parts of two trajectories of (20) near the limit cycle from outside and
inside respectively. Then the trajectories Γ1 and Γ2

1.are exponential spirals of limit cycle type if j = 1, and in this case
dimB Γi = 1, i = 1, 2;

2.are power spirals of limit cycle type if j > 1. Precisely,

(i)for j ≥ p the spirals Γi are power Lipschitz nondegenerate, and

dimB = 2− 1
j
, i = 1, 2;

(ii)for j < p the spirals Γi are power Hölder nondegenerate, and

dimB Γi = 2− 1
p
.

Proof. The proof is similar to that of Theorem 18, we only use the
results related to limit cycle spirals of Lipschitz and Hölder types stated in
Theorems 7(b) and 9(b) respectively.

Example. Note that box dimensions computed in Theorems 18 and 20
depend only on the exponents appearing on right-hand sides of (20), and
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not on the coefficients ci or di. On the other hand, there is a special case
of system (19), namely

ṙ = a1rz, ϕ̇ = 1, ż = b2z
2, (24)

for which the box dimension of spiral trajectories depends on the coefficients
a1 and b2. The solution of system (24) is

r = C1(−b2t + C3)−a1/b2 , ϕ = t + C2, z =
1

−b2t + C3
.

Note that the corresponding spiral Γ near the origin is on the surface z =
C · rb2/a1 . Let Γ0 be the orthogonal projection of Γ onto (x, y)-plane.

(i) If a1/b2 ∈ (0, 1] then Γ0 is nonrectifiable power spiral (note that
α = a1/b2 ≤ 1), and since the corresponding surface is Lipschitzian (note
that β = b2/a1 ≥ 1) we have that dimB Γ = 2

1+a1/b2
, see Theorem 7(a).

(ii) If a1/b2 > 1 then we have that Γ0 is rectifiable power spiral (here
α = a1/b2 > 1) and the corresponding surface is Hölderian (note that β =
b2/a1 ∈ (0, 1)). Using Proposition 14 we obtain that Γ is also rectifiable,
and in particular, dimB Γ = 1.

(iii) If a1/b2 < 0 then the origin is not an accumulation point for Γ.
We can provide a slight generalization of the previous example. We

indicate a class of dynamical systems in R3 with the following surprising
property: its spiral solutions have box dimensions that depend also on the
coefficients of the system.

Proposition 21. (Sensitivity of box dimension of spirals on the coeffi-
cients of a system) Let a system

ṙ = a1r
izj , ϕ̇ = 1, ż = b2r

i−1zj+1, (25)

be given, where i, j ∈ N. Let Γ be the part of any of its trajectories viewed
near the origin.

(a) If b2/a1 ≥ 1 then Γ is Lipschitz-focus spiral (nondegenerate for i +
j(b2/a1) > 2 and degenerate for i + j(b2/a1) = 2), and

dimB Γ = 2− 2a1

ia1 + jb2
.

(b) If b2/a1 ∈ (0, 1) and i + j(b2/a1) ≥ 2 then Γ is Hölder-focus spiral
(nondegenerate for i + j(b2/a1) > 2 and degenerate for i + j(b2/a1) = 2),
and

dimB Γ = 2− a1 + b2

(i− 1)a1 + (j + 1)b2
.
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Proof. Solutions of (25) are spirals to which Theorem 7(a) and Theo-
rem 9(a) apply with α := (i + j(b2/a1)− 1)−1, and β := b2/a1.

5. SINGULAR INTEGRALS GENERATED BY SPIRALS
IN R3

It has been shown in [17, Theorem 2] that for any bounded set A in RN

which is nondegenerate (that is, dimBA = dimBA := d and d-dimensional
lower and upper Minkowski contents of A are different from 0 and ∞), then
for any ε > 0

∫

Aε

d(x,A)−γdx < ∞ ⇐⇒ γ < N − dimB A. (26)

Furthermore, for such γ we have the following asymptotic behaviour of
singular integral taken over the Minkowski sausage of radius ε around the
set A:

∫

Aε

d(x,A)−γdx ' εN−dimB A−γ , as ε → 0.

For generalizations of this result involving generalized Minkowski contents
see [18]. The condition of nondegeneracy is indeed essential for (26) to
hold, see [18, Theorem 4.2]. In Sections 3 and 4 we have obtained many
spirals A = Γ in R3 having the desired nondegeneracy property. The
following result concerning Lebesgue integrability of functions with singular
sets equal to spirals follows immediately from (26), using Theorems 7 and
9.

Theorem 22. Let Γ be a spiral in R3 defined in Theorems 7 or 9, and
let Ω ⊆ R3 be a bounded open set in R3 containing Γ. Then

∫

Ω

d(x,Γ)−γdx < ∞

if and only if
(a) γ < 1 + 2α

1+α , provided Γ is a Lipschitz-focus spiral from Theorem
7(a);

(b) γ < 1 + α
1+α , provided Γ is a Lipschitz-cycle spiral from Theorem

7(b);
(c) γ < 1 + α(1+β)

1+αβ , provided Γ is a Hölder-focus spiral from Theorem
9(a);

(d) γ < 1+ αβ
1+αβ , provided Γ is a Hölder-cycle spiral from Theorem 9(b).
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Furthermore, for such γ we have the following asymptotic behaviour:
∫

Γε

d(x, Γ)−γdx ' ε3−dimB Γ−γ , as ε → 0.

Remark 23. Using functions of the form f(x) = d(x, Γ)−γ , x ∈ Ω ⊆ R3,
and f(x) = 0 otherwise, with γ < 1

p (3 − dimB Γ), we can easily obtain
new nontrivial examples of Sobolev functions defined by Ga ∗f ∈ La,p(R3),
1 < p < ∞, where La,p(R3) := {Ga∗f : f ∈ Lp(R3)} is the Bessel potential
space defined by the kernel Ga, a > 0. For a = 1 and p = 2 we obtain
Sobolev functions in the standard Sobolev space H1(R3), and for γ such
that 1 < γ < 1

2 (3 − dimB Γ) we have that G1 ∗ f ∈ H1(R3) is a Sobolev
function which is singular on the spiral Γ, more precisely, (G1 ∗ f)(x) ≥ C ·
d(x, Γ)1−γ , see [16, inequality (12)]. Maximally singular Sobolev functions,
that is, such that the Hausdorff dimension of their singular sets is maximal
possible, are treated in [9].

Remark 24. Instead of continuous spirals appearing in Theorems 7 and 9
we can consider “discrete spirals” Γ obtained as countable unions of circles
concentric with respect to z-axis:

Γ := ∪∞k=1Γk,

Γk := {(r, ϕ, z) ∈ R3 : r = k−α, ϕ ∈ [0, 2π), z = rβ }. (27)

The same conclusions as in Theorems 7(a) and 9(a) hold for these discrete
spirals of focus type. We may also consider discrete spirals of limit cycle
type defined by changing r = k−α to r = 1 − k−α in (26), and we obtain
the same conclusions as in Theorems 7(b) and 9(b). Such discrete spirals
can be easily obtained in the form r = f(ϕ), ϕ ≥ 2π, r = rβ , where f is a
piecewise constant function, equal to k−α on interval [2πk, 2π(k + 1)) for
k ∈ N. It is clear that Theorem 22 holds for such discrete spirals too.
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