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Let X : U → R2 be a differentiable vector field defined on the complement of
a compact set. We study the intrinsic relation between the asymptotic behavior
of the real eigenvalues of the differential DXz and the global injectivity of the
local diffeomorphism given by X. This set U induces a neighborhood of ∞
in the Riemann Sphere R2 ∪ {∞}. In this work we prove the existence of a
sufficient condition which implies that the vector field X : (U,∞) → (R2, 0),
—which is differentiable in U \{∞} but not necessarily continuous at∞,— has
∞ as an attracting or a repelling singularity. This improves the main result of
Gutiérrez–Sarmiento: Asterisque, 287 (2003) 89–102.
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1. INTRODUCTION

Given U an open subset of the real plane and a differentiable vector
field (or map) X : U → R2, we shall denote by Spec(X) the set of all
eigenvalues of the differential DXz, when z varies in whole the domain U.
This domain may be the complement of a disk Dσ where this compact
set is given by {z ∈ R2 : ||z|| ≤ σ}, for some σ > 0. This notation was
introduced to support [19], by Gutiérrez and Sarmiento, and afterwards
used in [13]. These papers are related with the study of the injectivity
of a local diffeomorphism on the plane but in the last article the map is
supposed just to be differentiable. Specifically, in this paper was proved the
following result, which led to a positive solution of the global asymptotic
stability conjecture in the two–dimensional differentiable case (see also [7]).
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Theorem 1. Let Y : R2 → R2 be a differentiable map (not necessarily
of class C1). If for some ε > 0, Spec(Y ) ∩ [0, ε) = ∅, then Y is injective.

Theorem 1 is optimal, because Pinchuck [30] proved that there are non–
injective polynomial maps Y : R2 → R2 such that 0 /∈ Spec(Y ). A weaker
C1−version of Theorem 1 had already been proved in [9]. Nevertheless,
Smith–Xavier ([35], Theorem 4) proved that there exists integers n > 2 and
non–injective polynomial maps P : Rn → Rn with Spec(P ) ∩ [0,+∞) = ∅.
But, under additional assumptions, there is an extension of Theorem 1 for
maps from Rn to itself ([14], Theorem 1).

Theorem 1 is closer related to the problem of characterizing the injec-
tivity of differentiable maps. This characterization in terms of spectral
conditions for maps on Rn has been studied, for instance, in [6], [35], [28]
and [14]. These works are related to the Keller Jacobian Conjecture, that
is: “Any polynomial map from Rn to itself, whose jacobian determinant is
constant and equal one, is injective” ([2, 36]).

Theorem 1 is the deepest statement added to a long sequence of results on
both the asymptotic stability of C1−planar vector fields and the injectivity
of C1−maps. This was initiated in 1962 by C. Olech in [26] (see also [24]
and [25]) who proved that the two dimensional case of the global asymptotic
stability conjecture [23] can be reduced to the statement: “If Y is of class
C1 and Spec(Y ) ⊂ {z ∈ C : <(z) < 0}, then Y is injective”. In 1988,
Olech–Meister [27] gave a positive answer for the polinomial case. In 1995
Gutiérrez [20] and Feßler [15] obtained this fact from the result that the
C1−map Y is injective if Y is a local diffeomorphis whose differentials DYz

do not have positive real eigenvalues for all z with |z| large enough. It has
already been proved that the global asymptotic stability fails in R3, even
for polynomial vector fields [10].

The asymptotic stability at infinity in global C1−vector fields of the
plane was studied for Gutiérrez–Teixeira in [21] (see also [24]). In this
paper the authors consider a C1−vector field Y : R2 → R2 such that
(i) det(DYz) > 0 and (ii) Trace(DYz) < 0 in an neighborhood of infinity.
They show that “if such Y has a singularity then, the infinity is either a repeller
or an attractor.” Moreover, they present the Index I(Y ) =

∫
Trace (DY )

and show that if Y has a singularity and I(Y ) < 0 (resp. I(Y ) ≥ 0), then
Y is topologically equivalent to z 7→ −z that is, “the infinity is a repeller”
(resp. to z 7→ z that is, “the infinity is an attractor”). Recently, Alarcón-
Gúıñez-Gutiérrez in [1] has been studied a one-parameter family Xµ of
C1−vector fields; they show the bifurcation given by the change in the sign
of this Index. In [17] the definition of such Index for differentiable vector
fields has been extended to vector fields not necessarily globally defined.
Moreover, by using that Gutiérrez–Teixeira’s paper [21] the authors of [19]
prove the next.
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Theorem 2 (Gutiérrez-Sarmiento). Let X : R2 \Dσ → R2 be a C1−
map, where σ > 0 and Dσ = {z ∈ R2 : ||z|| ≤ σ}. The following is satisfied:

(i) if for some ε > 0, Spec(X) is disjoint of (−ε,∞), then there exists
s ≥ σ such that X|R2\Ds

is injective;
(ii) if for some ε > 0, Spec(X) is disjoint of (−ε, 0]∪{z ∈ C : <(z) ≥ 0},

then there exist p0 ∈ R2 such that the point ∞ of the Riemann Sphere
R2 ∪ {∞} is either an attractor or a repellor of z′ = X(z) + p0.

The asymptotic stability at infinity study the system induced by a vector
field X : U → R2, defined on the complement of a compact set, so the set
V = U ∪ {∞} is a neighborhood of ∞ in the Riemann Sphere R2 ∪ {∞}.
We study when the condition Spec(X) ⊂ {z ∈ C : <(z) < 0} implies
that the vector field X : (V,∞) → (R2, 0) (which is differentiable in V \
{∞} but not necessarily continuous at ∞) has ∞ as an attracting or a
repelling singularity. Moreover, the methods used in this work are related to
those used in the study of planar vector fields, see for instance Chicone [8],
Dumortier–Maesschalck [11], Roussarie [33] and Dumortier et. al [12].

In the present article, we extend the theorems of Gutiérrez–Van Chau
given in [16]. Furthermore, here various results contained in the articles
[13], [14], [17] and [18] are extended to the case of maps (or induced vector
fields) satisfying the, so–called, B−condition. The structure of the proof in
our main results is similar to that [19]. Nevertheless, most of the arguments
had to be reconstructed. The basic difficulty was that, in this new case,
the eigenvalues of DXz can be approach to zero.

Throughout this paper, we shall denote by (R2 \Dσ)∪{∞} the subspace
of the Riemann sphere R2 ∪ {∞} with the induced topology. Moreover,
given a topological circle C ⊂ R2, the compact disc (resp. open disc)
bounded by C, will be denoted by D(C) (resp. D(C)).

2. STATEMENT OF THE RESULTS

We will consider a differentiable map (or vector field) Y : R2 → R2 whose
jacobian determinant at any point is different from zero.

Let us say a little more about Theorem 1. The proof of this result can
be divided into two steps. The first step is the following result “If for some
ε > 0, Spec(Y ) ∩ (−ε, ε) = ∅, then Y is injective.” The second it to obtain
Theorem 1 by regarding a map Y, which satisfies the eigenvalue condition
of Theorem 1, as the limit of a sequence of injective maps each of which
is of the form Yt(z) = Y (z) − tz, where t ∈ R \ {0} is small, and thus
Yt satisfies the eigenvalue condition Spec(Yt) ∩ (−εt, εt) = ∅, where every
εt > 0.

We will use the following condition on the real eigenvalues of DYz.
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Definition 3. (B−condition) We say that Y satisfies the B−condition if
there does not exist a sequence R2 3 (xk, yk) →∞ such that Y ((xk, yk)) →
p ∈ R2 and DY(xk,yk) has a real eigenvalue λk satisfing |xk|λk → 0.

Observe that, if for some ε > 0 we have that Spec(Y ) is disjoint of (−ε, ε),
the map Y satisfies the B−condition.

2.1. Injectivity of global maps.
By Local Inverse Function Theorem [5, 4], the map Y is locally injective

at any point of R2, but this local condition is not sufficient to guarantee
the global injectivity. Even in the polynomial case, as shown [30]. Conse-
quently, the goal is to give sufficient conditions on such a map Y to insure
that it is globally injective.

Theorem A. Let Y = (f, g):R2 → R2 be a local homeomorphism such
that for some s > 0, Y |R2\Ds

is differentiable. If Y satisfies the B−condition,
then it is globally injective and Y (R2) is a convex set.

The map Y of Theorem A is not necessarily a homeomorphism of R2; it is
a differentiable embedding, the image of which may be properly contained
in R2.

Theorem A improves the main result of Gutiérrez–van Chau [16], where
present the so–called (*) condition: “There does not exist a sequence R2 3
zn →∞ such that Y (zn) → p ∈ R2 and DYzn has a real eigenvalue λn → 0”

Remark 4. Let Y : R2 → R2 be as in Theorem A. If the graph Y is
an algebraic set by using the principle “Injectivity ⇒ Bijectivity” (which
asserts that every continuous injective mapping Rn → Rn whose graph is
algebraic must be surjective, [31] and [32]) we obtain that such map will
be bijective.

Let us proceed to give an idea of the proof of Theorem A, it shall be
present in Section 3. First it will be used that the assumptions imply that
the Local Inverse Function Theorem is true [5, 4] (see also the references
of [13]). As a consequence, the level curves {f = constant} (resp. {g =
constant}) make up a C0-foliation F(f) (resp. F(g)) on the plane, without
singularities, such that every leaf L of F(f) (resp. F(g)) is a differentiable
curve and g|L (resp. f |L) is strictly monotone; in particular F(f) and F(g)
are (topologically) transversal to each other.

To prove Theorem A, it will be seen that the foliation F(f) (resp. F(g))
is topologically equivalent to the foliation, on the (x, y)-plane, induced by
the form dx —this foliation is made up by all the vertical straight lines—;
that is F(f) (resp. F(g)) has no “Half-Reeb component” (or inseparable
leaves). The injectivity of Y will follow from the fact that F(f) and F(g)
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are topologically transversal everywhere. The last result will obtain by the
study of the geometrical behavior of Y.

2.2. Injectivity at infinity
Theorem 2 is also devoted to study the injectivity of C1−maps X :

R2 \Dσ → R2 whose Spec(X) is disjoint of [0, +∞).

Theorem B. Let X = (f, g) : R2 \ Dσ → R2 be a differentiable map
which satisfies the B−condition. If Spec(X)∩[0, +∞) = ∅, then there exists
s ≥ σ such that X|R2\Ds

can be extended to an injective local homeomor-

phism X̃ = (f̃ , g̃) : R2 → R2.

Theorem B is valid for maps X such that Spec(X) ∩ (−∞, 0] = ∅ and it
satisfies the B−condition. In fact, if in Theorem B we change the pair
{X; [0,∞)} by {−X; (−∞, 0]}, we may see that its conclusions remain
valid. Also, if T : R2 → R2 is an arbitrary invertible linear map, The-
orem B applies to the map T ◦X ◦ T−1.

Let us say a little more about the proof of Theorem B. In Section 4 we
prove

Proposition 21 Let X = (f, g) be as in Theorem B. There exists a topo-
logical circle C such that F(f), restricted to R2 \ D(C), is topologically
equivalent to the foliation, on R2 \D1, induced by dx.

Observe that the foliation, on R2 \ D1, induced by dx has exactly two
tangencies with ∂D1 (at (−1, 0) and (1, 0)) which are “external”.

In order to obtain Proposition 21 in Subsection 4.2, we see that given a
topological circle C1 ⊂ R2 \Dσ surrounding the origin, and having “con-
tact” with F(f), the number of “external” tangencies of F(f) with C1 is
equal to 2 plus the number of “internal” tangencies of F(f) with C1. We
show, in Subsection 4.2, that the circle C1 can be deformed to a new topo-
logical circle C2 so that the referred “external” and “internal” tangencies
cancel in pairs yielding exactly 2 tangencies which are “external”. More-
over, by using the results of [18] it will be seen that, under conditions of
Proposition 21, the circle C can be deformed so that, for the resulting new
circle, still denoted by C:

(i) F(f)|R2\D(C), is topologically equivalent to the foliation, on R2 \D1,
induced by dx;

(ii) X takes C homeomorphically to a circle; and
(iii) X|R2\D(C) can be extended to a local homeomorphism X̃ : R2 → R2.

Under these conditions, we conclude the proof of Theorem B from Theo-
rem A.
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2.3. Differentiable vector fields
Let us consider the system

z′ = X(z) (1)

where X is a differentiable vector field defined over an open subset U of R2.
Since, each point on this open set can be an initial condition, such point
jointly to (1) give an autonomous differential equation, which may have
many solutions defined on their maximal interval of existence. Nevertheless,
for every of those trajectories — through the same point, kept fixed — all
their local funnel sections are compact connected sets (see [34]); moreover,
each trajectory has its two limit sets, α and ω respectively, which are well
defined in the sense that only depend of such solution. Notice that we
called trajectory to the curve determined by any solution defined on its
maximal interval of existence. If γq denotes a trajectory through a point
q ∈ U , then γ+

q (resp. γ−q ) will denote the positive (resp. negative) semi-
trajectory of X, contained in γq and starting at q. In this way γq = γ−q ∪γ+

q

and γ−q ∩ γ+
q = {q}.

A C0−vector field X : R2 \Dσ → R2 \{0} (without singularities) can be
extended to a map

X̂ : ((R2 \Dσ ∪∞),∞) −→ (R2, 0)

(which takes ∞ to 0). In this manner, all questions concerning the local
theory of isolated singularities of planar vector fields can be formulated
and studied in the case of the vector field X̂. For instance, if γ+

p (resp.
γ−p ) is an unbounded semi-trajectory of X : R2 \Dσ → R2 passing through
p ∈ R2 \ Dσ such that, its ω−limit (resp. α−limit) set is empty, we will
also say that γ+

p goes to infinity (resp. γ−p comes from infinity), it will be
denoted by ω(γ+

p ) = ∞ (resp. α(γ−p ) = ∞). In this context, we may also
talk about the phase portrait of X in a neighborhood of ∞. Like in [17],
we will need the following definition.

Definition 5. (attractor and repellor) We will say that the infinity ∞,
is an attractor (resp. a repellor) for the differentiable vector field X :
R2 \Dσ → R2 if

1.- There is a sequence of transversal circles to X tending to infinity, that
is for every r ≥ σ there exists a circle C with Dr ⊂ D(C) and transversal
to X.

2.- For some s ≥ σ, all trajectories γp through a point p ∈ R2\Ds, satisfy
ω(γp) = ∞ that is, γ+

p goes to infinity (resp. α(γp) = ∞ that is, γ−p comes
from infinity).
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Definition 6. (global attractor and global repellor) We will say that the
infinity ∞, is a global attractor (resp. global repellor) for the differentiable
vector field X : R2 \Ds → R2 if ∞ is an attractor (resp. a repellor) for X,
and this vector field has only non-periodic regular trajectories in R2 \Ds.

Theorem C. Let X : R2 \Dσ → R2 a differentiable vector field which
satisfies the B−condition. If Spec(X) ⊂ {z ∈ C : <(z) < 0}. Then,

(i) for all p ∈ R2 \ Dσ, there is a unique positive semi-trajectory of X
starting at p; and the infinity ∞ of the Riemann Sphere R2∪{∞} is either
a repeller or an attractor of the vector field X. Moreover,

(ii) there are s > 0 and v ∈ R2, such that the infinity is either a global
attractor or a global repellor of the vector field X + v : R2 \Ds → R2.

This theorem joint Theorem B improve Theorem 2. The differentiable
version of the Gutiérrez–Sarmiento’s result was proved in [17] which is also
motivated by the results of [21] and [1] related to C1 vector fields. The
proof of Theorem C will be completed in Section 5 by using Theorem B
and some results of [17].

3. INJECTIVITY AND MAPS WITH CONVEX IMAGE

This section is devoted to prove Theorem A.
Let a > 0 and let β, γ : (−a, a) → R2 be injective C0−curves such

that β(0) = γ(0). We will say that β is transversal (resp tangent) to γ
at β(0) = γ(0), if there exist a local C0−coordinates in a neighborhood
of β(0) ∈ R2 such that in these coordinates β(t) = (t, t) and γ(t) = (t, 0)
(resp. β(t) = (t, φ(t)) where φ(t) ≥ 0). In particular, when σ([−a, a)) = C
is a topological circle, we will say that the tangency in p = σ(0) = γ(0) is
external (resp. internal) if we have that γ(t) ∈ R2 \ D(C) (resp. γ(t) ∈
D(C)) for all t 6= 0 small enough.

Following [13] we orient F(f) (resp. F(g)) in agreement that if Lp is an
oriented leaf (or trajectory) of F(f) (resp. F(g)) thought the point p, then
the restriction g|Lp (resp. f |Lp) is an increasing function in conformity
with the orientation of Lp. Notice that, this function g|Lp (resp. f |Lp) is
strictly monotone.

Remark 7. Let a > 0 and let α : (−a, a) → Lp be a local differential
curve with α(0) = p (Lp is a leaf of F(f)). It is not difficult to obtain
that d

dtg(α(t)) > 0. Moreover, by using the local inverse of X at X(p)
it is easy to see that, for each t ∈ (−a, a) there exists ηt > 0 such that
α′(t) = ηtXf (α(t)) where Xf (α(t)) := (−fy(α(t)), fx(α(t))).
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FIG. 1. A half-Reeb component, hrc.

Let h0(x, y) = xy and consider the set

B = {(x, y) ∈ [0, 2]× [0, 2] : 0 < x + y ≤ 2} .

Definition 8. (Half-Reeb component) Let X = (f, g) : U ⊂ R2 → R2

be such that 0 6∈ Spec(X), so there exist F(f) and F(g). Given h ∈ {f, g},
we will say that A ⊂ U is a half-Reeb component for F(h) (or simply a hrc
for F(h)) if there is a homeomorphism H : B → A which is a topological
equivalence between F(h)|A and F(h0)|B such that:

1.- The segment {(x, y) ∈ B : x + y = 2} is sent by H onto a transversal
section for the foliation F(h) in the complement of the point H(1, 1); this
section is called the compact edge of A.

2.- Both segments {(x, y) ∈ B : x = 0} and {(x, y) ∈ B : y = 0} are
sent by H onto full half-trajectories of F(h). These two semi-trajectories
of F(h) are called the non–compact edges of A.

Observe that A may not be a closed subset of R2. Moreover, the home-
omorphism of its definition, does not need to be extended to infinity.

Remark 9. (Geometrical properties) The geometry of any half-Reeb com-
ponent A is simple, however it is very useful to examine the behavior of
X|A around infinity. More precisely:

(a) Both non-compact edges of A are subsets of one level of f , say
{f = c}. The map X = (f, g) sends diffeomorphically these two edges
onto a pair of disjoint half-open intervals of the vertical line u = c say
I1 = {c} × [α, β) and I2 = {c} × (γ, δ] with β < γ.
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(b) The map X sends diffeomorphically the compact edge of A to a
compact path Σ lying on one-side of the vertical line u = c and intersecting
it only at the points (c, α) and (c, δ).

(c) The image X(A) is a simply connected domain bounded by Σ∪ I1 ∪
I2 ∪ I3, where I3 = {c} × [β, γ].

(d) The vertical foliation in R2, induces in int(X(A)) (the interior of
X(A)) a trivial fibration by open–interval–fibers; furthermore, X|int(A) :
int(A) → int(X(A)) is a homeomorphism giving a topological equivalence
between this fibration and the foliation F(f) restricted to int(A).

(e) The essencial point is that while every leaf of f , restricted to int(A),
is connected; so the intersection of the level {f = c} with the closure Ā of
A must have at lest two components contained in the boundary ∂A of A.

For each θ ∈ R we will denote by Rθ the usual linear rotation given by
(x, y) 7→ (x cos θ−y sin θ, x sin θ+y cos θ) and Xθ := (fθ, gθ) = R−θ◦X◦Rθ.
In other words, Xθ := (fθ, gθ) is the representation of the map X in the
linear coordinates of R2 associated with the rotation Rθ.

It statement can be deduced from [13] and the corollary from [16].

Proposition 10. If some level curve {f = c} is disconnected, then F(f)
has a Half-Reeb component.

Corollary 11. Let Y = (f, g) : R2 → R2 be a map as in Definition 8.
If F(f) and F(g) have no hrc’s, then Y (R2) is a convex set.

Proof. Let p, q ∈ Y (R2) and let [p, q] = {(1− t)p+ tq : 0 ≤ t ≤ 1}. Take
θ ∈ R so that Rθ([p, q]) is contained in the vertical line x = c. By Remark 9,
Proposition 10 implies that the level curve {fθ = c} is a connected subset
of the straight line x = c connecting Rθ(p) with Rθ(q); that is Rθ([p, q]) ⊂
Yθ(R2) which implies that [p, q] ⊂ Y (R2) and conclude this proof.

3.1. Global injectivity result
By using that “If θ ∈ (−π

2 , 0)∪(0, π
2 ) then, F(fθ) and F(gθ) are transversal

to both Rθ(F(f)) and Rθ(F(g))”, in [13] we prove the following proposition.

Proposition 12. Let X = (f, g) : U ⊂ R2 → R2 be a map as in
Definition 8 such that F(f) has an unbounded hrc, A. Let (fθ, gθ) =
Rθ ◦X ◦ R−θ, θ ∈ R. If Π(A) is bounded, where Π : R2 → R is given by
Π(x, y) = x then, there is an ε > 0 such that, for all θ ∈ (−ε, 0) ∪ (0, ε),
F(fθ) has a hrc Aθ for which Π(Aθ) is an interval of infinite length.

An analogous statement to the proposition below was proved in [18], by
using the condition Spec(X) ∩ (−ε, ε) = ∅. The proof of proposition below
can be done in a similar way to [13].
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Proposition 13. Let X = (f, g) : R2 \Dσ → R2 be a map as in Defin-
ition 8. If X satisfies the B−condition. Then,

(a) any half-Reeb component of either F(f) or F(g) is a bounded subset
of R2;

(b) when X extends to a local homeomorphism X̃ = (f̃ , g̃) : R2 → R2,
F(f̃) and F(g̃) have no hrc’s.

Proof. Consider only the case of F(f). Suppose by contradiction that
F(f) has an unbounded half-Reeb component. By Proposition 12, we may
assume that F(f) has a half-Reeb component A such that Π(A) is an
unbounded interval. To simplify matters, let us suppose that [b,+∞) ⊂
Π(A). Then, when a > b is large enough, for any x ≥ a, the vertical
line Π−1(x) intersects exactly one trajectory αx ⊂ A of F(f)|A such that
Π(αx)∩[x, +∞) = {x}. In other words, x is the maximum for the restriction
Π|αx

. The leaf αx is a continuous curve, it follows that; if x ≥ a, αx∩Π−1(x)
is a compact subset of A. So we can define the functions H : (a,+∞) → R
by

H(x) = sup{y : (x, y) ∈ αx ∩Π−1(x)},
and ϕ : (a,+∞) → A ϕ(x) = f(x,H(x)).

As proved in [13], ϕ is bounded and a strictly monotone function such
that, for some full measure subset M ⊂ (a,+∞) such function ϕ is differ-
entiable on M and for all x ∈ M

DF(x,H(x)) =
(

ϕ′(x) 0
gx(x,H(x)) gy(x,H(x))

)
.

In other words, if x ∈ M , then ϕ′(x) = fx(x,H(x)) ∈ Spec(X).
To proceed we shall only consider the case in which ϕ′(x) ≥ 0.

If lim infx→∞ xϕ′(x) = 0, there exists a sequence (xk,H(xk)) →∞ such
that DY(xk,H(xk)) has a real eigenvalue λk = ϕ′(xk) for which lim xkλk = 0
and Y (xk,H(xk)) tends to a finite value in the closure Y (A) (which is
compact). This contradics the B−condition.

If lim infx→∞ xϕ′(x) 6= 0, then lim infx→∞ xϕ′(x) > 0, this implies that
there are constants a0 ≥ a and ` > 0 such that ` ≤ xϕ′(x) if x ≥ a0. As f |A
is bounded, ϕ is bounded too. Hence, there is a constant K > 0 such that
for all x > a, 0 ≤ ϕ(x) − ϕ(a) ≤ K. Take c0 > a0 so that K <

∫ c0

a0

`
xdx.

Then

K <

∫ c0

a0

`

x
dx ≤

∫ c0

a0

ϕ′(x)dx ≤ ϕ(c0)− ϕ(a0) < K.

This contradiction proves the proposition.
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Proof of Theorem A. By Proposition 13, Corollary 11 implies that
Y (R2) is a convex set. In order to prove, that Y is injective we assume,
by contradiction, the existence of two (different) points p, q ∈ R2 such
that Y (p) = Y (q) = (c, d). As the restriction as g|L to any leaf of F(f)
is strictly monotone (see Remark 7) p and q belong to different connected
componentes of {f = c}. Therefore, Proposition 10 implies that F(f) has
a half-Reeb component. This contradiction with Proposition 13 concludes
the proof.

4. EXTENDING MAPS TO A TOPOLOGICAL EMBEDDING

This section is devoted to prove Theorem B. Notice that we not only
prove the injectivity at infinity of X.

4.1. A local flow associated to F(f)
Let X : R2\Dσ → R2 be a differentiable map such that for all p ∈ R2\Dσ,

DXp is non-singular (see Remark 7). Let Lp be the connected component
of the level curve {f = f(p)} passing through p. Since g|Lp

is strictly
monotone, given q ∈ Lp and t = g(q)− g(p) we define ϕ(t, p) as the unique
point which is the intersection of Lp with the level curve {g = g(q)}. For
each p ∈ R2, let am(p) = inf{g(q) : q ∈ Lp} and aM (p) = sup{g(q) : q ∈
Lp}. If p ∈ R2 and t ∈ (am(p) − g(p), aM (p) − g(p)) then ϕ(t, p) is well
defined and determines a continuous local flow around any point of R2.
This map ϕ will be called the local flow associated to F(f).

For the proof of the following result we refer the reader to Proposition 3.1
of [18].

Proposition 14. Let X = (f, g):R2 \ Dσ → R2 be a differentiable
map with Spec(X) ∩ [0,+∞) = ∅. If C ⊂ R2 \ Dσ is a topological circle
surrounding the origin, there exists ε0 > 0 such that:

(i) the local flow ϕ associated to F(f) is defined in (−ε0, ε0)× C.
(ii) Let S1 = {(x, y) ∈ R2 : x2 + y2 = 1}. If u ∈ (−ε0, 0) ∪ (0, ε0) and

Zu = (Au, Bu) : C → S1 is defined as

Zu(p) =
ϕ(u, p)− p

‖ ϕ(u, p)− p ‖ .

Then Au(p0) = 0, for some p0 ∈ C, implies that Bu(p0) < 0. In particular,
the degree of Zu is zero.
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4.2. Avoiding internal tangencies
Let C ⊂ R2 → R2 be a topological circle surrounding the origin. We say

that the vector field X : U → R2 (resp. F(f)) has contact (resp. tangency
with; resp. transversal to; etc) with C at p ∈ C if every small local integral
curve of X (resp. Xf , defined in Remark 7) at p has such property.

Definition 15. (General position) We say that a topological circle C ⊂
R2 \ Dσ is in general position with F(f) (resp. with X) if there exists a
set T ⊂ C, at most finite such that:

1.- F(f) (resp. X) is transversal to C \ T,

2.- F(f) (resp X) has a tangency with C at every point of T, and
3.- a leaf of F(f) (resp. any integral curve of X) can meet tangentially

C at most at one point.

Denote by GP(f) = GP(f, σ) the set of all topological circles C ⊂ R2\Dσ

in general position with F(f) and surrounding the origin.

Definition 16. Let C ∈ GP(f). The Index of F(f) along C is the integer
number

IF(f)(C) :=
2− ne(f, C) + ni(f, C)

2

where ne(f, C) (resp. ni(f, C)) is the number of tangencies of F(f) with
C, which are external (resp. internal).

It is well known that if C is in general position with Zu,

deg(Zu) =
2− ne(Zu, C) + ni(Zu, C)

2

where ni(Zu, C) (resp. ne(Zu, C)) is the number of internal tangency (resp.
external tangency) of Zu with C (see [22, Theorems 9.1 and 9.2, p. 166-
174]).

By using a standard homotopy argument we may conclude that

Lemma 17. If Zu : C → S1 is as in Proposition 14,

deg(Zu) = IF(f)(C).

As a consequence

Corollary 18. Let C ∈ GP(f) be such that ni(f, C) = 0. If ne(f, C)
is greater than two, the degree of Zu is different from zero.
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Next proposition will shows us that we can always select C ∈ GP(f) such
that, F(f) has no internal tangencies with C and exactly two external ones.
We shall need two lemmas the firs of which is proved in [19, Lemma 2].

Lemma 19. Let C ∈ GP(f). Suppose that a leaf γ of F(f) meets C
transversally somewhere and with an external tangency at a point p ∈ C.
Then, γ contains a closed subinterval [p, r]f which meets C exactly at {p, r}
(doing it transversally at r) and the following is satisfied:

(i) If [p, r] denotes the closed subinterval of C such that Γ = [p, r]∪[p, r]f
bounds a compact disc D(Γ) contained in R2\D(C), then points of γ\[p, r]f
nearby p do not belong to D(Γ).

(ii) Let (p̃, r̃) and [p̃, r̃] be subintervals of C satisfying [p, r] ⊂ (p̃, r̃) ⊂
[p̃, r̃]. If p̃ and r̃ are close enough to p and r, respectively, then we may
deform C into C1 ∈ GP(f) in such a way that the deformation fixes C\(p̃, r̃)
and takes [p̃, r̃] ⊂ C to a closed subinterval [p̃, r̃]1 ⊂ C1 which is close to
[p, r]f . Furthermore, the number of generic tangencies of F(f) with C1 is
smaller than that of F(f) with C.

By using Proposition 13, it statement can be deduced from [18].

Lemma 20. Let X = (f, g):R2 \Dσ → R2 be as in Theorem B. If C ∈
GP(f) minimizes the number of tangencies with F(f), then every tangency
is external.

Proposition 21. Let X = (f, g) : R2 \Dσ → R2 be as in Theorem B.
There exists a topological circle C ∈ GP(f) and there are two points a, b ∈
C, with f(a) < f(b), such that F(f) is tangent to C exactly at a and b;
moreover, these tangencies are external.

Proof. Take C ∈ GP(f) as in Lemma 20, so ni(f, C) = 0. If a, b ∈ C
are such that f(C) = [f(a), f(b)], the circle C has two external tangencies:
one at a and the other at b.

In fact, suppose by contradiction that a and b are not the only tangencies;
so ne(f, C) is greater than two. This implies, by Corollary 18, that the
degree of Zu is different from zero, contradicting Proposition 14.

We shall say that a collar neighborhood U of a topological circle C ⊂ R2\
Dσ is interior (resp. exterior), if U is contained in D(C) (resp. R2\D(C)).
By using Proposition 21 and Proposition 13, it result follows from [18].

Proposition 22. Let X = (f, g) : R2 \Dσ → R2 be a differentiable
map as in Theorem B. There exists a topological circle C ⊂ R2 \Dσ sur-
rounding the origin such that: (i) X(C) is a topological circle; (ii) for some
exterior collar neighborhood U of C, its image X(U) is an exterior collar
neighborhood of X(C) and (iii) X|U : U → X(U) is a homeomorphism.
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Proof of Theorem B. Let C and U be as in Proposition 22. By Schoen-
flies Theorem (Theorem III.6.B, [3]), the map X|C : C → X(C), can be
extended to a homeomorphism Y1 : D(C) → D(X(C)). In this way, we
extend X : R2 \D(C) → R2 to X̃ : R2 → R2 by defining X̃|D(C) = Y1. As

X̃|U : U → X(U) is a homeomorphism and U and X(U) are exterior collar
neighborhoods of C and X(C), respectively, X̃ is a local homeomorphism
everywhere. By Theorem A X̃ is globally injective and conclude the proof.

5. ASYMPTOTIC STABILITY AT INFINITY

The proof of Theorem C will be finished at the end of this section.
Let X∗ = (−g, f) : R2 → R2. Certainly X∗ is orthogonal to X. In the

following, the same notation as that for intervals of R will be used for ori-
ented arcs of trajectory [p, q], [p, q), · · · (resp. [p, q]∗, [p, q)∗, · · ·), connecting
the points p and q, of X (resp. of X∗). The orientation of these arcs is
that induced by X (resp. by X∗). For any arc of trajectory [p, q]∗ we have
the function L([p, q]∗), given by

L([p, q]∗) = |
∫

[p,q]∗
||X||ds|

where ds denotes the arc length element.

Lemma 23. Let R(p1, q1; p2, q2) be a compact rectangle such that its
boundary is make up of (oriented) arcs of trajectory: [p1, q1], [p2, q2] of
X and [p1, p2]∗, [q1, q2]∗ of X∗. Then

L([q1, q2]∗)− L([p1, p2]∗) =
∫

R(p1,q1;p2,q2)

Trace(DX)dx∧dy (2)

Proof. Since Trace(DX) : R2 → R is bounded from above everywhere,
it is Lebesgue integrable in R(p1, q1; p2, q2), so (2) follows from the Green’s
formula, as presented in [29, Corollary 5.7].

Corollary 24. For all p ∈ R2 \ Dσ, there is a unique positive semi-
trajectory of X starting at p.

Proof. Suppose, by contradiction, that there are in R2 \Ds two positive
half-trajectories σ+

p and γ+
p starting at p. Since X(p) 6= 0, there are q1 ∈ σ+

p ,
q2 ∈ γ+

p and one arc of trajectory [q1, q2]∗ of X∗ such that the triangle A
(i.e. a degenerate rectangle) limited by [p, q1], [q1, q2]∗ and [p, q2] is as in
Lemma 23. But since Trace(DY ) < 0 everywhere in A, then we will obtain

L([q1, q2]∗) =
∫

A

Trace(DX) < 0.
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This contradiction proves the lemma.

Corollary 25. Let Y : R2 → R2 be a global differentiable vector field
such that Spec(Y |R2\Ds

) ⊂ {z ∈ C : <(z) < 0}, for some s > 0. If
Y : R2 \Ds → R2 has only non-periodic and regular trajectories, then
for every compact set K ⊂ R2 \ Ds, there is no positive (resp. negative)
semi-trajectory of Y contained in K.

Proof. In the case of a positive semi–trajectory the proof follows from
Corollary 24 and the Poincaré–Bendixson Theorem. In the case of a nega-
tive semi–trajectory, we will give an explicit proof by using that Trace(DX)
< 0. Let us assume, by contradiction, that γ− is a negative semi–trajectory
of X contained in a compact set K ⊂ U . Let p ∈ α(γ−) and let Σ be a
compact orthogonal section to X passing through p. We know that no
negative semi–trajectory can intersect itself, otherwise it would contain a
periodic trajectory. So γ− intersects Σ monotonically and infinitely many
times. Let (pn)∞1 denote the corresponding sequence of intersection points,
where pn → p as n →∞. Then, from equation (2):

L([pj−1, pj ]∗)− L([pj , pj+1]∗) < 0, ∀j ∈ N∗,

where N∗ = N\{0}. Hence, ∀n ∈ N∗,

L([p0, p1]∗)− L([pn, pn+1]∗) =
n∑

j=1

L([pj−1, pj ]∗)− L([pj , pj+1]∗) < 0.

That is,

0 < L([p0, p1]∗) < L([pn, pn+1]∗).

But this is an absurd since L([pn, pn+1]∗) → 0 as n →∞. So α(γ−) = ∅. As
K is a compact and γ− ⊂ K, α(γ−) cannot be empty. This contradiction
finishes the proof.

Remark 26. An immediate consequence of Theorem B is that if X is as
in Theorem C, then outside a larger disk Ds with s ≥ σ, the vector field
X has no singularity. In addition, as Trace(DX) is negative by Green’s
formula (i) X does not have any periodic trajectory γ with D(γ) contained
in R2 \Dσ and, (ii) X admits at most one periodic trajectory, say γ, such
that D(γ) ⊃ Dσ. Therefore, there exit s > σ such that, for any circle
C ⊂ R2 \ Ds with D(C) ⊃ Ds, the vector field X has only non-periodic
and regular trajectories in R2 \D(C).

The following theorem will be need. For the proof we refer the reader
to [17].
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Theorem 27. Let Y : R2 → R2 be a differentiable global vector field.
If there exist s > 0 such that Spec(Y |R2\Ds

) ⊂ {z ∈ C : <(z) < 0} and
Y |R2\Ds

is injective, then for each r ≥ s there exist C a circle with Dr ⊂
D(C) and transversal to Y.

Proof of Theorem C. Let s ≥ σ and Y1 : R2 → R2 the (injective)
vector field given by Theorem B. By Remark 26, Theorem 27 implies that
the first item of Definition 5 is true. In order to prove (i) of Theorem C, we
use Corollary 24 and consider Cr Cr̃ two circles obtained from Theorem 27
for some r > r̃ ≥ σ. As K = D(Cr) \ D(Cr̃) is a compact subset of
R2 \ Dσ Corollary 25 shown the second item of Definition 5. Thus (i) is
true, because X = Y1 on R2 \Ds.

Let Y : R2 → R2 be the vector field given by Y (z) = X̃(z) + v where
X̃ is given by Theorem B and v = −X̃(0). As Y satisfies Theorem 27 and
Corollary 25, the infinity∞ is either an attractor or a repellor for the vector
field Y : R2 \Dσ → R2. This concludes the proof because Y is injective
with Y (0) = 0 and it is equal to X + v in R2 \Ds.
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wish to thank the members of the Department of Mathematics for their kind hospitality.

REFERENCES
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