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Let H : R2 → R1 be a real analytic function. Let c be a real number. Denote
level {(x, y) ∈ R2 | H(x, y) = c} of function H as Lc. Let C be a connected
component of level Lc, which is diffeomorphic to the standard circle S1. What
is an ordinary differential equation, for which component C is a limit cycle?
In this paper we present such differential equations, found in literature, as well
as offer one more such equation.
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1. INTRODUCTION

We start by representing a little history of equations with prescribed
limit cycles.

1) One can immediately guess the answer to the question stated in
the Abstract. Let H(x, y) be the function described in the Abstract,
which defines a compact connected component C of level Lc = {(x, y) ∈
R2 | H(x, y) = c}. Turning to the complex notation, let z = x + iy be a
chart in the plane, and ∇H = Hx + iHy. Let ϕ : R1 → R1 be an analytic
function with ϕ(c) = 0. It is easy to see that every component of level Lc

is an integral curve of equation
.
z = i exp[iϕ(H)]∇H, (1)

and if C ⊂ Lc is a component homeomorphic to the standard circle S1,
then one can see that C is a limit cycle of equation (1).

2) In paper [2] Bautin offered equation

dy

dx
= − (y + λ)Hx + H

(y + λ)Hy
, (2)
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where H(x, y) is a polynomial of degree d, whose zero level L0 has connected
component C diffeomorphic to the circle S1, and line y +λ = 0 is picked so
that it does not intersect component C. He proved that C is a limit cycle
of equation (2). The polynomial vector field (PVF) of Bautin equation (2)
has degree d. As a corollary, Bautin proved that if H(x, y) = 0 is an M -
curve of degree d, then the PVF of (2) has 1

2

[
d2 − 3d + 3 + (−1)d

]
limit

cycles.
3) Bautin equation (2) was the subject of generalization in series of pa-

pers of Dolov and coauthors [4], [5], [6] (see also [3]). In paper [4] authors
investigated limit cycles of equation

dy

dx
= −NHx + bH

NHy − aH
, (3)

where H(x, y) is an analytic function in a domain G, N(x, y) is a linear
function, chosen so that C ⊂ L0 diffeomorphic to the circle S1, and a, b
are real constants. They proved if line N(x, y) = 0 does not intersect the
ovals of curve H(x, y) = 0 and aNx + bNy 6= 0, then domain G does not
contain limit cycles of equation (3) others than ovals of curve H(x, y) = 0.
(Christopher [3] proved the same theorem for the case when H(x, y) is a
polynomial, but his proof is different.)

In paper [5] authors investigated equation

dy

dx
= −FHx − bΩ(H)

FHy + aΩ(H)
, (4)

where a, b, F , H are functions of x and y, and Ω is a function of one variable.
For some types of (4), they (i) proved that if c is a root of function Ω(H),
then every circle of level Lc is a limit cycle of equation (4), and (ii) found
out the conditions when equation (4) does not have other limit cycles.

4) In paper [10] Winkel offered equation

dy

dx
= −Hx −HHy

Hy + HHx
, (5)

where H(x, y) is a polynomial of degree d (or an analytic function1 in R2).
He proved that every component of zero level L0, which is diffeomorphic

1Winkel in [10] considers function H(x, y) to be a C∞-function. We require function
H(x, y) to be analytic by the following reason. Consider C∞-function

H(x, y) =

(
exp

h
− 1

(x2+y2−1)2

i
if x2 + y2 6= 1

0 if x2 + y2 = 1
.

From topological point of view, circle x2 +y2 = 1 is a limit cycle of the Winkel equation.
On the other hand, this circle represents the set of zeros of respective vector field. In
this paper we consider vector fields with no more than countable sets of zeros.
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to the circle S1, is an attractive limit cycle of equation (5). The PVF of
Winkel equation (5) has degree 2d− 1.

Note that the Winkel equation follows from equation (1). Namely, if we
pick up ϕ(x) = x, and for a thin enough tubular neighborhood of a limit
cycle C ⊂ L0 of equation (1), we replace in (1) the exponent exp(iH) by
1 + iH and write it in the real form, then we obtain the Winkel equation
(having the same limit cycles in zero level L0). On the other hand, the
Winkel equation is a particular case of Dolov-Mulko equation (4), where
F = 1, Ω(H) = H, a = Hx, and b = Hy, but is not a generalization of the
Bautin equation.

5) In this paper we offer one more equation,

dy

dx
= −Hx + β(y − b)ξ(H)

Hy + α(x− a)η(H)
, (6)

where α, β, a, b are real numbers, and ξ(x) and η(x) are analytic functions.
In Section 5 we prove, if c is a common real root of functions ξ(x) and
η(x), i.e. ξ(c) = η(c) = 0, and αη(H) − βξ(H) is not zero function, then
every compact component of level Lc is a limit set for some trajectories
of equation (6). If H(x, y) is a polynomial of degree d and both functions
ξ(x) and η(x) are polynomials of degree n, then equation (6) describes a
PVF of degree nd + 1.

Equation (6) was inferred in the following manner. A prototype of (6) is
well known equation

dy

dx
= −ωx + µy(x2 + y2 − 1)k

ωy − µx(x2 + y2 − 1)k
, (7)

where ω 6= 0, µ 6= 0, and k ∈ N. One can find equation (7), for example,
in [8]. Equation (7) has a limit cycle x2+y2 = 1 of multiplicity k. This limit
cycle is attractive (resp., repelling) when k is odd and µ < 0 (resp., µ > 0),
and is attractive-repelling limit cycle when k is even. If in equation (7) we
set ω = 2 and denote H = x2 + y2 − 1, then we can write this equation in
the form

dy

dx
= −Hx + µyHk

Hy − µxHk
. (8)

Now we consider equation (8) independently from (7). Namely, if C is a
component of the set {(x, y) ∈ R2 | H(x, y) = 0} diffeomorphic to S1,
where now H is a given real analytic function in R2, then component C
is a limit cycle of multiplicity k of equation (8), which satisfies the same
conditions to be attractive or repelling limit cycle like limit cycle x2+y2 = 1
of equation (7). Now one can infer that equation (6) is just a generalization
of equation (8).



220 A. B. KORCHAGIN

Related topics were considered in papers [7] and [9], where authors use
another tools.

2. PRELIMINARIES

For integral curves of a vector field, the following terminology is used.
A zero of a field is the point where the field vanishes. An integral curve,
homeomorphic to the real line, is called a trajectory. An integral curve,
homeomorphic to the standard circle S1, is called an orbit. An orbit is
called a limit cycle if there exists its tubular neighborhood, which does not
contain another orbits.

Let F : R2 → R1 and G : R2 → R1 be real analytic functions, which
satisfy two properties:

(1) each of the functions F and G has no multiple analytic factors,
(2) functions F and G have no common analytic factors.
Let Z = {(x, y) ∈ R2 | F (x, y) = G(x, y) = 0} be the set of common

zeros of functions F and G. Consider the mapping

H : R2 r Z → RP 1 (9)

defined by formula H = (F : G) and mapping K : R2 r Z → RP 1 defined
by formula K = (G : F ). For every point c = (c1 : c2) ∈ RP 1, consider
the set Lc = {(x, y) ∈ R2 | c2F (x, y) − c1G(x, y) = 0}. One can see that
Z ⊂ Lc for every c ∈ RP 1.

In the set R2r L(1:0) (resp., R2r L(0:1)), ratio (F : G) (resp., (G : F ))
is identified by fraction F

G (resp., G
F ), and formula H = F

G (resp., K = G
F )

is used for mapping H (resp., K). If (c1 : c2) 6= (1 : 0), then L(c1:c2) and
L

c1
c2 are used as the same notation of level Lc.
Let u =(u1, u2), v =(v1, v2) be real analytic vector fields defined in do-

mains D1, D2 ⊂ R2, respectively. Fields u and v are called equivalent in
D1 ∩ D2 if they have the same set of integral curves in D1 ∩ D2. Vector
field u is called anintegral continuation of v into the sets D2 r (D1 ∩D2).
Fields u and v are equivalent in D1 ∩ D2 iff there exists a real analytic
function A : D1 ∩D2 → R1 such that identity v = Au holds for all points
in D1 ∩D2.

Vector fields H = (Hy,−Hx) and K = (Ky,−Kx) are defined in domains
R2 rL(1:0) and R2 rL(0:1), respectively. Integral curves of fields H and K
satisfy exact differential equations

Hxdx + Hydy = 0 (10)

and

Kxdx + Kydy = 0. (11)
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Analytic vector field L = (FyG − FGy, −(FxG − FGx)) is defined in
domain R2. Since G2d

(
F
G

)
= −F 2d

(
G
F

)
= (FxG − FGx)dx + (FyG −

FGy)dy, then vector fields L and H are equivalent in R2 r L(1:0), and
vector fields L and K are equivalent in R2 r L(0:1). Vector field L is an
integral continuation of fields H and K into R2. Integral curves of field L
satisfy differential equation

(FxG− FGx)dx + (FyG− FGy)dy = 0. (12)

A general solution of equation (12) is c2F (x, y) − c1G(x, y) = 0, where
ratio (c1 : c2) ∈ RP 1 is considered as an arbitrary constant. For every
c = (c1 : c2) ∈ RP 1, level Lc consists of entire integral curves of field L.
For every pair (µ1, µ2) 6= (0, 0), expression µ1

F 2 + µ2
G2 is an integrating factor

for equation (12).

Lemma 1. If for some value (c1 : c2) ∈ RP 1, function c2F − c1G can
be represented in the form c2F − c1G = frg, where f, g : R2 → R1 are
analytic functions, and r is a positive integer, then functions FxG − FGx

and FyG− FGy have common factor f of multiplicity r − 1.

Proof. If identity c2F − c1G = frg holds, then c1 6= 0 and c2 6= 0,
because functions F and G have no multiple factors. The passage to the
differentials of both sides of identity F

G − c1
c2

= 1
c2

frg
G gives the desired

result.

Now on, mapping H = (F : G) is considered to satisfy the property:
components FxG−FGx and FyG−FGy of field L have no common non-
constant analytic factors. This property implies that the measure of the
set of zeros of analytic vector field L (and thus of H and K) is equal to
zero.

3. COMPOUND ORBITS

Let v be an analytic vector field defined in a domain D ⊂ R2. Let C be
a connected union of a finite number of integral curves of field v, which can
be zeros and heteroclinic or homoclinic trajectories. The set C is called a
unicursal cycle if there exists continuous mapping g : S1 → R2 satisfying
the following three properties:

(1) g(S1) = C,
(2) if M0 ∈ C is a zero of field v, then its preimage g−1(M0) is a finite

set, and
(3) if γ ⊂ C is an integral curve other than a zero of field v, then

restriction g|g−1(γ) : g−1(γ) → γ is a homeomorphism.
A neighborhood U(C) of unicursal cycle C is called regular if
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(1) C is a strong deformation retract of closure ClU(C),
(2) closure ClU(C) has no zeros of field v other than the points which

already belong to C, and
(3) closure ClU(C) has no points of limit cycles of field v.
Every connected component of the set U(C)rC is homeomorphic to the

standard open annulus (0, 1) × S1. If U1(C) is a connected component of
U(C)rC, then its boundary ∂U1(C) consists of two connected components,
one of which is contained in C, and another one is disjoint with C and
homeomorphic to the standard circle S1.

Unicursal cycle C is called a compound orbit of field v if there exist
regular neighborhood U(C) and connected component U1(C) of U(C)rC
such that the following property (p) holds:

(p) there exists an open segment {Ct}t∈(0,1) of orbits of field v such that⋃
t∈(0,1)

Ct ⊂ U1(C) and lim
t→0

Ct = C.

If C is a compound orbit, then for every regular neighborhood U(C),
there exist no more than two connected components of U(C) r C, for
which property (p) holds. If there exists one (two) connected component
of U(C)rC, which satisfies property (p), then compound orbit C is called
unilateral (bilateral). Every orbit of an analytic field is bilateral.

Examples. 1) Let H =
(
(x2 + y2 − 1) : (x2 + y2 − 4)

)
. If c ∈ [−∞, 1

4 )∪
(1,+∞], then every level Lc consists of one orbit. If c = 1

4 , level Lc con-
sists of one singular point (0, 0), and mapping H has local maximum at
this point. If c ∈ ( 1

4 , 1), then level Lc is empty.
2) Consider Cassini mapping H = (((x2 + y2)2 − r2(x2 − y2)) : 1),

r 6= 0. If c ∈ (∞,− r4

4 ), then level Lc is empty. If c = − r4

4 , then
level Lc consists of two points (− r√

2
, 0) and ( r√

2
, 0), which are local min-

ima of H. If c ∈ (− r4

4 , 0), then level Lc consists of two orbits. These
orbits are the Cassini ovals: one is situated inside the left loop L =
{(r cosϕ

√
cos 2ϕ, r sin ϕ

√
cos 2ϕ) ∈ R2 | ϕ ∈ [ 3π

4 , 5π
4 ]}, and another is situ-

ated inside the right loop R = {(r cos ϕ
√

cos 2ϕ, r sin ϕ
√

cos 2ϕ) ∈ R2 | ϕ ∈
[−π

4 , π
4 ]}. If c = 0, then level Lc is the Bernoulli lemniscate; it has three

unilateral compound orbits R, L, and R∪L. If c ∈ (0,∞), then level Lc has
one orbit, – the Cassini oval, – which embraces the Bernoulli lemniscate.

3) The zero level of mapping H = ((y2 + x3(x − r)) : 1), where r > 0,
represents an example of bilateral compound orbit.

4) The zero level of mapping H = ((y2 + x3(x − r)) : (x2 + xy + y2)),
where r > 0, represents an example of unilateral compound orbit.
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4. LIMIT CYCLES AND COMPOUND LIMIT CYCLES

Let L be a unicursal cycle of analytic vector field v defined in domain
D ⊂ R2.

Unicursal cycle L is called a compound limit cycle of field v if there exist
regular neighborhood U(L) and connected component U1(L) of U(L) r L
such that the following property (q) holds:

(q) for every integral curve Γ of field v such that Γ∩U1(L) 6= ∅, one of
connected components of boundary ∂Γ = ClΓr Γ coincides with unicursal
cycle L.

For every regular neighborhood U(L), there exist no more than two con-
nected components of U(L)rL, for which property (q) holds. If there exists
one (two) connected component of U(L)r L, which satisfies property (q),
then the compound limit cycle is called unilateral (bilateral). Every limit
cycle is bilateral.

If L is a limit cycle of field v, then the set R2rL consists of two connected
components: one of them, say D1, is homeomorphic to the standard open
disk, and another one, say D2, is homeomorphic to the standard open
annulus. If U(L) is a regular neighborhood of L, then the compliment
U(L)rL consists of two connected components, which are homeomorphic
to the standard annulus. The connected component of U(L) r L, which
belongs to D1 (resp., to D2), is called the inner (resp., outer) component
and is denoted as Uin(L) (resp., as Uout(L)).

Every vector field defines an orientation of its trajectories and orbits,
and in particular, of limit cycles. If the orientation of a limit cycle L,
defined by field v, induces the standard (resp., opposite) orientation of the
plane defined by ordered pair of basis vectors (e1, e2), then L is called the
right (resp., left) limit cycle; and one can assign to limit cycle L the index
i(L) = 1 (resp., i(L) = −1).

The boundary of each annulus Uin(L) and Uout(L) consists of two circles,
and ∂Uin(L)∩∂Uout(L) = L. Denote circles ∂Uin(L)rL and ∂Uout(L)rL
as γin and γout, respectively. Choose the orientation of γin and γout such
that both of them and L induce the same orientation of the plane R2. The
signs of the outward flux of field v = (v1, v2) along curves γin and γout,
namely,

iin = sign

∮

γin

(−v2dx + v1dy) and iout = sign

∮

γout

(−v2dx + v1dy),

are called the inner and outer indices of L, respectively. Triple (i, iin, iout)
is called the signature of pair (U(L), L) (or of limit cycle L).

The signature of a limit cycle realizes an element of group Z2×Z2×Z2,
where Z2 = {+1,−1} is considered as the group with multiplication. There
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are eight possible values of the signatures of limit cycles; and one can check
that each of the values is realizable by some limit cycle.

Traditionally, limit cycles
(1) with signatures (1, 1,−1) and (−1,−1, 1) are called the right and left

attractive limit cycles, respectively,
(2) with signatures (1,−1, 1) and (−1, 1,−1) are called the right and left

repelling limit cycles, respectively, and
(3) with signatures (1, 1, 1), (1,−1,−1), (−1, 1, 1), (−1,−1,−1) are called

attractive-repelling limit cycles.
One can apply these definitions to bilateral compound limit cycles. In the

same sense, one can apply the notions attractive and repelling to unilateral
compound limit cycles.

5. AN EQUATION WITH PRESCRIBED LIMIT CYCLES

Return to mapping (9), which in the set R2rL(1:0), is defined by formula
H(x, y) = F (x,y)

G(x,y) . Let ξ : R1 → R1 and η : R1 → R1 be real analytic
functions, which have common real root c ∈ R1 of multiplicities m ≥ 1 and
n ≥ 1, respectively. It means that there exist analytic functions ξ1(t) and
η1(t) with ξ1(c) 6= 0 and η1(c) 6= 0 such that identities

ξ(t) = (t− c)mξ1(t) and η(t) = (t− c)nη1(t) (13)

hold. Consider differential equation

[Hx + β(y − b)ξ(H)] dx + [Hy + α(x− a)η(H)]dy = 0, (14)

where a, b, α, β ∈ R1. After substitution of functions (13) into equa-
tion (14), it can be written in the following form

[Hx + β(y − b)(H − c)mξ1(H)] dx + [Hy + α(x− a)(H − c)nη1(H)]dy = 0.
(15)

Substitution of H = c into equation (15) shows that every integral curve
of field H, which belongs to level Lc, satisfies this equation. Denote vector
field
(
Hy + α(x− a)(H − c)nη1(H), − [Hx + β(y − b)(H − c)mξ1(H)]

)
, (16)

which corresponds to equation (15), as H∗ = H∗(α, β, x, y). One can con-
sider H∗(α, β, x, y) as a two-parametric family of vector fields, which con-
tains field H(x, y) = H∗(0, 0, x, y).

The number min{m,n} is called the multiplicity of every integral curve
of equation (15), which belongs to level Lc. In particular, if L ⊂ (Lc r Z)
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is a unicursal cycle of equation (15), then number min{m,n} is called the
multiplicity of cycle L.

Consider the case, when identity αη(t) ≡ βξ(t) holds for all t ∈ R1.
Equation (14) becomes

[Hx + β(y − b)ξ(H)] dx + [Hy + β(x− a)ξ(H)]dy = 0. (17)

Equation (17) has an integrating factor 1
ξ(H) , which turns it into the

exact form

d

[∫
dH

ξ(H)
+ β(x− a)(y − b)

]
= 0. (18)

The integral curve of equation (18), which passes through point (x0, y0) ∈
R2 r L(1:0), satisfies equation

(x,y)∫

(x0,y0)

dH

ξ(H)
+ β [(x− a)(y − b)− (x0 − a)(y0 − b)] = 0

if ξ(H(x0, y0)) 6= 0 and equation H(x, y) = H(x0, y0) if ξ(H(x0, y0)) = 0.
One can define the integral continuation of vector field H∗ into the set

L(1:0) r Z. Consider real analytic functions (13), which satisfy the addi-
tional property: there exists a neighborhood U ∈ R1 of zero such that
functions σ(t) = ξ

(
1
t

)
and ς(t) = η

(
1
t

)
are either real analytic in U or

possibly have the unique pole of order one at zero. Thus one can represent
these functions as Laurent series

σ (t) = a−1t
−1 + a0 + a1t + a2t

2 + ... + apt
p + ... (19)

and

ς(t) = b−1t
−1 + b0 + b1t + b2t

2 + ... + bpt
p + .... (20)

Consider vector field

L∗(α, β, x, y) = G2H∗(α, β, x, y) = (A,B), (21)

whose components are A = FyG − FGy + α(x − a)G2ς
(

G
F

)
and B =

− [
FxG− FGx + β(y − b)G2σ

(
G
F

)
.
]

Field L∗ is defined in the set R2 r
L(0:1) and is an integral continuation of field H∗ into the set L(1:0) r Z.
Equation (14) for vector field L∗ can be written in the form

−Bdx + Ady = 0. (22)
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Every integral curve of equation (12), which belongs to the set L(1:0)rZ and
thus satisfies the equation G(x, y) = 0, is an integral curve of equation (22).
Thus every orbit or compound orbit C ⊂ L(1:0)rZ satisfies equation (22).

Using notation of function K = G
F , one can write equation (22) in the

form
[
Kx + β(y − b)K2σ (K)

]
dx +

[
Ky + α(x− a)K2ς (K)

]
dy = 0. (23)

If αai − βbi = 0 for i = −1, 0, 1, 2, ..., p− 1, and αap − βbp 6= 0, then the
number p + 2 is the multiplicity of every integral curve of equation (22),
which belongs to L(1:0) r Z.

Consider the case, when identity ας(t) ≡ βσ(t) holds. For every pair
(µ1, µ2) ∈ R2 r {(0, 0)}, equation (22) has an integrating factor µ1

F 2 + µ2
G2 .

If one picks (µ1, µ2) = (0, 1), then equation (22) turns into equation (17).
If one picks (µ1, µ2) = (1, 0), then equation (22) turns into the exact form

d

[∫
d

(
G
F

)
(

G
F

)2
σ

(
G
F

) + β(x− a)(y − b)

]
= 0.

Equation of the integral curve of (22) passing through point (x0, y0) ∈
R2 r L(0:1) is

(x,y)∫

(x0,y0)

d
(

G
F

)
(

G
F

)2
σ

(
G
F

) + β [(x− a)(y − b)− (x0 − a)(y0 − b)] = 0

if
(

G(x0,y0)
F (x0,y0)

)2

σ
(

G(x0,y0)
F (x0,y0)

)
6= 0 and G(x0, y0)F (x, y)−F (x0, y0)G(x, y) = 0

if
(

G(x0,y0)
F (x0,y0)

)2

σ
(

G(x0,y0)
F (x0,y0)

)
= 0.

Let C ⊂ LcrZ be a compound orbit of vector field L, and M0 ∈ C be a
singular point of level Lc. If c 6= (1 : 0), then M0 is the zero of both fields
H and H∗. If c = (1 : 0), then M0 is the zero of both fields L and L∗.
Consider the following condition on the behavior of vector fields H∗ and L∗
at point M0 ∈ C ⊂ Lc r Z.

Condition 2. If c 6= (1 : 0) (resp., c = (1 : 0)) then vector fields H and
H∗ (resp., L and L∗) are topologically equivalent at M0. This means that
for every neighborhood DR = {(x, y) ∈ R2 | (x − x0)2 + (y − y0)2 < R2}
of M0 such that ClDR ∩ Y = M0, there exist an open disk Dr = {(α, β) ∈
R2 | α2+β2 < r2} and a family of homeomorphisms h(α,β) : DR → DR such
that for every (α, β) ∈ Dr, the homeomorphism h(α,β) transfers integral
curves of vector field H|DR(x, y) (resp., L|DR(x, y)) onto integral curves
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of vector field H∗|DR
(α, β, x, y) (resp., L∗(α, β, x, y)) and such that the

restriction h(α,β)|Lc∩DR
is the identity mapping.

Conjecture 3. Vector fieldsH andH∗ (resp., L and L∗) are topologically
equivalent at every common zero.

Lemma 4. If point M0 ∈ Lc is a generic saddle point of vector field H
(or L), then vector fields H and H∗ (resp., L and L∗) are topologically
equivalent at point M0.

Proof. 1) Let c 6= (1 : 0) and point M0 ∈ Lc have coordinates (x0, y0).
Point M0 satisfies the equation of level Lc, namely, H(x0, y0) − c = 0.
Linearizations of equations (10) and (15) in a neighborhood of point M0

coincide and can be written in the form
[
H0

xx(x− x0) + H0
xy(y − y0)

]
dx+[H0

xy(x−x0)+H0
yy(y−y0)]dy = 0, (24)

where H0
xx = Hxx(x0, y0), H0

xy = Hxy(x0, y0), and H0
yy = Hyy(x0, y0), and

the characteristic equation of (24) is

λ2 + H0
xxH0

yy −
(
H0

xy

)2
= 0. (25)

If point M0 is a generic saddle point of vector field H, then H0
xxH0

yy −(
H0

xy

)2
< 0. The latter implies that characteristic equation (25) has two

real roots of opposite signs. Thus for all α, β ∈ R1, the point M0 is a
generic saddle point of both vector fields H(x, y) and H∗(α, β, x, y).

2) To prove this lemma in the case M0 ∈ L(1:0), one can use equations
(11) and (23) and similarly repeat the proof of item 1).

Let C be an orbit or uni- or bilateral compound orbit of vector field
H, which belongs to level Lc and thus satisfies equation H − c = 0. Ac-
cording to the Bertini-Sard theorem (see, for example, [1]) there exist a
neighborhood (c′′, c′) ⊂ R1 of c such that segments (c′′, c) and (c, c′) have
no critical values of mapping H. Numbers c′′ and c′ can be either critical
values of mapping H or c′′ = −∞ or c′ = ∞. If C is an orbit or bilateral
compound orbit, then there exist two families of orbits of vector field H,
namely, {γt}t∈(c′′,c) in

⋃
t∈(c′′,c)

Lt and {γt}t∈(c,c′) in
⋃

t∈(c,c′)
Lt such that

lim
t→c, t∈(c′′,c)

γt = C and lim
t→c, t∈(c,c′)

γt = C. (26)

If C is a unilateral compound orbit, then there exists one family of orbits
of vector field H either {γt}t∈(c′′,c) in

⋃
t∈(c′′,c)

Lt or {γt}t∈(c,c′) in
⋃

t∈(c,c′)
Lt

such that the respective limit of (26) holds.
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Using previous notations, consider real analytic function E : R1 → R1,
defined by formula E(ε) = αεnη1(c + ε) − βεmξ1(c + ε). This means,
in particular, that the values of parameters m,n ∈ N, α, β ∈ R1 and
analytic functions ξ1(t) and η1(t) are such that function E(ε) is a nonzero
function. Let Rr(E) be the set of real roots of function E(ε). Let us pick
the connected component of the set R1r(Rr(E)r{0}), which contains the
zero root. This component is an open segment, say (ε1, ε2), where ε1 < 0
and ε2 > 0 can be either roots of function E(ε) or ε1 = −∞ or ε2 = ∞.
Denote the segments (c + ε1, c + ε2) ∩ (c′′, c) and (c + ε1, c + ε2) ∩ (c, c′)
as (c∗∗, c) and (c, c∗) respectively. Function E(ε) does not have roots in
segments (c∗∗, c) and (c, c∗).

Let C ⊂ Lc be a unilateral compound orbit of the field H, and let, for
definiteness, {γt}t∈(c,c∗) ⊂ {γt}t∈(c,c′) be the subfamily of orbits, for which

lim
t→c, t∈(c,c∗)

γt = C holds.

Theorem 5. If (1) C ⊂ LcrZ is a unilateral compound orbit of field H,
and (2) the zeros of H belonging to C satisfy Condition 2, then the set C
is a unilateral compound limit cycle of field H∗.

Proof. To prove this theorem, it is sufficient to show that for every
orbit γ

c+ε ∈ {γt}t∈(c,c∗), outward flux Fl(ε) =
∮

γc+ε

(H∗ · n) ds has the

same sign. Orbit γ
c+ε

satisfies equation H = c + ε. One can make the
following calculation via Green’s formula:

Fl(ε) =
∮

γc+ε

(H∗ · n) ds =

=
∮

γc+ε

[Hy+α(x−a)(H−c)nη1(H)]dy+[Hx + β(y − b)(H − c)mξ1(H)] dx =

=
∮

γc+ε

[Hy + α(x− a)εnη1(c + ε)]dy + [Hx + β(y − b)εmξ1(c + ε)] dx =

=
∫∫

Rε

[αεnη1(c+ε)−βεmξ1(c+ε)]dxdy = S(ε)[αεnη1(c+ε)−βεmξ1(c+ε)],

where Rε is the inner component of R2 r γc+ε, and S(ε) =
∫∫
Rε

dxdy is

the area of disk Rε oriented by its boundary ∂Rε = γc+ε. According to
the choice of segment (c, c∗), flux Fl(ε) has the same sign on every orbit
of {γt}t∈(c,c∗).
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It is clear that product S(ε)i(γc+ε) is always positive.

Theorem 6. If C ⊂ L(1:0) r Z is a unilateral compound orbit of
field L, zeros of L belonging to C satisfy Condition 2, and function E1(ε) =
ε2 [ας(t)− βσ(t)] is analytic, then set C is a unilateral compound limit cy-
cle of field L∗.

Proof. The proof of this theorem repeats the proof of Theorem 5. It is
just enough to apply the proof of Theorem 5 to the vector field of equa-
tion (23).

Under Condition 2, Lemmas 7 – 12 are simple consequences of Theo-
rem 5.

Lemma 7. Let C ⊂ Lc r Z be a unilateral compound orbit of field H.
(1) If γc+ε is situated in the inner (resp., outer) component of R2 r C

and i(γc+ε)Fl(ε) > 0 (resp., i(γc+ε)Fl(ε) < 0), then C is an attractive
unilateral limit cycle of field H∗.

(2) If γc+ε is situated in the inner (resp., outer) component of R2rC and
i(γc+ε)Fl(ε) < 0 (resp., i(γc+ε)Fl(ε) > 0), then C is a repelling unilateral
limit cycle of field H∗.

Lemma 8. If C ⊂ Lc is a bilateral compound orbit (resp., an orbit) of
field H, and function E(ε) is a nonzero function, then set C is a bilateral
compound limit cycle (resp., limit cycle) of field H∗.

Lemma 9. If C ⊂ Lc is an orbit of field H, then for every pair (α, β)
such that function E(ε) is a nonzero function, set C is a limit cycle of field
H∗(α, β, x, y).

Lemma 10. Let C ⊂ Lc be a bilateral compound orbit [resp., an orbit]
of field H.

(1) If γc+ε is situated in the inner (resp., outer) component of R2rC and
inequalities Fl(ε)Fl(−ε) < 0 and i(γc+ε)Fl(ε) > 0 (resp., i(γc+ε)Fl(ε) <
0) hold, then C is an attractive compound limit cycle [resp., attractive limit
cycle] of field H∗.

(2) If γc+ε is situated in the inner (resp., outer) component of R2rC and
inequalities Fl(ε)Fl(−ε) < 0 and i(γc+ε)Fl(ε) < 0 (resp., i(γc+ε)Fl(ε) >
0) hold, then C is a repelling compound limit cycle [resp., repelling limit
cycle] of field H∗.

(3) If Fl(ε)Fl(−ε) > 0, then C is an attractive-repelling compound limit
cycle [resp., attractive-repelling limit cycle] of field H∗.

Let Rr(ξ) and Rr(η) be the sets of real roots of functions ξ(t) and η(t)
respectively, and Rr(ξ) ∩ Rr(η) 6= ∅. If c ∈ Rr(ξ) ∩ Rr(η) is a root of
function ξ(t) of multiplicity m ≥ 2 and of function η(t) of multiplicity
n ≥ 2. Functions ξ(t) and η(t) can be represented in form (13); and every
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limit cycle C ⊂ Lc of field (16) has multiplicity min{m,n} ≥ 2. Let,
for definiteness, min{m,n} = m. Let segment (c1, c2) be the connected
component of R1r [(Rr(ξ) ∪Rr(η))r {c}], which contains root c. Let ξ̃(t)
and η̃(t) be some perturbations of functions ξ(t) and η(t) respectively, and

(
Hy + α(x− a)η̃(H), − [Hx + β(y − b)ξ̃(H)]

)
(27)

be the corresponding perturbation of vector field (16).

Lemma 11. If ξ̃(t) = (t− c′)m1(t− c′′)m2ξ1(t) and η̃(t) = (t− c′)m1(t−
c′′)m2(t− c)n−mη1(t), where c′, c′′ ∈ (c1, c2) are two distinct numbers, and
positive integers m1 and m2 are such that m1 + m2 = m, then

(1) if c̃ ∈ Rr(ξ) ∩ Rr(η) and c̃ 6= c, then every limit or compound limit
cycle of field (16), which satisfies equation H − c̃ = 0, is preserved under
perturbation (27),

(2) every limit cycle of field (16), which satisfies equation H − c = 0,
splits under perturbation (27) into two limit cycles of multiplicities m1 and
m2 with equations H − c′ = 0 and H − c′′ = 0, respectively.

Lemma 12. If ξ̃(t) = (t − c)m−2(t2 + 2ct + c2 + δ2)ξ1(t) and η̃(t) =
(t2 + 2ct + c2 + δ2)(t− c)n−2η1(t), where δ 6= 0 is a real number, then

1) if c̃ ∈ Rr(ξ) ∩ Rr(η) and c̃ 6= c, then every limit or compound limit
cycle of field (16), which satisfies equation H − c̃ = 0, is preserved under
perturbation (27),

2) every limit cycle of field (16) (of multiplicity m), which satisfies
equation H−c = 0, is a limit cycle of multiplicity m−2 of the perturbation
(27) with the same equation H − c = 0.

Using Lemmas 11 and 12 one can split a limit cycle of multiplicity m ≥ 2
of vector field (16) into k simple limit cycles, where 1−(−1)m

2 ≤ k ≤ m and
k ≡ m(mod 2).

Example. Consider mapping

H = (F : G) =
(
(x2 + y2 − 1) : (x2 + y2 − 4)

)
.

If ξ(t) = t and η(t) = t, then one can check that vector field
(
Hy + α(x− a)H, − [Hx + β(y − b)H]

)

has one limit cycle of multiplicity 1, which satisfies equation F = x2 +y2−
1 = 0. Functions σ(t) = ξ

(
1
t

)
= 1

t and ς(t) = η
(

1
t

)
= 1

t represent the
Laurent series with p = −1. Integral continuation of vector field (21) can
be written in the form

(
FyG− FGy + α(x− a)FG, − [FxG− FGx + β(y − b)FG]

)
.
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According to Theorem 6, this field has the limit cycle of multiplicity 1 with
equation G = x2 + y2 − 4 = 0. Thus, equation (14) has two limit cycles.

Example. Consider Cassini mapping H = (((x2+y2)2−r2(x2−y2)) : 1),
where r 6= 0. If c1 ∈ (−∞,− r4

4 ), c2 ∈ (− r4

4 , 0), c3, c4 ∈ (0,∞), ξ(t) = t2(t−
c1)2(t− c2)3(t− c3)11(t+ c2

4) and η(t) = t5(t− c1)3(t− c2)7(t− c3)6(t+ c2
4),

then vector field
(
Hy + α(x− a)η(H), − [Hx + β(y − b)ξ(H)]

)
has three

unilateral compound limit cycles R, L, and R ∪ L of multiplicity 2, which
satisfy equation H = 0; two limit cycles of multiplicity 3, which satisfy
equation H − c2 = 0; and the limit cycle of multiplicity 6, which satisfies
equation H − c3 = 0.

Example. Consider mapping H = ((sin x sin y) : 1). If ξ(t) = t2(t− 1
2 )3

and η(t) = t5(t− 1
2 )4, then one can check vector field

(Hy + α(x− a)η(H),−[Hx + β(y − b)ξ(H)])

has infinite number of unilateral compound limit cycles of multiplicity 2,
which satisfy equation H = 0, and infinite number of limit cycles of multi-
plicity 3, which satisfy equation H − 1

2 = 0.
One can check that if in Lemmas 7 – 12, one replaces Lc to L(1:0), H to L,

and H∗ to L∗, then one can obtain similar lemmas about C ⊂ L(1:0) r Z.

ACKNOWLEDGMENT
I thank M. V. Dolov (Nizhnii Novgorod State University) for friendly support and

helpful discussions.

REFERENCES
1. V. I. Arnold, S. M. Gusein-Zade and A. N. Varchenko, Singularities of differ-

entiable maps, Vol. 1, Birkhäuser, Basel, 1985.
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