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In this paper, we consider the quadratic perturbations of the one parameter
family of reversible quadratic system that write in the complex form as

ż = −iz(1 + az̄)

being a 6= 0 a complex number. We prove that the exact upper bound of the
number of limit cycles produced by the period annulus system is two.
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1. INTRODUCTION AND MAIN RESULTS

The problem of finding the maximal number of limit cycles for polyno-
mial system is the second part of the Hilbert’s 16th Problem, and relatively
little progress is made to the final solution of this problem. A weak form
of this problem, proposed by Arnold [1, 2], can be expressed as follows:

Let H, f and g be real polynomials in x, y of degree n + 1, at most m
and m respectively, 4 be a set of h such that the real algebraic curve
H(x, y) = h has a compact component δ(h), and ω = gdx − fdy be a
polynomial 1-form. Denote by I(h) the Abelian integral of ω over δ(h),
then which is the least upper bound Z(n,m) of the number of zeros of I(h)
(h ∈ 4) for fixed n,m and arbitrary H, f and g?

The number Z(n,m) is closely related to the number of limit cycles
of the perturbed Hamiltonian system XH + ε(f ∂

∂x + g ∂
∂y ), where XH =

Hy
∂
∂x −Hx

∂
∂y and 0 < ε ¿ 1. It is known that Z(n,m) is finite ([13, 17]),

but there is no concrete estimation of Z(n,m). Up to now the number
Z(n,m) was given only for n = m = 2, see [7, 9, 18, 15, 6] and the
references therein.
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To study the Hilbert’s 16th problem, it is also necessary to consider the
perturbations of integrable but non-Hamiltonian systems (the extended
version of the weakened Hilbert’s 16th problem). Unfortunately, few works
go in this direction, due to the complex structure of the first integral of the
unperturbed systems: the first integral is not algebraic or algebraic with a
large genus. Hence, in general it does not admit a Picard-Fuchs equation
or the order of the Picard-Fuchs equation is very high or even infinite.

In the quadratic case, the integrable systems admitting period annulus
must have at least one center. Besides the Hamiltonian class (QH

3 ), the
integrable systems with centers can be classified as the reversible (QR

3 ), the
Lotka-Volterra (QLV

3 ) and the codimension 4 (Q4) classes, see [16, 19, 11].
Most mathematicians working in this field believe that the perturbations
of the reversible systems may give the richest dynamical behavior, see [3]
for instance.

It is well known that a quadratic reversible system can be written in the
form

ẋ = −y + ax2 + by2,
ẏ = x(1 + cy), (1)

where a, b and c are real constants. There are some papers dealing with
the case c 6= 0 (see [12, 5] for instance), and in these cases the Picard-Fuchs
equations are of high order or infinite order. As far as we know, there is
no work concerning to the case c = 0, and in this case it does not admit
the Picard-Fuchs equation, since the first integral contains the exponential
function.

In this paper we consider the case c = 0 and a = b 6= 0. Note that by
a scaling it can be changed to the case a = b = 1. After perturbations in
quadratic systems we will prove that the least upper bound of limit cycles,
bifurcating from the period annulus, is two.

This system can be seen from another point of view. In [8] the authors
study the period function of the systems that in the complex form write as

ż = −if(z)g(z̄).

If one studies the number of limit cycles under perturbations of this kind
of systems, it is natural to start from the system

ż = −iz(1 + Az̄), (2)

where A is a nonzero complex number. Changing to the real form, and
making a scaling, from (2) we obtain system (1) with c = 0 and a = b = 1.

Theorem 1. Under quadratic perturbations, the exact upper bound of
the number of limit cycles produced by the period annulus of system (2) is
2.
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Theorem 1 follows basically from a careful estimate of the number of
zeros of the associate Abelian integrals. Since there is no Picard-Fuchs
equation associated to the quadratic perturbations of (2) , we use different
technique to give an estimation of zeros of the Abelian integral.

2. PROOF OF THE MAIN RESULTS

After a complex scaling z → z/A, in real coordinates, system (2) looks
as:

ẋ = y,
ẏ = −(x + x2 + y2). (3)

It has the first integral

H(x, y) = (x2 + y2)e2x,

with integrating factor M(x) = 2e2x. We observe that system (3) has a
homoclinic loop connecting saddle point (−1, 0), which is the outer bound-
ary of the period annulus. Hence, in the period annulus, the Hamiltonian
function takes values between 0 and h∗ = e−2, where H = h∗ corresponds
to the saddle and its separatrices connecting it. So in the period annulus
we have H(x, y) = h ∈ (0, h∗).

To prove theorem 1, we will use the following results given in [11].

Lemma 2. (1) (See page 108 of [11]) A quadratic system possessing a
reversible center at the origin can be reduced to the complex form as

ż = −iz + az2 + 2|z|2 + bz̄2,

where a, b are arbitrary real constants. Moreover, the origin is a generic
reversible center if and only if a 6= −1, 4 or a = 4, b 6= ±2.

(2) (See Theorem 1(ii) on page 114 of [11]) The upper bound of limit
cycles produced by the period annulus of a generic reversible center under
quadratic perturbations is realizable by the following essential perturbation

ż = (λ1ε− i)z + (a + iλ3ε)z2 + 2|z|2 + (b + iλ5ε)z̄2,

where λk are arbitrary real constants independent on ε.
(3) (See Theorem 2(ii)(3) on page 116 and Appendix (ii) (3) on page 157

of [11]) The exact upper bound for the number of limit cycles produced by
the period annulus of a generic reversible center with a = b under quadratic
perturbations is equal to the maximum number of zeros in (hc, hs), counting
multiplicity, of the following related Melnikov integral

M1(h) =
∫ ∫

F (x,y)<h

M(x)(µ1 + µ2x + µ3x
2)dxdy,
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where F (x, y) is the first integral:

F (x, y) = e−4(a+1)x

(
y2

2
− a− 1

2(a + 1)
x2 − a

2(a + 1)2
− a

8(a + 1)3

)
,

and M(x) = e−4(a+1)x is the integrating factor. hc and hs are the crit-
ical values of F (x, y) corresponding to the center and the outer boundary
of the period annulus, respectively. In the Melnikov integral, the µj are
independent constants which are linear combination of the former λi.

From (2) we have that after a scaling z → − 2
Az, the origin of the system

(3) is a generic center in the sense of lemma 2 (1). For system (3), the
integrating factor and the first integral are given in the first paragraph of
this section. Hence by lemma 2 (3), we need only consider the maximal
number of zeros of the following integral

I(h) =
∫ ∫

H<h

e2x(α + βx + γx2)dxdy,

where α, β, γ are real constants dependent only on λk (see lemma 2 (2))
but not on ε. Note that h ∈ (0, h∗) = (0, e−2).

Let (x1h, 0) and (x2h, 0) be the intersection points of the closed curve
δ(h) with the x-axis, satisfying x1h < 0 < x2h, h ∈ (0, e−2). Noticing that
δ(h) is clockwise oriented. We have, by Green’s formula, that

I(h) =
∮

H=h

e2x(α + βx + γx2)ydx

= 2
∫ x2h

x1h

(α + βx + γx2)ex
√

h− x2e2xdx.
(4)

Write z = f(x) = xex. Since f ′(x) = (x+1)ex, it defines a homeomorphism
for x ∈ (−1, x∗), where x∗ satisfies x∗ex∗ = e−1 and hence 0 < x∗ < 0.28.
By the Implicit Function Theorem, an inverse function x = x(z) = f−1(z)
is defined in the domain |z| < e−1. We shall use the notation x(z) for
simplicity. Under this transformation, the generalized Abelian integral
looks as follows:

I(h) = 2
∫ √

h

−
√

h

(α + β x(z) + γ x2(z))
√

h− z2/(1 + x(z))dz.

Let z =
√

h sin θ, then

I(h) = 2h

∫ π
2

−π
2

(α + β x(
√

h sin θ) + γ x2(
√

h sin θ)) cos2 θ

1 + x(
√

h sin θ)
dθ.
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By using the above expressions, it is not difficult to prove:

Lemma 3. It follows that I(h) = 2hJ(h), where J(h) = ᾱ + β̄J0(h) +
γ̄J2(h) with

J0(h) =
∫ π

2

0

[
1

1 + x(
√

h sin θ)
+

1
1 + x(−

√
h sin θ)

] cos2 θdθ,

J2(h) =
∫ π

2

0

[x(
√

h sin θ) + x(−
√

h sin θ)] cos2 θdθ,

(5)

and ᾱ = π(β − γ), β̄ = α − β + γ, γ̄ = γ. The fact that ᾱ, β̄ and γ̄ are
independent constants follows from the independence of α, β, γ (cf lemma
2 (3)).

To prove theorem 1, we need the following proposition.

Proposition 4. If ᾱ2 + β̄2 + γ̄2 6= 0, then J(h) has at most two zeros
in the interval (0, h∗).

Proof. Firstly we note that If β̄ = γ̄ = 0, then J(h) = ᾱ 6= 0. So
we assume without loss of generality that β̄2 + γ̄2 6= 0. Secondly, we
consider the number of zeros of J ′(h). For this purpose, we prove that for
h ∈ (0, h∗) it holds that J ′0(h) > 0. This fact allows to introduce a new
function P (h) := J ′2(h)/J ′0(h) so that J ′(h) = J ′0(h)(β̄ + γ̄P (h)). Hence to
prove proposition 4, it suffices to prove the monotonicity of P (h). Let us
start by showing that J ′0(h) > 0.

By definition of x(z) we have that the following inequalities hold for
0 < z < e−1:

0 < ±x(±z) < 1,
x′(z) = (x(z) + 1)−1 exp(−x(z)),
x(z) + x(−z) < 0.

(6)

Let

z =
√

h sin θ, ξk(x) =
e−x

(1 + x)k
, k = 1, 2, · · · ,

then we have that

J ′0(h) = − 1
2
√

h

∫ π
2

0

(ξ3(x(z))− ξ3(x(−z))) cos2 θ sin θdθ,

J ′2(h) =
1

2
√

h

∫ π
2

0

(ξ1(x(z))− ξ1(x(−z))) cos2 θ sin θdθ.

(7)

From ξ′k(x) = −(x+1+k)[(x+1)k+1ex]−1 we know that ξk(x) are decreasing
for x > −1 and k ≥ 0. On the other hand, for 0 < h < h∗ = e−2, we have
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that |z| < e−1. Therefore, for θ ∈ (0, π/2), we have that −1 < x(−z) <
0 < x(z) < 1. Hence from (5)–(7), we have that J0(h) > 0, J ′0(h) > 0, h ∈
(0, h∗), as we want to see.

Suppose that P (h) is defined as above, then

P ′(h) = (J ′0)
−2(J ′′2 J ′0 − J ′2J

′′
0 )

which shows that P ′(h) has the same sign that J ′′2 (h)J ′0(h)− J ′2(h)J ′′0 (h).
Let

k0(h) = −2
√

hJ ′0(h), k2(h) = 2
√

hJ ′2(h).

From (4), we observe that

I ′(h) =
∫ π

2

−π
2

α + β x(z) + γ x2(z)
1 + x(z)

dθ.

Hence we have

I ′′(h) = 4J ′(h) + 2hJ ′′(h)

=
1

2
√

h

∫ π
2

−π
2

β − α + 2γ x(z) + γ x2(z)
(1 + x(z))3 exp(x(z))

sin θ dθ.

Choosing α = 1, β = γ = 0 in the last equality, we have

d

dh

(
h2J ′0(h)

)
= −

√
h

4

∫ π
2

−π
2

exp(−x(z))
(1 + x(z))3

sin θ dθ.

Similarly we have

d

dh

(
h2J ′2(h)

)
=

√
h

4

∫ π
2

−π
2

exp(−x(z))
1 + x(z)

sin θ dθ.

Therefore, by definition of k0(h) and k2(h), we obtain

k′0(h) = − 3
2h

k0(h) +
1
2h

∫ π
2

0

(ξ3(x(z))− ξ3(x(−z))) sin θdθ;

k′2(h) = − 3
2h

k2(h) +
1
2h

∫ π
2

0

(ξ1(x(z))− ξ1(x(−z))) sin θdθ.

Let us make a comment here. Although we can compute the derivatives
by using their definitions, we cannot be more effective to get the above
formulae.
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Hence we have

J ′′2 (h)J ′0(h)− J ′2(h)J ′′0 (h)

=
1
4h

(k′0(h)k2(h)− k0(h)k′2(h))

=
1

16h2

∫ π
2

0

∫ π
2

0

G(θ, φ) sin θ sin φ(cos2 φ− cos2 θ)dθdφ,

(8)

where

G(θ, φ) = ϕ(θ)ϕ(φ)(ψ(θ)− ψ(φ)) (9)

is defined by letting g(θ) = f−1(
√

h sin θ) and thus

ϕ(θ) =
e−x

1 + x
− e−x̃

1 + x̃
,

ψ(θ) =
(

e−x

(1 + x)3
− e−x̃

(1 + x̃)3

)(
e−x

1 + x
− e−x̃

1 + x̃

)−1

,

with

x = g(θ), x̃ = g(−θ), y = g(φ), ỹ = g(−φ), (10)

Remember that f(x) = xex. Note that in (8), we express the product of
integrals as double integral in which the variable θ becomes φ alternatively.

By definitions of f(x) and g(θ), it can be seen that xex = −x̃ex̃ =√
h sin θ under the above notations. Therefore using (10) we have

ψ(θ) =
(1 + x)3 x̃ + x (1 + x̃)3

(1 + x)2 (1 + x̃)2 ((1 + x) x̃ + x (1 + x̃))
.

From ξeξ = −ηeη we obtain a function η = f−1(−f(ξ)) def= p(ξ), ξ ∈
[0, x∗) satisfying

p′(ξ) =
dη

dξ
= − (ξ + 1)eξ

(η + 1)eη
=

η(ξ + 1)
ξ(η + 1)

,

with −1 < η = p(ξ) < 0 < ξ < x∗. Denoting

κ(ξ) =
(1 + ξ)3 p(ξ) + ξ (1 + p(ξ))3

(1 + ξ)2 (1 + p(ξ))2 ((1 + ξ) p(ξ) + ξ (1 + p(ξ)))
,

then we have that ψ(θ) = κ(g(θ)). Since g(θ) is monotonely increasing, to
consider the monotonicity of ψ(θ), we need only consider the monotonicity
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of κ(ξ). Now we have that

κ′(ξ) = κ1(ξ)
[
ξ(1 + ξ)3 (1 + η)4 (ξ + η + 2 ξ η)2

]−1

.

Let u = ξ − η = ξ − p(ξ), then

du

dξ
= 1− p′(ξ) = 1− η(ξ + 1)

ξ(η + 1)
> 0,

since −1 < η = p(ξ) < 0 < ξ < x∗. Hence u is an increasing function
of ξ and 0 < u < 1 + x∗ < 1.28. Using the relationship between ξ and
η = p(ξ) we have that ξ = u/(eu + 1), η(ξ) = −ueu/(eu + 1). Under this
transformation, κ1(ξ) becomes:

κ1(ξ) =
u3

(1 + eu)9
M(u),

where

M(u) =
6∑

i=0

pi(eu)ui,

and

p0(v) = 2(v − 1)(v2 + 1)(v + 1)6,
p1(v) = 2v(1 + v)5(5− 14v + 5v2),
p2(v) = 4 (v − 1) v (1 + v)4

(
2 + 19 v + 2 v2

)
,

p3(v) = −v (1 + v)3
(
5 + 16 v − 138 v2 + 16 v3 + 5 v4

)
,

p4(v) = (v − 1) v (1 + v)2
(
1 + 6 v − 50 v2 + 6 v3 + v4

)
,

p5(v) = −v2 (1 + v)
(
1 + v2

) (
1− 22 v + v2

)
,

p6(v) = 4v3(1− v3).

So in 0 < u < 1 + x∗, M(u) has the same sign that ψ′(x) in 0 < x < x∗.
Now we have

M(u) =
8192

3
u3 + O(u4), 0 < u ¿ 1, (11)

and therefore M(u) > 0 for u positive and small enough. Furthermore we
have that

M ′(u) = eu
6∑

i=0

li(eu)ui,
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where

l0(v) = 18 v (−1 + v) (1 + v)6,
l1(v) = 6 (1 + v)5 (−1− 21 v + 16 v2),
l2(v) = (1 + v)4 (−23− 201 v + 411 v2 + 49 v3),
l3(v) = −9 (1 + v)3 (1 + 7 v − 69 v2 + 9 v3 + 4 v4),
l4(v) = (1 + v)2 (−1− 17 v + 275 v2 − 229 v3 + 28 v4 + 8 v5),
l5(v) = −v (1 + v) (2− 89 v + 9 v2 − 109 v3 + 7 v4),
l6(v) = −12 v2 (2 v3 − 1).

For u > 0, we apply the inequality eu− 1 > u+
u2

2
+

u3

6
+

u4

24
+

u5

120
+

u6

720
in the factor eu − 1 of l0(eu) obtaining that

M ′(u) >
1
40

u eu
5∑

i=0

l1i (e
u)ui,

where l1i (v) are polynomials of v and

l10(e
u) = 240(eu − 1)(1 + eu)5(1 + 19eu).

Similarly, applying the inequality eu− 1 > u+
u2

2
+

u3

6
+

u4

24
+

u5

120
(u > 0)

to the factor eu − 1 of l10(e
u), we can prove that

M ′(u) >
1
40

u2euM1(u),

where M1(u) > 0, as can be shown easily by using the inequality 0 < u <
1 + x∗ < 1.28. We omit these computations here.

Finally, since M(u) > 0 for 0 < u ¿ 1 and M ′(u) > 0 we have that
M(u) > 0 for all u ∈ (0, 1.28) and hence that κ1(ξ) > 0. For ξ > 0 we have
κ′(ξ) > 0. As a function of θ, the derivative of ψ(θ) with respect to θ is
given by the chain formula as

dψ(θ)
dθ

=
dκ(ξ)

dξ

∣∣∣∣
ξ=g(θ)

· dg(θ)
dθ

,

which combining the fact that
dg(θ)
dθ

=
√

h cos θ/f ′(x(
√

h sin θ)) > 0 gives

dψ(θ)
dθ

> 0. Noticing that −1 < x̃ < 0 < x < x∗, by (9), we have

that G(θ, φ) has the same sign as x− y = g(
√

h sin θ)− g(
√

h sin φ) by the
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monotonicity of g(z) and therefore has the same sign as θ−φ. On the other
hand, cos2 φ− cos2 θ also has the same sign as θ−φ since θ, φ ∈ [0, π

2 ]. The
above discussions show that the integrand in the double integral in equality
(8) is nonnegative and so we have proved the convexity of P (w). Hence
the proof of lemma 4 is completed.

Remark 5. In [14], the authors give a general method of proving the
monotonicity of the ratio of two integrals. In proving proposition 4, though
the idea is the same as that in [14], but the theorems given in [14] are not
applicable here.

Proof of Theorem 1 From lemma 2(1) we know that system (3) is
generic. Therefore, lemma 2 and proposition 4 together show that an upper
bound of limit cycles produced by the period annulus is two. From the
proof of proposition 4, we have that J ′0(h) > 0. Hence we can define
u = J0(h) and its inverse h = h(u). Write ϕ(u) = J2(h(u)), then ϕ′(u) =
P (h(u)) and ϕ′′(u) = P ′(h(u))dh

du = P ′(h(u))/J ′0(h(u)) > 0 by proposition
4, which means that the curve v = ϕ(u) is strictly convex. Hence a zero
of J(h) corresponds uniquely to an intersection point of the straight line
ᾱ + β̄u + γ̄v = 0 with the curve v = ϕ(u) in the (u, v)-plane. By the
strict convexity of the curve v = ϕ(u), we can choose appropriate ᾱ, β̄, γ̄
(since they are independent constants), such that the number of intersection
points of the above curve and the corresponding straight line is two, which
gives two zeros of J(h) in h ∈ (0, h∗) and hence of I(h). Hence the theorem
follows.
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