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1. INTRODUCTION

A variety of applications in many areas of science require the study of
polynomial systems of ordinary differential equations in the plane. These
systems have attracted the attention of many pure and applied mathemati-
cians. Since H. Poincaré (1880), the study of the topological behavior of
the configurations of polynomial systems has been developed from several
points of view. The topological behavior of the configuration can change
when critical points and closed orbits change in number or type, or when
two saddle points are connected by an orbit. The present paper sheds some
light on the later kind of bifurcation for quadratic systems.

Orbits connecting critical points of dynamical systems are important for
a number of reasons. For instance, they specify the physically admissible
discontinuities in solutions of nonlinear systems of conservation laws. In the
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theory of nonlinear conservation laws, weak solutions are required for an
existence theory, but they are not uniquely determined by the Cauchy ini-
tial data. Supplementary conditions, known as entropy conditions, are then
imposed on the solutions to obtain uniqueness (see Lax [11]). Gel’fand [6]
showed that the existence of some discontinuous solutions, called shock
solutions, are related to connections between two critical points of an as-
sociated dynamical system. These critical points are states representing
the long distance behavior of Cauchy initial data for conservation laws.
Therefore, we are interested in determining which two saddle points in the
plane are connected by an orbit. Consequently, a global analysis of the
configuration of dynamical systems is required; see for instance Gomes [7],
Isaacson, Marchesin and Plöhr [9, 10] and Shaeffer and Shearer [13].

Chicone [4] proved that for quadratic gradient systems all saddle connec-
tions are straight lines. In this paper we classify all possible configurations
for a planar quadratic dynamical system containing saddle connection sup-
ported on straight line segments, when the singularities of the quadratic
field form a convex quadrilateral (Theorem 1). Systems with saddle con-
nections are important as they are in the boundary between stable con-
figurations. These stable configurations have been object of intense study
(see [12]), and a complete classification of all structurally stable quadratic
vector vector fields, modulo limit cycles, was obtained by Artés, Kooij and
Llibre [3]

The technique used in this work combines several different pieces of in-
formation concerning global and local behavior of the dynamical system.
In our classification we use strongly Coppel’s result which says that: If a
quadratic system has straight line path then it either has a centre or at
most one closed path (stable or unstable) [5].

This paper is organized as following: in Section 2 we obtain normal form
for planar quadratic vector fields which have more than two singularities
and an invariant straight line passing through two finite saddles. In sec-
tions 3 and 4 we restrict ourselves to the case of convex distribution of
four finite singularities and use Poincaré’s compactification [1, 8] to give
a complete description of the singularities of these fields at infinity, and
describe all possible configurations and local behavior of the finite singu-
larities. In the final section we analyze the changes of these fields according
to a parameter d of the field in normal form and conclude with the following
Theorem:

Theorem 1. Let χ be a quadratic field on plane with four finite singular-
ities forming a convex quadrilateral and such that the straight line passing
through the two finite saddles is invariant. Then the phase portrait of χ is
given by one of the the following pictures:
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FIG. 1. Phase Portrait of χd when m = 0

FIG. 2. Phase Portrait of χd when m2 − 4n(l − 1) > 0
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FIG. 3. Phase Portrait of χd when m2 − 4n(l− 1) < 0 and m 6= 0

FIG. 4. Phase Portrait of χd when m2 − 4n(l − 1) = 0
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2. NORMAL FORM

In this section we present normal form for planar quadratic vector fields
which have more than two singularities and an invariant straight line pass-
ing through two finite saddles.

We consider the quadratic field:

χ :
{

ẋ = P (x, y)
ẏ = Q(x, y)

where P (x, y) =
∑2

i+j=0 aijx
iyj and Q(x, y) =

∑2
i+j=0 bijx

iyj , with a fi-
nite number of singularities and a saddle connection supported on a straight
line.

Lemma 2. If the saddle connection of χ is horizontal then b11 6= 0.

Proof. Let y = c be the invariant line that contains the saddles (x1, c)
and (x2, c).

We have ∂Q
∂x (x, c) = 0 because the straight line y = c is invariant. Since

x1 and x2 are the roots of the quadratic equation P (x, c) = 0, it follows
that ∂P

∂x (x1, c) and ∂P
∂x (x2, c) have opposite signs.

If b11 = 0 then ∂Q
∂y (x, c) = b01 + 2b02c, a constant, and then the determi-

nants |dχ(x1, c)| and |dχ(x2, c)| would be positive, contradicting the fact
that the singularities (x1, c) and (x2, c) are both saddles.

Lemma 3. If χ has more than two singularities then it can be written in
the form:

χ :
{

ẋ = dx + εy + lx2 + mxy + ny2

ẏ = x(1 + y)

where l < 0, ε < n and ε ≤ 0.
Moreover, we will have 3 singularities if nε = 0 and 4 singularities if

nε 6= 0. In the last case the singular quadrilateral will be convex if n < 0
and not convex if n > 0.

Proof. Since χ has at least three singularities, one of them is not a
saddle. Supposing that this one is the origin and that the straight line
supporting the saddle connection is y = −1 we get

χ :
{

ẋ =
∑2

i+j=1 aijx
iyj

ẏ = (αx + βy)(1 + y)

We have α 6= 0 by Lemma 2, and using the change of coordinates
{

X = αx + βy
Y = y
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we can write the field χ as

χ :
{

ẋ = dx + εy + lx2 + mxy + ny2

ẏ = x(1 + y)

Since the invariant line y = −1 contains two singularities (both saddles),
the equation lx2 + (d−m)x + (n− ε) = 0 has two distinct real roots

x1 =
m− d−√∆

2l
and x2 =

m− d +
√

∆
2l

, (1)

where ∆ = (m− d)2 − 4l(n− ε).
The linear part of χ at the saddle point (x1,−1) is

dχ(x1,−1) =
[ −√∆ ε + mx1 − 2n

0 x1

]

and therefore x1 > 0. With the same arguments we prove that x2 < 0, and
we get l(n − ε) < 0. Since x2 − x1 =

√
∆
l < 0 we conclude that l < 0 and

n > ε.
Finally we have ε ≤ 0 because |dχ(0, 0)| = −ε and (0, 0) is not a saddle.
The last statements are easy to prove, since

O = (0, 0), S1 = (x1,−1), S2 = (x2,−1) and F = (0,−ε/n)

are the singularities in the case nε 6= 0, and

O = (0, 0), S1 = (x1,−1) and S2 = (x2,−1)

are the singularities in the case nε = 0.

We observe that the functions x1 = x1(d) and x2 = x2(d) given by (1)
are strictly increasing, as can be easily verified.

3. SINGULARITIES AT INFINITY

To see the asymptotic behavior of the unbounded orbits of the field
{

ẋ =
∑2

i+j=0 aijx
iyj

ẏ =
∑2

i+j=0 bijx
iyj (2)

we will use the Poincaré compactification described in [1, pg 216].
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Consider the new coordinates

u = y/x and w = 1/x if x 6= 0 (3)

v = x/y and w = 1/y if y 6= 0 (4)

Using the coordinates (3) in (2) and making τ = w t we get
{

du
dτ = φ(u) + wF (u,w)
dw
dτ = −wH(u,w)

(5)

where

φ(u) = −a02u
3 + (b02 − a11)u2 + (b11 − a20)u + b20 ,

F (u, w) = −a01u
2 + (b01 − a10)u + b10 + b00w − a00uw and

H(u, w) = a02u
2 + a11u + a20 + a10w + a01uw + a00w

2 .

Similarly, for the coordinates (4) we get
{

dv
dτ = ψ(v) + wG(v, w)
dw
dτ = −wK(v, w)

(6)

where

ψ(v) = −b20v
3 + (a20 − b11)v2 + (a11 − b02)v + a02 ,

G(v, w) = −b10v
2 + (a10 − b01)v + a01 + a00w − b00vw and

K(v, w) = b20v
2 + b11v + b02 + b01w + b10vw + b00w

2 .

The points (u, 0) and (v, 0) represent the points at the infinity for the
field (2). We observe that the points (u, 0) and (u−1, 0) with u 6= 0 represent
the same point at infinity.

The points (u∗, 0) (respectively (v∗, 0)) for which φ(u∗) = 0 (respectively
ψ(v∗) = 0) are critical points of the system (5) (respectively (6)), which
means that u∗ (respectively v∗) is an asymptotic direction for the field (2).
We will call u∗ (respectively v∗) critical point at infinity and φ(u) = 0
(respectively ψ(v) = 0) the equation of the critical points at infinity of the
field (2).

The Jacobian matrix of the system (5) at a point (u, 0) is given by

J(u) =
[

φ′(u) F (u, 0)
0 −H(u, 0)

]
(7)

and the Jacobian matrix of the system (6) at the point (0, 0) is given by

L0 =
[

a11 − b02 a01

0 −b02

]
(8)
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We study now the possibilities for the singularities at the infinity for χ
given by Lemma 3 in the case of convex distribution of four finite singular-
ities. We have

φ(u) = −u(nu2 + mu + l − 1)

and

ψ(v) = (l − 1)v2 + mv + n

and therefore u = 0 is always a singularity at the infinity. Moreover, since

J(0) =
[

1− l ∗
0 −l

]

and l < 0, this singularity will be always a hyperbolic source.
Furthermore, if u 6= 0 is a root of φ(u) = 0 then

J(u) =
[

φ′(u) ∗
0 −1

]
,

and we conclude that u will be a non-hyperbolic singularity at infinity only
if φ′(u) = 0.

We observe also that v = 0 will be a singularity at the infinity for χ if
and only if n = 0.

The following Lemma describes all the possibilities for the singularities
at the infinity for χ:

Lemma 4. Consider the field χ given by Lemma 3, with four singular-
ities and convex distribution. We have the following possibilities for the
singularities at infinity distinct of u = 0:

If m2 − 4n(l − 1) > 0 we have two singularities u1 < u2 < 0, with u1

a saddle and u2 an attractor when m < 0, and 0 < u1 < u2, with u1 an
attractor and u2 a saddle when m > 0.

If m2 − 4n(l − 1) = 0 we have one singularity u1, a saddle-node, with
u1 < 0 when m < 0 and 0 < u1 when m > 0.

If m2 − 4n(l − 1) < 0 we do not have another singularity besides u = 0.

Proof. The cases with hyperbolic singularities at infinity are easy to
verify; it is enough to observe the signs of the roots of the equation φ(u) = 0
and the sign of φ ′ at these points. We then have to analyze only the case
when m2 − 4n(l − 1) = 0.

We follow the notation of Andronov et al [1].
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With the change of coordinates u = x − αy − m
2n , w = y and τ = −t ,

where α = εm2

4n2 − dm
2n − 1, the system (5) becomes





ẋ = P̃ (x, y) = −m
2 x2 + (mα + d− εm

2 + nα)xy
+mα

2 (ε− α)y2 + nx3 + ε(1− nα)x2y − nα3y3

ẏ = y + Q̃ = y + (d− εm
2n )y2 + nx2y

+(ε− 2nα)xy2 − α(ε− nα)y3

Let y = ϕ(x) be a solution of y + Q̃(x, y) = 0. Then ϕ(0) = ϕ′(0) = 0
and so

ψ(x) = P̃ (x, ϕ(x)) = −m

2
x2 + · · · .

By Theorem 65 [1, pg 340] it follows that u1 is a saddle-node.

4. THE FINITE SINGULARITIES

We now describe the singularities of χ when it has four of them with
convex distribution. By Lemma 3 we have

χ :
{

ẋ = dx + εy + lx2 + mxy + ny2

ẏ = x(1 + y)

where l < 0 and ε < n < 0.
Since S1 = (x1,−1) and S2 = (x2,−1) are saddle points by hypothesis,

we must analyze the singularities O = (0, 0) and F = (0,−ε/n) (in case
nε 6= 0).

The linear part of χ at these points is given by

dχ(0, 0) =
[

d ε
1 0

]
and dχ(0,−ε/n) =

[
d−mε/n −ε
1− ε/n 0

]
(9)

Lemma 5. If d = 0 then χ doesn’t have a limit cycle and O is
a) a center if m(n− lε) = 0;
b) a weak attractor if m(n− lε) < 0;
b) a weak source if m(n− lε) > 0.

Proof. With the change of variables x = |b|√−εX, y = bY and t =
b

|b|√−ε
τ , the field χ becomes

{
Ẋ = −Y + blX2 + |b|m√−ε

XY − bn
ε Y 2

Ẏ = X(1 + bY )
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By Theorem 16.1 [12, page 359] it follows that χ doesn’t have limit cycles
and the origin is a center if m(n − lε) = 0. Computing the focal value [2,
pg 252], we get

α3 =
π

4ε2
√−ε

m(n− lε) = 0,

and this finishes the Lemma.

Lemma 6. If χ is such that ε < n < 0 we have the following possibilities
for the origin O and the singularity F :

O :





d = 0





m
m
m

= 0 =⇒ center
< 0 =⇒ weak source
> 0 =⇒ weak attractor

d > 0 =⇒ hyperbolic source
d < 0 =⇒ hyperbolic attractor

F :





d = mε/n





m
m
m

= 0 =⇒ center
< 0 =⇒ weak source
> 0 =⇒ weak attractor

d > mε/n =⇒ hyperbolic source
d < mε/n =⇒ hyperbolic attractor

Proof. The case O follows from Lemma 5 because n − lε < 0. The
case F is proved the same way, by way of a change of coordinates which
exchanges the singularities O and F .

5. PHASE PORTRAIT IN CONVEX QUADRILATERAL
CASE

We describe in this section the possible configurations for the phase space
of χ when the finite singularities form a convex quadrilateral. By Lemma 3,
the field is written as

χ :
{

ẋ = dx + εy + lx2 + mxy + ny2

ẏ = x(1 + y) (10)

with l < 0, and ε < n < 0, and the singularities will be the saddle points
S1 = (x1,−1) and S2 = (x2,−1), x2 < 0 < x1, and the non-saddle points
O = (0, 0) and F = (0,−ε/n).
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With the change of coordinates
{

x = x̄
y = (1− ε

n )ȳ − ε
n

we get

χ̄ :
{

˙̄x = d̄x̄ + ε̄ȳ + l̄x̄2 + m̄x̄ȳ + n̄ȳ2

˙̄y = x̄(1 + ȳ) (11)

where d̄ = d − mε
n , l̄ = l < 0, ε̄ = ε ε−n

n < n̄ = n(n−ε
n )2 < 0 and

m̄ = m(1− ε/n),and we can assume that m ≥ 0. From now on we will also
assume that m > 0; we will perform later the analysis of the case m = 0.

We denote by U1(d) (respectively U2(d)) the unstable (respectively sta-
ble) separatrix of the saddle S1 (respectively S2) located in the semi-plane
y > −1 and by L1(d) (respectively L2(d)) the unstable (respectively stable)
separatrix of the saddle S1 (respectively S2), in the semi-plane y < −1.

The singularities at infinity in the coordinates (u, w) will be, according
Lemma 4, the points A = (u = 0, w = 0), B = (u = u1, w = 0) and
C = (u = u2, w = 0) when m2− 4n(l− 1) > 0, A and B when m2− 4n(l−
1) = 0 and only A when m2 − 4n(l − 1) < 0. We denote by Ā, B̄ and C̄
the symmetric singularities at infinity, and by Z1 and Z2 the separatrices
of the saddles C and C̄ at infinity (or the saddle-nodes B and B̄ when
m2 − 4n(l − 1) < 0). We observe that χ always presents the orientations
given by the figure 5 bellow, for any value of d (the invariant line y = −1
is drawn as y = 0 to improve the image):
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1
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2

B
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A

B
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2
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1

U
1

L
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U
2

L
2
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U
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A

O

L
2

m -4n(l-1) = 0
2

m -4n(l-1) < 0
2

m -4n(l-1) > 0
2

FIG. 5. Orientation of the orbits of χ in the convex case

We will use from now on the notation χd for the field χ, using d as a
parameter, and fixing the other coefficients ε, l, m and n.
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To describe χ we must know the ω-limit and the α-limit of the separa-
trices of the saddles S1 and S2, the α-limit of Z1 and the ω-limit of Z2.

The following Lemma gives the values of d for which we have a saddle
connection between a finite saddle and a saddle at infinity.

Lemma 7. Consider the field χd given by (10), and let u = r be the
singularity at infinity which is a saddle (in case m2 − 4n(l − 1) > 0) or
saddle-node (in case m2− 4n(l− 1) = 0), as in Lemma 4. Then there exist
two values d1 and d2 for d, with the following properties:
(a) The line y = rx is invariant by the flow of χd2 . More precisely, for any
p = (x, rx), the function h2(d) = 〈χ⊥d (p), (1, r)〉 satisfies h′2(d) = rx and
h2(d2) = 0.
(b) The line y = rx− ε/n is invariant by the flow of χd1 . More precisely,
for any p = (x, rx − ε/n), the function h1(d) = 〈χ⊥d (p), (1, r)〉 satisfies
h′1(d) = rx and h1(d1) = 0.
(c) 0 < d1 < d2 < mε

n .

Proof. Consider any line y = rx+ s, and let p be one point on this line.
Then

χd(p) = (dx + ε(rx + s) + lx2 + mx(rx + s) + n(rx + s)2, x + x(rx + s)).

Since r is a singularity at infinity, we have nr2 + mr + l = 1 and so

χd(p) = (dx + εrx + εs + x2 + msx + 2nrsx + ns2, x + rx2 + sx),

〈χ⊥d (p), (1, r)〉 = (dr + εr2 + mrs + 2nr2s− s− 1)x + rs(ns + ε).

If s = 0, letting d = d2 = 1
r − εr we get 〈χ⊥d (p), (1, r)〉 = 0 ∀x, which

proves statement (a).
In the same way, if s = −ε/n, and making d = d1 = (1− l ε

n ) 1
r we prove

statement (b).
The inequality d1 > 0 is clear because l ε

n < 0.
To prove that d2 > d1 we observe first that r ≥ −m

2n > 0 and that
m2 − 4n(l − 1) ≥ 0. Then

(d1 − d2)r
ε

= r2− l

n
≥ m2

4n2
− l

n
>

m2

4n2
− 4ln

4n2
+

4n

4n2
=

m2 − 4n(l − 1)
4n2

≥ 0,

concluding the proof of the inequality.
Finally, we prove that d2 < mε

n . We have

d2 − mε

n
=

1
r
− εr − mε

n
=

ε

nr
(
n

ε
− nr2 −mr)
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But n
ε < 1 because ε < n < 0, and nr2 + mr = 1− l, and hence

d2 − mε

n
=

ε

nr
(
n

ε
+ l − 1) <

l ε

nr
< 0.

Lemma 8. Let χd be the vector field given by (10), and let (0, R(d))
[(0, L(d))] denote the first [last] point of intersection of U1(d) [U2(d)] with
the axis Oy.
(a) The function R(d) is continuous, positive, strictly increasing, and de-
fined on an interval [0, bR), with limd→bRR(d) = ∞.
(b) The function L(d) is continuous, positive, strictly decreasing, and de-
fined on an interval [0, bL), with limd→bL

L(d) = 0.

Proof. The function R(d) is continuous and defined on a convex set by
the continuous variation of the unstable manifold of S1 with the parameter
d. Let a < b be points for which the function R(d) is defined. For each point
p = (x, y) ∈ R2 we have χb(p) = χa(p) + ((b − a)x, 0) and therefore, for
every point p = (x, y) ∈ R2 with y > −1, we have 〈χb, (χa)⊥〉 < 0. Since
x1(b) > x1(a) we must have R(b) > R(a), For otherwise 〈χb, (χa)⊥〉 ≥ 0 at
some point p ∈ U1(a) ∪ U1(b).

For the proof of the rest of statement (a), we analyze first the case
m2 − 4n(l − 1) ≥ 0.

Observe that by Lemma 7 the separatrix U1(d) cannot be at the right side
of the line y = rx− ε/n if d < d1. Also, we cannot have U1(d) ⊂ {x > 0}
for d ≥ 0 because, by Lemma 6, the singularity O is a source if d > 0 and
a weak attractor if d = 0. Then U1(d) must cross the Oy-axis at one point
above the singularity O for all d ∈ [O, d1). The last statement is proved by
observing that if d = d1 we have ω(U1(d)) = r and so, for d near to d1 and
less than d1, we have R(d) arbitrarily large.

Suppose now that m2−4n(l−1) < 0. In this case we only have u = 0 as
an asymptotic direction for χ, and so. With same argumentation we can
prove that U1 crosses the Oy axis at one point above the singularity O for
all d ∈ [O,∞). It is easy to see that in this case limd→∞R(d) = ∞.

We define then bR as d1 in the case m2 − 4n(l − 1) ≥ 0 and ∞ in the
case m2 − 4n(l − 1) < 0.

By analogous arguments, the function L(d) is continuous, strictly de-
creasing and defined on a convex set.

The orientation of χ at the Oy-axis shows that L(d) > 0 for the values
of d where the function is defined.

Since we do not have singularities in the quadrant {(x, y) ∈ R2; y >
−1, x < 0} nor negative asymptotic directions , L(d) is not defined only
for the values of the parameter d for which U2(d) is completely contained
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in this quadrant. Since the origin O in a weak attractor for d = 0, U2(0)
cannot be contained in this quadrant and therefore L is defined at d = 0.

We then can assume that L is defined on an interval [0, bL) and not
defined at the point d = bL. In this case α(U2(bL)) = 0 and U2(b) will be
completely contained in this quadrant. It is now easy to conclude that if
d < bL is near to bL, then L(d) will be near to 0.

The same arguments prove the following Lemma.

Lemma 9. Consider the vector field χd given by (10), and let (0, R̄(d))
[(0, L̄(d))] be the first [last] point of intersection of L1(d) [L2(d)] with the
Oy axis.
(a) The function R̄(d) is continuous, R̄(d) < −1, strictly decreasing, and
defined on an interval (aR, mε

n ], with limd→aR
R̄(d) = −1.

(b) The function L̄(d) is continuous, L̄(d) < −1, strictly increasing, and
defined on an interval (aL, mε

n ], with limd→aL
L̄(d) = −∞.

For any d where the functions L(d) and R(d) are defined, let G(d) be the
region of the plane limited by the piece of the separatrix U1 between S1

and (0, R(d)), by the piece of the separatrix U2 between S2 and (0, L(d)),
by the segment of straight line between S1 and S2 and by the segment of
straight line I(d), between (0, L(d)) and (0, R(d)).

Notice that if p is an interior point of the segment I(d) then the ω-limit
(respectively α-limit] of p will be located inside the region G if and only if
R(d) < L(d) (respectively L(d) < R(d)). We will say in this case that G is
an attracting [repelling] region.

Analogously, with the functions L̄(d) and R̄(d) we define a region Ḡ(d)
contained in the lower half-plane y ≤ −1, which will be attracting if L̄(d) <
R̄(d) and repelling if R̄(d) < L̄(d).

We will now see for which values of d the field χd presents a saddle
connection not contained in a straight line.

Lemma 10. Let f and f̄ be the functions defined by:

f(d) = R(d)− L(d)
f̄(d) = R̄(d)− L̄(d)

where R, L, R̄ and L̄ are defined by Lemmas 8 and 9. Then,
(a) f and f̄ are continuous, f is increasing and f̄ is decreasing.
(b) There exist a unique value dU for which f(dU ) = 0.
(c) There exist a unique value dL for which f̄(dL) = 0.
(d) 0 < dU < m < dL.

Proof. The statement (a) is clear by the definition of the functions L(d)
and R(d). To prove (b) it is enough to show that f(0) < 0 and f(d) > 0
for some point d > 0.
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If f(0) > 0 it follows that G(0) is a repelling region. So, if p is an interior
point of this region, distinct from the origin, we have α(p) ⊂ G(0). Since
the origin a weak attractor, α(p) cannot be the origin. We conclude that
there exist a repelling closed orbit around the origin. But the existence of
such an orbit is impossible because a quadratic field with an invariant line
and a weak focus does not admit limit cycles [12].

The eigenvalues of the saddle S1 are −√∆ and x1 and the eigenvalues
of the saddle S2 are

√
∆ and x2. For d = 0 we have |x2| > |x1|; this shows

that if f(0) = 0, then the region G(0) would be bounded by an attractor
graphic. The same argumentation as before also proves that f(0) = 0 is
not possible.

So we must have f(0) < 0.
Using the fact that limd→bR R(d) = ∞ and limd→bL L(d) = 0 it is easy to

show that f(d) > 0 for some d < min{bR, bL}. Since f is strictly increasing,
there exists a unique value dU for which f(dU ) = 0.

The statement (c) is proved the same way, by using the region Ḡ and
the fact that the singularity F is weakly repelling if d = 0.

To prove (d) we consider χ∗(x, y) = (εx + lx2 + ny2, x + xy) the field χ
given by (10) with d = m = 0. This field has the singularities O and F as
centers, U1 = U2 and L1 = L2 [see Section 5]. We then have f(0) = f̄(0) =
0 if m = d = 0.

We observe now that 〈χm(x, y), χ⊥∗ (x, y)〉 = −mx2(1 + y)2 is always
negative if m > 0 and x(1 + y) 6= 0. It is easy now to conclude, as in
Lemma 7, that f(m) > 0 if f(m) is defined, and so, m > dU in any case.
In the same way we prove that m < dL.

By Lemma 10 we see that χdU presents a connection LU , between the
saddles S1 and S2, contained in the semi-plane y > −1, χdL presents a
connection LL, between the saddles S1 and S2, contained in the semi-plane
y < −1 and, if d is not equal to dU or dL, that χd does not presents saddle
connection between the saddles S1 and S2 besides the one contained in the
line y = −1.

In the next lemma we will use strongly the fact that a quadratic field with
an invariant line has either a center or at most one closed orbit, hyperbolic
in the last case [5].

Lemma 11. Let χd be the vector field given by (10) and let dU and dL

be the values defined in the Lemma 10. Then
(a) χd will have one closed orbit (hyperbolic attracting) OU around the
origin if and only if d belongs to the interval (0, dU ).
(b) χd will have one closed orbit (hyperbolic repelling) OL around the sin-
gularity F if and only if d belongs to the interval (dL, mε

n ).
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Proof. If d ∈ (0, dU ), then f(d) < 0 and therefore ω(p) ⊂ G(d) for all
point p ∈ G(d). But ω(p) 6= O because the origin is repelling if d > 0, and
so we can conclude that there exist a closed orbit OU contained in G(d).
By [5], this orbit is unique and hyperbolic.

If we suppose that χd has one closed orbit O around the origin for some
d > dU , then this orbit will be attracting because the origin will be repelling
and O will be the unique closed orbit of the vector field. Let p be one point
in the attraction basin of O, located outside the region limited by O. We
must then have ω(p) = O and α(p) must be the saddle S1 or the singularity
at infinity A. In any case this implies that ω(U1) = O and we have f(d)
defined and satisfying f(d) < 0, contradicting the hypothesis d > dU .

Suppose now that χd has one closed orbit O around the origin for some
d < 0. This orbit will be a repelling one, because the origin will be attract-
ing and O will be the unique closed orbit of the vector field. Then L(d)
is defined since we cannot have α(U2) = O. We also have R(d) defined
because we cannot have ω(U1) = O, and obviously d < bR, and so f(d) will
be defined. We didn’t have f(d) ≥ 0 because d < 0 and f is increasing,
with f(0) < 0 by Lemma 10. Therefore f(d) < 0 and the region G(d) will
be attracting, and consequently O is attracting, a contradiction.

The vector field χd cannot exhibit a closed orbit if d = 0 or d = dU ,
because this orbit would be hyperbolic and so persistent by small variations
of d, implying the existence of a closed orbit for χd when d < 0 or when
d > dU , a contradiction.

The proof of statement (b) is analogous.

Based on the lemmas we will describe now the behavior of the six saddle
separatrices, U1, U2, L1, L2, Z1 and Z2, pointed out in figure 5 of page 197.

In any case, independently on the sign of m2 − 4n(l − 1), the α-limit of
U2 is S1 if d = dU by Lemma 10, and the same lemma applies to show that
if we decrease d we will get α(U2) = A and if we increase d we will have
α(U2) = O. With similar arguments we also show that ω(L1) is S2, F or Ā
if d is respectively equal, lower or greater than dL.

From Lemma 7, when m2 − 4n(l − 1) ≥ 0, it follows that the α-limit of
Z1 is S1 when d = d1 and the ω-limit of Z2 is S2 when d = d2. It is then
easy to conclude that α(Z1) = A if d > d1, α(Z1) = O if d < d1, ω(Z2) = Ā
if d > d2 and ω(Z2) = F if d < d2.

The ω-limit of separatrix U1 and the α-limit of separatrix L2 will depend
on the sign of m2 − 4n(l − 1).

First we note that, by Lemma 6 and Lemmas 7 to 11, we have the
following cases:

1. If m2 − 4n(l − 1) ≥ 0 (χd with two or three pairs of singularities at
infinity), then χd will change behavior at d when d ∈ {0, dU , d1, d2, dL, mε

n }.
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2. If m2 − 4n(l − 1) < 0 (χd with one pair of singularities at infinity),
then χd will change behavior at d when d ∈ {0, dU , dL, mε

n }.
By observing the behavior of χd when the parameter d is close to a point

in the set {0, dU , d1, d2, dL, mε
n }, we conclude that when m2−4n(l−1) > 0

we have the following behavior of the two saddle separatrices ω(U1) and
α(L2):

ω(U1)





O if d ≤ 0
OU if 0 < d < dU

S2 if d = dU

Ā if dU < d < d1

C if d = d1

B if d > d1

α(L2)





B̄ if d < d2

C̄ if d = d2

A if d2 < d < dL

S1 if d = dL

OL if dL < d < mε
n

F if d = mε
n

When m2 − 4n(l − 1)=0, the singularities at infinity B[B̄] and C[C̄]
collapse B[B̄] (see figure 5 at page 197) and the only changes on the above
table is ω(U1) = B when d ≥ d1 and α(L2) = B̄ when d ≤ d2.

If m2 − 4n(l− 1) < 0 and m 6= 0 we do not have the singularities B and
B̄ (so we do not have the separatrices Z1 and Z2) and ω(U1) and α(L2)
are

ω(U1)





O if d ≤ 0
OU if 0 < d < dU

S2 if d = dU

Ā if d > dU

α(L2)





A if d < dL

S1 if d = dL

OL if dL < d < mε
n

F if d = mε
n

Finally, when m = 0 we also have only one pair of singularities at infinity,
and by Lemma 6 the singularities O and F will be centers when d = 0,
hyperbolic sources when d > 0 and hyperbolic attractors if d < 0. We
observe that in case m = 0 the phase portrait of χd when d < 0 and
d > 0 is the same as the phase portrait of χd when d ≤ 0 and d ≥ mε

n ,
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respectively, in case of m 6= 0 and m2 − 4n(l − 1) < 0. This finishes the
proof of Theorem 1.
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