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This paper is a study of the affine and euclidean differential geometry
of cycles of quadratic systems. While the euclidean curvature must always
be strictly positive, the affine curvature can take either sign, although with
certain restrictions. Every quadratic cycle has exactly six affine vertices, but
the number of euclidean vertices can vary, not just from cycle to cycle, but for
the same cycle under a linear coordinate transformation. We prove that an
upper bound on the number of euclidean vertices over all non-circular quadratic
cycles is twelve, and provide evidence that a sharp upper bound is six.
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1. INTRODUCTION

Let X denote the quadratic system of differential equations

ẋ = P (x, y) =
∑

0≤i+j≤2

aijx
iyj

ẏ = Q(x, y) =
∑

0≤i+j≤2

bijx
iyj

(1)
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or equivalently the vector field (P,Q) on R2, where P and Q are relatively
prime, and at least one is of degree two. This paper is devoted to a study
of the affine and euclidean differential geometry of cycles appearing in the
phase portrait of X. Specifically, we are interested in understanding the
possibilities for the curvature, affine and euclidean, of a quadratic cycle, and
the number, nature, and relative positions of affine and euclidean vertices,
which are the local extrema of the corresponding curvatures. (Definitions
appear in the next section. Henceforth in this paper “curvature” and “ver-
tex” will mean “euclidean curvature” and “euclidean vertex;” we will always
use the adjective “affine” explicitly when speaking of their affine differential
counterparts, and use the adjective “euclidean” only for contrast.)

It is well known that a cycle or polycycle appearing in the phase por-
trait of a quadratic system bounds a convex subset of the plane, hence its
curvature is always of one sign. In fact the curvature is never zero (Propo-
sition ??). We find that the affine curvature, whose sign is significant, can
take either sign on a quadratic cycle. If not always positive, it can assume
negative values on one, two, or three subarcs, each one of which contains
exactly one affine vertex, and between any two of which lie an odd number
of affine vertices (Theorem ??).

Affine vertices prove to be the most amenable to study. We discover
that every non-circular quadratic cycle contains exactly six of them, the
minimum allowed by the Six Affine Vertex Theorem, all of them simple
(Theorem ??). The affine curvature can be negative at up to three of
them, no two adjacent.

Vertices prove more difficult to work with. A local analysis shows that
a vertex on a quadratic cycle has multiplicity at most three. Any triple
vertex is simultaneously an affine vertex, at which the affine curvature is
positive (Theorem ??). By the Four Vertex Theorem every cycle has at
least four vertices, a lower bound which is attained for example by an
ellipse. It would seem that, in a sense, this lower bound should be difficult
for an arbitrary smooth Jordan curve γ to attain, since to do so requires
that the curve γ be tangent to its circumscribed circle at precisely two
antipodal points (see [?]). Yet we shall see that sufficiently small cycles
about centers in quadratic systems generically have four vertices, and that
there is evidence to suggest that for any cycle in a quadratic system, there
is always a linear change of variables so that in the new quadratic system
the corresponding cycle has exactly four vertices (see Conjecture ??). We
also find that sufficiently small cycles in period annuli have at most six
vertices (Proposition ??), and that typically Hopf bifurcation produces
cycles with at most six vertices (Proposition ??; see also Remark ??). An
extensive examination of phase portraits, together with the results just
mentioned, suggests that every cycle in a quadratic system has at most
six vertices (Conjecture ??). A proof of this conjecture, to the best of
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our knowledge originally propounded by Paul de Jager, has so far eluded
us, however. The best we can do so far is to prove a universal upper
bound of twelve, and this by a rather indirect method. Knowing that a
nonsingular linear transformation µ can change the number of vertices of
a cycle γ, we identify the possible bifurcation set for vertices of µ〈γ〉 in
the space of linear transformations, and show how to assign a number,
counting vertices of µ〈γ〉, to each component of its complement. Knowing
all possible configurations of the bifurcation set then yields an upper bound
of twelve for any cycle in the phase portrait of a quadratic system (Theorem
??).

We emphasize that the results of this paper depend heavily on the fact
that the degree of the system is two. At the end of the paper we include a
general argument that yields the uniform bounds of 2(6n − 2)(7n − 3) on
the number of vertices and 2(21n − 9)(22n − 10) on the number of affine
vertices of any cycle occurring in the phase plane of a polynomial system of
degree n. For quadratic systems this gives the far worse values of at most
220 vertices and at most 2244 affine vertices.

2. PRELIMINARIES

Throughout the paper we will use without comment a number of facts
about quadratic systems. Complete discussion and proofs may be found in
[?], [?], [?], and [?].

Euclidean arclength and curvature of a plane curve, as well as their
formulas, are widely familiar. From the point of view of transformation
groups, affine geometry is the study of invariants under equiaffine transfor-
mations, that is, linear transformations with determinant +1.

Invariants are those geometric properties preserved under parallel pro-
jection from one plane to another, hence angles and non-parallel lengths
are not compared. Nevertheless, for curves for which det(ẋ, ẍ) 6= 0, an ar-
clength sA and curvature κA are defined. The actual formulas will not be
important for us; see [?] for the derivations. The curves of constant affine
curvature are the conic sections: ellipses (including circles) for κA > 0,
parabolas for κA = 0, and hyperbolas for κA < 0.

For a smooth curve γ and a point A on γ at which the curvature is
non-zero, the osculating circle C is the unique curve of constant curvature
(here, of course, a circle) which best fits the curve γ at A; it agrees with
γ out to second order, and has “three-point contact” with γ at A in the
sense that γ and C share three infinitely close points at A. The point A is
a vertex of γ if the curvature has a local maximum or minimum at A; this
implies that C agrees with γ to at least one higher order, hence has at least
four-point contact with γ at A. The same ideas apply in affine differential
geometry, where now the auxiliary curve is the osculating conic Γ, which
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agrees with γ through fourth order, and has five-point contact with γ at
A. The point A is an affine vertex of γ if the affine curvature has a local
maximum or minimum at A; this implies that Γ agrees with γ to at least
one higher order, hence has at least six-point contact with γ at A. For this
reason an affine vertex is also called a sextactic point.

We say that γ is hyperbolically curved at A (resp., parabolically curved,
elliptically curved) if the osculating conic Γ at A is a hyperbola (resp., a
parabola, an ellipse (or circle)).

The Four Vertex Theorem, which dates back to Mukhopadhaya ([?], [?],
[?], [?], [?]), asserts that any sufficiently smooth convex plane oval has at
least four vertices. The Six Affine Vertex Theorem, also dating back to
Mukhopadhaya ([?], [?], [?], [?]), asserts that any such curve has at least
six affine vertices. (Allowance must be made in these theorems for circles
and ellipses, as appropriate.)

3. LOCAL ANALYSIS

If γ = (x(t), y(t)) is a Cr curve in the plane, r ≥ 2, then the curvature
of γ at a regular point is given by the expression

κ =
ẋÿ − ẍẏ

(ẋ2 + ẏ2)
3
2

. (2)

Applying (??) to just the numerator in (??) determines a fifth degree
polynomial function κ(x, y) whose non-zero values have no particular mean-
ing, but whose zero set picks out those points A such that the trajectory
At of X through A has zero curvature at A. (We will always let At denote
the trajectory through A which is at A when t = 0.)

We will need the following slight strengthening of the fact mentioned in
the introduction. It is this result that guarantees that the affine arclength
and affine curvature are defined for any quadratic cycle.

Proposition 1. At no point of a cycle γ of a quadratic system does the
curvature vanish.

Proof. Let any regular point A at which κ(x, y) = 0 be given. By a
rigid motion we may place A at the origin, incorporating a rotation that
yields Q(0, 0) = 0.

A further rescaling, if necessary, places the system in the form

ẋ = 1 + ax + by + ex2 + fxy + gy2

ẏ = cx + dy + hx2 + jxy + ky2 .

The curvature vanishes at (0, 0) only if ÿ = 0 there, hence only if
Qx(0, 0) = c = 0. But then either the x-axis is invariant (when h = 0), or
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ẏ is of one sign along it, vanishing only at A (h 6= 0), so that in either case
the trajectory At through A does not close.

We note in passing that the same result is true for any arc of a polycycle
which does not lie in a segment of a straight line.

Now let us turn to the question of the order of vanishing of the derivative
of the curvature along a trajectory of X. There is no question that the
order of vanishing is independent of the parametrization of the trajectory,
but since solutions are not parametrized by arclength, we must include
the denominator in (??) in the computation of the first derivative. On
the other hand, since we are concerned about the vanishing of a particular
derivative only at a point at which all the previous derivatives are zero, we
may apply the following simple fact:

Proposition 2. If f(x) = n(t)/d(t) is a Ck function on an open interval
containing t0, then for any m ≤ k, f (j)(t0) = 0 for j = 0, 1, . . . ,m iff
n(j)(t0) = 0 for j = 0, 1, . . . , m.

Thus we drop the denominator in the derivative of κ, and in all subse-
quent computations use the resulting expression

κ1 = (ẋ2 + ẏ2)(ẋy(3) − x(3)ẏ)− 3(ẋẍ + ẏÿ)(ẋÿ − ẍẏ) . (3)

Substituting in for ẋ, ẏ, and so on using (??) we obtain a tenth or-
der polynomial expression in x and y. The corresponding algebraic curve
κ1(x, y) = 0 picks out those points A in the phase plane at which the lo-
cal trajectory At has a vertex (at least if the next derivative is non-zero).
Differentiating (??) and applying (??) yields an eleventh order polynomial
function κ2. Points on the algebraic curve κ2(x, y) = 0 are undistinguished,
except where they also lie on κ1(x, y) = 0, in which case they pick out a
point A where the local trajectory At has a higher vertex. The process
continues for all orders.

Proposition 3. Let A be a regular point of a quadratic system X, at
which the curvature does not vanish.

(1)If at A κ̇ = κ̈ = κ(3) = κ(4) = 0 but κ(5) 6= 0, then the osculating
circle C at A to the trajectory At through A is without contact to X except
at A, and At crosses into or out of the interior of C at A. Thus A does
not lie on a cycle (or polycycle).

(2)If at A κ(j) = 0 for j = 1, . . . , 5, then A lies in an invariant circle.

Proof. This proposition depends on the fact that a non-invariant conic
section has at most six points of contact with the quadratic system X. If
the hypotheses in point (1) hold then the vector field X has sixth order
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contact with C at A, hence either points into C at every other point, or out
of C at every other point. Since A is not a vertex, the trajectory At crosses
C at A (Corollary 2.1.2 of [?]), hence cannot close. If the hypotheses in
point (2) hold then the vector field X has seventh order contact with C at
A, hence C must be invariant.

Remark 4. If a real linear transformation µ of the plane is made, a cycle
γ of X is transformed to a cycle γ̄ := µ〈γ〉 of the quadratic vector field
µ∗X, and the conclusion of Proposition ?? still holds for γ̄. Now suppose
µ is a linear transformation of C2, and make the identification of C2 with
R4 defined by (z1, z2) ↔ (Re z1, Im z1, Re z2, Im z2).

Then µ induces a linear transformation η of R4 which carries the 2-
plane Π := {(x1, y1, x2, y2) | y1 = y2 = 0} to a 2-plane Π̃ := η〈Π〉 ⊂ R4.
Regarding X as a vector field on R4, X leaves Π invariant, η∗X leaves Π̃
invariant, and in fact in the coordinates naturally induced on Π̃ by η, is
exactly the same quadratic vector field as X on R2. Thus the conclusion
of Proposition ?? holds for the image curve η〈γ〉.

Now we turn to the number of vertices on “small” cycles. Any cycle in
a quadratic system surrounds a unique singularity, which is an antisaddle.
By a rigid motion we may place an antisaddle A of the system X given by
(??) at the origin, simultanesously making b01 = a10, so that X has the
form

ẋ = ax + by + ex2 + fxy + gy2

ẏ = cx + ay + hx2 + jxy + ky2 .
(4)

If A : (0, 0) is not a center when a = 0, then a unique limit cycle is
created or destroyed as a is made to cross zero (while the other coefficients
remain fixed). As long as the cycle is small, a local analysis suffices to
count the number of its vertices.

Proposition 5. Suppose that for a = 0 the system (??) does not have
a center at A : (0, 0).

(1)The unique cycle created or destroyed as a in (??) crosses zero is
either a circle, or has exactly four or exactly six vertices.

(2)The set of quadratic systems for which the Hopf cycle so created has
other than four vertices is an algebraic subset of codimension one.

Before giving the proof, we note that if A is a center for a quadratic
system X, then by a rigid motion X can be placed in the form (??), with
a = 0. Thus in the course of proving Proposition ?? we will establish the
following result.

Proposition 6.
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(1)Sufficiently small cycles surrounding a quadratic center are either cir-
cles (concentric or non-concentric), or have either exactly four or exactly
six vertices.

(2)The set of quadratic centers not surrounded by cycles having exactly
four vertices (in a small enough neighborhood of the center) is an algebraic
subset of the set of systems containing a center, of codimension one.

Proof. (Proof of Propositions ?? and ??.) Let σ and ∆ denote the trace
and determinant of the linear part of X at A : (0, 0). We then find that
κ1(x, y) = ∆q1(x, y)q2(x, y) + O(5), where

q1(x, y) = −cx2 + by2

q2(x, y) = 3bc(b + c)xy + h(x, y, a)a ,

where h is a homogeneous quadratic polynomial function of x and y. The
discriminant of q1 is 4bc = σ2− 4∆ < 0, so q1(x, y) = 0 has no real lines of
zeros. Thus in the generic situation b + c 6= 0, quartic terms are present in
κ1(x, y) when a = 0, and on a fixed neighborhood of A that is independent
of a, κ1(x, y) = 0 has two branches passing through A; sufficiently small
cycles surrounding A have exactly four vertices.

If b + c = 0, so that q2 is identically zero when a = 0, then applying a
uniform rescaling, if necessary, to make c = 1, we find that

κ1(x, y) =− a(a2 + 1)2(x2 + y2)2

+ 2(a2 + 1)(x2 + y2)(K(x, y) + K1(x, y)a + K2(x, y)a2)
+ O(6) ,

(5)

where K, K1, and K2 are homogeneous cubic polynomial functions in x
and y, and specifically K(x, y) = αx3+3βx2y−3αxy2−βy3 , for which α =
2(e−g−j) and β = 2(f +h−k). K(x, y) has discriminant 108(α2+β2) ≥ 0,
so that if the fifth order terms are present in κ1(x, y) when a = 0, then
there are three branches of κ1(x, y) = 0 passing through A. Thus if A is a
center when a = 0, then sufficiently small cycles in the period annulus have
six vertices. If A is not a center at a = 0, then a Hopf cycle appears and
grows as a crosses zero, but now the algebraic curves κ1(x, y) = 0 bifurcate
as well.

To treat this case we observe that a unique Hopf cycle is created or
destroyed as a crosses 0, and has radius of order

√
a, 4
√

a, or 6
√

a, depending
on the order of the weak focus at a = 0. (We mean that, in the first
case, there exist constants R1 and R2 such that the Hopf cycle lies in the
annulus of radii Ri

√
a + O(a), i = 1, 2, and similarly in the latter two

cases. Because the real part of the complex eigenvalues of dX(A) crosses
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the imaginary axis with non-zero speed, the usual proof for the case of a
first order fine focus, as presented for example in Chapter 8 of [?], may
be repeated verbatim in the two other cases, the key point being that the
Implicit Function Theorem still applies in Proposition 8.2 of that text.)

For p in any closed interval in (0, 1) containing 1
6 , 1

4 , and 1
2 , evaluating

κ1 along the circle of radius r = Cap we obtain from (??)

κ1(Cap cos θ, Cap sin θ) =

C2(a2 + 1)a5p[2K(cos θ, sin θ) + R(cos θ, sin θ, a)ap̃] ,

for some positive number p̃. We conclude that the Hopf cycle has exactly
six vertices for |a| sufficiently small.

If on the other hand α = β = 0, then a rotation, which preserves the
linear part and the condition α = β = 0, will exist to make k = −h, and a
computer algebra computation using Maple gives

κ1(x, y) =− a(a2 + 1)(x2 + y2)2

+ 2a(a2 + 1)(x2 + y2)2[−2hx + (3g + e)y + L(x, y)a]

+ (x2 + y2)2[(e + g)Q(x, y) + M(x, y, a)a]
+ O(7) ,

(6)

where Q(x, y) = 2hx2 + 3exy − hy2 and L and M are homogeneous poly-
nomial functions of x and y of degrees one and two, respectively, the latter
containing a as a parameter. A computation of the discriminant quantities
of Li Chengzhi ([?], Theorem II.5.2) shows that (for a = 0, of course) A is
a center if (e + g)h = 0, and is a first order fine focus otherwise.

When A is a fine focus for a = 0, then the Hopf cycle has radius of order√
a. From (??) we have

κ1(C
√

a cos θ, C
√

a sin θ) =

− a3[1 + (e + g)C2Q(cos θ, sin θ) + R(cos θ, sin θ, a)ap̃] ,

for some positive number p̃, so that there are at most four vertices on the
Hopf cycle, hence by the Four Vertex Theorem, exactly four.

When A is a center for a = 0, if (e + g)e 6= 0, then the discriminant of
Q is positive, and small cycles in the period annulus have four vertices. If
(e + g)e = 0, then κ1 ≡ 0, and in fact the plane is filled with one or two
nests of (possibly non-concentric) circles.

Remark 7. (1) Let X be a quadratic system having a limit cycle γ, and
by a rigid motion place X in the form (??). The theorem of Cherkas ([?];
cf.[?]) states that the limit cycle γ can be connected to a Hopf bifurcation
of the special type described in Proposition ?? simply by variation of a.
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(2) For X in the form (??), the linear part of X at A is a composition
D ◦ R of a dilatation D = diag(k k) and a rotation R if and only if a =
0 and c = −b. The first paragraph of the proof thus shows that when
dX(A) is not of this form, all the cycles produced from A in any Hopf
bifurcation (including multi-parameter, however degenerate), have exactly
four vertices. The degree of X is not important.

4. GLOBAL ANALYSIS

To examine the geometry of quadratic cycles in the large, we review the
theory of bifurcation of vertices of smooth Jordan curves under the action
of nonsingular linear transformation, developed in [?]. Let a smooth Jordan
curve γ whose curvature is nowhere zero be given, say with parametrization
(x, y) = (u(t), v(t)), t ∈ J ⊂ R. A real linear transformation µ of the plane
carries γ to a new curve γ̄ := µ〈γ〉, which receives a naturally induced
parametrization. If we take µ to be nonsingular, then regular points on γ
correspond with regular points on γ̄ under the parametrizations, hence so
do points at which the affine and euclidean curvatures are defined. If the

matrix representative of µ in (x, y)-coordinates is
(

a b
c d

)
, then using (??)

the curvature κ̄ along γ̄ is expressed as

κ̄ = ω(t) = det µ (u′v′′ − u′′v′)D−3/2 ,

for

D(t) = µ0u
′2 + 2µ1u

′v′ + µ2v
′2

where

µ0 = a2 + c2 µ1 = ab + cd µ2 = b2 + d2 . (7)
Differentiating and factoring out the positive term det µD(t)−5/2,

ω′(t) ∼ ζ1 := µ0f0(t) + µ1f1(t) + µ2f2(t)

where

f0(t) = u′2(u′v′′′ − u′′′v′)− 3u′u′′(u′v′′ − u′′v′)
f1(t) = 2u′v′(u′v′′′ − u′′′v′)− 3(u′′v′ + u′v′′)(u′v′′ − u′′v′)

f2(t) = v′2(u′v′′′ − u′′′v′)− 3v′v′′(u′v′′ − u′′v′) .

(8)

Identifying the set of linear transformations of R2 with R4, we are led to
define an analytic map L : R4 → R3 by

L : µ =
(

a b
c d

)
7→ (µ0, µ1, µ2) ,
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for µi as in (??). L maps R4 onto the set F := {(µ0, µ1, µ2) | µ0µ2 ≥
µ1

2}, carrying the set of nonsingular linear transformations onto Int(F )
and carrying the set of singular transformations to the boundary ∂F =
{(µ0, µ1, µ2) | µ0µ2 = µ1

2}.
The transformation µ makes ω′(t0) = 0 iff L(µ) lies in the plane ζ1 = 0 in

R3 arising when t = t0. Using Proposition ??, the simultaneous vanishing
of the first k derivatives of ω at t0 corresponds to L(µ) lying in each surface
Zj : ζj = 0 for j = 1, 2, . . . , k, where

ζj := µ0f
(j−1)
0 (t) + µ1f

(j−1)
1 (t) + µ2f

(j−1)
2 (t) . (9)

A bifurcation of the number of vertices on γ̄ = µ〈γ〉 should occur at a
transformation µ which produces a point at which both ω′ and ω′′ vanish.
It is shown in [?] that under the hypothesis that the curvature is nowhere
zero along γ, which is true by Proposition ??, this is correct: the two sets
ζ1 = 0 and ζ2 = 0 are distinct planes in R3 which intersect along a line `12
through the origin whose direction vector is ~v = (µ∗0, µ

∗
1, µ

∗
2), where

µ∗0 = det
(

f1 f2

f ′1 f ′2

)
µ∗1 = −det

(
f0 f2

f ′0 f ′2

)
µ∗2 = det

(
f0 f1

f ′0 f ′1

)
.

As t runs through J a ruled surface in R3 is swept out, which is the bifur-
cation surface for the number of vertices on γ̄. Exploiting the homogeneity
of all the quantities involved, we apply the radial projection π : R3 → S2

to reduce the bifurcation surface to a bifurcation curve γ∗ (and a second
branch −γ∗), called the star curve for γ, in the two-dimensional parameter
space S2. Simple computations show that a point of γ∗ lies in F if and
only if the quantity

D := 3κκ′′ − 5κ′2 + 9κ4

is positive. Clearly κ̇ and its first two derivatives vanish at a point on γ
if and only if the line `12 lies in the plane Z3, hence if and only if the
determinant of the matrix whose ith row is (f (i−1)

0 , f
(i−1)
1 , f

(i−1)
2 ), i =

1, 2, 3, for the quantities of (??) above, vanishes. When γ is parametrized
by arclength, this corresponds to vanishing of the quantity

T := 40κ′3 + 9κ2κ′′′ + 36κ4κ′ − 45κκ′κ′′ .

(Here and in the displayed formula for D, derivatives are taken with respect
to arclength. At some points it will be convenient to also use Tdet, the full
determinant, from which T is obtained by omission of a non-zero factor.)

It is convenient to choose as coordinate charts on S2 the central projec-
tions φ± onto the tangent plane Π0 at (1/

√
2, 0, 1/

√
2), the image of the
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identity transformation under π◦L, of the hemispheres U± := {(µ0, µ1, µ2) |
±(µ0 + µ2) > 0},

(λ1, λ2) = φ±(µ0, µ1, µ2) = (
√

2µ1/(µ0 +µ2), (−µ0 +µ2)/(µ0 +µ2)) . (10)

Note that both hemispheres U± map onto Π0 under the projection, car-
rying both branches of γ∗ (points and antipodal points) onto the same
image in Π0. Thus the entire star curve, except those points lying in the
great circle µ0 + µ2 = 0, is captured by the one coordinate chart.

For simplicity of notation we will use the same name for objects in S2

and their representations in Π0.
To summarize, for each t ∈ J a great circle in S2 is specified, picking out

those linear transformations which make the derivative of the curvature at
the corresponding point At ∈ γ vanish. As t runs through J , Z1(t) moves
about the sphere, determining the envelope γ∗; γ∗(t) is simultaneously the
unique class of linear transformations, when they exist, making at least
the first and second derivatives of the curvature vanish at At. As long as
γ∗(t) lies in F , there is such a real transformation, but for γ∗(t) outside
F a family of linear transformations with complex entries is picked out.
To each point B in S2 \ γ∗ a number V (B) is associated: the number of
points on γ∗ (counting A and −A only once) whose tangent great circles
pass through B. For B ∈ Int(F ), this is the same as the number of vertices
on µ〈γ〉 for µ corresponding to B, and is given by the formula

V (B) = 4 + 2W (γ∗, B) , (11)

where W (γ∗, B) is the winding number of γ∗ with respect to B. Even if
γ∗ does not lie in the single chart U+, in which case some components
of γ∗ in Π0 are in reality images of −γ∗ under φ−, there is never any
confusion as to the proper value to assign W (γ∗, B) for B ∈ F ⊂ Π0. More
formally, by Proposition ?? below, stereographic projection ψ of S2 onto
Π0 from −(1/

√
2, 0, 1/

√
2) will produce from γ∗ (ignoring −γ∗) a closed

curve γ∗∗ in Π0, and for B ∈ F (but not for a general point) we can take
W (γ∗, B) := W (γ∗∗, ψ ◦ φ−1

+ (B)).
There is an intimate connection of this construction with the affine dif-

ferential geometry of γ. Consider the osculating conic Γ to γ at a point
A. The linear transformation µ which makes A into a multiple vertex (we
include a point at which the curvature vanishes to even or to infinite order
under the term “vertex”) is precisely that linear transformation (unique
up to scaling) which simultaneously makes every point of Γ into a multiple
vertex. When γ is elliptically curved at A, A∗ ∈ γ∗ is the linear transfor-
mation making the ellipse Γ into a circle. This corresponds to A∗ ∈ Int(F ),
and indeed D is simply the negative of the discriminant of Γ. Thus A∗ ∈ ∂F
iff Γ is a parabola iff D = 0 (A∗ maps the entire plane to a straight line),
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and A∗ ∈ S2 \ (F ∪−F ) iff Γ is a hyperbola iff D < 0 (the complex entries
in A∗ change the minus sign in Γ to map it to a circle).

Thus in fact to each conic section there is associated a point of S2.
In the local coordinates (U±, φ±), given by (??) above, conics of the

same eccentricity map to ellipses 2λ2
1 + λ2

2 = k. Discounting dilatations of
R2, this gives a one-to-one mapping of circles, ellipses, and parabolas to
Cl(F ); hyperbolas like x2/a2 − y2/b2 = 1 and −x2/a2 + y2/b2 = 1 map to
the same curve in S2.

The vanishing of the quantity T(t0) is precisely the condition that the
osculating conic Γ to γ at A : γ∗(t0) have fifth order contact with γ at
A (share six infinitely close points with γ), i.e., be an affine vertex. This
explains point (2) in the following theorem, which collects relevant facts
about the star curve from [?]. (Point (4) is an adaptation of a similar
statement in [?], based on the fact that T = 3κD′ − 8κ′D.)

Theorem 8. (See [?].) Let γ be a smooth Jordan curve whose curvature
is nowhere zero.

(1)The image of γ∗ is a single point iff γ lies in a conic section iff T ≡ 0.
(2)The curve γ∗ has a non-regular point at a parameter value t0 iff

T(t0) = 0.
(3)The curve γ∗ has a cusp at any non-regular point at which T vanishes

with odd multiplicity, and has behavior geometrically indistinguishable from
that at a regular point at which T vanishes with even multiplicity.

(4)If T has finitely many zeros, and if ta < tb are such that D(ta) = 0
and D(tb) = 0 but D is non-zero on (ta, tb), then there are an odd number
of zeros of T on (ta, tb).

(5)No regular point of γ∗ in Π0 is an inflection point.

The discussion so far in this section has concerned general smooth Jor-
dan curves. Now we begin our consideration of curves which are cycles of
quadratic systems.

Lemma 9. Let {γs | s ∈ S ⊂ R} be a family of Jordan curves satisfying
(1) for each s, γs is a cycle of a quadratic system Xs, containing (0, 0) in
its interior, and (2) each γs is parametrized as xs = rs(θ) cos(θ), ys(θ) =
rs(θ) sin(θ), and r : R × S → R is a C∞ function. Suppose that for
s = s0, γs0 is such that Ts0 has a simple zero at θ = θ0. Then there are
neighborhoods Ŝ of s0 and Θ̂ of θ0 so that for each s in Ŝ, Ts has a unique
zero in Θ̂, and it is simple.

Lemma 10. Let γ be a cycle in a quadratic system X which is neither a
circle nor an ellipse. Then at no parameter value t0 is T (t0) = T ′(t0) = 0.
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Proof. Let nj(t) denote the vector (f (j−1)
0 (t), f (j−1)

1 (t), f (j−1)
2 (t)), the

normal vector to the plane Zj(t) determined by the vanishing of the quan-
tity ζj(t) of (??). Recall that the intersection of the planes Z1(t) through
Zk(t) picks out those linear transformations µ making the first k derivatives
of the curvature vanish at µ〈γ〉(t), and that T(t) is a non-zero multiple of
Tdet(t) := det[n1(t)n2(t)n3(t)]. Thus T(t0) = 0 if and only if µ〈γ〉(t0) is
a triple vertex. By the Leibniz rule for differentiating the determinant of
a matrix, T′(t) = det[n1(t) n2(t) n4(t)], so T′(t0) = 0 as well if and only if
n4(t0) ∈ span{n1(t0), n2(t0)}, i.e., if and only if the first four derivatives
of the curvature vanish at µ〈γ〉(t0). By Proposition ??(1) and Remark ??,
this is impossible, no matter where γ∗(t0) may lie in S2.

Proposition 11. Let {γs | s ∈ S ⊂ R} be a family of Jordan curves
satisfying hypotheses (1) and (2) of Lemma ??, and additionally that no
cycle γs lies in a conic section. Then for each s ∈ S, Ts has only simple
zeros. In particular, the number of cusps on γ∗s is the same for all s ∈ S.

Proof. Theorem ??(1) implies that Ts is non-trivial, and by Lemma ??
Ts has only simple zeros. Thus the result follows directly from Lemma ??
and Theorem ??(3).

The following theorem was proved in [?].

Theorem 12. (See [?].) Let γA and γB be cycles of quadratic systems
XA and XB, respectively, having the same orientation. Then there is a
C∞ arc α from [0, 1] into the space of quadratic vector fields (identified by
their coefficients with R12) such that α(0) = XA, α(1) = XB, and such
that for each s ∈ [0, 1] the vector field α(s) has a cycle γs so that the family
{γs | 0 ≤ s ≤ 1} satisfies (1) γ0 = γA and γ1 = γB, (2) the family is C∞ in
the sense that there is a C∞ arc β : [0, 1] → R2 so that for each s ∈ [0, 1],
β(s) ∈ γs, and (3) for every s ∈ (0, 1) γs is a limit cycle which does not lie
in a conic section.

To properly connect two quadratic cycles will mean to connect them by
an arc provided by Theorem ?? in such a way that no intermediate cycle
lies in a conic section, hence so that none of the corresponding intermediate
star curves reduces to a point.

We easily obtain the following fact of independent interest concerning
star curves of quadratic cycles.

Theorem 13. The star curve of a cycle of a quadratic system, unless it
reduces to a point, has exactly six cusps.

Proof. For ε sufficiently close to zero, the star curve of any cycle γ1

sufficiently close to the circle of radius 1 in the period annulus surrounding
the center at (0, 0) in the quadratic Hamiltonian system ẋ = −y, ẏ = x+εx2
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has six cusps. (Computational details are given in Example 3.8 of [?].)
Given a cycle γ of a quadratic system, use Theorem ?? to properly connect
it to γ1. With obvious modification Proposition ?? applies, from which we
conclude that the number of cusps on the corresponding star curves does
not change along the arc, giving the result.

The star curve γ∗1 corresponding to the curve γ1 introduced in the proof
of Theorem ?? is a simple closed curve lying wholly within Int(F ), hence
projects to a simple closed curve in Π0, for which a positive orientation is
defined. It has six approximately equally spaced cusps; the tangent vector
to each smooth arc turns about 1/3 revolution clockwise running from one
cusp to the next. For this reason, γ∗1 (positively oriented) will be referred
to as the snowflake.

The work done so far combines to yield the following description of the
affine differential geometry of quadratic cycles. We will show in Section ??
that all possibilities in Theorem ??(2) are realized.

Theorem 14. Let γ be a cycle of a quadratic system which is not a
circle or an ellipse.

(1)There are exactly six affine vertices on γ, all simple.
(2)There is an arc (possibly all of γ) along which γ is elliptically curved.
(3)There are at most three disjoint arcs along which γ is hyperbolically

curved.
(4)Each arc in (3) contains a single affine vertex; each pair is separated

by an odd number of affine vertices.

Proof. By the discussion in the paragraph immediately preceding Theorem
??, zeros of T correspond to affine vertices. By Lemma ?? and point (3)
of Theorem ??, they also correspond to cusps of the star curve. Point (1)
now follows from Theorem ??.

Since cusps of γ∗ correspond to zeros of T, and intersections of γ∗ with
∂F correspond to zeros of D, by Theorem ??(4) up to three of the six
cusps on γ∗ can lie outside F . By the discussion in the second paragraph
preceding Theorem ??, points of γ∗ outside F correspond to points at which
γ is hyperbolically curved, so that point (2) and the first part of (3) are
established. The second part of point (3) follows by Theorem ??(4).

Along similar lines we have the following result.

Theorem 15. Let γ be a cycle of a quadratic system.

(1)Any vertex of γ has order at most three.
(2)A multiple vertex of order three is an affine vertex, at which γ is

elliptically curved.
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Proof. The first point is a consequence of Proposition ??(1).
If A is a vertex of order three, then κ̇ = κ̈ = κ(3) = 0 but κ(4) 6= 0. A

simple computation shows that the osculating circle C to γ at A has 6-point
contact with γ at A, hence is the osculating conic Γ. Thus (2) follows.

In order to bound the number of vertices of quadratic cycles, we must
understand how the star curves vary during the homotopy of one quadratic
cycle into another provided by Theorem ??. We begin with three prelim-
inary propositions, the first of which applies to general curves, not just
quadratic cycles.

Proposition 16. Let A be a regular point of a smooth planar curve γ
whose curvature never vanishes. Then the tangent great circle to γ∗ at the
corresponding point A∗ contains a point in Int(F ), hence has exactly two
points of intersection with ∂F .

Proof. If we parametrize γ by arclength and rotate to make the tangent
line at A horizontal, then from (??) and (??) we obtain ζ1(t) = κ′µ0 +
(−3κ2)µ1 + 0 · µ2 . Thus the equation of the tangent great circle (actually
of the corresponding plane Z1) is

(κ′)µ0 + (−3κ2)µ1 = 0 . (12)

Taking the (µ0, µ1)-plane to be horizontal, Z1 is a vertical plane deter-
mined by the line (??) in the (µ0, µ1)-plane, and because κ 6= 0, that line is
not the µ1-axis, µ0 = 0. Thus the tangent great circle passes through the
north and south poles (0, 0,±1), but is not tangent to ∂F . Thus besides
the crossing at N : (0, 0, 1), it has a non-antipodal crossing of ∂F as well,
which implies the result.

Proposition 17. Let γ be a cycle of a quadratic system. Then γ∗ ⊂
S2 \ (−F ).

Proof. If γ is such that γ∗ * F , properly connect γ1 to γ (Theorem ??),
inducing a homotopy from γ∗1 to γ∗ for which γ∗s never reduces to a point.
By parts (3) and (4) of Theorem ?? the mechanism by which γ∗s first fails
to lie in F is that a cusp C on γ∗s crosses ∂F . Similarly, γ∗s could first fail
to lie in S2 \ (−F ) only by means of a cusp crossing ∂(−F ). It is clear
that since zeros of T correspond to cusps on γ∗s , zeros of D to intersections
of γ∗s with ∂F and ∂(−F ) = −∂(F ), and by Proposition ?? no bifurcation
of C into additional cusps is possible, Theorem ??(4) would be violated if
C were to enter −F .

The ideas involved in the proof just given show that if C is a cusp on
a positively oriented star curve γ∗ of a quadratic cycle γ, and if C lies
outside F , then there are unique points O (for “Out”) and I (for “In”) on
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γ∗ ∩ ∂F such that proceeding from O to I in the positive direction along
γ∗, C is the unique cusp encountered. The tangents to γ∗ at O and I are
significant.

Proposition 18. Let γ be a cycle of a quadratic system. Let C be a cusp
on γ∗ which lies outside F , and let ` and m be the tangent great circles to
γ∗ at its points of intersection O and I with ∂F , respectively, where the
parametrization of γ∗ induces the ordering O−C−I, and let Õ and Ĩ denote
the second intersections of ` and m with ∂F , which exist by Proposition ??.
Let W and −W be the points of intersection of ` and m in S2.

(1)C lies in the curvilinear spherical triangle bounded by the arcs (−Õ)W
and (−Ĩ)W of ` and m, and the arc (−Õ)(−Ĩ) ⊂ ∂(−F )

(2)The arcs OC and CI of γ∗ lie in the curvilinear triangle bounded by
the great circle arcs OC and CI, and the arc OI ⊂ ∂F .

Proof. This is an immediate consequence of Proposition ?? and part (5)
of Theorem ??.

Corollary 19. In Π0, the lines ` and m of Proposition ?? are either
parallel or intersect at a point W ∈ Π0 \ F .

Now consider a positively oriented, piecewise smooth simple closed planar
curve δ, consisting of K smooth arcs δk, k = 1, . . . , K, with tangent vector
fields τk. At the kth corner let ρk denote the positive angle from τ−k , the
limiting position of the tangent vector approaching the corner along the arc
preceding it, to τ+

k , the limiting position of the tangent vector approaching
the corner along the arc following it, in the ordering induced by positive
orientation. Then the index ι(δ) of the curve (or the tangent vector field
to the curve) may be defined as

ι(δ) :=
K∑

k=1

ι(δk) +
1
2π

K∑

k=1

ρk , (13)

where ι(δk) is the usual index of the tangent vector along the smooth arc
δk. (Compare with Corollary VII.2.1 of [?].)

By Theorem ?? an arbitrary quadratic cycle γ can be connected to the
quadratic cycle γ1 which gives rise to the snowflake γ∗1 , for which a positive
orientation is defined. Thus γ∗, however complicated it may be, receives
an orientation by the homotopy of the correctly oriented γ1 to γ. This is
what will be meant by the positive orientation of γ∗.

In [?] it is shown that for a general smooth near-circle curve γ, under
suitable parametrization the corresponding local coordinate parametriza-
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tion (λ∗1(t), λ
∗
2(t)) of the star curve γ∗ satisfies

λ∗1
′(t, ε) ∼ (− sin 2t + εh1(t, ε)) Tdet(t, ε)

λ∗2
′(t, ε) ∼ (cos 2t + εh2(t, ε)) Tdet(t, ε) ,

where ε > 0 is a small parameter measuring closeness to the circle.
The following proposition is an immediate consequence.

Proposition 20. Let δ∗ be the star curve of a near-circle cycle in the
phase portrait of a smooth planar vector field, having K corners and K
smooth arcs δ∗k, and suppose that δ∗ is simple. Let ρk be the limiting rota-
tion angle at the kth corner, as defined above. If δ∗ is positively oriented
(in local coordinates), then:

(1)
∑K

k=1 ι(δ∗k) = −2
(2)ρk = π for all k .

It is possible that the star curve of a quadratic cycle have non-empty
intersection with the great circle µ0 + µ2 = 0 in S2, so that in local co-
ordinates, as the point At traces out γ in R2, the corresponding point
A∗t ∈ γ∗ ⊂ Π0 crosses the line at infinity, returns to the finite plane, and
exits and returns again. Nevertheless, a well-defined index can still be as-
signed to the corresponding local coordinate representation γ∗ ⊂ Π0, which
properly extends (??).

It is this index which is constructed and evaluated in the following propo-
sition.

Proposition 21. Let γ be a quadratic cycle, oriented in such a way that
the star curve γ∗ is positively oriented. Then ι(γ∗) = 1− I, where I is the
number of cusps of γ∗ that lie in the hemisphere U− : µ0 + µ2 < 0.

Proof. For the (positively oriented) snowflake γ∗1 (from the proof of
Theorem ??), by (??) and Proposition ?? the index is ι(γ∗1) = −2+6π/2π =
+1.

For a general quadratic cycle γ, properly connect γ to γ1 (Theorem
??). If γ∗ ⊂ S2 lies wholly within U+ : µ0 + µ2 > 0, then ι(γ∗) varies
continuously with the homotopy, hence has constant value +1.

If γ∗ has a cusp lying in µ0 + µ2 ≤ 0, it is easiest to think in terms of
the homotopy of the star curves within Π0 as a cusp C crosses the line
at infinity, i.e., as the corresponding cusp in S2 crosses the great circle
µ0 + µ2 = 0. By a rotation we can arrange that the tangent to γ∗ at
the cusp C which crosses the line at infinity be horizontal. Just after the
cusp has crossed infinity, there are two asymptotes ` and m, which are the
coordinate representations of the great circles tangent to γ∗ ⊂ S2 at its
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crossings with µ0 + µ2 = 0, call them C` and Cm. There are points B
and D on γ∗ so that as γ∗ ⊂ Π0 is traced out with positive orientation,
we first encounter B, at which the tangent line is horizontal, then C, then
D, at which again the tangent line is horizontal. On the original γ∗ ⊂ S2

we encounter B, then C`, then C, then Cm, and finally D, but C` and Cm

have no image in Π0. The contribution to ι(γ∗) of the subarc of γ∗ from D
to B (which contains all the cusps but C) is the same as before C crossed
infinity. The tangent vector to γ∗ is turning counterclockwise between C`

and Cm. Thus the contribution from B to C`, along which the tangent is
still turning to the right, exactly cancels with the contribution from C` to
C, and the contribution from C to Cm exactly cancels with that from C
to D. Thus the contribution to the index from the smooth arcs and all
cusps but C is unchanged. At C the tangent vector now jumps π radians
clockwise, rather than counterclockwise, as was previously the case, so its
contribution to the index drops by 1.

A loop in the star curve γ∗ occurs if there exist parameter values t1 and
t2 for which γ∗(t1) = γ∗(t2), and there is no cusp γ∗(t) for t1 < t < t2.
Two loops, on parameter intervals [t1, t2] and [t3, t4] respectively, are non-
overlapping if t2 ≤ t3 or if t4 ≤ t1. It is apparent from the discussion in
the proof of Proposition ?? that any loop must lie wholly within F .

Proposition 22. Let γ be a cycle of a quadratic system. Then the star
curve corresponding to γ has at most three non-overlapping loops.

Proof. Assuming that γ∗ is positively oriented, each smooth arc makes
a negative contribution to the index. (By “smooth arc” we mean an arc
joining one cusp to the next, even if one of the cusps lies in U−, so that in
Π0 the arc is actually composed of two components.) Since each loop must
lie wholly within F , where the tangent vector to γ∗ is turning clockwise,
each loop that overlaps with no other loop contributes 1

2π (−π−ε1) < − 1
2−ε

to the index, for some ε1 > 0, since the tangent vector must turn at least
π + ε1 radians clockwise as the loop is traced out. Recall from the proof of
Proposition ?? that each cusp in U+ (respectively, in U−) contributes + 1

2
(respectively, − 1

2 ) to the index. Thus when I cusps lie in U−, if there were
N ≥ 4 non-overlapping loops, then by (??)

ι(γ∗) =
6∑

k=1

ι(αk) + (3− I) < N(−1
2
− ε) + (3− I) ≤ (1− I)− 4ε ,

contradicting Proposition ??.

Restrictions on the star curve of a quadratic cycle combine to give the
following result.
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Theorem 23. Let γ be a cycle of a quadratic system. Then the image
of γ under nonsingular linear transformation has at most twelve vertices,
counting multiplicity.

Proof. By (??) we must show that for B ∈ Int(F ), W (γ∗, B) ≤ 4.
Winding numbers are most readily computed using coordinates arising from
stereographic projection, but in order to exploit Theorem ??(5) so as to
relate W (γ∗, B) to the number of loops and cusps on γ∗, we must work in
the local coordinates arising from central projection. Thus we first explain
how W (γ∗, B) can be computed in Π0 in the coordinates of (??), even
when γ∗ has more than one component. We will continue to use the same
notation for objects in S2 and their images in Π0 under central projection,
but for clarity we will place tildes over points and rays in Π0 arising from
stereographic projection, and as before let γ∗∗ denote the image of γ∗ ⊂ S2

under stereographic projection.
Fix the positive orientation of γ∗, fix B ∈ Int(F ) \ γ∗, and let B̃ :=

ψ ◦ φ−1
+ (B). Choose any ray ρ̃ in Π0 with endpoint B̃, nowhere tangent to

γ∗∗, and not passing through either a cusp on γ∗∗ or a point of intersection
of γ∗ with the great circle µ0 +µ2 = 0. Let R denote the great circle which
projects to the line containing ρ̃.

W (γ∗∗, B̃) is the difference, with the correct choice of sign, between the
number of left-to-right and right-to-left crossings of ρ̃ by γ∗∗ as ρ̃ is traced
out, starting at B̃. By Proposition ?? there will be no crossing beyond the
finite initial segment of ρ̃ which is the projection of the arc in R running
from B to ∂(−F ).

Suppose that the opposite ray to ρ̃ intersects ∂F at Ã, and let A =
φ+ψ−1(Ã). In the usual coordinates arising from central projection the
initial segment of ρ̃ corresponds to the union ρ of disjoint rays ρ+, with
endpoint B, and ρ−, with endpoint A, in the line

←→
AB; the induced direction

is from B to infinity in ρ+ followed by infinity to A in ρ−.
Under stereographic projection the two curves γ∗ ⊂ S2 and −γ∗ ⊂ S2

project to distinct curves, the curve γ∗∗ and a curve that we will denote
−γ∗∗. In the computation of W (γ∗∗, B̃) crossings of ρ̃ with −γ∗∗ are ig-
nored. In central projection both γ∗ and −γ∗ map to the single curve that
we have also denoted γ∗. For the remainder of this proof it will be conve-
nient to denote by γ∗+ (respectively, γ∗−) the image under central projection
of the branch of γ∗ in S2 having non-empty intersection with F (respec-
tively, with −F ). The direction of the turning of the tangent reveals which
branch is the pre-image. In computing W (γ∗, B) in Π0 using central pro-
jection, crossings of γ∗− with ρ+ (respectively, of γ∗+ with ρ−) are ignored.
The remaining intersection points will be termed relevant.

Turning now to the proof of the theorem, for fixed B ∈ Int(F )\γ∗ choose
a ray ρ̃ as described above, and let ρ+ and ρ− be the two corresponding rays
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under central projection, and ρ their union, directed as described earlier.
By a rotation we may assume that line

←→
AB is horizontal and that A is to

the right of B. We will write the rays as ρ+ = (−∞, B] and ρ− = [A,∞).
Tracing out ρ starting at B, at any intersection with γ∗ at which γ∗

is locally concave right (resp., concave left), i.e., locally like the graph of
x = y2 (resp., x = −y2), the winding number increases (decreases) by one
in crossing γ∗. By Proposition ??, the winding number is zero at any point
of ρ− sufficiently close to A. Thus if N (resp., N + S) is the number of
crossings at which γ∗ is locally concave right (left), then N and N + S are
in Z+ ∪ {0} and S = W (γ∗, B).

The remainder of the argument is a modification of that given for the
similar theorem (Theorem 3.21) of [?]. Fix a relevant point p ∈ ρ ∩ γ∗

at which γ∗ is locally concave left. We claim: letting q denote the next
point of intersection of γ∗ with the line

←→
AB when proceeding along γ∗ in

either direction from p, either the arc pq contains a loop or a cusp, or q is
a relevant point in ρ at which γ∗ is locally concave right.

Given the truth of the claim, we have associated to each relevant point
p of γ∗ ∩ ρ at which γ∗ is locally concave left a pair from among the set
of loops, cusps, and relevant points at which γ∗ is locally concave right. A
loop or a cusp is associated to a unique such point p, but a point q may be
associated with up to two such points p. Thus 2(S+N) ≤ 2N +#(loops)+
#(cusps).

Applying Theorem ?? and Proposition ?? we obtain W (γ∗, B) = S ≤ 4,
as required.

To prove the claim, first suppose that p lies in (−∞, B], and proceed
along γ∗ from p. If the arc pq is connected, then the claim is immediate.
See Figure 4 of [?] for an illustration. If proceeding from p the arc crosses
the line at infinity before q is reached, then we may assume that the arc pq
contains no loop, else there is nothing to prove. If the remote component
of the arc pq intersects

←→
AB at all, by Proposition ?? it does so at a point of

[A,∞). If there is no such intersection point, then the remote component
contains the cusp that has crossed the line at infinity. If the remote com-
ponent intersects [A,∞), the intersection point is q. The reversal of the
direction of turning of the tangents in γ∗− implies that γ∗ is locally concave
right at q, as required.

Now suppose that p lies in [A,∞). If in moving along γ∗ from p the arc
pq is connected, it lies wholly in γ∗−. If it does not contain a cusp (it cannot
contain a loop), q lies to the left of p and γ∗ is locally concave right at q.
By Proposition ?? again q cannot lie to the left of A, so q ∈ ρ− ⊂ ρ.

If the arc pq is not connected, and does not contain the unique cusp C
on the component of γ∗− containing p, then the arc obtained in proceeding
along γ∗ from p in the opposite direction does contain C, and need not
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be considered further. Let O, I, and W be as in Proposition ??. We
may assume without loss of generality that the arc under consideration
is obtained by travelling downward from p along γ∗, and that the first
intersection with ∂F is O rather than I. There is no loop or cusp on the
subarc of γ∗ in question between p and O.

By Proposition ??(1) the subarc of γ∗ near O lies on the opposite side
of
←−→
OW from p. If

←−→
OW is either horizontal, or crosses

←→
AB to the right of p,

then (−∞, A] lies on the same side of
←−→
OW as p. The portion of pO in γ∗+

lies on the opposite side of
←−→
OW from p, hence the subarc pO of γ∗ cannot

intersect (−∞, B]. Since γ∗ is tangent to
←−→
OW at O and lies to one side of

it, there must be a loop or a cusp in the arc Oq in order for γ∗ to cross←−→
OW and intersect (−∞, A] at q.

If
←−→
OW crosses

←→
AB to the left of p, then the point K of intersection

lies outside F and to the left of B. For by Proposition ??
←→
AB must be

obtainable (before the rotation that makes it horizontal) by rotating
←→
OC at

C in the direction that gives an inclination equal to that of some ray in the
angle ∠WOC. K is outside F , and the ordering along

←→
AB is K−B−A−C;

parallel translation (to produce p) yields the order K−B−A −p; thus
rotating

←→
AB to be horizontal puts K to the left of B. Tracing γ∗ from

p, when the line at infinity is crossed, γ∗+ lies on the opposite side of
←−→
OW

from p hence from B, since K is to the left of B. If the subarc pO of γ∗

intersects
←→
AB, q lies outside F , hence in (−∞, B], so that it is relevant

(and γ∗ is locally concave right there). If it does not, then either Oq lies
in F , and since q is on the same side of

←−→
OW as B, there must be a loop or

a cusp in Oq in order to cross
←−→
OW , or Oq does not lie in F , in which case

it contains a cusp (by the proof of Theorem ??).

We note that when there exists a point z ∈ F for which W (γ∗, z) = 0,
then the proof of Theorem 3.21 in [?] can be copied practically verbatim
to establish the conclusion. (We believe that such a point exists; see Con-
jecture ?? below.) When no such point z exists, somewhat more involved
arguments show that the constraints on γ∗ arising from Theorems ?? and
?? imply that there are only three essentially different configurations pos-
sible, so an independent proof of Theorem ?? can be obtained by deriving
and inspecting these configurations.

A bound on the number of vertices of a quadratic cycle is now immediate.

Theorem 24. Any non-circular cycle in a quadratic system has at most
twelve vertices.

Proof. Given a cycle γ of a quadratic system, we have just established
that for any nonsingular real linear transformation of the plane, the image
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curve γ̄ of γ under the linear transformation has at most twelve vertices.
Since the transformation could have been the identity, γ itself had at most
twelve vertices.

To contrast the estimate which can be made using specific properties of
quadratics with what can be done (or at least, has been done so far) in the
general case, we present the following more general theorem.

Theorem 25. Let X be a polynomial vector field of degree n, and γ a
cycle appearing in the phase plane of X. Then γ has at most 2(6n−2)(7n−
3) vertices, and at most 2(21n− 9)(22n− 10) affine vertices.

Proof. Let X = (P, Q), and let γ be a cycle of X. A vertex of γ
corresponds to a crossing of γ and the algebraic curve κ1(x, y) = 0, so to
bound the number of crossings we bound the number of contacts of X with
κ1(x, y) = 0.

Such a contact corresponds to an intersection of the algebraic curves
κ1 = 0 and κ1xP + κ1yQ = 0. Since the former has degree 6n − 2 and
the latter has degree 7n− 3, by Bézout’s Theorem ([?]) there are at most
(6n− 2)(7n− 3) such intersection points.

The worst conceivable case is that in which each intersection point lies
on a distinct branch of the algebraic curve κ1 = 0. Then each of the two
topological rays of the branch as determined by the contact with X is an arc
without contact for X, hence γ can intersect each ray at most once. Since
the vertices lie in κ1 = 0, there can be therefore at most 2(6n− 2)(7n− 3)
vertices on γ.

The same argument applies in the case of affine vertices, but with κ1(x, y)
replaced by T(x, y). In fact we may use Tdet from the proof of Lemma ??;
by formulas (??) it has degree 21n− 9, which leads to the stated bound on
the number of affine vertices.

5. EXAMPLES AND CONJECTURES

Computational expressions for the affine and euclidean curvature of a
plane curve are notoriously complicated. As noted before, applying (??)
to the expression (??) yields a tenth order polynomial function in x and y.
Typically period annuli about centers in Hamiltonian systems are easiest
to analyze.

Suppose that the saddle point on a polycycle of a Hamiltonian system is
hyperbolic. Linearization of the saddle suggests that cycles in the period
annulus that are sufficiently close to the polycycle will be hyperbolically
curved near the saddle point, and this is indeed the case. Since there exist
quadratic Hamiltonian systems which have polycycles with one, two, and
three saddle points, all hyperbolic, we obtain examples of quadratic cycles
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having exactly one, two, or three hyperbolically curved subarcs, as allowed
by Theorem ??. The specific example ẋ = −x(x+2y−1), ẏ = y(2x+y−1),
which has an invariant triangle bounded by the two coordinate axes and
the line with equation x + y = 1, is instructive. Small cycles about the
center have four vertices, but those near the triangle have six.

When the curve κ1 = 0 is plotted inside the period annuli of concrete
examples, we always find either two or three branches (sometimes crossing
at points other than the center, as in the example just cited), so that cycles
in the period annuli have either four or six vertices.

Although there exists a near-circle closed curve γ in the plane, with
nowhere vanishing curvature, for which γ∗ has as many as three loops, for
every quadratic cycle γ for which the star curve has been computed, γ∗ has
turned out to be essentially the snowflake: always a simple closed curve,
up to three of whose six cusps can be located outside the region F , but
such that Int(γ∗) does not completely cover F . Combined with the first
parts of Propositions ?? and ?? and Remark ??, this suggests the following
conjecture.

Conjecture 26. A cycle γ of a quadratic system has at most six vertices,
counting multiplicity.

In terms of the role that star curves play for the effect of linear transfor-
mations of the plane, this also suggests:

Conjecture 27. Given cycle γ of a quadratic system, there is an open
set of nonsingular linear transformations of the plane changing the number
of vertices from four to six if γ does not lie in a conic section, and from six
to four in any case.

We remark that it is a consequence of a theorem in [?] that if a quadratic
cycle does not lie in a circle or an ellipse, then there is an open set of
nonsingular linear transformations such that for µ in this set, µ〈γ〉 has at
least six simple vertices.

The star curve construction shows that Conjectures ?? and ?? are im-
plied by the following conjecture.

Conjecture 28. A cycle γ of a quadratic system has at most one multiple
vertex (i.e., point at which κ̇ = κ̈ = 0).

We close with the following observation. If γ is cubic oval, that is, an oval
lying in the algebraic set H(x, y) = 0 for some cubic polynomial function
H(x, y), then γ is a cycle for the quadratic system X = (−Hy,Hx). Thus
the geometric statements in Proposition ?? and Theorems ??, ??, and ??
are also statements about cubic ovals.
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