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We study some aspects of the dynamics of an analytic vector field X in a
neighbourhood of an invariant non-singular curve Γ in R3. Namely, the spi-
raling behaviour: any trajectory of X spirals asymptotically around Γ. This
is measured by means of the angle, θ, and the distance, r, functions of the
trajectories with respect to cylindrical coordinates around Γ. Coordinates are
called balanced if these functions are monotone, which is not an intrinsic prop-
erty. Balanced coordinates always exist in the case of elementary singularity
(non-nilpotent linear part) and we show, in the general case when Γ is not
contained in the singular locus of X, the existence of coordinates for which the
angle is monotone. These are obtained as maximal contact coordinates for the
reduction of the singularity. The results can be viewed as generalizations of the
corresponding results in dimension two which we study first as a motivation.
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1. INTRODUCTION

Let X be an analytic vector field on a manifold M and let γ be a tra-
jectory of X defined in a maximal interval [0, b) ⊂ R. In general, γ can
have complicated asymptotic behaviour: accumulation to every point in
M , chaotic dynamics, etc. Only in particular situations we have a satisfac-
tory description; the classical case is when M is two-dimensional and has
genus zero, by Poincaré-Bendixon’s Theorem.

We concentrate our attention to the simplest case from the dynamic
point of view: γ has a single ω-limit point

ω(γ) = lim
t→b

γ(t) = p ∈ M.
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In this situation, b = ∞ and p is an equilibrium point. This is the case for
the important class of analytic gradient vector fields, for which trajectories
have finite length and accumulate to single points [?]. We want to study
geometric asymptotic properties of γ while it approaches p. For instance,
one important property is the existence of a well defined tangent at p, which
is also true for gradients [?]. In this paper, we investigate some aspects of
another property which is the spiraling behaviour, in case n = dim M is 2
and, mostly, 3. Since our study is local, we can put M = Rn and p = 0
using an analytic chart.

In dimension two, to say that γ spirals around a point means that the
angle θ(t) of points γ(t) of the trajectory diverges to +∞ or −∞. This
angle, obtained from polar coordinates x = r cos θ, y = r sin θ is not known
explicitly and depends on the coordinates (x, y). The aim of this work is to
find systems of coordinates that provide monotonicity of θ(t) as a function
of t. If this is the case, then θ = θ(t) can be consider as a parameter and
the single function θ 7→ r(θ) determines γ. Theorem ?? solves this question
for all trajectories spiraling around a singular point of order one.

In section 3, we investigate the same question in dimension three. First,
we want to give a meaning to the phrase “γ is a spiraling trajectory”.
A priori, it makes no sense to say that γ spirals around a point, as in
dimension two. What we have in mind is the axial spiraling : roughly
speaking, γ makes spirals around an analytic curve Γ through 0. This is
the subject of the work [?] in a general setting. In this paper, we only
consider the case where Γ is a regular curve, for which the notion of axial
spiraling is more “visual” and represents a good generalization of spiraling
in dimension two.

More precisely, let Γ be an analytic non-singular curve given in some
coordinates (x, y, z) at 0 ∈ R3 by Γ = {x = y = 0} and write γ(t) =
(r(t) cos θ(t), r(t) sin θ(t), z(t)) in associated cylindric coordinates. Then
we say that γ spirals around Γ or that Γ is a spiraling axis for γ if the
angle θ(t) diverges to +∞ or −∞ while z(t) and r(t) go to zero as t →∞.
An additional condition also considered is that r(t) goes to zero faster
than any power of z(t). This means that γ and Γ are “infinitely close”
and so γ can have a single spiraling axis. It implies also the property
of existence of iterated tangents for γ, which we recall in paragraph 3.1,
and that Γ is invariant for X. We suppose that Γ is not contained in
the singular locus of X (non-degenerated). In this case there is an open
domain composed of trajectories spiraling around Γ ([?]). This situation
has already been studied in [?] for C∞ vector fields, where non-degenerated
means not infinitely flat along Γ.

Functions r(t), z(t) and θ(t) above determine the trajectory γ and it is
natural to ask for coordinates in which they have good properties. For
example, if they are monotone functions of t then coordinates (x, y, z) are
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called balanced . If only θ(t) is monotone, we call them monotone spiraling
coordinates. In paragraph 3.3, we propose some examples for which bal-
anced coordinates are not always possible. A general result, proved in [?],
is Theorem ??, which asserts that balanced coordinates exist at 0 if it is
an elementary singularity, that is, the linear part of the vector field is not
nilpotent.

The main result of this work is Theorem ??, which generalizes the cor-
responding result in dimension two. It asserts that, even if the singularity
is not elementary, there always exists a system of monotone spiraling coor-
dinates for a non-degenerated spiraling axis Γ. The proof of this theorem
reduces to the precedent one after Reduction of Singularities of X along
Γ, stated in Theorem ??, by means of blowing-ups of points and of curves
and some ramifications. In this reduction process, we need to choose co-
ordinates at each step in a controlled way, in order to assure that final
monotone spiraling coordinates are obtained from a suitable initial system.
This control is given by a Maximal Contact Surface, as in [?], which is the
subject of paragraph 3.6.3. The existence of maximal contact, stated in
Theorem ??, is important by itself.

The application of Theorem ?? to Theorem ?? is not automatic after
reducing the singularity to an elementary one; we need the technical version
of Proposition ??. The proof of this proposition uses the Newton Polygon
of a vector field (see [?]) and needs basically the whole proof of the most
important part of Theorem ??. For this reason and, in order to have a self-
contained work, we include paragraph 3.5 with the proof of Theorem ??.
It contains also a useful condition for an invariant regular curve, at an
elementary singular point, in order to be an spiraling axis. This condition
reduce the spiraling behaviour in dimension three to the spiraling in the
two-dimensional divisor after the blowing-up of the axis. In summary, the
whole section 3 can be viewed by itself as an independent study of axial
spiraling in dimension three, with emphasis to balanced coordinates.

2. SPIRALING TRAJECTORIES IN DIMENSION TWO

In this section X is a real analytic vector field defined in a neighbourhood
V of the origin of 0 ∈ R2, which we suppose to be a singular point; that
is, X(0) = 0. Our study depends only in the germ of X at 0, so we do
not mind about the size of V . Also, by means of analytic coordinates, we
can treat the case where X is a vector field in a real analytic manifold.
We summarize first some classical well known results [?, ?], following [?],
where elementary proofs can be found.
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Let γ : R≥0 → V be an asymptotically stable trajectory of X; that is,
such that it has a single ω-limit point

ω(γ) = lim
t→∞

γ(t) = 0,

(or, by reversing the time, an asymptotically unstable trajectory). Denote
by | γ |= {γ(t) / t ≥ 0} the (germ of the) trace of γ. There are only two
possible asymptotic behaviour for γ:

(a) It has a well defined tangent at 0: there exists the limit of secants

lim
t→∞

γ(t)
|| γ(t) || ∈ S

1 = {w ∈ R2 / || w ||= 1},

where || · || is an euclidean norm in R2. We call γ a characteristic trajectory .
(b) It has no tangent and then it spirals around the origin. This means

that γ cuts transversally any analytic semi-curve T at 0 infinitely many
times and, eventually for time t big enough, γ crosses T always in the same
sense, from one to another of the two sides locally determined by T . We
call γ a spiraling trajectory .

γ
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In the former case, γ has a good finiteness property: for any analytic curve
T at the origin, either |γ | is contained in T or γ cuts T only finitely many
times. A trajectory with this property is called non-oscillatory .

On the other hand, if γ is a spiraling trajectory then it oscillates with
respect to any analytic curve at 0. Moreover, the existence of a spiraling
trajectory determines the local dynamics of X: the origin is an attracting
point and any trajectory in a neighourhood accumulates to 0 an it is a
spiraling trajectory. The singular point 0 is then called a monodromic focus
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of X. Proof of this fact follows from the existence of a first returning map
P : T → T over an analytic semi-curve T using Poincaré and Bendixon’s
arguments (see [?]). Alternatively, we can use Reduction of Singularities
in dimension two [?, ?] that means the following: there exists an analytic
map π : M → V ⊂ R2, which is a diffeomorphism outside the total divisor
D = π−1(0) onto V \ {0}, and there exists an analytic vector field X̃ over
M with properties:
(1) Singularities of X̃ are isolated and the linear part of X̃ at each of them
is non nilpotent (elementary singularities).
(2) The push-forward vector field π∗(X̃ |M\D) is orbitally equivalent to
X |V \{0} (they have the same trajectories up to parameterization).
The vector field X̃ is called the strict transform of X. The map π is
obtained as a composition of blowing-ups.

If we know already that there is a trajectory γ of X that accumulates to
the origin, then we can determine if it is or not a monodromic focus of X
by means of a resolution of singularities π. More precisely, γ spirals around
0 if and only if D is invariant by X̃, the singularities of X̃ are contained in
D and they are either hyperbolic saddle points with both the stable and
the unstable manifold also contained in D or saddle-nods with the same
topological saddle behaviour.

π

0
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Unfortunately, to know if such a γ exists is not an easy question. Its
answer contains in particular the solubility of the center-focus problem.
For instance, as a consequence of Dulac’s theorem [?, ?], we can say that
if there are no asymptotically stable or unstable trajectories then 0 is a
center for X. In this case, the configuration of the strict transform X̃ in a
resolution of singularities will be also as in the monodromic focus case.
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2.1. Monotone spiraling coordinates
Take some analytic coordinates (x, y) in V and write in these coordinates

t 7→ γ(t) = (x(t), y(t)). Consider the polar coordinates

x(t) = r(t) cos θ(t)
y(t) = r(t) sin θ(t)

where r(t) = (x(t)2 + y(t)2)1/2 > 0 is the modulus of the vector γ(t) ∈ R2

and θ(t) ∈ R is its angle in a universal covering R → S1. Possibilities (a)
and (b) above for γ can be red as

(a) γ is a characteristic orbit if and only if lim
t→∞

r(t) = 0 and lim
t→∞

θ(t) ∈ R
exists.

(b) γ is a spiraling trajectory if and only if lim
t→∞

r(t) = 0 and lim
t→∞

θ(t) is
either +∞ or −∞.
Thus, these asymptotics of the modulus t 7→ r(t) and the angle function
t 7→ θ(t) are independent of coordinates (x, y).

Suppose, for the rest of this paragraph, that γ is a spiraling trajectory.
The fact that the angle diverges does not imply that this function is mono-
tone.

Example 1. Let X be the vector field written in coordinates (x, y) in R2:

X = (y − x3)(y − 2x3)T − (x2 + y2)2R

where T = −y ∂
∂x + x ∂

∂y , R = x ∂
∂x + y ∂

∂y are respectively the tangential
and the radial vector field in the given coordinates. The origin 0 ∈ R2 is
the only singular point and, at other points, the coefficient of R is negative.
This means that X is transversal to any circle centered at 0 and X “points”
to the interior of such circles. Thus, any trajectory γ of X is defined for
all t ≥ 0 and satisfies ω(γ) = 0. Moreover, after reduction of singularities,
it can be seen that all singular points are hyperbolic saddles whose stable
and unstable manifold are contained in the divisor. Then the origin is a
monodromic focus of X. Given such a trajectory

γ : t 7→ γ(t) = (r(t) cos θ(t), r(t) sin θ(t))

in polar coordinates we see that θ(t) is not monotone. In fact, values t0
for which the derivative dθ

dt (t0) vanishes are geometrically determined by
the condition that X(γ(t0)) and R(γ(t0)) are collinear. The set of points
where X and R are collinear vectors is given by the union of the cubics
{y−x3 = 0}∪{y−2x3 = 0} and this set is intersected infinitely many times
by γ, a spiraling trajectory. The angle of γ increases outside these cubics
but it decreases inside them (it goes “back” in this region, see Figure 3).
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We remark in this example that the lack of monotonicity of θ(t) does not
depend on γ. It is a consequence of the existence of a curve of tangencies
between X and the radial vector field R; this last one depending on the
coordinates. We summarize this general fact in the following proposition
that provides a definition.

Proposition 2. Let X be an analytic vector field defined in a neigh-
bourhood of 0 ∈ R2 and suppose that 0 is a monodromic focus of X.
Given a system of analytic coordinates (x, y) at the origin, we denote by
r = (x2 + y2)1/2, θ = arctan y/x the associated polar coordinates. We have
exactly one of the following possibilities:

(i) The angle θ(t) of any trajectory γ of X accumulating to the origin is
ultimately monotone.

(ii) The vector field X is tangent to the radial vector field R = x ∂
∂x +y ∂

∂y

along an analytic curve (of dimension 1) and, in this case, the angle θ(t)
is not ultimately monotone for any such trajectory γ.

Definition 3. We say that (x, y) is a monotone spiraling system of
coordinates for X if and only if case (i) in the proposition above is satisfied.

Equivalently, (x, y) are monotone spiraling coordinates if there exists a
neighbourhood V of the origin such that X is transversal to R = x ∂

∂x +y ∂
∂y

in V \ {0}. In other terms, if we consider the analytic 1-form ω = ω(x,y) =
−ydx+xdy, the function ω(X) does not change sign in V \ {0}. In a more
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geometric way, X is transversal in V \ {0} to the foliation Fθ = {ω = 0}
whose leaves are the punctured straight lines through the origin.

Remark 4. Given coordinate systems (x, y) and (x′, y′) at the origin
related by a linear change of coordinates, the radial vector fields R =
x ∂

∂x + y ∂
∂y and R′ = x′ ∂

∂x′ + y′ ∂
∂y′ are the same. Hence, the concept of

monotone spiraling system is preserved by linear changes of coordinates.

The same concept of monotone spiraling coordinates can be applied for
a vector field with a center at 0 ∈ R2. We have the same proposition ??,
this time for closed trajectories γ surrounding the origin. We propose
the following example of a hamiltonian center written in non-monotone
coordinates.

Example 5. Consider coordinates (x, y) in R2 and the polynomial func-
tion

H = (y + 3x2)2 + x4

and let X be the hamiltonian (nilpotent) vector field X = −∂H
∂y

∂
∂x + ∂H

∂x
∂
∂y .

Level curves of H in R2 \ {0}, which are traces of trajectories of X, are
closed and smooth. Hence, X has a global center at the origin. All these
trajectories are tangent to the radial vector field R = x ∂

∂x + y ∂
∂y at points

of the analytic curve

{ω(X) = x
∂H

∂x
+ y

∂H

∂y
= 0} = {y + 4x2 = 0} ∪ {y + 5x2 = 0}.

On the other hand, if we consider new coordinates

x′ = x
y′ = y + 3x2

then level curves of H are given by quartics {y′2 + x′4 = cst}. They are
transversal to the radial vector field R′ = x′ ∂

∂x′ + y′ ∂
∂y′ and then (x′, y′) is

a monotone spiraling system of coordinates for X.

We prove the existence of a monotone spiraling system of coordinates in
general for a vector field whose singularity has order one.

Theorem 6. Let X be an analytic vector field in a neighbourhood of
0 ∈ R2, which is a monodromic focus or a center of X. Suppose that the
linear part DX(0) is not identically zero. Then there exists a monotone
spiraling system of coordinates for X.

Proof. Suppose first that 0 is an elementary singularity, that is, the
linear part DX(0) is not nilpotent. Then it is a center or a monodromic
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focus if and only if DX(0) has complex conjugate eigenvalues with non-
zero imaginary part. Take analytic coordinates (x, y) such that the linear
part is written in canonical form as

DX(0) =
(

a b
−b a

)

with b 6= 0. The function (−ydx + xdy)(X) = b(x2 + y2) + · · · has the
same sign as b and does not vanish in a punctured neighbourhood of the
origin. Thus (x, y) is a monotone spiraling system of coordinates. In fact,
any analytic system of coordinates at 0 is a monotone spiraling one.

Suppose now that the linear part DX(0) is nilpotent but not zero. In
some coordinates (x, y) we can write

X = −y
∂

∂x
+ · · ·

where · · · means terms of order ≥ 2. Takens’ formal normal form [?] of
such a vector field is

X̂ = −(y +
∞∑

k=m

akxk)
∂

∂x
+ εxl−1 ∂

∂y
,

with l ≥ 3, ε 6= 0 (or l = +∞, in which case ε = 0) and m ≥ 2 the first
integer for which am 6= 0 or m = +∞. This form is obtained after a formal
change of coordinates (see [?]). Nevertheless, the used method permits to
show that, for any q ≥ 1, there are analytic coordinates (x, y) for which the
first q-jet of the expression of X coincides with the first q-jet of X̂. In [?]
it is proved that X has a center or a monodromic focus at the origin if and
only if one of the following conditions for the normal form X̂ is satisfied:

(1) l = 2n < ∞, ε > 0 and m > n, or
(2) l = 2n < ∞, ε > 0, m = n and a2

m < 4ε.
(See also [?] about conditions that distinguish between center and focus).
Conditions (1) or (2) only concern with a finite jet jq(X̂) of the normal
form. In other words, having a center or a monodromic focus is a finitely
determined problem for nilpotent vector fields. Consider some analytic
coordinates (x, y) at 0 such that the q-jet of X in these coordinates coin-
cide with jq(X̂). Let’s proof that (x, y) is a monotone spiraling system of
coordinates for X. Write

X = −(y + amxm + · · · ) ∂

∂x
+ (εxl−1 + · · · ) ∂

∂y
,

where condition (1) or (2) holds and · · · denotes terms with higher order
than the explicit order in the expression. Consider ω = −ydx + xdy and
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write

ω(X) = y2(1 + A(x, y)) + yB(x) + C(x).

By condition (1) or (2) we have C(x) = xl(ε+O(x)) and m′ = ord(B) ≥ m.
Furthermore, if m ≤ l (for instance in case of condition (2)), then m = m′

and B(x) = xm(am + O(x)). In any case, either B ≡ 0 or we write
B(x) = xm′

(a′ + O(x)), where m′ < ∞ and a′ = am if m′ = m.
Consider quasi-homogeneous coordinates x = rx̄, y = rnȳ for (x̄, ȳ) ∈ S1

and write

ω(X)(x, y) = rl(ȳ2 + a′rm′−nx̄m′
ȳ + εx̄l + O(r))

= rl(φ(x̄, ȳ) + O(r)),

where φ ∈ R[x̄][ȳ] is a quadratic polynomial and O(r) is analytic in (r, x̄, ȳ)
and vanishes for r = 0. The discriminant ∆ of φ is given by

∆ =
{ −4εx̄l in case (1)

(a2
m − 4ε)x̄l in case (2) .

In both cases, φ does never vanish as a function on S1 and then, there
exists a constant C > 0 such that | φ(x̄, ȳ) |≥ C, ∀(x̄, ȳ) ∈ S1. This implies
that ω(X) has a constant sign in a punctured neighbourhood of the origin
of the form {(x, y) = (rx̄, rnȳ) / 0 < r < δ} for δ sufficiently small. This
ends the proof.

The vector field in example ?? has order three at the origin and the
theorem above does not apply. Nevertheless, the reader can check that new
coordinates (x′, y′) with x′ = x, y′ = y − x3 form a monotone spiraling
system of coordinates.

2.2. Monotonicity of the modulus
Most of the time in this work we are interested in monotonicity of the

angle θ(t) of trajectories γ for some polar coordinates. However, we can
also look for monotonicity of the modulus function r(t). This is equivalent
for γ to be transversal to circles x2+y2 = cst in coordinates x = r cos θ, y =
r sin θ.

Monotonicity of r(t) is not possible for a center since any closed analytic
curve around the origin must be tangent to the circles.

Proposition ?? is also true for the modulus r(t) with the corresponding
slight modifications. In particular, r(t) is monotone if the vector field itself
is transversal to the foliation Fr = {x2 + y2 = cst} = {xdx + ydy = 0},
independently of γ. But Theorem ?? has no counterpart:
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Example 7. Let X be a vector field in a neighbourhood of 0 ∈ R2 written
in some coordinates (x, y) as

X = (y + f1(x, y))
∂

∂x
+ f2(x, y)

∂

∂y
,

with f1, f2 analytic functions of order ≥ 2. Suppose that 0 is a monodromic
focus. Put, in cylindric coordinates

(xdx + ydy)(X) = xy + xf1 + yf2 = r2(
sin 2θ

2
+ O(r)),

where O(r) vanishes at 0. We see that this function changes sign in V \{0}
for any neighbourhood V of the origin. Thus, X is not transversal to Fr in
V \ {0}. The reader can check that the same thing happens for any system
of coordinates.

On the other hand, we remark that transversality with Fr implies some
topological property of the dynamics of X without assuming a priori that
the origin is or not a monodromic focus: all trajectories in a neighbourhood
accumulate to the origin and X is locally topologically equivalent to the
radial vector field x ∂

∂x + y ∂
∂y . A somewhat analogous result for the angle

is false:

Example 8. Consider in R2 the vector field

X = (x2 + y2)(−y
∂

∂x
+ x

∂

∂y
)− (x

∂

∂x
+ y

∂

∂y
).

All trajectories of X accumulates to the origin and they are transversal to
the lines {y/x = cst}; but the origin is not a center or a monodromic focus.

���������	��
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3. AXIAL SPIRALING IN DIMENSION THREE

In this section, X is an analytic vector field in a neighbourhood of 0 ∈ R3

and γ : R≥0 → R3 is an integral curve of X such that γ(t) 6= 0,∀t ≥ 0 and

ω(γ) = lim
t→∞

γ(t) = 0.

3.1. Blowing-up and iterated tangents
As in dimension two (and in general in any dimension), the existence of

well defined tangent for γ at the origin is defined as the existence of the
limit of secants

lim
t→∞

γ(t)
|| γ(t) || ∈ S

2.

The language of blowing-ups is well adapted to this definition. Recall that
the blowing-up of R3 at the origin is an onto analytic proper map π :
M → R3, M a 3-dimensional analytic manifold, such that its restriction to
M \π−1(0) is an isomorphism onto R3\{0} and the fiber D = π−1(0) ' P2

is identified with the set of directions of R3 at 0. This fiber D is called
the exceptional divisor of π. Let γ1 = π−1 ◦ γ : R≥0 → M be the lifted
parameterized curve of γ in M . It is a trajectory of a vector field X1 in M
called the (total) transform of X, which is uniquely characterized by the
property π∗X1 = X. Then, naturally, γ has a well defined tangent at the
origin if and only if γ1 accumulates to a single point

ω(γ1) = lim
t→∞

γ1(t) = p1 ∈ D.

We also say that p1 is the tangent of γ at 0.
The blowing-up construction is local. It can be made in an analytic

manifold at any point considering this point as the origin of an euclidean
space by means of a chart. In particular, once γ has p1 as a tangent, we
can ask if its lifted trajectory γ1 has or not a tangent at p1, and so on.

Definition 9. Put M0 = R3, γ0 = γ, π1 = π and p0 = 0. We say
that γ has the property of existence of all iterated tangents if there exists
a sequence of maps

M0
π1←− M1

π2←− M2 · · · πn←− Mn ←− · · ·

where, inductively for n ≥ 1, πn is the blowing-up with center pn−1 and
such that the lifted trajectory γn = π−1

n ◦ γn−1 has a single ω-limit point
pn = ω(γn). The sequence of points TI(γ) = {pn}n≥0 so constructed is
called the sequence of iterated tangents of γ.

Notice (see [?]) that, in dimension two, γ has all iterated tangents at its
limit point once it has the first tangent. This is not the case for higher
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dimension. So, in a natural way, if we study some asymptotic properties of
γ and we want these properties to be preserved by blowing-ups, we must
assume the existence of iterated tangents.

The first example of a trajectory γ with all iterated tangents is the case
where | γ | is contained in an irreducible analytic curve Γ through 0. In
this case, we denote TI(γ) = TI(Γ). Notice that an analytic curve Γ
is characterized by its sequence of iterated tangents TI(Γ) . On the other
hand, examples of non-analytic (even non-C∞) trajectories with all iterated
tangents can occur: consider the vector field X = −x ∂

∂x −λy ∂
∂y in R2 with

λ > 0 and take γ the integral curve of X with initial condition γ(0) = (1, 1).
Then | γ | is contained in the graph of the function x 7→ xλ, which is not
analytic at the origin if λ is irrational. The existence of iterated tangents is
already treated in [?], where the squence TI(γ) corresponds to a C∞-curve
at 0 (“generalized direction”) or to a formal curve Γ̂.

Blowing-up a curve. Let C ⊂ U be an analytic non-singular curve
through 0 ∈ R3 in an open set U . Recall that the (local) blowing-up with
center C is an analytic map

π : M → U ↪→ R3

such that π |M\π−1(C) is an isomorphism onto U \C and the divisor π−1(C)
is identified with the cylinder C × P1 of normal to C directions in R3. As
in the case of the blowing-up of a point, if X is a vector field in U and C
is invariant for X then there exists the transformed vector field X ′ in M
such that π∗X ′ = X. Let Γ be an analytic regular curve transversal to C
at 0. Then the strict transform Γ′ = π−1(Γ \ {0}) of Γ by π is also regular
in M and Γ′ ∩ π−1(0) is a single point p, called the (generalized) tangent
of Γ (or simply the tangent, with an abuse of terminology).

3.2. Notion of axial spiraling. Twister axis
We recall here some definitions and results from [?].
Let Γ be an analytic non-singular curve through 0 which does not inter-

sect | γ |. Take some analytic coordinates (x, y, z) at the origin such that
we have (as germs)

Γ = {x = y = 0}.

We call such coordinates adapted to Γ. Suppose that the trace |γ | is con-
tained in the half space {z > 0}. Take the associated cylindric coordinates
x = r cos θ, y = r sin θ, z = z and write

γ(t) = (r(t) cos θ(t), r(t) sin θ(t), z(t)).
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Call functions r(t) and θ(t) the modulus and the angle of γ around Γ,
respectively.

Definition 10. We say that γ spirals around Γ or that Γ is a spiraling
axis for γ if the following asymptotic behaviour holds:

(1) lim
t→∞

z(t) = 0 (since ω(γ) = 0).

(2) lim
t→∞

r(t)
z(t)n

= 0, ∀n ∈ Z≥0.

(3) lim
t→∞

θ(t) = +∞ or −∞.
We say that a non-singular analytic curve Γ is an spiraling axis for X if

it is so for some trajectory γ of X.

Example 11. Consider the vector field in R3

X = (−x− y)
∂

∂x
+ (−y + x)

∂

∂y
− z2 ∂

∂z
.

for which the vertical axis Γ = {x = y = 0} is invariant. Solutions of X
can be explicitly obtained as

γ(t) = (r0e
−t cos (t + t0), r0e

−t sin (t + t0),
z0

z0t + 1
), t ≥ 0.

We see that those trajectories γ for which z0 > 0 are contained in {z > 0}
and spiral around Γ.

γ
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Γ

Remark 12. Suppose that γ spirals around an axis Γ = {x = y = 0}
and let p : R3 → R2 be the linear projection given by p(x, y, z) = (x, y).
Then the fact that the angle θ(t) of γ diverges is equivalent to the fact that
the projection γ̄ = p ◦ γ spirals around the origin in R2. We do not adopt
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this last property as a definition of axial spiraling for γ because, otherwise,
the spiraling axis Γ is not unique.

Example 13. Consider the vector field

X = (x2 + y2)[(−x− y)
∂

∂x
+ (−y + x)

∂

∂y
]− z

∂

∂z
.

���������	��


Γ

Γ
Γ

γ

Any trajectory γ outside the z-axis makes “great turns” around any analytic
curve Γ which is transversal to the plane {z = 0}.

Condition (2) in the definition of spiraling axis means that γ and Γ are
“infinitely close” and thus, γ can have at most a single spiraling axis. In
more precise terms, γ has the property of existence of iterated tangents
and TI(γ) = TI(Γ). We say that γ has flat contact with Γ. Since γ and Γ
have the same tangent at 0, given a local coordinate z such that the plane
{z = 0} is transversal to Γ, either |γ | is contained in {z > 0} or in {z < 0}.
By a change of sign, we can always suppose that |γ |⊂ {z > 0}. Thus, our
assumption about γ holds for almost all system of adapted coordinates to
Γ. The (germ of the) semi-curve

Γ+ = Γ ∩ {z > 0}

does not depend on the transversal coordinate z such that | γ |⊂ {z > 0}.
It is called the spiraling semi-axis for γ when we need to specify in which
side of a transversal plane we have the spiraling behaviour.

Remark 14. As in the example ??, if a trajectory γ spirals around Γ
then it is oscillatory . In fact, γ cuts infinitely many times any analytic
surface that contains the axis Γ, even any semi-analytic surface whose
closure contains Γ. This last condition is essentially the general notion of
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spiraling axis for γ treated in [?]. It is equivalent to the given definition
here for the case Γ is regular and it generalizes the corresponding notion
in dimension two. Nevertheless, one important difference arrives: in R2,
if γ has a tangent then it can not spiral and it is not oscillatory; in R3,
a spiraling trajectory γ has all iterated tangents and it is oscillatory. The
main result in [?] is that if a trajectory γ of a three-dimensional vector field
has all iterated tangents and it is oscillatory then there exists an analytic
curve Γ which is an spiraling axis for γ. As a consequence, we have that
the definition of spiraling axis does not depend on the chosen adapted
coordinates.

We recall the following result from [?]:

Proposition 15. Let Γ be a spiraling axis at 0 ∈ R3 for an analytic
vector field X. Then Γ is invariant by X.

A spiraling axis Γ for a trajectory γ can be either composed of singular
points of X or not. We say that Γ is a degenerated or non-degenerated axis
according to this distinction. If Γ is non-degenerated then 0 is an isolated
singularity of the restriction of X to Γ and Γ \ {0} is composed of two
analytic non singular semi-curves Γ+, Γ− which are trajectories of X. If
Γ+ is the spiraling semi-axis then it accumulates to the origin.

In dimension two, we know already that the existence of a single trajec-
tory that spirals around a singularity implies that any other trajectory in
a neighbourhood also spirals. In view of example ??, we can not expect
that if Γ is a spiraling axis for any trajectory in a full neighbourhood of
the origin. A desirable result will be that this is true for all trajectories
in a “good” neighbourhood of the corresponding spiraling semi-axis Γ+.
Unfortunately, we do not know if such a result is true in general, except
for the case of non-degenerated axis. (See also [?], where the existence of
the neighbourhood corresponds to case II.B of that work).

Theorem 16 ([?]). Let Γ be a non-degenerated spiraling axis at 0 ∈ R3

for a trajectory γ of an analytic vector field X. Let Γ+ = Γ∩{z > 0} be the
spiraling semi-axis, with z some transversal coordinate. Then there exists
an open subanalytic neighbourhood V of Γ+, positively invariant by X, such
that for any q ∈ V \ Γ, the trajectory γq with initial condition γq(0) = q
accumulates to the origin and spirals around Γ.

If such a neighbourhood V exists for some spiraling axis Γ then we say
that Γ is a twister axis of X and that V is a twister domain.

Remark 17. It is a consequence of the proof of theorem ?? that if Γ is
a non-degenerated twister axis then there exists a fundamental system of
neighbourhoods of the germ of Γ+ which are twister domains. In particular,
we can always suppose that twister domains are contained in the same half-



BALANCED COORDINATES 197

space as Γ+. Another (technical) remark is that these twister domains can
be chosen semi-analytic and not only subanalytic.

3.3. Balanced coordinates. Examples and results
We want to study the monotonicity of cylindric coordinates along spi-

raling trajectories. We restrict to twister axis since we are interested in
coordinates giving such a monotonicity for all trajectories at the same time.

Definition 18. Let Γ be a (non-singular) twister axis for an analytic
vector field X at 0 ∈ R3. Let w = (x, y, z) be an analytic system of coordi-
nates at the origin, adapted to Γ, and consider (r, θ, z) the corresponding
cylindric coordinates. We say that w is a system of balanced coordinates
for the pair (X, Γ) if there exists a twister domain V of Γ such that, for
any trajectory γ of X in V written as

γ(t) = (r(t) cos θ(t), r(t) sin θ(t), z(t)),

we have that t 7→ r(t), t 7→ θ(t) and t 7→ z(t) are eventually monotone
functions, for big enough t. If the angle function t 7→ θ(t) is eventually
monotone we say that w is a system of monotone spiraling coordinates for
(X, Γ).

Balanced or monotone spiraling coordinates can be tested in terms of
transversality of X with some analytic foliations, as in the two-dimensional
case: a system of adapted coordinates w = (x, y, z) is monotone spiraling
if there exists a twister domain V of Γ such that the vector field X is
transversal to the analytic foliation

Fθ = {ωθ = −ydx + xdy = 0} = {y

x
= cst}

in V \ Γ. The system is balanced if X is also transversal in V \ Γ to the
foliations

Fz = {ωz = dz = 0} = {z = cst},
Fr = {ωr = xdx + ydy = 0} = {x2 + y2 = cst}.

In other terms, consider the analytic functions ωθ(X), ωr(X), ωz(X) (which
depend on the coordinates w) over a twister domain V . We have to test if
they vanish only along Γ ∩ V .

In this paper, we deal only with non-degenerated twister axis. Thus,
using the remark after theorem ??, in order to prove that a system of
coordinates (x, y, z) is balanced, we only have to look for transversality of
X with Fθ,Fr,Fz in V \ Γ where V ⊂ {z > 0} is a neighbourhood of the
semi-axis Γ+ = Γ ∩ {z > 0}. We do not mind if V is or not positively
invariant by X.
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We give first some examples with “bad” systems of coordinates.

Example 19. [Non monotone spiraling system] A slight modification of
the two-dimensional example ?? permits to show an example of non mono-
tone spiraling coordinates for a twister axis. Consider the vector field X in
R3 given in coordinates (x, y, z) by

X = (y − x3)(y − 2x3)T − (x2 + y2)2R̃,

where T = −y ∂
∂x + x ∂

∂y and R̃ = x ∂
∂x + y ∂

∂y + z2 ∂
∂z . The z-axis Γ = {x =

y = 0} and the z-plane {z = 0} are invariant by X. Also, X is tangent to
all “flat” cones

CK = {(x, y, z) /
√

x2 + y2 = K exp−1
z
, x2 + y2 6= 0, z > 0},

for K > 0 a constant. Thus, any trajectory γ of X in {z > 0}, except
for those in Γ, is contained in some CK and has flat contact with Γ. On
the other hand, the canonical projection of γ to {z = 0} is a trajectory of
the two-dimensional vector field in example ??. This shows that γ spirals
around Γ and that Γ is a (degenerated) twister axis for X. The given
coordinates (x, y, z) are not monotone spiraling since X is tangent to Fθ

at points in the surface

{ωθ(X) = 0} = {(y − x3)(y − 2x3) = 0}.

���������	��


Γ

γ

Example 20. [Non monotone system for non-degenerated axis] The ex-
istence of non monotone spiraling systems of coordinates is not exclusive
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of degenerated axis. Consider the algebraic vector field in R3

X = −(x + y)
∂

∂x
+ (−y − 3yz + 2xz2)

∂

∂y
− z2 ∂

∂z
.

The z-axis Γ = {x = y = 0} is a non-degenerated twister axis for X (see
Proposition ?? below) and coordinates (x, y, z) are not monotone spiraling.
In fact, X is tangent to Fθ at points in the ruled surface {(y−xz)(y−2xz) =
0}. However, the reader can check that a change of variables of the form
y → y +λxz for some λ ∈ R, gives us new coordinates which are monotone
spiraling.

Example 21. [No transversality with Fz] Consider the algebraic vector
field in R3

X = (x2 + y2){(−x− y)
∂

∂x
+ (−y + x)

∂

∂y
} − (λ(x2 + y2) + xy)z2 ∂

∂z

where 0 < λ < 1. The z-axis Γ = {x = y = 0} and the plane {z = 0}
are invariant by X. Let γ be any trajectory of X contained in {z > 0}
and write in cylindric coordinates γ(t) = (r(t) cos θ(t), r(t) sin θ(t), z(t)).
By means of a reparameterization of time t, we have

r(t) = r(0)e−t, θ(t) = t, z(t) =
z(0)

z(0)
∫ t

0
[sin θ(s) cos θ(s) + λ]ds + 1

.

Then, γ is defined for all t ≥ 0 and ω(γ) = 0, since λ > 0 and the integral in
the denominator of z(t) diverges. Also, we have that limt→∞ r(t)/z(t)n = 0
for any n and limt→∞ θ(t) = ∞. Then Γ is a twister axis and {z > 0}
is a twister domain. On the other hand, X is tangent to the foliation
Fz = {dz = 0} at points in the two planes defined by

{λ(x2 + y2) + xy = 0},

and coordinates (x, y, z) are not balanced. Another property of this example
that the reader can check is that for any adapted system of coordinates
(x′, y′, z′), the vector field X is not everywhere transversal to Fz′ = {dz′ =
0} in any neighbourhood of Γ ∩ {z > 0}. This shows that there are no
balanced coordinates at all. Notice that Γ ⊂ Sing(X) and that Γ is a
degenerated axis.
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If Γ is non-degenerated, the precedent example can not occur and we do
not have to worry about transversality with Fz:

Proposition 22. Let Γ be a non degenerated twister axis for X at 0 ∈
R3 and let w = (x, y, z) be a system of adapted coordinates. Suppose that
Γ+ = Γ ∩ {z > 0} is the corresponding spiraling semi-axis. Then there
exists an open semi-analytic neighbourhood V of Γ+ where X is transversal
to Fz = {dz = 0}.

Proof. Consider the analytic function f = dz(X) defined in the domain
of the coordinate system w. Zeroes of f are either singular points of the
vector field X or points p where X(p) is a horizontal vector, tangent to
Fz. Since Γ is vertical and contains no singular points but 0, f does not
vanish at any point of Γ+ ∩ U for U a sufficiently small neighbourhood of
the origin. We can consider U semi-analytic and take V = U \ {f = 0}.

Finally, we wonder if transversality with Fr is possible for some coordi-
nates, at least for non-degenerated twister axis. The answer is that it is
not always true. Examples can be constructed in the same way as Exam-
ple ?? with a nilpotent singularity. These examples suggest that, perhaps,
monotonicity of the modulus function r(t) of a trajectory γ is not a very
natural question, even if γ has flat contact with the axis Γ = {r = 0}.

Example 23. Consider

X = y
∂

∂x
− xz

∂

∂y
− z2 ∂

∂z
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in R3, with a nilpotent singularity at the origin. By means of a reduction
of singularities (see Theorem ?? below), we can see that Γ+ = {x = y =
0, z > 0} is a non-degenerated twister semi-axis. As in example ??, the
function ωr(X) = (xdx+ydy)(X) changes sign in any neighbourhood of Γ+.
Moreover, this property is independent of the system of adapted coordinates
for Γ = {x = y = 0}.

We state the results.

Theorem 24 (Balanced coordinates for elementary singularity). Let
Γ be a non-degenerated twister axis for a vector field X at 0 ∈ R3 and
suppose that the linear part DX(0) is not nilpotent. Then there exists a
balanced system of coordinates for Γ.

This theorem is already proved in [?]. The most difficult and important
part is the existence of a monotone spiraling system for Γ. Transversality
with Fz is guaranteed by Proposition ?? and transversality with Fr will
be easy to prove. In view of the last example above, theorem ?? can not
be improved to nilpotent singularities. Nevertheless, we look for monotone
spiraling coordinates, the main objective in this work:

Theorem 25 (Monotone spiraling coordinates for twister axis). Let Γ
be a regular non-degenerated twister axis for a vector field X at 0 ∈ R3.
Then there exists a monotone spiraling system of coordinates for Γ.

This result gives a generalization in dimension 3 of Theorem ??. In order
to give a self-contained proof of it, and to be able to recognize some of the
used arguments, we are going to reprise the proof of Theorem ?? in para-
graph 3.5. We introduce first some normal forms along an invariant curve,
as well as a general condition for finding monotone spiraling coordinates.

3.4. Non-degenerate invariant curves
3.4.1. Some normal forms

Let X be a vector field in R3 an let Γ be a regular analytic curve at the
origin, invariant for X. Suppose that Γ is non-degenerated, that is, not
contained in the singular locus of X.

Take analytic coordinates (x, y, z), adapted to Γ. Since Γ is invariant,
we can write X in the following way

X =
∑

i≥0

ziLi(x, y) + f(x, y, z)
∂

∂x
+ g(x, y, z)

∂

∂y
+ c(x, y, z)

∂

∂z
,

where Li(x, y) is a linear vector field and f, g have order ≥ 2 in the variables
(x, y). The summand

∑
i≥0 ziLi(x, y) is called the normal linear part of

X along Γ and denoted by N X = NΓ X. On the other hand, since Γ is



202 F. SANZ

non-degenerated, the restriction X |Γ is not identically zero and it can be
written as

X |Γ= c(0, 0, z)
∂

∂z
= zq+1(α + O(z))

∂

∂z
,

with q + 1 < ∞ and α 6= 0. Notice that, if Γ+ = Γ ∩ {z > 0} is the trace
of an asymptotically stable trajectory, then α < 0.

The number q is called the (adapted) order of X along Γ and it is well
defined intrinsically for X and Γ. In case of a twister axis, we can be more
precise:

Lemma 26 (see [?] and [?]). If Γ is a twister axis for X (in fact it
suffices that there exists a trajectory γ not contained in Γ with flat contact
with Γ, then the adapted order q of X along Γ is greater or equal than 1.

Proof. Assume that q = 0 and write X = a∂/∂x+ b∂/∂y + c∂/∂z, with
c(0, 0, z) = αz + · · · . Then α is an eigenvalue of the linear part DX(0) and
the others are given by the eigenvalues of L0. Suppose that Γ+ = Γ∩{z >

0} is the corresponding spiraling semi-axis. Hence, α < 0. Let π : M → R3

be the blowing-up with center 0 and denote by Γ′ the strict transform
of Γ by π, a non-degenerated invariant curve for the transformed vector
field X ′ at the tangent point p′ ∈ π−1(0) of Γ. Take usual coordinates
w′ = (x′, y′, z′) at p′ such that π(x′, y′, z′) = (x′z′, y′z′, z′). We have

X ′ = { (a ◦ π − x′c ◦ π)
z′

∂

∂x′
}+ { (b ◦ π − y′c ◦ π)

z′
∂

∂y′
}+ c ◦ π

∂

∂z′
.

and Spec(DX ′(p′)) = {α}∪Spec(L0−αI2), where I2 is the identity matrix.
Repeating this process, we find n >> 0 such that the eigenvalues of L0 −
nαI2 have positive real part. Then, we can suppose that 0 is a hyperbolic
singular point of saddle type, where Γ is the stable manifold. This implies
that the only trajectories accumulating to 0 are those contained in Γ, which
contradicts the fact that Γ is a spiraling axis. (This is case II.A in [?]).
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The normal linear part N X, viewed as a family of linear vector fields
in the plane, depends on the coordinates. However, its (q + 1)-jet can be
considered as a linear endomorphism of the normal bundle of Γ in R3 and
it is invariant. More particularly, we have the following lemma, proved by
a simple calculation:

Lemma 27. Write in matricial notation

N X = (x y) P (z)
( ∂

∂x
∂
∂y

)
, P (z) = P0 + zP1 + z2P2 + · · · ,

where Pi is a 2 × 2 real matrix. Consider new coordinates (x̄, ȳ, z̄) such
that

(x̄ ȳ) = (x y) T (z)
z̄ = z,

(1)

where T (z) = T0 + zT1 + · · · is a matrix series, with T0 invertible. Then
Γ = {x̄ = ȳ = 0} and the normal linear part in coordinates (x̄, ȳ, z̄) is given
by

N X = (x̄ ȳ){T (z)−1P (z)T (z) + c(0, 0, z)T (z)−1 d

dz
(T (z))}

( ∂
∂x̄
∂
∂ȳ

)
. (2)

Using this lemma, Taken’s normal forms for matrices Pi can be found,
depending on the linear term P0 (see [?]). We recall here a single case to
be used later.
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Lemma 28. Suppose that L0 has a complex eigenvalue with non-zero
imaginary part b0. Then, up to a change of coordinates of type (??), the
matrix Pi is in the normal form

(
ai −bi

bi ai

)
, ai, bi ∈ R, (3)

for i = 0, . . . , q + 1.

3.4.2. The discriminant. Condition for monotone spiraling

Now we give sufficient conditions, depending only on NΓ X, to get mono-
tone spiraling coordinates. Consider the 1-form ωθ = −ydx + xdy in ana-
lytic coordinates w = (x, y, z), adapted to Γ and let

φ(x, y, z) = ωθ(X)(x, y, z) = ωθ(N X) + (−yf(x, y, z) + xg(x, y, z)).

The first summand, denoted by Q(x, y, z) = Qw(x, y, z), written as

Q(x, y, z) = ωθ(
∞∑

n=0

znLn(x, y)) = A(z)y2 + B(z)xy + C(z)x2,

is an analytic family of quadratic forms in variables (x, y) with parameter
z. Consider

∆(z) = B(z)2 − 4A(z)C(z)

its discriminant.

Lemma 29. Suppose that Γ+ = {x = y = 0, z > 0} is a spiraling semi-
axis for X. Then (x, y, z) is a monotone spiraling system of coordinates if
there exists some l < ∞ and some unity u(z) with u(0) < 0 such that

∆(z) = zlu(z).

Proof. We have to show that φ has a constant sign in V \ Γ for V a
(semi-analytic) neighbourhood of the germ of Γ+ at 0. Since −yf +xg has
order ≥ 3 in (x, y), we can write, in cylindric coordinates (x = r cos θ, y =
r sin θ, z),

φ(r, θ, z) = r2[Q(cos θ, sin θ, z) + rφ1(r, θ, z)],

where φ1 is bounded by some constant K in {|r |, |z |≤ ε}, for some ε > 0.
The hypothesis about ∆(z) says that Q(cos θ, sin θ, z) has a constant sign
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in {0 < z ≤ ε}, independently of θ. Consider the semi-analytic function

m(z) = min {Q(cos θ, sin θ, z) / θ ∈ R}, 0 < z ≤ ε

and let V = {0 ≤ r < |m(z)|
K , 0 < z < ε}. Then V is a semi-analytic open

set which contains Γ+∩{0 < z < ε} and the sign of φ is constant in V \Γ.

3.5. Balanced coordinates for an elementary singularity
Now we suppose that 0 ∈ R3 is an elementary singularity of X.

3.5.1. Blowing-up the axis. Conditions for spiraling

In example ??, the fact that L0 = DX(0) has complex non-real eigenval-
ues implies the existence of trajectories spiraling around Γ. However, in the
general case, twister axis are far to be determined by the linear part of the
vector field. As a counterpart, we are going to see that, for an elementary
singularity, the problem of determining if Γ is a twister axis reduces to a
planar spiraling behaviour over the divisor of the blowing-up of Γ.

More precisely, let Γ = {x = y = 0} be an analytic regular curve in
R3. Take the associated cylindric coordinates (r, θ, z) and consider the
(cylindric) blowing-up of Γ:

π : R× S1 × R −→ R3

(r,Θ = (cos θ, sin θ), z) 7→ (rΘ, z).

The map π is a local diffeomorphism outside the cylinder D = {0} ×
S1 × R = {r = 0} = π−1(Γ). Moreover, there exists a unique vector
field X ′ in R × S1 × R such that dπ(X ′) = X, called the transform of X.
The following proposition is an avatar of the Theorem of Reduction to the
Center Manifold, in an analogous version as the one in [?]. The proof can
be seen in [?].

Proposition 30. Suppose that 0 is an elementary singularity, that 0 is
an eigenvalue of DX(0) and that Γ is tangent to the eigenvector associated
to 0. Then Γ is a twister axis for X if and only if (up to sign), trajectories
of X ′ |D in S1 × R+ accumulate to the circle S1 × {0} spiraling around it.
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We can consider D = S1×R as the resulting space after the (polar) blowing-
up of the origin in R2 D −→ R2, (Θ, z) 7→ zΘ. Then, we can check if
trajectories of X ′ |D spiral around S1×{0} using resolution of singularities,
as in section 2. We remark also that the result in Proposition ?? does not
depend neither on the coordinates or in the particular type of blowing-up.
In practice, what we use is the usual algebraic coordinates.

To be more precise, if Γ = {x = y = 0} for some coordinates (x, y, z) in
a neighbourhood U of the origin, the blowing-up π : M → U with center
Γ ∩ U is defined in two charts (U ′, (x′, y′, z′)) and (U ′′, (x′′, y′′, z′′)) of the
variety M by

π(x′, y′, z′) = (x′, x′y′, z′)
π(x′′, y′′, z′′) = (y′′x′′, y′′, z′′).

The exceptional divisor D = π−1(Γ) is given by {x′ = 0} and {y′′ = 0} in
the corresponding charts. Writing X = a ∂

∂x + b ∂
∂y + c ∂

∂z , we compute the
transform X ′ of X as

X ′ =a(x′, x′y′, z′)
∂

∂x′
+ (

b(x′, x′y′, z′)
x′

− y′

x′
a(x′, x′y′, z′))

∂

∂y′

+ c(x′, x′y′, z′)
∂

∂z′
.

Let N X be the normal linear part of X along Γ in coordinates (x, y, z)
and put Q(x, y, z) = ωθ(N X) = (−ydx + xdy)(N X). Then we have X ′ =
Q(1, y′, z′) ∂

∂y′ + c(0, 0, z′) ∂
∂z′ + Z, where Z is an analytic vector field that
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vanishes over D ∩ U ′ = {x′ = 0}. As a consequence, D is invariant for X ′

and its restriction in U ′ is

X ′ |D= Q(1, y′, z′)
∂

∂y′
+ z′q+1(α + O(z′))

∂

∂z′
. (4)

Since α 6= 0, the fiber F = {x′ = z′ = 0} = π−1(0) is also invariant for
X ′ |D. It is composed of singular points if and only if z′l divides Q(1, y′, z′)
for some l ≥ 1. Let l be the maximum of such exponents and consider the
vector field Y in D which is given in chart U ′ (and analogously in U ′′) by

Y =
X ′ |D

z′l
.

Trajectories of Y in {z′ > 0} coincide with those of X ′ |D up to parameter-
ization. Also, Y has isolated singularities in F . In this situation, Proposi-
tion ?? can be stated as in section 2 in terms of resolution of singularities
as follows:

(∗) Let π1 : M1 → D be a reduction of singularities of Y at its singular
points in F . Then, Γ is a twister axis for X if and only if the (elementary)
singular points of the strict transform Y1 of Y by π1 are contained in the
corners of the divisor π−1

1 (F ) and they are saddle points (see Figure 11).

Or, equivalently,

(∗∗) There are no characteristic orbits of Y accumulating to points of F

except for those contained in F .
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3.5.2. Conjugate eigenvalues. Monodromic and non-monodromic cases
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Let Γ be a twister axis through 0 ∈ R3, an elementary singularity of
X. We want to find monotone spiraling coordinates for Γ, as part of the
proof of Theorem ??. For that, we need a system of adapted coordinates
(x, y, z) such that the discriminant ∆(z) of Q(x, y, z) = ωθ(N X) satisfies
the hypothesis in Lemma ??. Since the vector field R = x ∂

∂x + y ∂
∂y is

annihilated by ωθ, we can ignore the radial terms in the normal linear part
N X. More precisely, write N X =

∑
i≥0 ziLi(x, y) and let

k = min {i ≥ 0 / Li is not a multiple of R},

called the radiality index (of X along Γ). We have ωθ(Li) = 0 for i < k

and

Q(x, y, z) = zkQ̃(x, y, z) (5)

for a family of quadratic forms Q̃.
The index k depends on the chosen coordinates. However, by Lemma ??,

the condition k ≤ q and, in this case, k itself, are invariant. This is the
case for twister axis. Furthermore, we have:

Proposition 31 (see [?]). If Γ is a twister axis of X then k ≤ q and
Lk has complex conjugate eigenvalues.

Proof. Let X ′ be the transform of X by the blowing-up π with center Γ
and consider its restriction to the divisor X ′ |D as in (??). Let Y = X ′ |D
/z′l be the strict transform where l is the maximum exponent such that
z′l divides X ′ |D. By (??), we have l ≥ k. If k > q then X ′ |D can be
divided by z′q+1 and then Y is transversal to the fiber F = π−1(0). This
contradicts property (∗∗). Hence l = k and

Y = Q̃(1, y′, z′)
∂

∂y′
+ z′q−k+1(α + O(z′))

∂

∂z′

satisfies Y |F={z′=0}= ωθ(Lk)(1, y′) ∂
∂y′ . Suppose that Lk has two different

real eigenvalues. Then Y has two elementary singular points over F , which
contradicts property (∗).

In particular, Spec(L0) = {λ, λ̄}, λ ∈ C, and Spec(DX(0)) = {0, λ, λ̄},
since q ≥ 1. Notice that λ 6= 0 because we assumed 0 to be elementary.
We distinguish two cases.

Asymptotically monodromic: Im(λ) = −Im(λ̄) 6= 0 (⇒ k = 0).
In this case, Γ is automatically a twister axis, even if we only suppose that

Γ is a non-degenerated invariant curve of X. And, in fact, any adapted sys-



BALANCED COORDINATES 209

tem of coordinates is a monotone spiraling system: let N X =
∞∑

i=0

ziLi(x, y)

be the normal linear part in coordinates (x, y, z) such that Γ = {x = y = 0},
and consider the family of quadratic forms Q(x, y, z) = ωθ(N X). Its dis-
criminant is given by

∆(z) = ∆(L0) + O(z),

where ∆(L0) is the discriminant of the linear vector field L0 considered as
a linear map. Since Im(λ) 6= 0, ∆(L0) < 0 and we Lemma ?? applies.

So, to find balanced coordinates, we need only to find coordinates (x, y, z)
such that X is transversal to {ωr = xdx + ydy = 0} in V \ Γ, for a neigh-
bourhood V of Γ+. Consider coordinates w = (x, y, z) given by lemma ??
such that the matrix of the term Li is as in (??), for i = 0, . . . , q + 1. If
a0 6= 0 then we have, in corresponding cylindric coordinates,

ωr(X) = r2[2a0 + O(z) + O(r)],

which does not vanish in some neighbourhood of 0 except at points of
Γ = {r = 0}. The case a0 = 0 is already studied in [?]. Alternatively,
we can use the following proposition, which is generally true if we suppose
that there exists a trajectory γ with flat contact with Γ:

Proposition 32. If Γ is a twister axis, we have

h = min{i ≤ q + 1 / ai 6= 0} < q

and moreover, ah is negative.

Then, the function

ωr(X) = r2[2alz
l + zl+1ϕ1 + rϕ2], ϕ1, ϕ2 bounded

does not change sign in V \ Γ for a domain of the type V = {r < Kzl+1},
K a constant. Our coordinates are then balanced and the asymptotically
monodromic case is finished.

Asymptotically non-monodromic: λ = λ̄ ∈ R.
Contrary to the monodromic case, monotone spiraling coordinates are

not automatically given (see example ??). We dedicate the rest of this
section to obtain them. On the other hand, transversality with Fr is easier
to get and we do it first.
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Consider coordinates w = (x, y, z) such that, in the normal linear part
N X, the first term L0 is written with a normalized matrix of the form

(
λ 0
ε λ

)
,

where either ε = 0 or ε is any prescribed non zero real value (depending if
k > 0 or k = 0). Consider the 1-form ωr = xdx+ydy. We have in cylindric
coordinates

ωr(X) = r2[2λ + ε
sin 2θ

2
+ O(z) + O(r)],

and this function does not change sign in V \ Γ for a neighbourhood V

of 0 if ε = 0 or if | ε | is small compared to | a0 |. In both cases, this
property only depends on the expression of the linear part DX(0), and we
suppose that it is satisfied for our initial coordinates w. Then we look for
a monotone spiraling system obtained from w by a change of coordinates
tangent to the identity. This change preserves transversality with Fr and
will give balanced coordinates. Also, for simplicity of notation, we suppose
ε = 1 in case ε 6= 0.

Write N X =
∑

i≥0 ziLi(x, y) and consider Q(x, y, z) = ωθ(N X) the
corresponding family of quadratic forms. Let k be the radiality index along
Γ and put Q = zkQ̃ as in (??). Then

∆(z) = z2k∆̃(z),

where ∆, ∆̃ are the discriminants of the family Q and Q̃ respectively. If
Lk has complex eigenvalues with non zero imaginary part then ∆̃(z) =
∆(Lk) + O(z) with ∆(Lk) < 0. Then w = (x, y, z) is a monotone spiraling
system of coordinates by Lemma ??. In the other case, Lk has a double real
eigenvalue and, since it is not radial, Lk is not diagonalizable. By means of
a change of coordinates of the form (??), we write Lk as the Jordan block
matrix (

λk 0
1 λk

)
.

(Notice that this is our initial hypothesis if k = 0).
In this situation, the following proposition finishes the proof.

Proposition 33. Consider a vector field Y in R2 written in coordinates
(y, z) as

Y = (A(z)y2 + B(z)y + C(z))
∂

∂y
+ zq+1(α + O(z))

∂

∂z
, (6)



BALANCED COORDINATES 211

where A,B, C are power series in z, A(0) = −1 and α < 0. Suppose that
Y satisfies property (∗) or (∗∗) above for F = {z = 0}. Then there are
new coordinates (ȳ, z̄), given by

ȳ = y + µ1z + · · ·+ µnzn

z̄ = z
(7)

with µ1, . . . , µn ∈ R, such that, in the expression

Y = (Ā(z̄)ȳ2 + B̄(z̄)ȳ + C̄(z̄))
∂

∂ȳ
+ z̄q+1(α + O(z̄))

∂

∂z̄
,

the discriminant ∆̄(z̄) = B̄2(z̄) − 4Ā(z̄)C̄(z̄) satisfies ∆̄(z̄) = z̄lu(z̄) with
l < ∞ and u(0) < 0.

End of the proof of Theorem ??: Let π : M → R3 be the blowing-up
with center Γ and consider the restriction X ′ |D of the transform of X to
the exceptional divisor. Consider the chart (U ′, (x′, y′, z′)) in M for which
π is written as π(x′, y′, z′) = (x′, x′y′, z′) and let

Y =
X ′ |D
z′k

= Q̃(1, y′, z′)
∂

∂y′
+ z′q−k+1(α + O(z′))

∂

∂z′
.

A simple computation shows that the origin (y′, z′) = (0, 0) of D ∩ U ′ is
the unique singular point of Y over the fiber F = π−1(0) and that the
expression of Y in coordinates (y′, z′) is as in (??). Moreover, it satisfies
property (∗) or (∗∗) by Proposition ??. Find numbers µ1, . . . , µn for which
the conclusion of Proposition ?? holds and consider new coordinates w̄ =
(x̄, ȳ, z̄) such that

x̄ = x
ȳ = y + x(µ1z + · · ·+ µnzn)
z̄ = z.

(8)

(A tangent to the identity change of coordinates). Then Lemma ?? implies
that w̄ is a monotone spiraling system for (X, Γ). ¤

3.5.3. The Newton Polygon

In this paragraph we prove Proposition ??, where we suppose, for sim-
plicity, that α = −1. We use the so-called Newton Polygon of the vector
field Y , as can be found for example in [?].
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In general, let Y = a(y, z) ∂
∂y + b(y, z) ∂

∂z be a planar vector field and
write the Taylor expansions

a(y, z) =
∑

u+v≥1

auvyuzv, b(y, z) =
∑

u+v≥1

buvyuzv.

Consider the set of points in the plane R2
(u,v)

Ω = {(u, v) / auvyuzv ∂

∂y
+ bu−1,v+1y

u−1zv+1 ∂

∂z
6= 0}.

The Newton Polygon N = NY (z; y) of Y (in the coordinates (y, z) with
respect to y) is defined to be the bounded boundary of the convex hull of

⋃

p∈Ω

p + (R≥0)2 ⊂ R2.

It is composed of vertices and segments (sides) of negative slope joining
them. Order vertices of N from up to bottom and from left to right and
call the first vertex the pivot point .

Remark 34. Notice that if (0, 1) ∈ N then it comes from one or both of
the linear terms y ∂

∂y , z ∂
∂z . In this case, the singularity is elementary.

Let Y be as in (??). Then the pivot point of its Newton polygon N is
the point (0, 2), obtained from the term −y2 ∂

∂y . Denote s = ord(B(z)),
t = ord(C(z)). We have t < ∞ and (t, 0) is the last vertex of N ; otherwise,
C(z) ≡ 0 and the line {y = 0} is invariant by Y and transversal to F ,
contradicting property (∗∗). On the other hand, N can have, a priori, one
or two sides, depending on the relative position of the numbers q, s and t.

���������
	���


�

�

�

�

��� � � �

Assertion: The Newton Polygon N = NY (z; y) has only one side.
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To see this, we control the behaviour of the Newton polygon by blowing-
ups. Let π1 : M → R2 be the blowing-up at the origin and consider the
point p1 ∈ π−1

1 (0) which corresponds to the tangent of the axis {y = 0}.
Let (y1, z1) be coordinates at p1 in a usual chart of M such that π(y1, z1) =
(y1z1, z1). The transformed vector field Y1 of Y is given by

Y ={A(z1)y2
1z1 + B(z1)y1 +

C(z1)
z1

− zq
1y1(−1 + O(z1))} ∂

∂y1

+ zq+1
1 (−1 + O(z1))

∂

∂z1

The Newton polygon N1 = NY1(z1; y1) is obtained from N by the affine
transformation in the plane

(u, v) 7−→ (u + v − 1, v).

���������
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By blowing-up points p0 = 0, p1, p2, . . . in the sequence of iterated tan-
gents of {y = 0}, construct Y, Y1, Y2, . . . and N, N1, N2 = NY2(z2; y2), . . .
inductively in this way, with coordinates (yi, zi) at pi (while pi is a singular
point of Yi). Suppose that N has two sides and let (l, 1) be their common
vertex. Notice that l ≤ min{s, q} and l < t. Then N1, . . . , Nl−1 has also
two sides and Nl has a single side with (l, 1) as the pivot point. We have
that the transformed vector field Yl by the composition π = πl ◦ · · · ◦π1 can
be divided by (zl)l. Consider the strict transform Ỹl = Yl

(zl)l . Its Newton

polygon Ñl = NỸl
(zl; yl) is obtained from Nl = NYl

(zl; yl) by translation
(u, v) 7→ (u − l, v). Thus, (0, 1) is the pivot point of Ñl. Thus, pl is an
elementary singularity of Ỹl. But pl is not a corner of π−1(F ), a contradic-
tion with property (∗). Notice that this proof is independent of the chosen
coordinates (y, z) to construct the Newton polygon, once the invariant line
F is given by {z = 0}. In particular, N has a single side for any coordinates
obtained from the initial ones by a change of type (??).
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Let − 1
d be the slope of the side of N , where d = d(N) = t

2 is called
inclination. We have d ≤ min {s, q}. Performing a change of coordinates
of the type

ȳ = y + µzn, z̄ = z, µ ∈ R, n ≥ 1, (9)

we have a new coefficient of ∂
∂ȳ for which (with evident notations):

Ā(z) = A(z)
B̄(z) = B(z) + 2µznA(z)
C̄(z) = C(z) + µ2z2nA(z) + µznB(z) + µnzq+n(−1 + O(z)).

(10)

Since the inclination d is bounded by the invariant number q, we can sup-
pose, up to a finite number of such changes of coordinates, that the Newton
polygon for our coordinates (y, z) has maximal inclination. To finish, let’s
proof that for these coordinates, the discriminant has a first negative coeffi-
cient. Write A(z) = −1+

∑
i≥1 Aiz

i, B(z) =
∑

i≥0 Biz
i, C(z) =

∑
i≥0 Ciz

i

and compute

∆(z) = B(z)2 − 4A(z)C(z) =
{

zt(4Ct + O(z)) if d < s
zt(B2

s + 4Ct + O(z)) if d = s.

First, we can suppose that d < s. In fact, if s = d then we consider the
change (??) with n = d and µ ∈ R such that Bs − 2µ = 0. By (??),
the coefficient of B̄(z) of degree s is 0 and then the new inclination d̄ for
coordinates (ȳ, z̄) will be greater or equal than d. By our assumption, d̄ = d

and s̄ > s = d = d̄. It suffices then to proof that Ct < 0. Distinguish two
cases:

(i) d is not an integer. Make blowing-ups at points in the sequence of
iterated tangents of the axis {y = 0}. Looking at the evolution of the
Newton polygon by these blowing-ups, we can suppose that t = 1 and that
Y has the linear term C1z

∂
∂y . Suppose that C1 > 0. Let p′ ∈ π−1(0) be the

corresponding point of the tangent direction of {z = 0} by the blowing-up
π of the origin (y, z) = 0. Then p′ is an elementary singularity of the strict
transform of Y by π which is not a saddle point. This contradicts property
(∗).

(ii) d is integer. We distinguish again two cases:
(ii-a) If d < q then Ct < 0. Otherwise, we would consider the change

(??) with n = d and µ ∈ R such that Ct − µ2 = 0. Using formulas (??),
these new coordinates give a Newton polygon with two sides.

(ii-b) If d = q then t = 2q and the discriminant of the equation
−µ2 + µq + Ct = 0 must be negative just by the same reason as in the
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precedent case. Thus Ct < 0. ¤

We finish this paragraph with the following technical variation of exis-
tence of monotone spiraling coordinates needed later

Proposition 35. With the same notations as above, suppose that L0 has
a double eigenvalue and it is not radial. Consider coordinates w = (x, y, z)
adapted to Γ in which we have

L0(x, y) = (λx + y)
∂

∂x
+ λy

∂

∂y
.

Let m ∈ Z>0. Then, up to a change of coordinates of the form (??), we
can suppose that that X is transversal to the foliation

F̃θ,m = {ω̃w
θ,m = −ydx + xdy + m

xy

z
dz = 0}

in V \ Γ, for some neighbourhood V ⊂ {z > 0} of Γ ∩ {z > 0}.
Proof. Consider the functions

f(x, y, z) = ω̃w
θ,0(X) = ωθ(X) = Qw(x, y, z) + · · ·

f̃(x, y, z) = ω̃w
θ,m(X) = Q̃w(x, y, z) + · · ·

where Qw = A(z)y2 + B(z)xy + C(z)x2, Q̃w = Ã(z)y2 + B̃(z)xy + C̃(z)x2

are families of quadratic forms and · · · means terms whose order in (x, y)
is greater or equal than 3. The relation in these two families is that

B̃(z) = B(z) + m
dz(X)

z
|Γ= B(z) + mzq(−1 + O(z)).

Let ∆(z), ∆̃(z) the corresponding discriminant of Qw, Q̃w. We must proof
that the coordinates w can be chosen in such a way that

∆̃(z) = B̃(z)2 − 4Ã(z)C̃(z) = z l̃ũ(z)

with ũ(0) < 0 and l < ∞. In this situation, Lemma ?? will apply in the
same way and will give the result. Compare this condition with the one for
∆(z), which we have already proved. We see that the two conditions are
the same in cases (i) and (ii-a) treated above. In fact, in these cases,

l = ordz(∆̃) = ordz(∆) < 2q and ũ(0) = u(0) = Ct < 0.
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In case (ii-b), we consider a new change of variables

w̄ : x̄ = x, ȳ = y + µxzq, z̄ = z.

By formulas (??), we obtain a new family of quadratic forms Q̃w̄ with
discriminant ∆̃(z̄) = z̄2qũ(z̄) and

ũ(0) = (−m− 2µ)2 + 4(Ct=2q − µ2 + µ(q −m)) = 4c2q + m2 + 4µq.

A convenient choice of µ 6= 0 gives ũ(0) < 0, as wanted.

3.6. Monotone spiraling coordinates for non-degenerated axis

This paragraph is devoted to the proof of Theorem ??. We first reduce
the singularity 0 of X to an elementary singularity by means of certain
transformations. After, we apply Theorem ??. These transformations con-
sist of blowing-ups with center points and invariant curves and, eventually,
a ramification. In this process, the fact that Γ is a twister axis is preserved.
However, we must control the chosen coordinates at each step in order to
be sure that the system of monotone spiraling coordinates at the end point
comes from spiraling coordinates at the initial point. This control is as-
sured by Theorem ?? below which gives the existence of a Maximal Contact
Surface that polarizes the reduction process.

Let Γ be a spiraling axis for some trajectory γ of a vector field X at
0 ∈ R3.

3.6.1. Stability of spiraling axis by blowing-ups and ramifications

Proposition 36. Let π : M → R3 be either the blowing-up with center
0 or the local blowing-up with center an analytic non-singular curve C

transversal to Γ at 0 and invariant for X. Let Γ′ = π−1(Γ \ {0}) be the
strict transform of Γ by π. Then Γ′ is an spiraling axis for the transformed
vector field X ′. Moreover, Γ′ is non-degenerated if and only if Γ is non-
degenerated.

Proof. Take coordinates w = (x, y, z) adapted to Γ and suppose that
the trace |γ | is contained in {z > 0}. Write in polar coordinates

γ(t) = (r(t) cos θ(t), r(t) sin θ(t), z(t))

and assume that (1), (2) and (3) in the definition of spiraling trajectories
hold. Suppose also that coordinates are chosen in such a way that C is
locally given by {y = z = 0}, in case π is the blowing-up with center a
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curve. Let p ∈ π−1(0) be the generalized tangent of Γ. We can take local
coordinates w′ = (x′, y′, z′) at p such that π is written as

T1(w′, w) : x = x′z′, y = y′z′, z = z′ if the center is 0.
T2(w′, w) : x = x′, y = y′z′, z = z′ if the center is C.

Then Γ′ = {x′ = y′ = 0} and the lifted trajectory γ′ = π−1 ◦ γ satisfies
| γ′ |⊂ {z′ > 0}. Consider the cylindric coordinates (r1, θ1, z

′) associ-
ated to w′ and write γ′(t) = (r1(t) cos θ1(t), r′(t) sin θ1(t), z′(t)). We have
lim z′(t) = lim z(t) = 0 and

If π is the blowing-up at 0 then r1(t) = r(t)
z(t) and θ1(t) = θ(t).

If π is the blowing-up with center C then r1(t) ≤ r(t)
z(t) and tan θ(t) =

z(t) tan θ1(t).

In both cases, we see that γ′ spirals around Γ′. Furthermore, since π is an
isomorphism outside the divisor {z′ = 0}, Γ is composed of singular points
of X iff Γ′ is composed of singular points of X ′.

Notice that we have proved in fact that if w, w′ are adapted coordinates
to Γ and Γ′ respectively and related by the transformation of coordinates
T1(w′, w) then w is a monotone spiraling system for (X, Γ) if and only if
w′ is so for (X ′, Γ′).

We will need to consider also ramifications with branched points along an
invariant surface transversal to Γ at 0. More precisely, we need the following
result, whose proof is similar to the one in the precedent proposition.

Proposition 37. Let w = (x, y, z) be adapted coordinates to Γ such
that | γ |⊂ {z > 0} and suppose that the plane {z = 0} is invariant by X.
Consider coordinates w′ = (x′, y′, z′) in R3 and let π : R3 → R3 be the
double ramified cover written as

T3(w′, w) : x = x′, y = y′, z = z′2.

Then, there exists a vector field X ′ in R3 which satisfies dπ(X ′) = X

and the curve Γ′ = π−1(Γ) = {x′ = y′ = 0} is a spiraling axis for X ′.
Moreover, Γ′ is non-degenerated iff Γ is non-degenerated. X ′ and Γ′ are
called the transform and the strict transform of X and Γ by π.

The coordinate transformations T1, T2 and T3 will be used in the sequel.
To simplify our sentences, if π : M ′ → M is a map and π(p′) = p, we will
say that π satisfies T1(w′, w), etc. at p′ if there are charts (U,w) and
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(U ′, w′) at p and p′ respectively, such that π |U ′ is written as T1(w′, w) in
the corresponding domains.

3.6.2. Reduction to elementary singularity

Following [?], we develop here a procedure to reduce any singularity to an
elementary one along a twister axis Γ. In fact, we only use the assumption
that Γ is a non-degenerated invariant curve of X. (See also [?], where a
similar procedure is given to reduce the singularity alonag a “generalized
direction”).

Suppose that we have initially a surface D transversal to Γ and invariant
by X. (This does not impose any restriction since we can always start
performing a blowing-up at 0 and consider D as the divisor). Put X0 = X,
Γ0 = Γ, D0 = D and consider a sequence of maps

R3 = M0
π1←− M1

π2←− M2 · · · πn←− Mn ←− · · · (11)

constructed inductively as follows: for 1 ≤ i ≤ n, either πi is the blowing-up
at pi−1 = Γi−1 ∩Di−1, or the local blowing-up of an analytic non-singular
curve Ci−1 ⊂ Di−1 through pi−1, invariant by Xi−1 and transversal to
Γi−1, or πi is a double cover ramified along Di−1; Γi, Xi are respectively
the strict and the total transform of Γi−1, Xi−1 by πi and Di = π−1

i−1(Di−1).

Definition 38. A finite composition π = π1 ◦ · · · ◦ · · ·πn : M ′ = Mn →
R3 of a sequence (??) is called a resolution of singularities of X along Γ if
there exists a vector field X̃ defined in a neighbourhood of pn ∈ M ′ and
there exists some s ≥ 0 such that DX̃(pn) is not nilpotent and

Xn = (zn)sX̃,

where {zn = 0} is a local equation of Dn at pn. The vector field X̃ is called
the strict transform of X by π at pn.

Theorem 39 (Resolution of singularities). Let Γ be a non-degenerated
regular invariant curve of a vector field X at 0 ∈ R3. Then there exists a
resolution of singularities of X along Γ.

The first step of this theorem is easy

Lemma 40 (Reduction to non-zero linear part). Let TI(Γ) = {pi}i≥0

be the sequence of iterated tangents of Γ, obtained by a sequence of blowing-
ups of points as in (??). Let w = (x, y, z) be a system of adapted coordinates
to Γ at 0. Then, there exists some l ≥ 0 and a system of coordinates
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wl = (xl, yl, zl) at pl, adapted to Γl, such that

Xl = zs
l X̃l and

{
X̃l(pl) 6= 0 or
DX̃l(pl) 6≡ 0,

for some s ∈ Z≥0. Furthermore, coordinates wl are obtained as a composite
of coordinate transformations of type T1 from the initial coordinates w.

Proof. Let q be the adapted order of X along Γ. Then 1 ≤ q < ∞. Write
X = a ∂

∂x +b ∂
∂y +c ∂

∂z , where a(0, 0, z) ≡ b(0, 0, z) ≡ 0 and ordz(c(0, 0, z)) =
q+1. Consider coordinates w1 = (x1, y1, z1) at p1 such that the blowing-up
π1 at 0 satisfies T1(w1, w). A computation shows that X1 can be divided
by zs1

1 with

s1 ≥ min{ord(a), ord(b), ord(c)} − 1.

Write X1 = zs1
1 X̃1 and X̃1 = a1

∂
∂x1

+ b1
∂

∂y1
+ c1

∂
∂z1

. Then we have

c1(x1, y1, z1) =
1

zs1
1

c(x1z1, y1z1, z1).

If DX(0) ≡ 0 then s1 > 0 and the adapted order q1 = ordz1(c1(0, 0, z1))
of X̃1 along Γ1 is strictly smaller than q. Repeating this discussion, the
case DX̃i(pi) ≡ 0 can not be verified indefinitely for i = 0, 1, 2, . . . if pi is a
singular point of X̃i.

Proof of Theorem ??.- Up to some initial blowing-ups at points in the
sequence of iterated tangents of Γ, we can suppose, by Lemma ??, that the
linear part DX(0) is not zero, but nilpotent. In this situation, the proce-
dure that follows is, essentially, a particular case of the standard reduction
of Ordinary Differential Singular Equations (see [?]).

Let q be the adapted order of X along Γ. We proceed by induction in
the number q or, in some cases, by a direct proof. If q = 0 then the tangent
of Γ at 0 is a proper direction of DX(0) with non zero eigenvalue. So, the
singularity is elementary and we are done. Suppose that q ≥ 1 (as for the
case of a twister axis). Let w = (x, y, z) be a system of coordinates adapted
to Γ, consider NΓ X =

∑
i≥0 ziLi(x, y) the normal linear part of X along

Γ. Write

Li(x, y) = (aix + biy)
∂

∂x
+ (ci + di)

∂

∂y
.

Since DX(0) = L0 6≡ 0, we can suppose our coordinates such that

L0 = y
∂

∂x
.
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Write X = a ∂
∂x +b ∂

∂y +c ∂
∂z . Considering the blowing-up at 0 , if necessary,

we can also assume that c(x, y, 0) ≡ 0 and thus, D = {z = 0} is invariant
by X and X |D= L0(x, y). We have two cases:

Case 1.- c1 = 0. Let π : M ′ → R3 be the blowing-up with center the
curve C = {y = z = 0} ⊂ D, invariant for X. Let Γ′ be the strict transform
of Γ and D′ = π−1(D). Consider coordinates w′ = (x′, y′, z′) adapted to
Γ′ at p′ ∈ π−1(0), the tangent of Γ such that π satisfies T2(w′, w). The
transform X ′ of X is written as

X ′ = a ◦ π
∂

∂x′
+ (

b ◦ π

z′
− y′

z′
c ◦ π)

∂

∂y′
+ c ◦ π

∂

∂z′
.

and X ′ = z′X̃, where X̃ is the strict transform. The order q′ of X̃

along Γ′ = {x′ = y′ = 0} is q − 1. Moreover, if we write NΓ′ X̃ =∑
i≥0 z′iL∗i (x

′, y′) then

L∗0 = (a1x
′ + y′)

∂

∂x′
+ (c2x

′ + d1y
′)

∂

∂y′
. (12)

Apply induction on q if L∗0 is nilpotent to finish.
Case 2.- c1 6= 0. In this case, C = {y = z = 0} is again invariant,

but the blowing-up with center C does not improve the expression: the
transformed vector field X ′ has a non zero nilpotent linear part at p′ and it
is not divisible by z′. We proceed in an alternative way. Let π1 : R3 → R3

be the double cover ramified over D that satisfies T3(w1, w). The transform
X1 of X by π1 is given by

X1 = a(x1, y1, z
2
1)

∂

∂x1
+ b(x1, y1, z

2
1)

∂

∂y1
+

c(x1, y1, z
2
1)

2z1

∂

∂z1
.

Write NΓ1 X1 =
∑

i≥0 zi
1L

(1)
i (x1, y1), where Γ1 = {x1 = y1 = 0} is the

transform of Γ. Then, with the identification (x, y) = (x1, y1), we have for
l ≥ 0

L
(1)
2l = Ll

L
(1)
2l+1 = 0.

(13)

Thus, X1 is in the situation of the precedent case. Nevertheless, its adapted
order along Γ1 is 2q, greater than the initial one. Anyhow, there is a
direct proof in this case. Let π : M ′ → R3 be the blowing-up of the curve
C1 = {y1 = z1 = 0} and let X̃ be the strict transform of X1 by π. Consider
coordinates w′ = (x′, y′, z′) such that π satisfies T2(w′, w1) at p′ ∈ M ′, the
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tangent of Γ1. By equations (??) and (??), the linear part L∗0 of X̃1 is

L∗0(x
′, y′) = y′

∂

∂x′
+ c1x

′ ∂

∂y′
,

which is not nilpotent since c1 6= 0. ¤

Remark 41. Suppose that Γ is a non-degenerated twister axis of X at 0
and let π : M ′ → R3 be a resolution of X along Γ and let X̃ be the strict
transform of X by π at the elementary singularity p′ ∈ M ′. We have two
remarks:
1) Assume that DX(0) is nilpotent but not identically zero. In view of
the expressions (??) and (??), p′ is asymptotically non-monodromic and
DX̃(p′) is not diagonalizable.
2) π is composed of at most a ramification map. If it exists one, the
ramification is made at the final step and p′ is asymptotically monodromic.

3.6.3. Maximal Contact

Theorem ?? shows a constructive process which can be implemented in
an algorithmic way. In this paragraph we see that, in fact, this process is
governed by a Maximal Contact Surface. This notion is studied in [?]. In
our context, this means the following:

Assume that D = D0 is an invariant surface at 0, transversal to Γ. Let
π : M ′ → R3 be a resolution of singularities of X along Γ, obtained by the
composition π = π1 ◦ · · · ◦ πn. Then there exists an analytic non-singular
surface W = W0 at 0 ∈ R3 such that, for i = 1, . . . , n − 1, if πi is the
blowing-up with center a curve Ci−1, then Ci−1 = Wi−1 ∩ Di−1, where,
inductively, Wi = π−1

i (Wi−1 \ Ci−1) is the strict transform of Wi−1 by πi

and Di = π−1
i (Di−1). (See Figure 14).

In practice, we use this result in terms of coordinates, in order to find
good expressions for the resolution π. We consider the case of a nilpotent
singularity with non-zero linear part. The transition from the general case
to this case is controlled by Lemma ?? and presents no problem.

Let w = (x, y, z) be a system of adapted coordinates to Γ and write
N X =

∑
i≥0 ziLi(x, y). We say, to simplify, that these coordinates are

normalized if the term L0 is written as a matrix P0 with equal entries at
the principal diagonal. Also, a change of coordinates of the type (??)

(x̄, ȳ, z̄) = ((x, y) T (z), z)
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with T (z) a polynomial 2× 2 matrix will be called a (polynomial) adapted
change. It will be tangent to the identity if T (0) is the identity matrix I2.
This last change preserves the normalized character for the coordinates.

���������	��
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π � π �

Γ� �

�

�

�

�

�
�

�

�

�

�

Γ

Theorem 42 (Maximal Contact). Assume that DX(0) is nilpotent
but not identically zero. Let π = π1 ◦ · · · ◦ πn : M ′ → R3 be a resolution of
singularities of X along Γ and denote by X̃, Γ′ the strict transforms of X,
Γ by π at p′ ∈ π−1(0). Then, up to a polynomial adapted and tangent to
the identity change of coordinates at 0, there exist systems of normalized
coordinates w = (x, y, z) at 0 and w′ = (x′, y′, z′) at p′, adapted to Γ and
Γ′, respectively, such that π is written in coordinates w′, w as

Tm,ε(w′, w) :





x = x′

y = y′z′m

z = z′ε

where m is an integer ≥ 1 and ε = 1 or 2. In particular, W = {y = 0} is
a Maximal Contact Surface for the resolution π.

Proof. Fix initial adapted normalized coordinates w = (x, y, z) such
that L0 = y ∂

∂x . Write Li = (aix + biy) ∂
∂x + (cix + diy) ∂

∂y for the terms
in N X =

∑
i≥0 ziLi. The proof is by induction in the number of steps n

(≥ 1) of the resolution.
If n = 1 then c1 = 0 and π1 is necessarily the blowing-up of the curve

C = {y = z = 0}. The result is a consequence of the following lemma,
which we separate by clarity and to be used again later:
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Lemma 43. Assume that c1 = 0 and let π : M ′ → R3 be the blowing-up
with center C = {y = z = 0}. Denote by X̃, Γ′ the strict transforms of X

and Γ by π at p′ = Γ′ ∩ π−1(C). Then there exists a system of coordinates
w̄ = (x̄, ȳ, z̄) obtained from w by an adapted change, tangent to the identity,
such that π satisfies T2(w̄′, w̄) for normalized and adapted coordinates w̄′

at p′.

Proof. We use the same notations as in Theorem ??. The linear term
L∗0 of N X̃ has the expression (??) in coordinates w′ such that π satisfies
T2(w′, w). Coordinates w′ at p′ are normalized if the entries a1 and d1 of
the matrix P1 of L1 are equal. With an initial adapted change of coordi-
nates of the type (x̄, ȳ, z̄) = ((x, y)(I2 + zT1), z) we will have, using (??),

a new matrix P̄1 = P1 + P0T1 − T1P0, where P0 =
(

0 0
1 0

)
. We have the

desired condition with a convenient choice of matrix T1.

If c1 6= 0 then π1 is a ramification. Let X̃1, Γ1 be the strict transforms
of X and Γ by π1. The usual coordinates w1 = (x1, y1, z1) such that π1

satisfies T3(w1, w) are normalized and adapted to Γ1. Apply induction to
π2 ◦ · · · ◦ πn, a resolution of X̃1 along Γ1. (In fact, in this case, n = 2 and
a blowing-up with center a curve reduces the singularity).

Suppose, finally, that c1 = 0 and that n > 1. The first step π1 is
the blowing-up with center C = {y = z = 0}. Let X̃1, Γ1 be the strict
transforms of X, Γ at p1 ∈ π−1

1 (0), the tangent of Γ. By the lemma above,
we can suppose that π1 satisfies T2(w1, w) for a system of adapted and
normalized coordinates w1 = (x1, y1, z1) at p1. By induction, there exists
an adapted change of coordinates, tangent to the identity, φ1 : w1 7→ w̄1

and adapted normalized coordinates wn for X̃ at p′ such that π2 ◦ · · · ◦ πl

is written as Tm,ε(wn, w̄1). Write explicitly

φ1 :





x̄1 = x1 + z1ϕ(x1, y1, z1)
ȳ1 = y1 + z1ψ(x1, y1, z1)
x̄1 = z1

where ϕ,ψ are polynomials in z1 whose coefficients are linear homogeneous
functions of (x1, y1). Consider new coordinates w∗ at 0 by means of the
adapted change of coordinates

φ∗ :





x∗ = x + zϕ(x, y
z , z)

y∗ = y + z2ψ(x, y
z , z)

z∗ = z
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We have C = {y∗ = z∗ = 0} and π1 satisfies T2(w∗, w1). Thus π =
π1 ◦ · · · ◦ πl is written in coordinates wn and w∗ as Tm+ε,ε(wn, w∗). We
will finish if φ∗ is tangent to the identity. But this is not necessarily true
if ϕ(0, 1, 0) = a 6= 0. In this case, we consider again new coordinates
w̄ = (x̄, ȳ, z̄) at 0 with x̄ = x∗ − ay∗, ȳ = y∗, z̄ = z∗ and new coordinates
w̄′ = (x̄′, ȳ′, z̄′) at p′ with x̄′ = xn − ayn(zn)m+ε, ȳ′ = yn, z̄′ = zn. In these
coordinates, π is written as Tm+ε,ε(w̄′, w̄) and the changes of coordinates
φ : w 7→ w̄, φn : wn 7→ w̄′ are polynomial adapted and tangent to the
identity. This finishes the proof.

3.6.4. End of the proof

We finish now the proof of Theorem ??. Let Γ be a non-degenerated
axis for X at 0 ∈ R3. Let w = (x, y, z) be an initial system of coordinates
such that Γ = {x = y = 0} and Γ+ = Γ ∩ {z > 0} is the corresponding
semi-axis.

The elementary case. If DX(0) is not nilpotent then Theorem ??
shows the existence of a monotone spiraling system of coordinates. Fur-
thermore, as follows from the proof in 3.5, these system can be obtained
from the initial one by means of a polynomial adapted change.

The nilpotent case. Suppose that DX(0) is nilpotent but not iden-
tically zero. Assume that the linear term in N X is L0 = y ∂

∂x . Let
π : M ′ → R3 be a resolution of singularities of X along Γ and denote
by X̃ and Γ′ the corresponding strict transforms at the elementary singu-
larity p′ ∈ M ′. By the Maximal Contact Theorem ??, up to a polynomial
and adapted change of coordinates, we can assume that there exists a
chart (U ′, w′ = (x′, y′, z′)), adapted to Γ′ at p′ such that π |U ′ is written
as Tm,ε(w′, w), for some m ≥ 0 and ε = 1 or 2. Consider the 1-form
ωθ = −ydx + xdy in R3. Its pull-back by π is given in U ′ by

π∗(ωθ) = (z′)mω̃θ,m = (z′)m(−y′dx′ + x′dy′ + m
x′y′

z′
dz′).

So, the foliations Fθ = {ωθ = 0} and F̃θ,m = {ω̃θ,m = 0} are isomorphically
related by π if we restrict to respective domains {z > 0} and {z′ > 0}. In
particular, if we prove that X̃ is transversal to F̃θ,m in V ′ \ Γ′, for some
neighbourhood V ′ of Γ′ ∩ {z′ > 0}, then X will be transversal to Fθ in
V \ Γ, for V = π(V ′) a neighbourhood of Γ+. This will imply that w is a
monotone spiraling system of coordinates for (X, Γ).

We distinguish two cases for the elementary singularity p′ of X̃:
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(i) p′ is asymptotically monodromic. Then the linear term L0(x′, y′) of
the normal linear part NΓ′ X̃ has eigenvalues with non-zero imaginary part.
On the other hand, the order q′ of X̃ along Γ′ is ≥ 1; that is, dz′(X̃)(0, 0, z′)
has order ≥ 2. Then we have

ω̃θ,m(X̃) = (−y′dx′ + x′dy′)(L0) + r′2[z′ϕ1 + r′ϕ2]

with ϕ1 and ϕ2 bounded functions and r′2 = x′2 + y′2. The sign of this
function is constant in V ′ \ Γ′ for some neighbourhood V ′ of p′.

(ii) p′ is asymptotically non-monodromic. In this case, L0 has a double
real eigenvalue and, moreover, by part 1) of Remark ??, L0 is not diag-
onalizable. Also, by part 2) of the same remark, we have ε = 1. Apply
Proposition ?? to find a new system of coordinates w̄′ = (x̄′, ȳ′, z̄′) at p′

obtained from w′ by a polynomial adapted change of the form

x̄′ = x′

ȳ′ = y′ + x′(µ1z
′ + · · ·+ µnz′n)

z̄′ = z′

such that X̃ is transversal to the foliation given by

ω̃w̄′
θ,m = −ȳ′dx̄′ + x̄′dȳ′ + m

x̄′ȳ′

z̄′
dz̄′.

Consider new coordinates w̄ = (x̄, ȳ, z̄) at 0 obtained from w by the same
change as above without primes. Then the expression of π in the corre-
sponding systems of coordinates w̄′ and w̄ is also Tm,1(w̄′, w̄) and w̄ is a
monotone spiraling system for (X, Γ).

The general case. We can reduce the situation to one of the precedent
cases by using Lemma ??. In fact, with the same notations as in this lemma,
let l ≥ 0 be such that the strict transform X̃l by the point blowing-ups
π = π1 ◦ · · · ◦πl satisfies DX̃l(pl) 6≡ 0. Consider coordinates wl = (xl, yl, zl)
at pl such that π = π1 ◦ · · · ◦πl is written in coordinates wl, w as an l times
composition (T1)l of transformation T1. The cases studied above show
that there exists a monotone spiraling system of coordinates for Γl at pl,
obtained by means of a polynomial adapted change:

w̄l = (x̄l, ȳl, z̄l) = ((xl, yl) T (zl), zl).

The same change at 0 w̄ = (x̄, ȳ, z̄) = ((x, y) T (z), z), gives coordinates
such that the expression of π in coordinates w̄l, w̄ is also (T1)l. Thus, w̄ is
a monotone spiraling system of coordinates for (X, Γ).
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