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1. INTRODUCTION

In this paper we are concerned with large amplitude limit cycles of differ-
ential systems arising from second order scalar differential equations. The
study of limit cycles of planar differential systems goes back to Poincaré,
and had an enormous development since the appearance of the papers by
Van der Pol [?] and Liénard [?], who lead the basis for the subsequent work.
Proving the existence of a limit cycle means both finding a solution with
a clear physical meaning, and giving an insight into the behaviour of the
system in an open subset of the phase space.

The quest for limit cycles is also the subject of one of the most resis-
tant problems of the list Hilbert presented at the International Congress of
Mathematicians in 1900. Hilbert’s 16th problem asked for an upper bound
to the number of limit cycles of a polynomial system of given degree. Re-
cently, Smale proposed a modern version of Hilbert’s 16th problem, asking
for un upper bound of the form dq, where d is the degree of the polynomial
system and q is a constant independent of d [?]. So far, both problems are
still unsolved.

* Part of this paper has been presented at the Second Symposium on Planar Vector
Fields, Lleida, December 2000. The author would like to thank the organizers for their
kind hospitality, and the referee for some useful remarks on this paper.
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The most relevant result related to such problems is the proof that the
number of limit cycles of a polynomial system is finite, as shown inde-
pendently in [?] and [?]. Unfortunately, those results did not lead to give
estimates about the maximum number of limit cycles of polynomial sys-
tems. Even for quadratic systems we do not know an upper bound.

In this field, the most studied case is that of Liénard systems

ẋ = y − F (x), ẏ = −g(x), (1)

equivalent to the second order differential equations

ẍ + f(x)ẋ + g(x) = 0, (2)

where F ′(x) = f(x), F (0) = 0. This is due both to their relevance in
applications, and to the possibility to reduce the study of several classes of
systems to that of Liénard systems, by means of suitable transformations.

Most of the classical results about limit cycles of (??) were proved by
showing, under suitable hypotheses, the existence of a positively compact
solution. If this occurs, and some simple additional conditions are satisfied,
by Poincaré-Bendixson theorem a limit cycle exists.

Results about the existence of several limit cycles are less frequent. The
first paper showing the existence of polynomial Liénard systems with sev-
eral limit cycles is probably [?]. In [?] Lins, de Melo and Pugh showed that
for every integer k, there exists a (2k + 1)-degree polynomial F (x) such
that the system

ẋ = y − F (x), ẏ = −x . (3)

has exactly k limit cycles. They conjectured in [?] that k is the maximum
number of limit cycles of a (2k +1)-degree polynomial system of type (??).

Let us observe that Lins-de Melo-Pugh’s result allows to prove the ex-
istence of Liénard systems with k small amplitude (large amplitude) limit
cycles. In fact, it is sufficient to apply to Lins-de Melo-Pugh’s system the
ε-dilatation

u = εx, v = εy.

The original system is taken into another Liénard system. Cycles are taken
into small (large) cycles, according to the value chosen for ε. In this way
one can show the existence of Liénard systems of degree (2k + 1) with k
small (large) amplitude limit cycles. On the other hand, such a trick is
not suitable to study bifurcation phenomena occurring when one of the
cycles collapses into a critical point O, while the other ones remain out of
a compact neighbourhood of O, or when a cycle expands to infinity, while
the other ones remain inside a compact subset of the plane.



SUCCESSIVE BIFURCATIONS... 3

Zuppa [?] and Blows and Lloyd [?], studied bifurcations at the origin for
the system (??). They showed that, by means of successive bifurcations, it
is possible to construct polynomial systems of degree (2k+1) with exactly
k small amplitude limit cycles. The procedure they followed in order to
construct systems with at least k limit cycles consisted in a sequence of
perturbations of a Liénard system with an asymptotically stable critical
point. Let us consider a system of the form

ẋ = y − anxn, ẏ = −x. (4)

By adding a suitable (n−2)-degree perturbation, the stability of the origin
changes, generating a limit cycle bifurcation. This can be replied up to get
k small amplitude cycles. The methods they applied allowed also to show
that no more than k limit cycles can bifurcate at the origin by perturbing
(??). Their results were generalized in different ways. The recent paper [?]
contains some new results about the system (??) and several references to
previous results.

It is natural to think that, if lower degree perturbations generate small
amplitude bifurcations, then higher degree perturbations should generate
large amplitude bifurcations. On the other hand, in general it is not pos-
sible to attack the problem by the usual bifurcation techniques, due the
difficulty to represent infinity as a singular point in such a way to preserve
the good properties of the original system. For instance, if one performs
the transformation (x, y) 7→

(
x

x2+y2 , y
x2+y2

)
, that leads the point at infin-

ity into the origin, the resulting system has a high degree of degeneracy
at the origin. Some recent results about bifurcation at infinity are not
applicable to second order differential equations, because they require the
absence of singular points on the equator of Poincaré’s sphere [?]. In fact,
systems arising from nonlinear second order differential equations always
have singular points on the equator. A bifurcation theorem dealing with
systems with singular points at the equator is contained in [?], but deals
with bifurcation from a separatrix.

The aim of this paper is to show that the first part of Zuppa, Blows
and Lloyd procedure can be replied at infinity by applying a bifurcation
theorem proved in [?]. Such a theorem is based on a purely topological
approach. The local flow generated by (??) is studied on the one-point
compactification of the plane, that allows to consider both polynomial and
non-polynomial systems. Inversions of stability of the point at infinity are
obtained as a consequence of inversions of boundedness properties of (??).
Then, if the equilibrium points of (??) are uniformly bounded away from
infinity, an inversion of the boundedness properties of the solutions gener-
ates an asymptotically stable invariant annulus bifurcating from infinity,
containing at least a limit cycle. For instance, by applying Graef’ theorem
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[?], one can show that, starting from the system

ẋ = y + x, ẏ = −x,

and adding a suitable cubic perturbation, a large amplitude limit cycle
bifurcates from infinity. This can be replied several times by adding higher
and higher degree terms, up to get a (2k + 1)-degree system with k large
amplitude limit cycles. This proves that acting on higher degree terms one
can actually reproduce at infinity the sequence of successive bifurcations
studied in [?] and [?] at the origin.

Unfortunately, the method we present does not seem to be useful to give
upper estimates to the number of limit cycles bifurcating at infinity. On the
other hand, it allows to produce an example of analytic Liénard equation
with infinitely many limit cycles, obtained by means of an infinite sequence
of higher and higher degree perturbations (see theorem ??).

Since the boundedness properties of second order O.D.E.’s have been
widely studied (see [?], [?] and references therein), such a procedure can be
easily applied to other classes of second order O.D.E.’s. This is the case,
for instance, of Rayleigh equations,

ẍ + f(ẋ) + g(x) = 0,

as shown in theorem ??.
We may also combine successive bifurcations at infinity and at O, in order

to get systems with assigned numbers of small and large amplitude limit
cycles. In this paper we also show how to get simultaneous bifurcations
at O and infinity. Moreover, by taking a nonlinear g(x), we can produce
simultaneous bifurcations at infinity and at several critical points. Also,
we give an example of bifurcation at infinity for a non-polynomial Liénard
equation.

For the reader’s convenience, we describe some results that lead to prove
the main bifurcation theorem. Several definitions and previous results are
recalled in next section.

The theorems ??, ??, ??, ?? are new.

2. RESULTS

We start reporting Lins, de Melo and Pugh’s results about (??). Let us
denote by [x] the integer part of a real number x, that is [x] = max{m ∈
N : m ≤ x}.

Theorem 1. (Lins, de Melo, Pugh [?]). For every k, n integer, n > 2,
0 ≤ k ≤ [n−1

2 ], there exists an n-degree polynomial F (x) such that (??) has
exactly k limit cycles.
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Lins, de Melo and Pugh also formulated a conjecture about the maximum
number of limit cycles that a system of the form (??) may have.

Conjecture. If (??) has degree n, then it cannot have more then [n−1
2 ]

limit cycles.
Such a conjecture is still unsolved.
Lins, de Melo and Pugh studied in more detail the system

ẋ = y − (a1x + a2x
2 + a3x

3), ẏ = −x . (5)

about which they made the following remarks.

- if a1a3 > 0, then (??) has no limit cycles;
- if a1a3 < 0, then (??) has exactly one limit cycle;
- if a1 = 0, a3 6= 0, then there are no limit cycles, and the origin is a

weak attractor (repellor);
- if a1 6= 0, a3 = 0, then there are no limit cycles, and the origin is a

hyperbolic attractor (repellor);
- if a3 6= 0 and a1 changes sign, then there is a Hopf bifurcation at the

origin. For example, if a3 < 0, then a limit cycle appears for small positive
values of a1.

- if a1 6= 0 and a3 changes sign, then there is a Hopf-like bifurcation
at infinity. For example, if a1 > 0, then a limit cycle appears for small
negative values of a3.

In what above we can see a similarity between bifurcations at the origin
and at infinity. The appearance of a low degree term, a1x, generates bi-
furcation of a limit cycle at the origin O. The appearance of a high degree
term, a3x

3, generates bifurcation of a limit cycle at infinity.
This phenomenon is not bounded to cubic Liénard systems, as we show

in the following.
Bifurcations of limit cycles at the origin for the n-degree system (??)

were studied in detail in [?] and [?]. Here is the main result.

Theorem 2. (Zuppa [?], Blows and Lloyd [?]). For every k, n integer,
n > 2, 0 ≤ k ≤ [n−1

2 ], there exists an n-degree polynomial F (x) such that
(??) has k small amplitude limit cycles.

Proof. (sketch of proof, for odd n). For n = 3 the result comes from
theorem (??). If n > 3, let us start with a system of the form

ẋ = y − anxn, ẏ = −x, an > 0. (6)

The origin is globally asympotically stable. Let us add a perturbation,

ẋ = y + an−2x
n−2 − anxn, ẏ = −x an−2 > 0. (7)
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The stability of the origin changes, and a small ampitude limit cycle appears
for small values of an−2. Then the same procedure can be applied again,
reversing again the origin’s stability,

ẋ = y − an−4x
n−4 + an−2x

n−2 − anxn, ẏ = −x an−4 > 0. (8)

This procedure can be applied up to [n−1
2 ] times, generating up to [n−1

2 ]
small amplitude limit cycles.

Remark 3. The proof for even n requires only a minor modification.
Initially one “forgets” the term a2kx2k, constructing the n−1-degree system

ẋ = y − (∓a1x± . . .− an−1x
n−1), ẏ = −x . (9)

Such a system has [n−2
2 ] = [n−1

2 ] small amplitude limit cycles. Then one
adds the term anxn. For small values of an, the new system still has [n−1

2 ]
limit cycles.

Both Zuppa and Blows and Lloyd applied variants of Poincaré-Liapunov
method to study the stability of the origin. Both proved that [n−1

2 ] is the
maximum number of limit cycles that can bifurcate from O.

The method we present here in order to study bifurcation at infinity is
an adaptation of that one applied in theorem ??. In fact, we essentially
follow the same procedure, considering the point at infinity as a fixed point
of a suitable family of flows, defined on the one-point compactification of
the plane.

For basic definitions about dynamical systems we refer to [?]. If π(t, x) is
a flow, we refer to π(−t, x) as its negative flow. Properties of π(−t, x) are
referred to as negative properties of π(t, x). For instance, an equilibrium
point O is said to be negatively asymptotically stable w. r. to π(t, x) if it
is asymptotically stable for π(−t, x).

Definition 4. Let X be a locally compact metric space with distance
d. Let us consider µ] > 0 and a continuous map π : [0, µ])×R ×X → X,
(µ, t, x) 7→ πµ(t, x). We say that π is a continuous family of flows if ∀µ ∈
[0, µ]), πµ(t, x) is a flow on X.

The following definition was given in [?].

Definition 5. Let X be a locally compact metric space with distance
d, and C be the set of all proper, non-empty, compact subsets of X. Let
us consider a map K : [0, µ]) → C, µ 7→ Kµ, such that:

- ∀µ ∈ [0, µ]), Kµ is πµ-invariant,

- max{d(x,K0), x ∈ Kµ} → 0 as µ → 0,
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then µ = 0 is said to be a bifurcation point for the map K if there exists
µ∗ ∈ (0, µ]), and a second map M : (0, µ∗) → C, µ 7→ Mµ , satisfying the
conditions:

- ∀µ ∈ (0, µ∗), Mµ is πµ-invariant and Kµ ∩Mµ = ∅,
- max{d(x,K0), x ∈ Mµ} → 0 as µ → 0.

Theorem 6. (Marchetti, Negrini, Salvadori, Scalia [?]) Let X be con-
nected and π be a continuous family of flows on X. Let µ] > 0 and K :
[0, µ]) → C be a map as in definition 5. If K0 is π0-asymptotically sta-
ble and Kµ is πµ-negatively asymptotically unstable for µ ∈ (0, µ]), then
µ = 0 is a bifurcation point for K. Furthermore, the map M and µ∗ can
be chosen so that ∀µ ∈ (0, µ∗), Mµ is πµ-asymptotically stable.

The proof of the above theorem is heavily based on topological properties
of flows and level sets of Liapunov functions. With respect to analytic
bifurcation theorems, theorem ?? has the advantage be applicable to a
wider range of situations, being topological in nature. On the other hand,
when it is possible to apply one of the usual analytic bifurcation theorems,
one gets more information on the local properties of the flow.

In the special case of planar flows, theorem ?? allows to prove the exis-
tence of bifurcating limit cycles.

Corollary 7. ([?]) Let X = R2 and π be a continuous family of flows
on X. Assume that there exist µ] > 0 and a neighbourhood U of O, such
that for µ ∈ [0, µ]), O is the only fixed point of πµ belonging to U. If
O is π0-asymptotically stable and πµ-negatively asymptotically stable for
µ ∈ (0, µ]), then a family of asymptotically stable invariant annuli Mµ

bifurcate out of O as µ becomes positive. The inner and outer components
of the boundary ∂Mµ of the bifurcating annuli Mµ are limit cycles of πµ.

In the following system one can apply corollary ??, while Hopf’ theorem
and bifurcation theorems derived from Poincaré-Liapunov method cannot
be used.

ẋ = µx + (y − x)(x2 + y2), ẏ = µy − (x + y)(x2 + y2). (10)

In fact, for every value of µ, ?? has exactly one critical point at the
origin O. The eigenvalues of the linearized system at O vanish for µ = 0.
This prevents to apply Hopf’ theorem or Poincaré-Liapunov-like theorems.
On the other hand, by using the Liapunov function V (x, y) = x2 + y2 one
can easily prove that the origin O changes stability as µ becomes positive,
hence, by the above corollary, a family of asympotically stable annuli Mµ
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bifurcate out of O. The inner and outer components of ∂Mµ are limit cycles
of (??), possibly coinciding.

We find a more interesting application if we consider X = R2 ∪ {∞},
the one-point compactification of the plane. The topology of X is obtained
from that one of R2 by adding as new open sets the complements of compact
subsets of R2. Such new open sets are neighbourhoods of the point at
infinity. Every flow π(t, x) defined on R2 admits a unique extension to a
flow π̃(t, x) on X, obtained by setting π̃(t,∞) ≡ ∞. Such extensions were
studied in [?], where several similarities between stability properties and
boundedness properties of flows were analized.

Definition 8. A flow π(t, x) is said to be ultimately bounded (UB) if
there exists a compact subset K that is globally asymptotically stable. A
flow is said to be negatively ultimately bounded (NUB) if the negative flow
π(−t, x) is ultimately bounded.

Theorem 9. (Auslander and Seibert [?]) Let π(t, x) be a flow on R2.
Then ∞ is asymptotically stable for π̃(t, x) if and only if π(t, x) is negatively
ultimately bounded.

Theorem ??, in connection to theorem ??, allows to show that bifurca-
tion from infinity can be the consequence of changes in the boundedness
properties of a family of flows. That was proved in [?]. The result holds
in second countable, locally compact, non compact metric spaces. We re-
call here its two-dimensional version, that will be applied in order to count
large amplitude limit cycles.

Theorem 10. (Sabatini [?]) Let X = R2 and π be a continuous family
of flows on X. Assume that there exist µ] > 0 and a compact set N ⊂ R2,
such that for µ ∈ [0, µ]), there are no fixed points of πµ out of N. Let π0

be NUB and πµ be UB for µ ∈ (0, µ]). Then a family of asymptotically
stable invariant annuli Mµ bifurcates from infinity as µ becomes positive.
The inner and outer components of the boundary of the bifurcating annuli
Mµ are limit cycles for πµ.

Remark 11. In the above theorem, as in the case of corollary 7, the
inner and outer components of ∂Mµ can coincide. In this case there exists
an aymptotically stable limit cycle.

Theorem ?? has a wide applicability, because there exist several bound-
edness theorems for second order differential equations. In fact, several
results about the existence of limit cycles of second order equations come
from a study of the boundedness properties of their solutions. Moreover,
often a boundedness theorem can also be used to prove the unboundedness
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of solutions. Consider a second order scalar differential equation

ẍ + h(x, ẋ) = 0. (11)

If x(t) is a solution, then z(t) = x(−t) is a solution to the equation

z̈ + h(z,−ż) = 0. (12)

If the equation (??) satisfies the hypotheses of a boundedness theorem,
then the solutions of (??) one are negatively bounded. In particular, the
solutions of (??) are bounded if and only if those ones of

ẍ− f(x)ẋ + g(x) = 0. (13)

are negatively bounded, and vice-versa. Similarly, the solutions of system
(??) are NUB if and only if the solutions of the system

ẋ = y + F (x), ẏ = −g(x) (14)

are UB. We emphasize that (??) has not been obtained by multiplying the
vector field by -1, but by using the equivalence of (??) and (??), of (??)
and (??).

We report here the boundedness result that will be applied to study the
number of large amplitude limit cycles of Liénard polynomial equations.
We state it in a simpler form.

Theorem 12. (Graef [?]). Let f, g : R → R be continuous, lipschitzian
real functions. Let F (x) satisfy F (0) = 0, F ′(x) = f(x). Assume there
exists c, r ∈ R such that

- xF (x) > 0, for |x| > r;
- xg(x) > 0, for |x| > r;
- either F (x) ≥ c > 0 for x > r, or F (x) ≤ c < 0 for x < −r.

If additionally

∫ ±∞

0

f(x) + |g(x)| = ±∞ (15)

then the solutions of (??) are ultimately bounded.

Graef’ conditions are satisfied by (??) if F and g are odd-degree poly-
nomials with positive leading coefficients. Graef’ conditions are satisfied
by (??) if F and g are odd-degree polynomials, g with positive leading
coefficient, F with negative leading coefficient.
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Remark 13. The solutions of the systems we consider are not always
defined for all real values. In this case, we can work on the systems obtained
by a suitable reparametrization of the time. For instance, we can replace
the systems

ẋ = Pµ(x, y), ẏ = Qµ(x, y) (16)

with the systems

ẋ =
Pµ(x, y)

1 + Pµ(x, y)2 + Qµ(x, y)2
, ẏ =

Qµ(x, y)
1 + Pµ(x, y)2 + Qµ(x, y)2

.(17)

The new vector fields are bounded, hence every solution exists for all real
values, so defining a family of flows on R2. Moreover, the orbits of the new
systems coincide with the orbits of the old ones, so that the topological
properties of the systems coincide. In particular, their boundedness prop-
erties coincide. If (??) is a continuous family of vector fields, then also (??)
is a continuous family of vector fields, generating a continuous family of
flows.

We can now describe the procedure of generating several large amplitude
limit cycles of Liénard equations by means of successive bifurcations at
infinity.

Theorem 14. For every k, n integer, n > 2, 0 ≤ k ≤ [n−1
2 ], there exists

an n-degree Liénard equation of type (??), having k large amplitude limit
cycles obtained by successive bifurcations at infinity.

Proof. Let us first prove the statement in the case of odd n. Also, we
first show how to get n bifurcating limit cycles. Then, in order to get k
limit cycles, 0 ≤ k ≤ [n−1

2 ], a minor change will be sufficient.
Let us start with a system of the form

ẋ = y + x, ẏ = −x. (18)

This system, like all the systems that will be considered in this proof, has
exactly one equilibrium point at the origin O. This ensures that all the
bifurcating sets will be annuli and will contain limit cycles.

The point at infinity is globally asympotically stable w. r. to (??). Let
us add a third degree perturbation.

ẋ = y + x− a3x
3, ẏ = −x, a3 > 0. (19)

The leading coefficient of F (x) = −x+a3x
3 is positive, hence the solutions

of the above system are UB. Let us consider a3 as a bifurcation parameter.
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The stability of the point at infinity changes as a3 becomes positive. By
theorem ??, a family of asymptotically stable invariant annuli Ma3 bifur-
cates from infinity as a3 becomes positive. Every Ma3 contains at least a
limit cycle γ1.

Then the same procedure can be applied again, reversing again the sta-
bility of the point at infinity. Let us consider the system

ẋ = y + x− a3x
3 + a5x

5, ẏ = −x, a5 > 0. (20)

The leading coefficient of F (x) = −x + a3x
3 − a5x

5 is negative, so that
the solutions of the new system are NUB. A new family of asymptotically
stable invariant annuli Ma5 bifurcates from infinity as a5 becomes positive.
Each of them contains at least a limit cycle γ2. Moreover, for small values
of a5, the total stability of Ma3 ensures that the system (??) still has a
positively invariant compact set Pa3 in a neighbourhood of Ma3 . As a3

tends to zero, the distance of Ma3 and Pa3 tends to zero (see [?], thm.
(1.2) for details). Hence, for small values of a3 and a5, the system (??) has
two large amplitude limit cycles.

Since n is odd, this procedure can be applied up to [n−1
2 ] times, so

generating up to [n−1
2 ] large amplitude limit cycles.

If n is even, let us apply the above procedure up to degree n − 1. This
produces [n−2

2 ] = n
2 − 1 limit cycles. Then we add the last perturbation

ẋ = y + x− a3x
3 + . . . + anxn, ẏ = −x. (21)

By the total stability of all the bifurcating annuli, for small values of an

the last system still has [n−2
2 ] = [n−1

2 ] large amplitude limit cycles.
In order to get an n-degree equation with k limit cycles bifurcating from

infinity, 0 ≤ k ≤ [n−1
2 ], it is sufficient to stop the above procedure at the

k-th step, and then add a perturbation of degree n, as done above in the
case of even n.

The method applied in the above theorem can be adapted to prove the
existence of systems with both small amplitude and large amplitude limit
cycles. All the cycles that appear in this way are concentric.

Theorem 15. For every k, n integer, n > 2, 0 ≤ k ≤ [n−1
2 ], there exists

an n-degree Liénard equation of type (??), having k small amplitude limit
cycles obtained by successive bifurcations at the origin, and [n−1

2 ]− k large
amplitude limit cycles, obtained by successive bifurcations at infinity.

Proof. We present the proof for odd n. The proof for even n can be
obtained as in theorem ??.

We combine the procedures of theorems ?? and ??.
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Let us start with a system of the form

ẋ = y + x2k+1, ẏ = −x. (22)

The point at infinity is globally asympotically stable. We add a suitable
perturbation, in order to invert its stability.

ẋ = y + x2k+1 − a2k+3x
2k+3, ẏ = −x, a2k+3 > 0. (23)

We have obtained a family of large amplitude limit cycles bifurcating from
infinity. We repeat the procedure until we reach degree n.

ẋ = y + x2k+1 − a2k+3x
2k+3 + . . .± anxn, ẏ = −x, an > 0.(24)

Then we start generating bifurcations at the origin. We add perturbations
of lower and lower degree, in order to have small amplitude limit cycles.

ẋ = y ∓ a1x± . . .− a2k−1x
2k−1 + x2k+1 − . . .± anxn,

ẏ = −x.

Here all the aj ’s are positive. After both steps, we have obtained k small
amplitude limit cycles, and [n−1

2 ]− k large amplitude limit cycles.

One can also produce simultaneous bifurcations at infinity and at an
equilibrium point. Consider the system

ẋ = y + µx− x3 + µx5, ẏ = −x. (25)

The origin is the only equilibrium point of (??). As µ becomes positive,
both O and the point at infinity change stability, so that there are simul-
taneous bifurcations at O and at infinity.

For higher degree systems one can produce more and more simultaneous
bifurcations. In the following example, we first perturb by acting on µ1,
then by acting on µ2. In general, we do not need a nondegenerate linear
part at singular points.

ẋ = y + µ2x− µ1x
3 + x5 − µ1x

7 + µ2x
9, ẏ = −x2h+1. (26)

It is possible to construct examples of simultaneous bifurcations at sev-
eral equilibrium points and at infinity. Let us consider the following sys-
tems, where g(x) = x(x − 1)(x − 2)(x − 3) . . . (x − 2k), with k positive
integer.

ẋ = y + µg(x)− g(x)3 + µg(x)5, ẏ = −g(x). (27)
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The points (j, 0), j = 0 . . . 2k are equilibrium points of (??). The stability of
the points (2i, 0), i = 0 . . . k, can be studied by means of the Liapunov func-
tions V2i(x, y) = y2+2G2i(x), i = 0 . . . k, where G′2i(x) = g(x), G2i(2i) = 0.
Since xg(x) > 0 in a neighbourhood of x = 2i, i = 0 . . . k, the function
V2i(x, y) is positive definite at the point (2i, 0), i = 0 . . . k. The derivative
V̇2i(x, y) of V2i(x, y) along the solutions of (??) is 2(µg(x)2−g(x)4+µg(x)6).
For µ = 0, we have V̇2i(x, y) = −2g(x)4, hence the points (2i, 0), i = 0 . . . k
are asymptotically stable. For µ > 0, the dominant terms in V̇2i(x, y) at
(2i, 0) are y2 + µg(x)2, hence the points (2i, 0), i = 0 . . . k, are negatively
asymptotically stable. As µ becomes positive, every such point changes
stability, generating a small amplitude limit cycle. Similarly, the point
at infinity changes stability as µ becomes positive, generating a large am-
plitude limit cycle. Then we get the simultaneous bifurcation of a large
amplitude limit cycle and k small amplitude limit cycles.

There exist other classes of second order polynomial equations that can
produce examples of n-degree systems with [n−1

2 ] large amplitude limit
cycles. This is the case of Rayleigh equation, which was widely studied for
its relevance in applications (see, for instance, [?]).

ẍ + f(ẋ) + g(x) = 0. (28)

Theorem 16. For every k, n integer, n > 2, 0 ≤ k ≤ [n−1
2 ], there exists

an n-degree Rayleigh equation, having k small amplitude limit cycles ob-
tained by successive bifurcations at the origin, and [n−1

2 ]−k large amplitude
limit cycles, obtained by successive bifurcations at infinity.

Proof. The scheme of the proof is the same as in theorem ??. In this
case we apply a different boundedness theorem, presented in [?] (see also
[?] for the statement of a simplified version). Such a theorem shows that
the solutions of the system

ẋ = y, ẏ = −g(x)− f(y),

equivalent to (??), are UB when f and g are odd-degree polynomials with
positive leading coefficients, while they are NUB when they are odd-degree
polynomials, g with positive leading coefficient, f with negative leading
coefficient. We can take g(x) = x, or any other polynomial with g′(x) > 0,
and work with f(x) as done with F (x) in theorem ??.

Bifurcations at the origin can be easily generated by means of successive
inversions of stability, by adding odd lower degree terms of f(y).

Successive bifurcations from infinity can be produced also in non-polynomial
systems. Working as in theorem ??, one can prove that there exist values
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of the parameters a3, . . . , a2k+1, such that the system

ẋ = y + x− a3(sinh x)3 + . . . + a2k+1(sinhx)2k+1, ẏ = −x,

has k large amplitude limit cycles. This is due to the fact that the function
sinhx is odd, increasing and superlinear, so that Graef’ theorem can be
applied in order to study the boundedness properties of the involved sys-
tems. In fact, in the above example sinh x could be replaced by any odd,
increasing and superlinear function of class C1.

So far, we have constructed examples of successive bifurcations at infinity
similar to examples of successive bifurcations at the origin. In next theorem
we construct a bifurcation procedure for which there is not a corresponding
one at a critical point. The idea consist in performing infinitely many
perturbations of higher and higher degrees, in order to get an analytic
Liénard equation with infinitely many concentric limit cycles. This cannot
be done by successive bifurcations at a critical point, because in that case
perturbations’ degrees decrease.

We first prove a technical lemma. If v = (v1, v2), w = (w1, w2) are two-
dimensional vectors, we set v ∧ w = v1w2 − v2w1. If δ is a C1 curve, we
denote by δ′ its tangent vector.

Lemma 17. Let M be an asymptotically stable annulus of the differential
system

ż = v(z),

z = (x, y) ∈ R2, v ∈ C1(IR2, IR2), having nontrivial cycles γi, γe as inner
and outer components of its boundary. Then there exist C1 curves δi en-
closed by γi, δe enclosing γe, such that δi′ ∧ v 6= 0 on δi, δe′ ∧ v 6= 0 on
δe.

Proof. Let us set v⊥ = (−v2, v1). The family of vector fields

vθ = v cos θ + v⊥ sin θ, θ ∈ [0, 2π)

is a complete family of rotated vector fields, in the sense of Duff [?].
Without loss of generality, we can assume γe to be negatively oriented.

Since M is asymptotically stable, γe is externally stable. By theorem 6 in
[?], there exists an outer neighbourhood Ue of γe such that every z ∈ Ue

belongs to a cycle γθ of ż = vθ(z), with θ > 0, small enough. By the
transversality of v and vθ, we have γ′θ ∧ v 6= 0 on γθ. Then we can set
δe ≡ γθ, for an arbitrary θ > 0, small enough.

We can operate similarly for γi and δi, applying again theorem 6 of
[?].

Remark 18. Due to the asymptotic stability of M , the curves δi, δe of
the lemma can be chosen so that the annulus N having δi as inner boundary,
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δe as outer boundary, is positively invariant. A similar statemente holds for
negatively asymptotically stable sets M , which are contained in negatively
invariant annuli. In next theorem, limit cycles will be negatively oriented,
because for the involved systems, ẏ = −x. In this case external asymptotic
stability implies the existence of a δe such that δe′ ∧ v < 0 on δe, and of a
δi such that δi′ ∧ v > 0 on δi.

We say that a cycle is contained in a period annulus if it has a neigh-
bourhood filled with nontrivial cycles.

Theorem 19. There exists an analytic Liénard equation with a unique
singular point and infinitely many concentric limit cycles.

Proof. We start as in the proof of theorem ??, considering

ẋ = y + x, ẏ = −x.

By adding a cubic perturbation,

ẋ = y + x− a3x
3, ẏ = −x, a3 > 0. (29)

we produce a family of asymptotically stable invariant annuli M3 bifurcat-
ing from infinity. Let us denote by v3 the vector field associated to the
system (??). By the above lemma, there exist C1 curves δi

3, δe
3 such that

δe
3
′∧v3 6= 0, δi

3
′∧v3 6= 0, resp. on δe

3, δi
3. Due to the form of Liénard system,

since M3 is asymptotically stable, we have δe
3
′ ∧ v3 < 0 on δe

3, δi
3
′ ∧ v3 > 0,

on δi
3. Let us denote by N3 the annulus having δi

3 as inner boundary, and
δe
3 as outer boundary.
Now let us apply a second perturbation,

ẋ = y + x− a3x
3 + a5x

5, ẏ = −x, a5 > 0. (30)

Let us denote by v5 the corresponding vector field. A family of negatively
asymptotically stable invariant annuli M5, bifurcates from infinity as a5

becomes positive. Let us choose a5 small enough to have δe
3
′ ∧ v5 < 0,

δi
3
′ ∧ v5 > 0, resp. on δe

3, δi
3. By the previous lemma and the negative

asymptotic stability of M5, there exist also C1 curves δe
5, δi

5 such that
δe
5
′ ∧ v5 > 0 on δe

5, δi
5
′ ∧ v5 < 0 on δi

5.
By adding perturbations of higher and higher order, we construct a se-

quence of (negatively) asymptotically stable invariant annuli M2k+1, with
C1 curves δe

2k+1, δi
2k+1, defining annuli N2k+1 such that

(i) N2k+1∩N2h+1 = ∅, for k 6= h; N2k+1 positively (negatively) invariant
w. r. to v2k+1, if M2k+1 is (negatively) asymptotically stable;

(ii) for 2h + 1 ≥ 2k + 1: δe
2k+1

′ ∧ v2h+1 6= 0, δi
2k+1

′ ∧ v2h+1 6= 0, resp. on
δe
2k+1, δi

2k+1.
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Moreover, we can choose the parameters a2k+3 small enough to satisfy
(iii) |a2k+3|

|a2k+1| < 1
2k+3 .

The power series
∞∑

k=1

(−1)ka2k+1x
2k+1

has radius of convergence ∞, because of condition (iii). Let us set F (x) =
x +

∑∞
k=1(−1)ka2k+1x

2k+1. F (x) is an analytic function defined on all of
IR. We claim that the system

ẋ = y + F (x), ẏ = −x (31)

has infinitely many limit cycles. Let us denote by v∞ the corresponding
vector field.

Assume M2k+1, for some k > 0, to be asymptotically stable for v2k+1,
hence N2k+1 positively invariant w. r. to v2k+1. Let z = (x, y) be a
point of δe

2k+1. Since δe
2k+1

′ ∧ v2k+1 < 0 on δe
2k+1, for h > k we have

δe
2k+1

′ ∧ v2h+1 < 0 on δe
2k+1, so that

δe
2k+1

′ ∧ v∞ = δe
2k+1

′ ∧
(

lim
h→∞

v2h+1(z)
)

= lim
h→∞

δe
2k+1

′ ∧ v2h+1(z) ≤ 0.

We can work similarly on δi
2k+1, proving that δi

2k+1
′∧ v∞ ≥ 0. This proves

that N2k+1 is positively invariant for v∞.
Similarly, we can prove that if M2k+1 is negatively asymptotically stable

for v2k+1, then N2k+1 is negatively invariant for v∞. Since the only critical
point of v∞ is the origin, in both cases we have proved that N2k+1 contains
at least a cycle γ2k+1.

It remains to prove that γ2k+1 is not contained in a period annulus. By
absurd, let us assume that γ2k+1 is contained in a period annulus P , with
inner boundary ∂iP . Since there exists a unique critical point, either ∂iP
is a singular point, or it is a cycle, or it is a generalized cycle containing a
unique critical point. The origin is negatively asymptotically stable, hence
neither the origin is a center, nor it can belong to a generalized cycle.
The only remaining possibility is that ∂iP be a cycle. In this case we can
consider its Poincaré’s map, which is analytic and constant on one side of
∂iP . Hence it has to be constant also on the other side of ∂iP , so that
∂iP should have a neighbourhood of cycles, contradicting the fact that it
is the inner boundary of P . This proves that γ2k+1 is a limit cycle of v∞,
completing the proof.

Such a procedure, with minor changes, applies as well to Rayleigh equa-
tion.



SUCCESSIVE BIFURCATIONS... 17

REFERENCES
1. J. Auslander, P. Seibert, Prolongations and stability in dynamical systems, Ann.

Inst. Fourier 14 (1964), 237–268.
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