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In this work we are interested in the global theory of planar quadratic dif-
ferential systems and more precisely in the geometry of this whole class. We
want to clarify some results and methods such as the isocline method or the
role of rotation parameters. To this end, we recall how to associate a pencil
of isoclines to each quadratic differential equation. We discuss the parameter-
ization of the space of regular pencils of isoclines by the space of its multiple
base points and the equivariant action of the affine group on the fibration of
the space of regular quadratic differential equations over the space of regu-
lar pencils of isoclines. This fibration is principal, with a projective group
as structural group, and we prove that there exits an open cone in its Lie
algebra whose elements generate rotation parameter families. Finally we use
this geometric approach to construct specific families of quadratic differential
equations depending in a nonlinear way of parameters wh! ich have a geo-
metric meaning : they parameterize the set of singular points or are rotation
parameters leaving fixed this set.
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1. INTRODUCTION

We consider real planar polynomial differential systems, i.e., systems of
the form

* This work was supported by NSERC and FCAR.
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D = Q(x, y)
∂

∂x
− P (x, y)

∂

∂y
(1)

dx

dt
= Q(x, y),

dy

dt
= −P (x, y) (2)

where P and Q are polynomial with real coefficients. In this work we are
interested in the global theory of systems (??) with max (deg P, deg Q) ≤ 2.
Such systems will be called here quadratic systems. There are a number
of long-standing open problems about polynomial differential systems, the
most famous one being Hilbert’s 16th problem, formulated by Hilbert in his
address to the International Congress of Mathematicians in Paris in 1900.
The second part of this problem asks to determine the maximum IH(n) of
the number of limit cycles which appear in systems of the form (??) with
n = max (deg P, deg Q), and also their possible relative positions in IR2.
This problem is still unsolved even for quadratic systems. The difficulty of
this problem is due to its twice global nature: analysis of the systems in
their whole domain of existence, including the points at infinity and in the
whole parameter space.

We know (cf. [?],[?]) that for a given system (??) the number of limit
cycles is finite. For fixed n, if the coefficients of P and Q vary while
max (deg P, deg Q) ≤ n, we therefore have IH(n) ≤ ℵ0. Is IH(n) finite ?
The answer is not known, even for the quadratic case. In over 100 years
since the statement of the problem, no example of a quadratic system was
found for which we can prove that we have more than four limit cycles. Due
to this, not only is it conjectured that IH(2) is finite but also that IH(2) = 4.

At the moment, work on quadratic systems proceeds in two different
directions: first, a program is under way to prove that IH(2) is finite (cf.
[?], [?]) and secondly, attempts are made to gain insight into the class of
quadratic systems by studying specific subclasses or by attempting to un-
derstand more of the geometry of this whole class (cf. [?], [?]). Our work
goes in this last direction. Work on specific classes of quadratic systems
usually imply tedious calculations. All too often one becomes aware that
there is just not enough mathematical structure around these calculations
to make them more transparent.

Classification works on special classes of quadratic systems are done in
terms of the coefficients appearing in the specific normal forms chosen for
the equations (??) which are studied. Since coefficients change with co-
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ordinate changes and since in general the coefficients have no geometric
meaning, arises the problem of classifying systems in more intrinsic ways
and attaching geometric meaning to the parameters.

The first goal of this work is to introduce some geometrical structure
which could help to make calculations more transparent and clarify a num-
ber of results and methods such as the isocline method or the role of the
rotation parameters.

The article is written so as to be as self contained as possible. In Sec-
tion 2 we define the space of quadratic differential equations and consider
the action on the affine group on this space. In Section 3 we discuss the
notion of isocline and associate a geometric object: a pencil of conics, to
a quadratic system. In Section 4 we construct a principal fiber bundle as-
sociated to the space of quadratic equations. This fibration will be used
to define some natural rotation parameter families and also to obtain pa-
rameterization of all vector fields with limit cycle, in which the parameters
have a geometrical meaning : they move the singular points or they are
rotation parameters.

2. THE SPACE OF QUADRATIC DIFFERENTIAL
EQUATIONS AND THE ACTION OF THE AFFINE GROUP

ON THIS SPACE

We are interested in the class of systems (??) with max (deg P,deg Q)=2,
over the field IK = IR or IC. The linear differential systems with constant
coefficients are thus included since, understanding how systems (??) with
max (deg P, deg Q)= 2 change with respect to parameters, also imply the
limiting case when the systems become linear. A system (??) is also called
vector field. When discussing issues not involving the time variable, we
associate to the vector field (??) its dual differential form ω = P (x, y)dx +
Q(x, y)dy and its associated differential Pfaff equation :

ω = P (x, y)dx + Q(x, y)dy = 0 (3)

The integral manifolds of the Pfaff equation (??) coincide with the phase
curves of the vector field (??).

Two equations (??) differing from one another by multiplication with a
non-zero constant, have identical integral manifolds. Then, leaving aside
the trivial case when both P and Q are identically zero, we regard a
Pfaff equation as a point in the projective space associated to the vec-
tor space IK2[x, y] × IK2[x, y] (isomorphic to IK12), where IK2[x, y] is the
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6-dimensional vector space of polynomials of degree than or equal to 2.

We denote by F (IK) this projective space, which is isomorphic to P 11(IK).
If ω is a non zero Pfaff form, we write [ω] the class of the equation {ω = 0}
in F (IK).

We consider affine transformations, i.e. maps f : IK2 −→ IK2, where
f(x, y) = (a11x + a12y + b1, a21 x + a22y + b2), for aij and bij in IK and
a11a22 − a12a21 6= 0. Let A(2, IK) be the affine group of transformations of
IK2 :

A(2, IK) = {f : IK2 −→ IK2 | f is an affine transformation}. (4)

The affine group A(2, IK) acts on F (IK), the space of Pfaffian equations,
by :

f · [ω] = [f∗ω]. (5)

This is a right action, induced by the action f∗ on the 1-forms, which is
given explicitely by :

f∗(Pdx + Qdy) = Pfdx + Qfdy (6)

with :

(Pf (x, y), Qf (x, y)) = (P ◦ f(x, y), Q ◦ f(x, y))Mf (7)

where Mf = ((aij)) is the matrix associated with the transformation f.

The foliation with singularities defined by a Pfaff equation [ω] is sent onto
the foliation of f ·[ω] by the action on an element of f ∈ A(2, IK). Then, it is
natural to consider the orbit space F (IK)/A(2, IK). Since dimIK(A(2, IK)) =
6 and dimK(F (IK)) = 11, this orbit space has dimension 5. We are inter-
ested in the classification of the phase portraits of systems (??) under or-
bital equivalence, i.e. equivalence under homeomorphisms which preserve
orientation of orbits (it is equivalent to consider the topological equivalence
of Pfaff forms). For this classification, it will be sufficient to consider mod-
uli for A(2, IK)-action, i.e., families induced by a map Λ

ϕ−→F (IK) with the
property that the image of ϕ contains at least one point on each A(2, IK)-
orbit. In the case IK = IR and if we are just interested in the limit cycles, it
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will suffice that the image of ϕ contains one representative in each A(2, IR)-
orbit of the Pfaffian equation with at least one anti-saddle singular point.
There are many examples of such families with 6 and even 5 parameters
(See [?],[?] for instance). Every one is defined by some linear map ϕ. In
the final paragraph, we shall deduce from our study new examples of fam-
ilies with 5 and 4 parameters, whose interest is link! ed to the geometric
interpretation of the parameter space. On the other side, the maps ϕ will
be not linear, but polynomial.

It is a classical method to extend a Pfaffian equation (??) on IK2 as a
cubic homogeneous Pfaff equation on IK3 [?]. Let Ω be defined by :

Ω = P̃ (X, Y, Z)dX + Q̃(X, Y, Z)dY + R̃(X, Y, Z)dZ = 0 (8)

where P̃ , Q̃, R̃ are cubic homogeneous polynomials over IK such that :

XP̃ + Y Q̃ + ZR̃ ≡ 0, in IK[X,Y, Z]. (9)

The Pfaff equation (??), subject to the condition (??), induces a singular
foliation on the projective space P 2(IK).

Now, any quadratic Pfaffian equation (??) can be extended as an equa-
tion (??), subject to the condition (??), by taking :

P̃ = Z3P
(

X
Z , Y

Z

)
Q̃ = Z3Q

(
X
Z , Y

Z

)

R̃ = −Z2
(
XP

(
X
Z , Y

Z

)
+ Y Q

(
X
Z , Y

Z

))
.

(10)

The Pfaffian equations (??) can be characterized among the equations
(??) , as the ones defining foliations with singularities which have the line
at infinity : `∞ = {Z = 0} as an invariant line. The projective group
P (2, IK) = PGL(3, IK) acts on the space Fproj(IK) of all cubic Pfaff equa-
tions (??), subject to the condition (??), and A(2, IK) is the subgroup
leaving invariant the line at infinity `∞. But in the following paragraph
we shall restrict ourself essentially to the study of the space F (IK). Never-
theless, in order to treat the general situation, pencils of conics which will
be associated to [ω] ∈ F (IK), will be considered in P 2(IK), which is the
natural ambient space for the conics.
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3. THE METHOD OF ISOCLINES. PENCILS OF CONICS
ASSOCIATED TO QUADRATIC SYSTEMS

In this paragraph, we associate to any quadratic differential Pfaffian
equation, a geometric object : the set of its isoclines. First of all, recall
the concept of isocline.

We shall denote by [x1, · · · , xn+1] the point of Pn(IK) associated to the
vector (x1, · · · , xn+1) in IKn+1 − {0}. Consider a quadratic Pfaff equation
[ω] ∈ F (IK), represented by the differential form ω = Pdx+Qdy. Let Σ[ω]
be the set of its singular points in IK2. We define a map I[ω] : IK2\Σ[ω] −→
P 1(IK) by :

I[ω](m) = [Q(m),−P (m)]. (11)

It is the line in IK2 defined by the kernel of ω at m, or equivalently,

directed by the dual vector field −Q
∂

∂x
+ P

∂

∂y
at the point m. This

map is algebraic. Given any ` = [u, v] ∈ P 1(IK), I−1
[ω] (`) extends into the

algebraic curve with equation : {uP + vQ = 0}.
Definition 1. Let ω = Pdx + Qdy be a quadratic differential 1-form

which represents an element [ω] ∈ F (IK). Let ` = [u, v] be a point of
P 1(IK). The isocline of [ω] with slope `, is the algebraic curve C` : {uP +
vQ = 0}. The curve C` is equal to I−1

[ω] (`) ∪ Σ[ω].

The isoclines are introduced in elementary courses as a convenient method
to tracing direction fields. The school of Erugin ([?], [?], [?]) used isoclines
portraits for gaining insight into quadratic systems, as V. Gaiko indicates
in [?] where he refers to [?], [?]. This is the so-called “isoclinic method”,
a term which according to V. Gaiko was introduced by Nemytskii and
Stepanov. In this paper, we also intend to give a more precise meaning
to this term by introducing more mathematical structure in the context of
quadratic systems.

First, we shall introduce the space of conics : C(IK), because it is the
space where the isoclines live. In general the set of isoclines of a given Pfaff
equation [ω] is a line in C(IK), called the pencil of conics associated to [ω].
We shall consider in detail these pencils, how they are determined by their
singular sets and the different possible situations which may occur.
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3.1. The projective space of conics : C(IK).

Let P (x, y) ∈ IK[x, y]\{0} with deg(P ) ≤ 2. Associated to P is the
algebraic set defined by the equation :

P (x, y) = a0 + a1 x + a2 y + a20 x2 + a11 xy + a02 y2 = 0. (12)

This set could be empty or it could be a line or a conic in the affine
plane IK2. This set does not change if we multiply the equation (??) by a
non-zero factor. So the sets defined by (??) in IK2 correspond biunivocally
to points [P ] = [a0, a1, a2, a20, a11, a02] ∈ P 5(IK). To each such point (or
equation (??)) we can associate a conic in P 2(IK) defined by the equation :

P ∗(X, Y, Z) = 0. (13)

where P ∗ = a0 Z2 + q1 XZ + a2 Y Z + a20 X2 + a11 XY + a02 Y 2.
In particular if a0 6= 0, to the empty set defined by the equation {a0 = 0}

in IK2, we associate the conic {a0Z
2 = 0} in the projective space; to a line

of IC2 we associate a reducible conic in P 2(IK), formed by the line and the
line at infinity {Z = 0}.

Notation 2. We shall call C(IK) the projective space of all conics (??)
in P 2(IK). This space is identified with P 5(IK). We shall denote by [P ∗]
(or simply by [P ]) the conic defined by the equation (??) in P 2(IK).

Definition 3. We say that a conic [P ] is irreducible if P ∗(X,Y, Z) is an
irreducible polynomial of degree 2 over IK. A reducible (or singular) conic is
given over IK by a reducible polynomial P ∗(X,Y, Z) = `1(X, Y, Z).`2(X, Y, Z)
where `1, `2 are linear factors. The conic [P ] is then the union of two lines
(which may be at infinity if deg P ≤ 1). We shall say that the conic is non
degenerate if it does not reduce to a double-line.

Notation 4. Let us denote by L(IK) the space of lines in P 2(IK) and
by SC(IK) the set of reducible conics.

The set of reducible conics SC(IK) is clearly a closed algebraic subset of
C(IK), which is parameterized by L(IK) × L(IK). The space L(IK) is the
same as the Grassmannian space of 2-dimensional subspaces in IK3 and
therefore its dimension is equal to 2. The dimension of the set SC(IK) is
equal to 4.

The group A(2, IK) of all affine transformations acts naturally on the
space C(IK), on the right :
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(a, [P ]) ∈ A(2, IK)× C(IK) −→ a · [P ] = [P ◦ a] ∈ C(IK). (14)

Also, the projective group P (2, IK) acts on C(IK). Even if we are prin-
cipally interested in the study of Pfaff equations modulo the action of
A(2, IK), it will be convenient to consider the action of the projective group
on conics, to simplify the proofs, by simplifying the classification. For in-
stance if IK = IC, the action of P (2, IC) on C(IC) has just three orbits : the
orbit of the “double-line” [x2], the orbit of the singular conic [x2 + y2] and
of the circle [x2 +y2−1]. On the other hand, the classification of the orbits
of C(IR) under the action of A(2, IR) is more complicated. But in any case
we have just a finite number of orbits (this is related to the fact that the
dimension of each group we consider is greater than or equal to 6 and the
dimension of the space C(IK) is equal to 5).

We shall now prove the following basic result :

Lemma 5. Given five distinct points in P 2(IK), any four of them not on
a same line, there exists one and only one conic over IK passing through
them. This conic is non degenerate (but it may be reducible).

Proof. First, let us suppose that three of the points are on a same line `.
Any conic containing these points must contain `, and then it is reducible.
The two other points define a line `′, distinct from `, and the only conic
through the five points is the reducible one : ` ∪ `′.

Let {p1, . . . , p5} be the subset of these five points and suppose now that
no line in P 2(IK) contains three of them. The condition that these five
points belong to a same conic define a system of five linear equations on
the coefficients of the conic. If the rank of the system matrix is strictly
less than 5, this means that one of these equations is a linear combination
of the other ones. Let us suppose that it is the last one. Let ` and `′ the
lines passing through the points p1, p2 and p4, p5 respectively. Then, the
coefficients of the reducible conic ` ∪ `′ satisfy the last equation It follows
that the point p5 is on ` and `′. This contradicts the hypothesis that no
line contains three of the points pi.

The above proof is valid in any field. For IK = IR or IC, it is possible
to give a more geometric proof. Let us suppose first that IK = IC. Let us
suppose again that no line contains three of the points. By the action of
an element of P (2, IC) we can bring two of the points on `∞ = {Z = 0}
in position (±i, 1, 0). Any conic of IC2 whose completion in P 2(IC) passes
through these two points is a complex circle (which may be reducible).
Here, by a complex circle we mean a conic defined by a polynomial with
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quadratic part equal to x2 + y2. The three other points are in IC2, not on a
same line. Then the problem reduces to the classical one :

Finding a circle passing through three points of IC2, not on a same line.

This problem is equivalent to the system of the 3 linear equations in
(a, b, c) ∈ IC2 : axi + byi + c = −(x2

i + y2
i ) for i = 1, 2, 3, where (xi, yi) are

the given points. Clearly this system has a unique solution.

Let now IK = IR and five points in P 2(IR). The above proof gives us
a complex conic through these points. The real or the imaginary part of
the equation of this conic is the equation of a real conic through the given
set of points. More generally, given a set of five points in P 2(IC), globally
invariant by conjugacy, it is possible to find a real conic containing it. For
instance if three of the points are real in IR2 and the two other ones are
complex and conjugate on the line at infinity, we can bring these two last
points in position (±i, 1, 0). Then the problem reduces to find a real circle
passing through 3 points of IR2, not on a same line.

Remark 6. If four points were on a same line ` and the fifth one e not
on `, any reducible conic ` ∪ `′ where `′ is a line through e, would be a
solution. If the five points were on the same line `, then all reducible conics
` ∪ `′, where `′ is arbitrary, would be a solution.

We would like to generalize lemma ?? to include the case when two or
more of the five points could coalesce. Thinking that the line through
the two points m1, m2 will have a limiting position δ, a double point may
be thought as an contact element, i.e. an ordered couple (m, δ) with
m = m1 = m2. Analogously a triple point may be thought as (m, δ2)
with m = m1 = m2 = m3 and δ the limiting position of the lines through
the couple of points (m1,m2), (m1, m3) respectively. More generally we
have the following definition :

Definition 7. A point of multiplicity n + 1 with n ≥ 0 is defined as
follows :
(i) If n = 0, a point of multiplicity 1 or a simple point is just a point m of
P 2(IK).
(ii) If n > 0, a point of multiplicity n+1 is an ordered couple (m, δn) where
m ∈ P 2(IK) and δ is a line in P 2(IK) such that m ∈ δ.
A point with some multiplicity (even equal to one) will be also called a
multiple point.

We want to recall now what is the intersection number of a line with an
algebraic curve in P 2(IK) :

Definition 8. Let δ be a line, γ be an algebraic curve defined by the
equation {f = 0} and m a point in γ ∩ δ. Let ϕ(t) = m + tb, t ∈ IK be
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a parameterization of δ, with b ∈ P 2(IK), b 6= m. The intersection number
Im(δ, γ) is the order of the function Φ(t) = f ◦ϕ(t) at t = 0. In other terms,
Im(δ, γ) is equal to inf{k | Φ(k)(0) 6= 0}. For instance Im(δ, γ) is infinite if
and only if δ ⊂ γ.

Remark 9. We point out that the above definition is a particular case
for the definition of the intersection number Im(γ1, γ2) of two algebraic
curves γ1 = {f = 0}, γ2 = {g = 0} at a point m of P 2(IK) (cf. [?] for
the axiomatic definition of Im(γ1, γ2) and [?] for the definition using the
resultant of the polynomials f, g).

Now, in terms of intersection number we can say what means that an
algebraic curve passes through some multiple point :

Definition 10. We shall say that an algebraic curve γ passes through
the multiple point (m, δn), for m ∈ γ, if and only if the intersection number
Im(γ, δ) is greater than or equal to n + 1.

Hereafter, we just consider conics. It is possible to list all the possible
cases for a conic γ passing through a multiple point (m, δn) :

(i) If n = 0, i.e. if m is a simple point, this just means that m belongs to
γ,

(ii) if n = 1, i.e. if (m, δ) is a double point, then δ is the tangent line at
a regular point m of γ or δ is any line through a singular point m of a
reducible conic γ,

(iii) if n > 1, the conic γ must be reducible and δ ⊂ γ.

Definition 11. By a subset σ of ` points counted with multipliplicity in
P 2(IK), we shall mean a subset of k distinct multiple points (cf. defini-
tion ??) : {(m1, δ1

n1), . . . , (mk, δk
nk)} , with k ≤ `, such that mi 6= mj if

i 6= j and
∑

i(ni + 1) = `.
Some of the points mi may be simple, i.e. of multiplicity 1. In which case

the point is of the form (mi, δ
0
i ) for any line δi containing mi, but we shall

write it simply : mi. We call support of σ the set | σ |= {m1, . . . ,mk} ⊂
P 2(IK).

We shall say that a conic γ passes through σ or contains σ (or that σ is
contained in γ) if γ passes through each multiple point (m, δn) ∈ σ, in the
sense of the definition ??.

Now, the lemma ?? has a direct generalization for subsets of five points
counted with multiplicity :

Lemma 12. Let us consider a subset σ of five points counted with mul-
tiplicity in P 2(IK), as it is defined above. Suppose that the multiplicity of
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each of them is less than or equal to 3. Moreover suppose that σ does not
contain one of the following configurations :

(i) four simple points on a same line of P 2(IK),
(ii) two (multiple) points on the line of a double point,
(iii) a pair of double points with a common line,
(iv) a simple point on the line δ of a triple point. Then there exists one

and only one conic passing through these points.

Proof. As in the previous lemma, it is possible to give an algebraic proof
which would be valid in any field (see the remark ?? below). We prefer to
give a geometric proof in IC. As above, the real case follows easily.

First, let us suppose that three points are on a same line `, or that a
simple or double point belongs to the line ` of another double point or that
one has a triple point (m, `2) in σ. In these cases, any conic through the
points must be reducible and contains `. Moreover an investigation of all
possible cases shows that the conic solution exists and is unique. It would
be fastidious to list all these cases. We just mention one of them: σ is
formed by two double points (m1, δ1), (m2, δ2) and a simple point m3, such
that the points m1,m2,m3 are on a same line `, with of course δ1, δ2 6= `.
In this case, the unique solution is the degenerate conic `2.

Let us suppose now that σ is generic, i.e. not as above. In comparison
with the previous lemma, we have just two new possibilities :

(i) σ contains just one double point (m, δ) and three simple points, not
on a same line and not on δ. We can bring two of them at the positions
(±i, 1, 0). Then the problem reduces to the construction of a (complex)
circle tangent to a line δ at a point m ∈ δ and passing through another
point of IC2, not on δ.

(ii) σ contains two double points (m1, δ1), (m2, δ2) and a simple point
m3 not on the line ` through m1,m2, with of course δ1 and δ2 different
from `. We can bring the line δ2 to the line at infinity. Then the problem
reduces to the construction of a parabola tangent to a line δ1 at a point
m1 ∈ δ1, m1 ∈ IC2, and passing through a point m3 ∈ IC2 not on δ1. We
can also bring the two points m1,m2 at the positions (±i, 1, 0) and the
intersection point δ1 ∩ δ2 at the origin of IC2. Then the problem reduces to
find a complex circle centered at the origin and passing through a point of
IC2.

Remark 13. (a) The conditions (ii),(iii) and (iv) on multiple points in
the lemma ?? are just the limiting situations of the condition (i) on simple
points. This condition is the condition which is given in the lemma ??.

(b) Of course, the discussion made in the remark after the lemma ?? can
be extended to multiple points.
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3.2. Pencils of conics.

Definition 14. A pencil of conics is a line, i.e. a 1-dimensional projec-
tive subspace of the projective space C(IK). Let [P ], [Q] be two distinct
conics in C(IK). The pencil of conics generated by them is the line passing
through them :

α([P ], [Q]) =
{

[uP + vQ] | [u, v] ∈ P 1(IK)
}
⊂ C(IK). (15)

Remark 15. In agreement with the notation α([P ], [Q]) we shall often
designate a pencil by α, when we shall not make reference to a special
choice of two conics [P ], [Q] generating it.

The set of all pencils of conics is then the set of all projective lines
in C(IK) ' P 5(IK). It coincides with the Grassmannian manifold of 2-
dimensional subspaces in IK6.

Notation 16. We shall denote by G(IK), this set of all pencils of conics,
with the induced algebraic structure of Grassmannian manifold. G(IK) is
a manifold of dimension 8 over IK.( For a general introduction to linear
systems of algebraic curves in P 2(IK), one may see [?]).

In order that the set of isoclines associated to a given Pfaff equation is
a pencil of conics, we have to restrict to non trivial Pfaff equations.

Definition 17. We say that [ω] is a non trivial Pfaff equation if it is
represented by {ω = Pdx + Qdy = 0} with P, Q 6= 0 and [P ] 6= [Q]. We
shall denote by E(IK) ⊂ F (IK) the set of all non trivial Pfaff equations.

Remark 18. E(IK) is an Zariski open set of F (IK). Its complement S(IK)
is made by the equations [ω] such that ω = P (adx + bdy), [a, b] ∈ P 1(IK)
and [P ] ∈ C(IK). Then, S(IK) ' P 5(IK) × P 1(IK) is a closed algebraic
subset of dimension 6 in E(IK).

Definition 19. The set of isoclines associated to a non trivial Pfaff
equation {ω = Pdx + Qdy = 0} is the pencil of conics : {[uP + vQ] |
[u, v] ∈ P 1(IK)}.

This defines a map from E(IK) to G(IK), we denote again by α,

given by α([ω]) = α([P ], [Q]) where ω = Pdx + Qdy. (16)

The action of the group A(2, IK) on C(IK) induces an action on G(IK),
the space of lines in C(IK) :

g · α([P ], [Q]) = α([P ◦ g], [Q ◦ g]). (17)



GEOMETRIC STRUCTURE OF QUADRATIC SYSTEMS 105

for g ∈ A(2, IK) and [P ], [Q] 6= 0, [P ] 6= [Q].

This action is well-defined because the right hand term in (??) is inde-
pendent of the choice of the conics [P ], [Q] defining the line α([P ], [Q]).

We can also define an action of P (2, IK) on G(IK) by taking g∗ ∈ P 2(IK)
and replacing P,Q by the polynomials P ∗, Q∗ as defined in (??).

Now, A(2, IK) acts on F (IK), as we have seen above, leaving E(IK)
invariant, and the group actions commutes with the map [ω] −→ α([ω]) :

Lemma 20. Let [ω] be a point of E(IK) and g ∈ A(2, IK).
Then g · (α([ω])) = α([g∗ω]).

Proof. Let us consider a non trivial Pfaff form

ω = Pdx + Qdy, and g(x, y) = (ax + by + γ1, cx + dy + γ2)

an element of A(2, IK). We have that :

g∗ω = P ′dx + Q′dy with :

P ′ = a P ◦ g + c Q ◦ g , Q′ = b P ◦ g + d Q ◦ g.

Clearly :

α([P ′], [Q′]) = α([P ◦ g], [Q ◦ g])

because the matrix
(

a b
c d

)
is invertible, and this gives :

α([g∗ω]) = α([P ◦ g], [Q ◦ g]) = g · (α[ω]).

Remark 21. In the lemma, it is not possible to consider the action of
P (2, IK) because the map α does not extend to the projective extension of
E(IK) in Fproj(IK).

In the next paragraph, we shall study the map [ω] 7→ α[ω]. In the re-
maining part of the present section we just concentrate on the space G(IK)
of pencils of conics, considering the geometry of possible pencils.

Remark 22. We can use the notion of pencil of conics to construct conics
with specified properties. For instance let us give an alternative proof of
the lemma ??. If we consider, as in lemma ??, a set σ of five simple points
in P 2(IK), not four of them on a same line, it is easy to find a subset σ̃ ⊂ σ
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which is a projective basis : this means that no three points in σ̃ are on
a same line. By the action of P (2, IK) we can send σ̃ on the quadruple
{[0, 0, 1], [1, 0, 1], [0, 1, 1], [1, 1, 1]} which we shall continue to designate by
σ̃. The two conics {P (x, y) = x(x− 1) = 0} and {Q(x, y) = y(y − 1) = 0}
contain σ̃. Let m = [a, b, c] ∈ P 2(IK) be the point such that σ = {m, σ̃}.
Each conic in the pencil α([P ], [Q]) = {[uP+vQ] | [u, v] ∈ P 1(IK)} contains
σ̃.Then the lemma ?? reduces to prove that there is one and only one conic
in the pencil which passes through the point m. This is equivalent to solve
the following equation on [u, v] ∈ P 1(IK) :

ua(a− c) + vb(b− c) = 0. (18)

As m 6∈ σ̃, one has that a(a− c) or b(b− c) is different from 0 and then the
equation (??) has a unique solution.

It is easy to give a similar proof of the lemma ??. For instance, if
the set σ contains a subset σ̃ = {(m1, δ1), (m2, δ2)} such that the line `
containing m1,m2 is different from δ1 and δ2, we can bring m1 at [0, 0, 1],
m2 at [0, 1, 1] and δ1, δ2 to be parallel to the Ox-axis. To finish the proof,
one considers the pencil generated by the conics {P (x, y) = x2 = 0} and
{Q(x, y) = y(y − 1) = 0}.

From now on, we suppose that IK = IC. Of course, it will be always
possible to consider a real object (conic or pencil) as a complex object.

Definition 23. A non degenerate pencil is a pencil which contains at
least one irreducible conic. We shall say that a pencil is regular if it is
non degenerate and contains at least two distinct reducible (i.e. singular)
conics.

Remark 24.
(a) The set of degenerate pencils D(IC) is the union of two non-disjoint

subsets :

D1(IC), the subset of pencils α = α([P ], [Q]) generated by two distinct
reducible conics [P ], [Q] with a common singular point. If the singular
point is at finite distance, we can bring it to the origin by an element of
A(2, IC). Then, the pencil just contains homogeneous conics of degree 2.

D2(IC), the subset of pencils α = α([P ], [Q]) generated by two reducible
conics [P ], [Q] with exactly one common linear factor. We write these
conics P = `.p , Q = `.q, with [p] 6= [q], where ` is the common factor.
Using the P (2, IC)-action on the pencils in P 2(IC), we can bring the line
[`] to infinity {` = 0} = `∞. Then, as a pencil in P 2(IC) (i.e. up to the
action of P (2, IK)), the pencil reduces to a pencil of lines, passing through
a common point a ∈ P 2(IC). We can suppose that a = (0, 0) ∈ IC2 (if a 6∈ [`])
or a = [1, 0, 0] ∈ P 2(IC) (if a ∈ [`]). In IC2 (up to the action of A(2, IC)), we
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have more possible cases and the pencil is no longer always equivalent to a
pencil of lines.

(b) We shall write O(IC) the set of non degenerate and non regular pencils.
Each of them contains just one reducible conic which is non-degenerate in
one case (a pair of distinct lines) and degenerate in the other case (a double
line). Any pair of distinct conics generating a pencil in O(IC) intersects in
a point with intersection number equal to 3 or 4.

Notation 25. We shall denote by G0(IC) = G(IC)\(D(IC) ∪ O(IC)), the
open algebraic subset of regular pencils.

We shall see that the study of a regular pencil reduces to the study of
its multiple base points in a sense to be made precise below.

Definition 26. Let α be a pencil of conics which contains at least one
irreducible conic [P ] (this means that [P ] ∈ G0(IC) ∪ O(IC)). Let [Q] ∈ α a
second conic such that [P ] and [Q] generate α. These two conics intersect
just at a finite number of points in P 2(IC). We associate to α a subset σ(α)
of points counted with multiplicity in P 2(IC), as follows :

Let |σ(α)| = [P ] ∩ [Q]. Let m be a point in |σ(α)|. If Im([P ], [Q]) = 1,
i.e. the two conics have a transversal intersection at m, then this point is
contained in σ(α) as a simple point. If Im([P ], [Q]) = n + 1 > 1, and δ is
the tangent line to [P ] at m, then the multiple point (m, δn) is contained
in σ(α).

The subset σ(α) of points counted with multiplicity just depends on the
pencil α and not on the choice of the conics [P ], [Q] as above. |σ(α)| will be
called the set of base points of α and σ(α) will be called the set of multiple
base points of α.

Lemma 27. If α is a regular pencil then σ(α) is defined. It a subset of
four points counted with multiplicity in P 2(IC). The multiplicity of each of
these points is less or equal than 2.

Proof. Let us consider α ∈ G0(IC). First, σ(α) is defined because in the
definition ?? we have just supposed that the pencil α contains at least one
irreducible conic, which is the case for pencils belonging to G0(IC). We can
generate α by an irreducible conic [P ], and a reducible one [Q]. We know
that these two conics have just a finite number of intersection points and by
the Bezout’s theorem the sum of the intersection numbers at these different
intersection points is equal to four. Now, if m is any intersection point, the
multiplicity that we have given at the corresponding multiple point in σ(α)
is precisely equal to the intersection number Im([P ], [Q]). This intersection
number is less or equal than 2, if not α would belong to D(IC) or O(IC).
It follows that σ(α) is a subset of four points counted with multiplicity in
P 2(IC), and that the multiplicities are less or equal than 2.
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Remark 28. If α ∈ O(IC), the set σ(α) is made of one single quadruple
point or a pair of one triple point and one simple point. If α is a degenerate
pencil, we can just consider the set Σ(α) = [P ] ∩ [Q] ⊂ P 2(IC) (when
α ∈ G0(IC) ∪ O(IC) as in definition ??, we can take Σ(α) = |σ(α)|). If
α ∈ D2(IC), the set Σ(α) contains a line [`]. If α ∈ D1(IC)\D2(IC) then Σ(α)
is reduced to one point.

We want to be more precise, concerning the possible sets σ(α), when α
in a regular pencil and concerning the map σ defined on G0(IC) the space
of regular pencil.

Definition 29. Let S4(IC) be the set of subsets σ of four points counted
with multiplicity in P 2(IC), with the following properties :

(a) The multiplicity of each point is less than or equal to two.

(b) No three multiple points (mi, δ
ni
i ), i = 1, 2, 3, are on a same line.

This means precisely that no line ` ∈ P 2(IC) contains m1,m2,m3 and that
mi 6∈ δj for i 6= j.

It is possible to give an algebraic structure to S4(IC). Let us call S̃4(IC) ⊂
P 2(IC)× · · · × P 2(IC) (four times) the Zariski open set, complement of the
union of triple-diagonals ∆ijk = {(z1, z2, z3, z4) | zi = zj = zk), where
{i, j, k} is any subset of 3 elements in {1, 2, 3, 4}. Let Ŝ4(IC), be the set which
is obtained by blowing up S̃4(IC) along the union of the double-diagonals
∆ij = {(z1, · · · , z4) | zi = zj} for i 6= j (these submanifolds are 2 by
2 distinct in S̃4(IC)). Let us consider the quotient of Ŝ4(IC) by the action
of the permutation group on the coordinates (z1, · · · , z4). Then S4(IC) may
be identified with the subset of elements in this quotient which verify the
condition (b) in the definition ?? : a point z ∈ S̃4(IC) with z1 = z2 for
instance, is replaced by the subset of points ((z1, δ), z3, z4) ∈ Ŝ4(IC), where
δ is any line of P 2(IK) through the point z1 ∈ P 2(IK); then, passing to the
quotient space allows to forget the order of points.

We can stratify the space S4(IC) :

S4(IC) = S4
0(IC) ∪ S4

1(IC) ∪ S4
2(IC) , where, in S4(IC) :

i) S4
0(IC) is the set of quadruples of simple distinct points, no three of them

on a same line. It is an open set of dimension 8 in S4(IC).
ii) S4

1(IC) is the set of subsets of points counted with multiplicity in P 2(IC),
made by a double point (m, δ) and two simple points, none of them on δ.
It is a manifold of dim S4

1(IC) = 7.
iii) S4

2(IC) is the set of pairs of double points {(m1, δ1), (m2, δ2)} with m1 6=
m2, such that the two lines δ1, δ2 are distinct from the line joining m1 and
m2. It is a manifold of dim S4

2(IC) = 6.



GEOMETRIC STRUCTURE OF QUADRATIC SYSTEMS 109

The structure of strata incidence : S4
1(IC) ⊂ S4

0(IC) and S4
2(IC) ⊂ S4

1(IC),
is related to the above construction by blowing-up. Indeed, the groups
A(2, IC), P (2, IC) act on S4(IC) and preserve the stratification. In fact each
stratum S4

1(IC), S4
2(IC) is just one orbit of the P (2, IC)-action.

Now, in a precise sense, a non-degenerate pencil is characterized by its
set of multiple base points :

Theorem 30. The map σ, restricted to G0(IC), takes values in S4(IC).
This map σ : G0(IC) −→ S4(IC) is a bijective, birationnal map.

This result is a consequence of some elementary properties of pencils :

Lemma 31. Let α be any pencil in G0(IC). Then, through each m ∈
P 2(IC)\ | σ(α) | there passes one and only one conic of the pencil α.

Proof. Let us consider a point m ∈ P 2(IC)\ | σ(α) | . The set {m,σ(α)}
is a subset of five points counted with multiplicity in P 2(IC), which verifies
the hypothesis of lemma ?? and the result follows from that lemma.

Remark 32. With a little more work, it is easy to prove the lemma ??
for any pencil in G(IC).

Lemma 33. Let α be any pencil in G0(IC). Then the pencil α contains at
least two different reducible conics and no more than three. This last case
happens if and only if σ(α) ∈ S4

0(IC).

Proof. Let us consider for instance that σ(α) ∈ S4
0(IC), i.e. that σ(α)

is a subset of four simple points {a, b, c, d} in P 2(IK). There are three
ways to make a partition of σ(α) by subsets of two elements. Each of
these partitions gives a reducible conic of the pencil. For instance consider
the partition {{ab}, {c, d}}, and take m = (a, b) ∩ (c, d) ∈ P 2(IC) (here
(a, b) designates the line of P 2(IC) through the points a, b). The conic of α
through m is precisely the reducible conic (a, b)∪ (c, d). Clearly, any pair of
reducible conics obtained in this way, generates the pencil α. It is possible
to treat similarly the more degenerate cases σ(α) ∈ S4(IC)\S4

0(IC). Notice
that it is in these cases, that we can find just two different reducible conics
(and not three of them, like in the previous case).

Remark 34. If α ∈ D(IC) every conic in the pencil is reducible. On the
other hand, if α ∈ O(IC), the pencil contains just one reducible conic.

We can now return to the proof of theorem ??.

Proof of theorem ??

Proof. We first prove that for α ∈ G0(IC) we have σ(α) ∈ S4(IC). In
the lemma ?? we have proved that σ(α) is a subset of four points counted
with multiplicity in P 2(IC) and that each point has a multiplicity less than
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or equal to two: this is the condition (a) in the definition ??. To verify
the condition (b) of the definition ?? we have just to notice that if three
points of σ(α) belong to a same line (in the precise sense given here), then
each conic in the pencil α would be reducible and the pencil could not be
regular.

We now prove that σ is surjective. Let be s an element of S4(IC). Then,
using the lemma ??, we know that a unique conic passes through {m, s}
where m ∈ P 2(IC)\|s|. If we construct two distinct conics [P ], [Q] in this
way, it is clear that s = σ(α([P ], [Q])).

The above argument implies that the conics of the pencil α([P ], [Q]) are
determined by s, and then, the map σ is injective.

To prove that σ is a rational map, it suffices to notice that G(IC) (and
then G0(IC)) can be parameterized locally by pairs of distinct conics : taking
any α0 ∈ G(IC), choose two hyperplanes P, Q in C(IC) cutting transversally
the line α0 at points [P0], [Q0] respectively ; then the α ∈ G(IC) near α0

are parameterized by the pairs ([P ], [Q]), [P ] near [P0] on P and [Q] near
[Q0] on Q. This defines an algebraic open chart U containing α0 in G(IC)
and on this chart | σ(α) |= [P ] ∩ [Q] (where the points are equipped with
their multiplicity in σ(α)). This is a rational map. Conversely, taking
s0 ∈ S4(IC), we can choose two distinct points m1, m2 ∈ P 2(IC)\ | s0 |,
such that the conics through {m1, s0} and {m2, s0} are distinct. Then, we
can define a local section of σ in a neighborhood of s0, in the following
way : taking s near s0 in S4(IC), two conics [P (s)] and [Q(s)] pass through
{m1, s} and {m2, s} respectively. The map s −→ α([P (s)], [Q(s)]) ∈ G0(IC)
gives a local algebraic section of σ.

To the stratification of S4(IC) corresponds via the map σ, a stratification
of G0(IC) :

Notation 35. Let us define : Gi
0(IC) = σ−1(S4

i (IC)} for i = 0, 1, 2.

It is easy to describe the different strata of G0(IC). Recall that each
element α ∈ G0(IC) may be written α([P ], [Q]) where [P ] and [Q] are two
reducible conics. Moreover the two linear factors of [P ] are transversal to
the two linear factors of [Q].

(i) If the two conics intersect at regular points, we have that α ∈ G0
0(IC)

and σ(α) is the set of four simple points : [P ] ∩ [Q].

(ii) If the singular point m of one conic (let us say [P ]) coincides with
a regular point of the other conic (let us say Q), situated on the linear
factor δ of Q, we have that α ∈ G1

0(IC) and σ(α) = {(m, δ), p, q} where
[P ] ∩ [Q] = | σ(α) |= {m, p, q}.
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(iii) If one conic is degenerate (let us say [Q] = `2), we have that α ∈ G2
0(IC).

If [P ] is the product of two distinct lines δ1 and δ2 such that m1 = δ1 ∩ `
and m2 = δ2∩`, m1,m2 6= δ1∩δ2, we have that σ(α) = {(m1, δ1), (m2, δ2)}.

Let us notice that each stratum Gi
0(IC) is just one orbit of the action

of the projective group P (2, IC). Then, up to a projective transformation,
each pencil in G0

0(IC) is equivalent to the pencil of circles passing through
the points (−1, 0), (1, 0) ∈ IC2; each pencil in G1

0(IC) is equivalent with the
pencil of circles tangent at (0, 0) with the vertical axis; each pencil in G2

0(IC)
is equivalent with the pencil of concentric circles at the origin.

The classification of pencils up to the action of A(2, IC) is more compli-
cated, and we encounter in this case moduli of orbits. Let us consider for
instance the classification of S4

0(IC), modulo the action of A(2, IC), in the
case of four simple points at finite distance. We can bring three of them
at the positions a = (0, 0), b = (1, 0) and c = (0, 1). The last point d
could be any point in IC2\(a, b) ∪ (b, c) ∪ (a, c). This space parameterizes
the orbit space (space of moduli). Of course we have other strata in S4

0(IC)
corresponding to the possibility of points at infinity.

If we consider IK = IR, the classification is even more complicated. For
the classification up the A(2, IR)-action, the simpler possibility in S4

0(IR)
corresponds to a pencil given by four real simple points at finite distance.
This set of pencils splits into two connected components : one of them
corresponding to the subsets s ∈ S4

0(IR) having a triangular convex hull
and the other one corresponding to the subsets s which have a quadrilateral
convex shape. (This new phenomenon comes from the fact that any line
disconnects IR2). Of course, for a complete classification, we have to take
into account the points at infinity of s ∈ S4(IR) and the partition between
real or complex points (0,2 or 4 points may be complex).

To finish this paragraph, we return to the general pencils of conics to
formulate the following result (recall that SC(IC) is the space of all reducible
or singular conics).

Notation 36. Let G1(IC) be equal to G(IC)\O(IC).

We have the following result :

Proposition 37. Let ∆ be the diagonal in SC(IC)× SC(IC). The map

α : SC(IC)× SC(IC)\∆ −→ G1(IC)

is an algebraic ramified covering, regular above G0
0 and ramified along the

singular set G1(IC)\G0
0(IC) = D(IC) ∪G1

0(IC) ∪G2
0(IC).

Proof. Let S = SC(IC) × SC(IC)\∆. The map α : ([P ], [Q]) ∈ S −→
α([P ], [Q]) is of course algebraic. If s ∈ G0(IC), there exists ([P ], [Q]) ∈ S
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such that α([P ], [Q]) = s as a consequence of lemma ??. If s ∈ D(IC), there
exists such a ([P ], [Q]) ∈ S as above, because any element of s is a reducible
conic. Then, the map α is surjective over G1(IC).

Moreover, in lemma ??, we have shown that on any s ∈ G0
0(IC) there

exist 3 and only 3 distinct reducible conics in s. This proves that the map
α is a regular covering with 3 sheets above G0

0(IC). Each sheet corresponds
to a choice of 2 reducible conics among 3. This map is ramified along the
algebraic closed subset D(IC) ∪G1

0(IC) ∪G2
0(IC).

4. QUADRATIC EQUATIONS STRUCTURED AS A
BUNDLE OVER PENCILS OF CONICS.

In the previous paragraph, we have introduced the space E(IK) of non
trivial Pfaff equations and its mapping α : E(IK) −→ G(IK) onto the space
of pencils of conics. Moreover, we introduce :

Notation 38. The set of regular Pfaff equations E0(IK), will be the set
of Pfaff equations having a regular pencil of conics: E0(IK) = α−1(G0(IK)).

The set of singular points of a given Pfaff equation [ω] ∈ E0(IK), equipped
with their multiplicities, coincides with the set of multiple base points of
its pencil α([ω]). We shall denote this set σ([ω]), i.e σ([ω]) = σ ◦ α([ω]).

We can use the decomposition of the space G(IK) to obtain a decom-
position of the space E(IK) and to derive informations about the singular
points of the Pfaff equations :

(a) α−1(G0
0(IK)) is the set of generic equations with four non degenerate

singular points over IC. Non-degenerate means that the two eigenvalues are
non zero. When IK = IR, the set of singular points splits into the set of
saddle and the set of anti-saddle points of the equation.

(b) α−1(G1
0(IK)) is the set of equations with two non degenerate singular

point and one degenerate point (a generic semi-hyperbolic or nilpotent
singular point).

(c) α−1(G2
0(IK)) is the set of equations with two degenerate singular

points.

(d) α−1(O(IK)) is a set of equations which have a semi-hyperbolic or a
nilpotent point of codimension 3 or 4 (see [?]).

(e) α−1(D1(IK)) is the set of equations with at most a unique singular
point, having a trivial linear part (when the singular point exists and up
some projective map, such an equation is an homogeneous one).
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(f) α−1(D2(IK)) is the set of equations having a line of non-isolated
singular points.

4.1. The fiber bundle structure α : E(IK) −→ G(IK).

Recall that the right action of the affine group A(2, IK) in the phase
space IK2 induces right actions on E(IK) and G(IK) which commute with
α (we can see E(IK), G(IK) as A(2, IK)-spaces and α as a A(2, IK)-map).

We now want to introduce another group-action of E(IK). It corresponds
to the action of the group P (1, IK) = PGL(2, IK) at each point m ∈ IK2,

on the direction of the vector X(m) = Q(m)
∂

∂x
− P (m)

∂

∂y
, dual to

the exterior form ω(m). It is induced by: (g · X)(m) = g(X(m)) for any
g ∈ GL(2, IK). In contrast with the action of A(2, IK) on E(IK) which is
simply the change of coordinates, in general this action of P (1, IK) does
not preserve the phase portrait of the Pfaff form.

From now on, using the identification of E(IK) with P 11(IK), we shall
write [P, Q] to denote the Pfaff equation [ω] = {Pdx + Qdy = 0}. For each
m 6∈ Σ([ω]) one can define the value of [ω] to be [ω](m) = [P (m), Q(m)] ∈
P 1(IK∗). The action of P (1, IK) on E(IK) is the mapping :

ρ : P (1, IK)× E(IK) −→ E(IK) (19)

given by ρ([g], [P,Q])(m) =
[(

P (m), Q(m)
)
g−1

]
. where [g] ∈ P (1, IK) is the

class of g ∈ GL(2, IK). Explicitely, if g =
(

α β
γ δ

)
, ρ([g], [P, Q]) = [P ′, Q′]

with :

P ′ = δP − γQ and Q′ = −βP + αQ (20)

Clearly, ρ is a right action which preserves each fiber of the map α, i.e. :

α(ρ([g], [ω])) = α[ω] (21)

for ∀[g] ∈ P (1, IK) and ∀ω ∈ E(IK).

Two properties for α and ρ follow easily :
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Lemma 39. Each fiber α−1(p), for p ∈ G(IK), is diffeomorphic with
P (1, IK). More precisely, given any pair of Pfaff equations [ω], [ω′] ∈
α−1(p), there exists one and only one [g] ∈ P (1, IK) such that ρ([g], [ω]) =
[ω′].

Proof. The element p ∈ G(IK) is a line in the projective space C(IK) '
P 5(IK), or equivalently, a 2-dimensional subspace in the vector space IK6.
The fiber α−1(p) is just the collection of all base s in this 2-dimensional
subspace, up to scalar multiplication. The group action of P (1, IK) is
clearly transitive, with a trivial isotropy group.

Lemma 40. The map α admits local sections.

Proof. We can use the same argument as in the proof of the theorem
??. Given any p0 ∈ G(IK), we choose two hyperplanes P, Q in C(IK),
which cut transversally the line defined by p0 in C(IK).

Let us consider [P0] = p0 ∩ P and [Q0] = p0 ∩Q.

Recall that G(IK) can be locally parameterized by the pairs ([P ], [Q])
with [P ] near [P0] in P and [Q] near [Q0] in Q. This defines a neighborhood
of p0 in G(IK) and a chart map on it: p → ([P ], [Q]). If this neighborhood is
small enough, we can lift [P ], [Q] into two polynomials Pp, Qp in IK2[x, y],
which define a local section s(p) = [Pp, Qp] ∈ E(IK).

The two preceeding lemmas imply clearly the following :

Theorem 41. The map α is a principal fibration with total space E(IK),
base space G(IK) and structural group P (1, IK).

Remark 42. An element p ∈ G(IK) defines a line in P 2(IK). Now, to
take an element [ω] ∈ α−1(p) is the same as to take three distinct points
on p, i.e. a projective basis on the line p ' P 1(IK). The action of P (1, IK)
on α−1(p) is just the action of P (1, IK) = Aut (P 1(IK)) on the projective
bases of p.

4.2. Structure of principal bundle on the orbit spaces.

As the A(2, IK)-action on the phase space does not change the dynamical
properties, it would be convenient to take the quotient by this action.

Denoting A(2, IK) by A, E(IK) by E, · · · to simplify the notations, the
quotient spaces E/A, G/A are algebraic spaces of dimension 5 and 2 respec-
tively and, as the map α commutes with the action, we have an induced
map :

α̇ = α/A : E/A −→ G/A (22)
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We shall also denote by ṗ the class of p ∈ G, by [ω̇], the class of [ω]. It is
easy to see that the isotropy group of the A-action on G is trivial precisely
at the points of G0. As a consequence for p ∈ G0, α̇−1(ṗ) is isomorphic
with α−1(p) ' P (1, IK) and α̇ is a fibration of E0/A over G0/A (where
E0 = α−1(G0)). The actions of P (1, IK) on the two fibers of p and g · p,

where g

(
x
y

)
= M

(
x
y

)
+ b is an element of A, differ precisely by the

conjugacy by the matrix M. It follows that there is no natural way to put
a structure of principal P (1, IK)-bundle on the quotient by A. Nevertheless,
it will be possible to define this structure on any part of G0/A which can
be identified with a subset of G0 by the choice of a moduli space. As we
have seen, it is the case for G0

0/A which can be identify with an open subset
of !P 2(IK), and admits a section of the quotient map : G0

0 −→ G0
0/A. To

put a structure of principal bundle on the quotient, it suffices to restrict
the structure of principal bundle of α : E0

0 = α−1(G0
0) −→ G0

0.
Recall that p ∈ G0

0 is a pencil of conics such that σ(p) is a set of four
simple points. In the lemma ?? , we have proved that such a pencil contains
three and only three reducible conics. These three conics determine a
projective basis of p. In this way, we define a global section of α above
G0

0, so that the bundle is trivial above this subset. This triviality passes
to the quotient by A. Moreover, taking any base point a of the pencil p,
we can identify each conic of p with its tangent line at a. In this way, we
identify p with P (TaIK2). The existence of three reducible conics in the
pencil p gives a distinguished triple of element in P (TaIK2) and defines a
natural identification of P (TaIK2) with P 1(IK) (at least after a choice of
an order between the three reducible conics). Finally we obtain a natural
identification of p with P 1(IK). Now, for each [ω] ∈ α−1(p), we have defined
the isocline map I[ω], which has as a factor a map we can denote again I[ω],
from p to P 1(IK). Using ! the above identification between p and P 1(IK),
we have defined a map :

[ω] ∈ α−1(p) −→
{

c ∈ p −→ I[ω](c)
}
∈ P (1, IK) (23)

This map defines a trivialization of the fiber bundle α : E0
0 −→ G0

0, which
is compatible with its structure of principal bundle, and passes as well to
the quotient by A. Each Pfaff equation [ω] with a given pencil p = α([ω])
is then characterized by its isocline map c ∈ p −→ I[ω](c) which gives the
value of the constant slope along the isocline c.

Consider the case IK = IR. Let [ω] ∈ E0
0 be a Pfaff equation and any of

its singular point a ∈ σ[ω]. The degree of the map
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I[ω] : p ' PTaIR2 −→ P 1(IR)

is the index of the singular point a. It is equal to ±1 (+1 if a is an anti-
saddle and −1 if a is a saddle point).

We have seen that each of the component of G0
0(IR) corresponds to a

definite shape of the convex hull over the set of singular points : it may
be a triangle or a quadrilateral. Using the above interpretation of the
index in terms of the isocline map I[ω], it is easy to establish the following
well-known result for the repartition of index values :

(a) For the quadrilateral case : the indices are equal on each diagonal
and opposite on each side.

(b) For the triangular case : the value of the index is the same at all the
vertices of the triangle and opposite at the middle point in the interior of
the triangle.

4.3. Rotation-parameter families associated to the
PL(1, IR)-action.

In this part we shall suppose that IK = IR and we want to consider limit
cycles, i.e isolated closed orbits of a real vector field X on IR2. Of course
it is the same as to consider the isolated closed integral curves of the dual
form ω of X, but for the properties we want to consider now, it is more
convenient to consider vector fields. Questions about limit cycles are much
more difficult in general that the ones related uniquely to singular points,
which can be studied through the associated pencil of conics. Many of
these questions are related to the behavior of limit cycles in function of the
variations of parameters.

Definition 43. ([?]) Suppose that Xλ is a smooth 1-parameter family
of vector fields on IR2, with λ in some interval I of IR. We shall say that
this family is a rotation-parameter family if the set of singular points of
Xλ does not depend of λ and if, for all m ∈ IR2 such that X(m) 6= 0 and

∀λ ∈ I, we have
d

dλ
[Xλ(m)] 6= 0 ([Xλ(m)] ∈ P 1(IR) is the direction of the

vector Xλ(m)).

Remark 44. The condition in the definition means that the direction of
Xλ rotates regularly (with a non-zero speed) at each regular point of Xλ

and for any λ ∈ I. It is equivalent to say that det (Xλ(m),
d

dλ
Xλ(m)) 6= 0,

for any regular point m and any λ ∈ I. Interest for this notion comes from
the fact that one has a certain control on the behavior of the limit cycles
of Xλ in function of a rotation parameter λ : for instance, an hyperbolic
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limit cycle must increase or decrease in function of λ, depending on its

property of stability and on the sign of det
(
Xλ(m),

d

dλ
Xλ(m)

)
. (This sign

is the same everywhere). This property and other properties of rotation
parameter families are related to the following simple observation : the
graph of any return map associated to Xλ is globally translated when λ
varies.

The P (1, IR)-action on E(IR) we have introduced above, allows us to
construct 3-parameter families of quadratic vector fields. In fact, given any
vector field X, with dual Pfaff equation [ω] ∈ E(IR), we can consider the 3-
parameter family XM (m) = M.X(m), with parameter M ∈ P (1, IR), space
which may be identified with the 3-dimensional manifold {(a, b, c, d) ∈ IR4 |
ab− cd = ±1}.

From this, it follows that the Lie algebra of P (1, IR) is sl(2, IR), the Lie
algebra of the group SL(2, IR), connected component of the identity in

P (1, IR). For each M ∈ sl(2, IR) =
{(

α β
γ −α

)
| (α, β, γ) ∈ IR3

}
, we

can associate a real one parameter family of vector fields :

Xλ = exp (λM).X (24)

where X is a given quadratic vector field.
It is easy to characterize the matrices M which generate a rotation pa-

rameter family :

Definition 45.

We say that M =
(

α β
γ −α

)
is elliptic if Spec (M) ⊂ iIR − {0}, is

hyperbolic if Spec (M) ⊂ IR− {0} and is parabolic if Spec (M) = {0}.
Remark 46. The characteristic polynomial of M is equal to ∆(ξ) = ξ2−

(α2 + βγ). Then, the matrix M is elliptic if α2 + βγ < 0, hyperbolic if
α2 + βγ > 0 and parabolic if α2 + βγ = 0. The set of elliptic matrices is
equal to the interior of the cone of parabolic matrices, in IR3, and then,
this set is not connected.

It is easy to characterize the matrices M which generate a rotation pa-
rameter family :

Proposition 47. Any elliptic matrix M defines a rotation parameter
family, Xλ = exp (λM)X (where X is a vector field with a dual Pfaff form
in E(IR)).

Proof. One has
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d

dλ
exp (λM)X(m)|λ=λ0 =

d

ds
exp (sM) exp (λ0M)X(m)|s=0.

Then :
d

dλ
Xλ(m)|λ=λ0 = M.Xλ0(m).

Now, if M is elliptic, the map [u] −→ [M.u] from P 1(IR) to P 1(IR)

has no fixed point. It follows that det (Xλ0(m),
d

dX
Xλ0(m)) 6= 0 for

any λ0 ∈ IR and any regular point of X = Xλ0 . Of course, the set of
singular points of Xλ for ∀λ ∈ IR, is the same as the set of singular points
of X = Xλ0 .

Remark 48. It is easy to generalize the above result :

Let ϕ(λ) be a smooth map from IR to SL(2, IR). Suppose that
dϕ

dλ
∈

Tϕ(λ) SL(2, IR) is the right translation by ϕ(λ) of an elliptic matrix in
sl(2, IR), for ∀λ ∈ IR. Then Xλ = ϕ(λ).X is a rotation parameter family.

It is easy to find a set of three elliptic matrices which is a basis of sl(2, IR),
and then to generate the connected component SL(2, IR) of the identity in
P (1, IR) by three 1-parameter groups which defines for any X three rotation
parameter families. This will define a surjective mapping (µ1, µ2, µ3) ∈
IR3 −→ SL(2, IR) such that, if we maintain fixed two of the parameters µi,
we obtain a rotation parameter family in function of the third parameter.
Of course, it is difficult to control the effect of the simultaneous variations
of two independent rotation parameters.

4.4. Constructing families.

Let us consider again the fibration α : E(IK) −→ G(IK). As we have
seen above, the singular points of the Pfaff form [ω] are defined in terms
of the pencil α([ω]). On the other hand, the P (1, IK)-action on the fibers,
being generated by rotation parameters when IK = IR, has impact on limit
cycles. Then, it would be interesting to work with families of Pfaff forms or
vector fields, chosen in agreement with the fibration α. This is illustrated
by the choice of the 5-parameter family used in [?] : two parameters act
on the singular points, and define a subfamily of center type systems. The
three other parameters are rotation parameters, at least on open regions
where the possible limit cycles are known to be confined.

It is possible to construct in a more systematic way, families well-adapted
to the fibration α. As an example , we shall construct a parameterization
of E1(IK) = α−1(G1) (we recall that E1(IK) = G(IK)\α−1(O(IK)) where
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each Pfaff equation in α−1(O(IK)) has one semi-hyperbolic or one nilpotent
point of codimension equal to 3 or 4).

For this construction, we choose a family ϕ(λ) : Λ −→ E(IK) which
covers G1(IK), i.e G1(IK) ⊂ α ◦ ϕ(Λ). Let us suppose that IK = IC. Using
the same idea as in the proof of proposition ?? , we see that we can take
the parameter space equal to Λ = A(IC)4, where A(IC) is the space of lines
in P 2(IC), and ϕ defined by :

ϕ(`1, `2, `3, `4) = [`1.`2dx + `3.`4.dy] (25)

with `i = αix + βiy + γi , [αi, βi, γi] ∈ P 2(IC).

Next, we obtain a family which parameterizes the whole space E1(IC)
by taking M.ϕ(λ) with M ∈ P (1, IC). In this family, the eight parameters
[αi, βi, γi] ∈ P 2(IC), i = 1, · · · , 4, parameterized the pencils of conics. The
parameters of M, which can be taken as rotation parameters when we
restrict to IR (see the section 4.3), keep fixed the pencils and parameterize
the fibers of the map α.

Of course, the number of parameters is not optimal. It is possible to
decrease it by taking moduli for the A(2, IC)-action. We shall restrict to the
open dense subset G̃1(IC) ⊂ G1(IC) of Pfaff equations with at least one non
degenerate point in IC2. In this case it is possible to suppose that [`1], [`2]
are transversal at some point of IC2 : up to the action of A(2, IC), we can
suppose that `1`2 = xy.

Next, one of the two lines {`3 = 0} or {`4 = 0} is not the line at infinity (if
not, [ω] has no singular point at finite distance). Then, we can suppose that
the line {`3 = 0} cuts the axis 0y at a finite point, which can be supposed
chosen at {y = 1} : the point (0, 1) ∈ IC2 is then a non degenerate point of
the Pfaff equation. The line {`3 = 0} may be transversal or parallel to the
axis Ox and we can cover the set G̃1 by two families :

(a) A 2-parameter family corresponding to a line {`3 = 0} transversal to
the two axis. Up to the A(2, IC)-action we can take :

ϕ1(λ) = [xydx + (x + y − 1)(αx + βy + γ)dy] (26)

with λ = (α, β, γ) ∈ P 2(IC)

(b) A 1-parameter family corresponding to the lines {`3 = 0} and {`4 =
0}, parallel to the axis 0x :

ϕ2(λ) = [xydx + (x− 1)(x− λ)dy] (27)
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with λ ∈ IC.
The image of the family (??) is a dense open subset in α−1(G1), and the

image of the family (??) is an analytic subset of non zero codimension.
Of course, if we are interested to limit cycles, we have to restrict to real

vector fields, in the above families, up to the A(2, IR)-action. For instance,
we have to replace (??) by two families which are A(2, IC) but not A(2, IR)
equivalent : (x2 + y2)dx + (x2 + a)dy with a ∈ IR aside the family (??)
with λ ∈ IR.

Other choices of the map ϕ(λ) are indeed possible. For instance, if we
want just to attain the non-degenerate Pfaff equations in E0(IC), we can
take for ϕ(λ) the parameterization of Hamiltonian equations {dP = 0}
by the coefficients λ of the cubic Hamiltonian functions P. The number of
parameters can be reduced as above, using the A(2, IC)-action.
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