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This paper discusses the possibility of producing resonance in a nonlinear
isochronous center. In some cases it is shown that one can find periodic forcings
(with the same period of the center) such that all the solutions of the perturbed
equation are unbounded.
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1. INTRODUCTION

Consider the differential equation

ẍ + g(x) = 0 (1)

where g : IR → IR is a continuous function. It is also assumed that the
associated initial value problem has always a unique solution.

The origin x = 0 is an isochronous center if g satisfies

g(0) = 0, xg(x) > 0 if x 6= 0

and there is a fixed number T > 0 such that every solution of (??) is
periodic with period T . The linear function g(x) = ω2x produces the
simplest example of an isochronous center. In this case all non-trivial
solutions have minimal period 2π

ω and T can be any multiple of this number.
We refer to [?, ?, ?] for the construction of nonlinear isochronous centers.

Let us now force the equation,

ẍ + g(x) = f(t) (2)
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with f T -periodic. For the linear case we have the phenomenon of reso-
nance: there are forcings f which are arbitrarily small and such that all
the solutions of (??) are unbounded. This implies in particular that there
are no periodic solutions. The main question in this paper is: can we find
the phenomenon of resonance in any nonlinear isochronous center? This
is part of a problem posed by Professor Roussarie at the Open Problems
Section of the Lleida’s conference 2000. We shall obtain some partial an-
swers. First it will be shown that it is possible to produce resonance in any
isochronous center if one interprets the notion of forcing in a liberal sense.
The isochronous center will be arbitrary but our f(t) will be a measure
instead of a standard function. Thinking in mechanical terms this means
that we allow f to act as an impulse at certain discrete times. These are
the contents of Section 2. Later, in Section 3, we regularize f and pro-
duce examples of equations (??) with f analytic and small and such that
all the solutions are unbounded. To do this we must assume that g is
Lipschitz-continuous. Finally, in Section 4, we collect some remarks about
local isochronous centers and also about a special global case which has
been previously studied (the asymmetric oscillator).

2. A CONSTRUCTION LEADING TO RESONANCE

Let us consider a particle of unit mass moving on the real line. The po-
sition is denoted by x = x(t), −∞ < x < ∞. We assume that this particle
is subjected to the restoring force −g(x). If the origin is an isochronous
center the particle will oscillate around the origin with a fixed period (inde-
pendent of the amplitude of the oscillation). Let us now add to the system
an external force so that the particle moves according to (??). The force
f(t) only acts at the discrete times t = nT , n = 0,±1,±2, . . . and has the
effect of increasing the velocity of the particle by a fixed amount ε. It seems
clear that, after a finite number of periods, the particle will start gaining
energy in each oscillation. To describe this situation in geometrical terms
we look at the phase portrait. See the figure in the next page.

At time t = 0+ we are at p0 and, after one period, we return to this
point by Γ0. Then the impulse at t = T makes the point to jump to p1 and
the process keeps repeating. The isochronicity is used to guarantee that all
the points p0, p1, p2, . . . lie on the same vertical line.

To make precise these intuitive ideas we shall employ the theory of dis-
tributions. We refer to [?] for the terminology.
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Let D′(IR) be the space of distributions over IR, where D(IR) = C∞0 (IR)
is taken as the class of test functions. The “periodic δ-function” is defined
by

δ] ∈ D′(IR), 〈δ], φ〉 =
∑

n∈Z

φ(nT ), ∀φ ∈ D(IR).

We consider the differential equation

ẍ + g(x) = εδ](t), ε 6= 0, (3)

where ε is a parameter. This equation is understood in the sense of dis-
tributions. By a solution (defined over IR) we mean a function x ∈ C(IR)
satisfying

∫

IR

{xφ̈ + g(x)φ} = ε〈δ], φ〉 ∀φ ∈ D(IR).

To make this definition compatible with our previous intuition we present
another formulation of the notion of solution.

Lemma 1. A function x ∈ C(IR) is a solution of (??) if and only if x
satisfies, for each integer n,

x ∈ C2[nT, (n + 1)T ], ẋ(nT+) = ẋ(nT−) + ε

and

ẍ(t) + g(x(t)) = 0 if t ∈ (nT, (n + 1)T ).

The proof of this result is based on standard arguments in the theory of
distributions.
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From this lemma we can show that the initial value problem for (??) is
well posed. We can even integrate (??). Let ψ(t;x0, v0) denote the solution
of (??) for the initial conditions x(0) = x0, ẋ(0) = v0. Then

x(t) = ψ(t; x0, v0 + nε) if t ∈ [nT, (n + 1)T )

is a solution of (??). In fact it is clear that we can describe all the solutions
in this way. From here the following result is obvious.

Theorem 2. Assume that x = 0 is an isochronous center for (??). Then
every solution x(t) of (??) satisfies

|x(t)|+ |ẋ(t)| → ∞ as t → +∞.

3. RESONANCE FOR SMOOTH FORCINGS

In this section we shall assume that g is Lipschitz-continuous. This means
that, for some L > 0,

|g(x1)− g(x2)| ≤ L|x1 − x2| ∀x1, x2 ∈ IR. (4)

This is the case for the harmonic oscillator (g linear) but there are also
many nonlinear functions g which define an isochronous center and satisfy
(??). We will discuss this question in the next section. In this section we
prove the following result.

Theorem 3. Assume that g satisfies (??) and x = 0 is an isochronous
center. Then there exists a function p ∈ Cω(IR/TZ) such that every solu-
tion x(t) of

ẍ + g(x) = εp(t), 0 < |ε| ≤ 1, (5)

satisfies

|x(t)|+ |ẋ(t)| → ∞ as t → +∞.

As the reader probably expects, to prove this theorem we will consider
forcings p(t) which are close to the periodic δ-function. Before doing this
it is convenient to change the system of reference in such a way that (??)
becomes a standard differential equation.

Consider the periodic function

H(t) =
t(T − t)

2T
if t ∈ [0, T ), H(t + T ) = H(t) ∀t ∈ IR.
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This function is continuous and satisfies

Ḧ = − 1
T

+ δ]

in the sense of distributions. The change of variables

x = y + εH(t) (6)

transforms (??) into

ÿ + g(y + εH(t)) =
ε

T
. (7)

Now let us assume that p is a function in Cω(IR/TZ) with

∫ T

0

p(t)dt = 1.

Then we can find P ∈ Cω(IR/TZ) such that

P̈(t) = − 1
T

+ p(t).

The change

x = z + εP(t)

will transfom (??) into

z̈ + g(z + εP(t)) =
ε

T
. (8)

To prove theorem ?? it will be sufficient to find P in Cω(IR/TZ) and such
that all the solutions of (??) satisfy

|z(t)|+ |ż(t)| → ∞ as t → +∞. (9)

This is so because then we can undo the second change of variables and
find an equation of the type (??) with the solutions going to infinity.

Proof of theorem ??. Let Π be the Poincaré map associated to (??).
More precisely,

Π : IR2 → IR2, (ξ, η) 7→ (ξ1, η1), ξ1 = z(T ), η1 = ż(T ),

where z(t) is the solution of (??) with z(0) = ξ, ż(0) = η. To prove (??) it
will be sufficient to show that, for every orbit (ξn, ηn) = Πn(ξ, η),

|ξn|+ |ηn| → ∞ as n → +∞.
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This is so because g is Lipschitz-continuous.
To fix the ideas let us assume that ε has a sign, say ε > 0. We shall prove

that, for an arbitrary point (ξ, η), one has

η1 ≥ η +
ε

2
. (10)

From here ηn ≥ η + nε/2 and the conclusion follows.
To prove (??) we compare Π with the Poincaré map associated to (??).

This map is just a translation along the vertical direction, namely

Tε(ξ, η) = (ξ, η + ε).

This formula can be easily justified from the change given by (??) and the
discussions in the previous section. Notice that, for this change,

ẋ(nT±) = ẏ(nT ) + εḢ(nT±).

Given a solution z(t) of (??) we can employ (??) to deduce that

|z̈(t) + g(z(t) + εH(t))− ε

T
| ≤ εL||H − P||

where ||.|| stands for the uniform norm. This means that we can interpret
z(t) as an approximate solution of (??) for ||H − P|| small. Let y(t) be
the solution of (??) with the same initial conditions as z(t) at t = 0. An
application of the fundamental inequality for approximate solutions (see
for instance [?], page 8) leads to

|y(t)− z(t)|+ |ẏ(t)− ż(t)| ≤ (eL∗|t| − 1)ε||H − P||

where L∗ = max{L, 1}. For t = T we obtain

|η1 − η − ε| ≤ (eL∗T − 1)ε||H − P||.

If P is close enough to H, namely

(eL∗T − 1)||H − P|| < 1
2
,

then (??) holds and the proof is finished.

4. ADDITIONAL REMARKS.

Isochronous centers and the Lipschitz condition
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As we mentioned already there are many isochronous centers satisfying
(??). We follow [?] to make an analytic construction. Let S : IR → IR be
an analytic and odd function satisfying

C0 := sup
X∈IR

|S(X)| < 1, C1 := sup
X∈IR

|XS′(X)| < ∞

(example: S(X) = α arctanX, |α| < 2
π ).

Consider the initial value problem

dX

dx
=

ω

1 + S(X)
, X(0) = 0,

where ω = 2π
T . The solution X(x) is defined in (−∞,+∞) and it is known

that the function g(x) = X ′(x)X(x) produces an isochronous center. We
notice that g(±∞) = ±∞ because X ′(x) remains between ω/(1 + C0) and
ω/(1− C0). To check the condition (??) we must find a bound of

g′(x) = X ′(x)2 + X(x)X ′′(x).

Since |X ′| ≤ ω/(1− C0) we can concentrate on the second term,

|XX ′′| = ω2

(1 + S(X))3
|XS′(X)| ≤ ω2

(1− C0)3
C1.

To construct examples of isochronous centers which are not Lipschitz con-
tinuous one can repeat the previous construction with C0 < 1 and C1 = ∞.
This is the case for S(X) = 1

2 sin X.

Local isochronous centers

Let us now consider the case of a local isochronous center. This means
that g is defined on some interval I = (a, b), −∞ ≤ a < 0 < b ≤ +∞,
satisfies

g(0) = 0, xg(x) > 0, x ∈ I − {0}
and there is a neighborhood V ⊂ IR2 of the origin such that every orbit of
(??) lying on V has period T . The ideas of section 2 still work and lead to
the following conclusion:

Let x(t) be a solution of (??) lying in V ; that is, for each n ∈ Z,

(x(nT ), ẋ(nT±)) ∈ V and (x(t), ẋ(t)) ∈ V, ∀t ∈ (nT, (n + 1)T ).

Then 1
2 ẋ(t)2 +G(x(t)) → +∞ as |t| → ∞, t /∈ TZ. ( Here G is a primitive

of g).
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This result applies to the equation

ẍ + x + 1− 1
(1 + x)3

= εδ](t).

In fact the solutions of the autonomous equation (ε = 0) can be explicitly
computed and they all have period π (see [?]). We can take a = −1,
b = +∞, V = {(x, ẋ) ∈ IR2/ x > −1}.

The asymmetric oscillator

Consider the piecewise linear equation

ẍ + ax+ − bx− = 0

where a, b > 0, x+ = max{x, 0}, x− = max{−x, 0}. A direct computation
shows that that this equation is isochronous with minimal period π√

a
+ π√

b
.

The periodic perturbation

ẍ + ax+ − bx− = f(t) (11)

has been studied by many authors. We refer to [?, ?] for the origins and
to the survey papers [?, ?] for more recent results.

Notice that theorem ?? applies in this case and gives new examples of
non-existence of periodic solutions of (??).
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