
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS 3, 157–?? (2002)
ARTICLE NO. 35

On the Period Function of Centers in Planar Polynomial

Hamiltonian Systems of Degree Four

Xavier Jarque
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Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain

E-mail: xavier.jarque@uab.es

and

Jordi Villadelprat*
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In this paper we study non-degenerate centers of planar polynomial Hamilto-
nian systems. We prove that if the differential system has degree four then the
period function of the center tends to infinity as we approach to the boundary
of its period annulus. The proof takes advantage of the geometric properties of
the period annulus in the Poincaré disc and it requires the study of the so called
cubic-like Hamiltonian systems, namely the differential systems associated to a
Hamiltonian function of the form H(x, y) = A(x)+B(x)y +C(x)y2 +D(x)y3.
Concerning the centers of this family of differential systems, we obtain an an-
alytic expression of its period function. From our point of view this expression
constitutes the first step in order to find the isochronicity conditions in the
family.
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1. INTRODUCTION

In this paper we study the behaviour of the period function of the centers
of planar polynomial Hamiltonian systems, i.e., differential systems of the
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form {
ẋ = −Hy(x, y),
ẏ = Hx(x, y), (1)

where H is a real polynomial in x and y. The period function of a center
gives the period of each periodic orbit inside its period annulus. Questions
relating to the behaviour of the period function have been extensively stud-
ied by a number of authors. Let us mention for instance the problems of
isochronicity (see [?, ?, ?]), monotonicity (see [?, ?, ?]) or the bifurcation of
critical periods (see [?, ?, ?]). In this paper we prove that if the differential
system (??) has degree four then the period function of the center tends
to infinity as we approach to the boundary of its period annulus.

The results that we present here are a continuation of the ones that we
obtain in [?] and this continuation is twofold. This is so because in that
paper we develop a machinery to study the cubic-like Hamiltonian systems,
namely the ones given by H(x, y) = A(x)+B(x)y +C(x)y2 +D(x)y3, and
we use it to show that every center of a polynomial Hamiltonian system of
degree four is non-isochronous. In the present paper we first improve this
machinery and then we apply it to prove that, in fact, the period function
of these centers tends to infinity (see Theorem ??).

In order to prove Theorem ?? we first study the shape of the period
annulus of the center in the Poincaré disc and this enables us to decrease
the number of parameters in the system. This reduction lead us to four
possible cases depending in some parameter values. In two of these cases the
theorem already follows from results in [?]. Concerning the other two cases,
one falls into the cubic-like family and the other one into the quadratic-like
family, namely the Hamiltonian systems associated to H(x, y) = A(x) +
B(x)y + C(x)y2, which was previously studied in [?]. In that paper it
is given the isochronicity condition for the centers of the quadratic-like
family, and to this end it was first necessary to dispose of an expression
of its period function. An interesting problem for further research is to
obtain the isochronicity condition for the centers in the cubic-like family
and, following the approach in [?], in the present paper we provide the
expression of its period function (see Corollary ??).

We wish to thank Francesc Mañosas for all the helpful suggestions during
the preparation of the paper.

2. DEFINITIONS AND SETTING OF THE PROBLEM

Definition 1. We say that a critical point of a planar system is a
center if there is a punctured neighbourhood of the point that consists
entirely of periodic orbits surrounding that point. The largest punctured
neighbourhood with this property is called the period annulus of the center
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and it will be denoted by P. The function which associates to any periodic
orbit γ in P its period is called the period function of the center. The
center is said to be non-degenerate if the linearized vector field at the point
has two non-zero eigenvalues.

Our goal in this paper is to prove that the period function of any non-
degenerate center of a polynomial Hamiltonian system of degree four tends
to infinity as we approach to the boundary of its period annulus. A poly-
nomial Hamiltonian system of degree n is a differential system of the form

{
ẋ = −Hy(x, y),
ẏ = Hx(x, y), (2)

where H(x, y) is a polynomial of degree n + 1. Let us fix that H(0, 0) = 0
and denote the homogeneous part of degree i of H(x, y) by Hi(x, y). Notice
that, by definition, if (??) is a system of degree n then Hn+1 6≡ 0. We can
assume that the non-degenerate center that we study is located at the origin
and that

H(x, y) =
x2 + y2

2
+ H3(x, y) + . . . + Hn+1(x, y). (3)

It is clear that this can be done without loss of generality taking an appro-
priate coordinate system and scaling the time by a constant amount. In
this case (see [?]) it follows that H(x, y) > 0 for any point (x, y) ∈ P, and
therefore H(P) = (0, h0) for some h0 ∈ R+ ∪ {+∞}. Note also that the
solutions of (??) are contained in the level curves {H(x, y) = h, h ∈ R}.
When the center is nonglobal (i.e., P 6= R2) this implies that h0 is finite
and that ∂P, the boundary of its period annulus, is contained in the level
curve {H(x, y) = h0}. We will use this notation all over the paper.

On the other hand, one can show (see [?]) that the set of periodic orbits
in the period annulus can be parametrized by the energy h. Thus, for each
h ∈ (0, h0) we will denote the periodic orbit in P of energy level h by γh.
This allows us to consider the period function over (0, h0) instead of the
original period function which is defined over the set of periodic orbits
contained in the period annulus. Therefore in the sequel we will talk about
the period function h 7−→ T (h) which gives the period of the periodic orbit
with energy h ∈ (0, h0). With this notation we can now state the main
result of the paper.

Theorem 2. Let h 7−→ T (h) be the period function of a non-degenerate
center of a polynomial Hamiltonian system of degree four. Then T (h) −→
+∞ as h ↗ h0.

It is worth pointing out that, in some sense, it is not necessary to assume
that the center is non-degenerate in order that its period function tends to
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infinity. Indeed, Theorem 2.2 in [?] shows that if the center is degenerate
then its period function tends to infinity as the periodic orbits tend to the
center. In our setting this means that T (h) −→ +∞ as h ↘ 0.

There is another result in connection with Theorem ?? that should be
referred. It is proved in [?] that the period function of the center at the
origin of a Hamiltonian system given by

H(x, y) =
x2 + y2

2
+ H2n+1(x, y)

tends to infinity as h ↗ h0. In particular, this shows that the conclusion
of Theorem ?? is also true for polynomial Hamiltonian systems of second
degree. In view of this one may wonder if the result is true for any poly-
nomial Hamiltonian system of even degree. In Section ?? we will show by
means of an example that this is not so.

For the remainder of this section we shall show that it suffices to prove
Theorem ?? for a particular type of center. Simultaneously we shall intro-
duce the definitions and notation that will be used henceforth.

Notice first that when n is even then any center of the Hamiltonian
system given by (??) is nonglobal. This is so because if H(x, y) is a
polynomial of odd degree then it is not possible that H(x, y) > 0 for all
(x, y) ∈ R2 \ {(0, 0)}. Consequently, since we deal with a Hamiltonian sys-
tem of degree four, the period annulus of the center at the origin cannot be
the whole plane, and note then that h0 < +∞. We can also assume that P
is unbounded because otherwise there would be some finite critical point
in ∂P and it is well known that then T (h) −→ +∞ as h ↗ h0. Summa-
rizing, we have shown that in order to prove Theorem ?? we can assume
without loss of generality that P is nonglobal and unbounded.

At this point it is convenient to recall that when we deal with a poly-
nomial system then the Poincaré compactification provides an analytic ex-
tension of the vector field at infinity. It is then possible to study the
behaviour of the flow at infinity, which corresponds to the equator of the
Poincaré sphere. This fact will be a crucial item in our work because in
order to study the boundary of the period annulus we shall turn account of
a property of the Hamiltonian systems at infinity. To state this property
precisely we need an additional definition.

Definition 3. Let q be an infinite critical point of a planar polyno-
mial Hamiltonian system in the Poincaré compactification and let H be a
hyperbolic sector associated to q. We say that H does not contain straight
lines if for any finite straight line ` (in the Poincaré compactification) which
passes through q there exists a neighbourhood V of q such that ` ∩ V is
not contained in the interior of H.
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We are now ready to state the above-named property. Thus, in [?] is
proved the following.

Lemma 4. Let q be an infinite critical point of a polynomial Hamiltonian
system with a hyperbolic sector H. Then either H does not contain straight
lines or its two separatrices are contained in the equator of the Poincaré
sphere. In the first case both separatrices are finite and belong to the same
level curve of the Hamiltonian.

Now, according to Lemma ??, the fact that P is unbounded and non-
global implies the existence of an infinite critical point with a hyperbolic
sector that has both separatrices lying in the finite part and inside ∂P. Let
us say that, in the Poincaré disc, this infinite critical point is given by the
direction θ? ∈ [ 0, 2π). In this case Proposition 4.1 in [?] shows that if the
Hamiltonian system associated to (??) has such an infinite critical point
then

gn+1(θ?) = g′n+1(θ
?) = gn(θ?) = 0,

where gi(θ) = Hi(cos θ, sin θ) for i = 2, 3, . . . , n+1. Notice that by means of
a rotation of axis we can suppose without loss of generality that θ? = π/2.
This is so because after such a change of coordinates the quadratic part
of the Hamiltonian remains unchanged. In view of this it is natural to
introduce the following definition.

Definition 5. In the sequel we shall say that a period annulus P is ad-
missible when P is unbounded, nonglobal and its boundary, in the Poincaré
disc, contains the infinite critical point given by the direction θ = π/2. We
shall denote by H? the hyperbolic sector of this infinite critical point that
has both separatrices inside ∂P.

In the preceding discussion we only used that we deal with a polynomial
Hamiltonian system of even degree. We should now focus our attention in
the case we shall study, the polynomial Hamiltonian systems of degree four.
In this case we have shown that there is no loss of generality in assuming
that

H5(x, y) = x2(a0y
3 + a1y

2x + a2yx2 + a3x
3)

and

H4(x, y) = x(b0y
3 + b1y

2x + b2yx2 + b3x
3).

Consequently, setting H3(x, y) = c0y
3 + c1y

2x + c2yx2 + c3x
3, the Hamil-

tonian function (??) can be rewritten as

H(x, y) = A(x) + B(x)y + C(x)y2 + D(x)y3, (4)
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where

A(x) = x2(1/2 + c3x + b3x
2 + a3x

3),

B(x) = x2(c2 + b2x + a2x
2),

C(x) = 1/2 + c1x + b1x
2 + a1x

3,

D(x) = c0 + b0x + a0x
2.

(5)

In fact we have done better than this, let us gather it in short:

Remark 6. In order to prove Theorem ?? it suffices to see that any
center at the origin of the Hamiltonian system given by (??) and having
an admissible period annulus satisfies T (h) −→ +∞ as h ↗ h0. Here by
“any center” we mean for any possible choice of parameters in (??), and
note that a0 = a1 = a2 = a3 = 0 is not allowed because then H5 ≡ 0.

With this remark in mind we divide the proof of Theorem ?? in the
following four possible situations:

I a0 6= 0,
II a0 = 0 and b0 6= 0,
III a0 = b0 = 0 and c0 6= 0,
IV a0 = b0 = c0 = 0.

In fact, Theorem ?? under the parameter values I and II follows respectively
from Theorem 4.1 and Proposition 5.1 in [?]. More precisely, when a0 6= 0
we proved that if P is admissible then T (h) −→ +∞ as h ↗ h0, and in
case that a0 = 0 and b0 6= 0 we showed that if P is admissible then H5 ≡ 0.
Consequently, to prove Theorem ?? we only need to consider the cases III
and IV.

The paper is organized as follows. Section ?? is devoted to prove Theo-
rem ??, which gives an expression of the period function of the centers of
the cubic-like Hamiltonian systems, namely the ones given by a Hamilto-
nian function as in (??). This is done in a more general setting than the one
we shall need to prove Theorem ?? because we shall only assume that A,
B, C and D are analytic functions on R. In Section ?? we study the case
III, in which by means of Theorem ?? we show that if P is admissible then
T (h) −→ +∞ as h ↗ h0. The case IV is studied in Section ??. Note that
in this case we have D ≡ 0, and so the Hamiltonian function (??) gives a
quadratic-like Hamiltonian system with deg(C) ≤ 3. We shall prove (see
Proposition ??) that T (h) −→ +∞ as h ↗ h0 for any non-global center of a
quadratic-like Hamiltonian system with deg(C) ≤ 3. Finally, in Section ??
we show by means of an example that the conclusion of Theorem ?? is not
true for polynomial Hamiltonian systems of degree six.
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3. CUBIC-LIKE HAMILTONIAN SYSTEMS

In this section we assume that A, B, C and D are analytic functions
on R such that the Hamiltonian system given by

H(x, y) = A(x) + B(x)y + C(x)y2 + D(x)y3

has a non-degenerate center at the origin. Since the associated differential
system is

{
ẋ = −B(x)− 2C(x)y − 3D(x)y2,
ẏ = A′(x) + B′(x)y + C ′(x)y2 + D′(x)y3,

(6)

this corresponds to require that

A′(0) = B(0) = 0 and 2C(0)A′′(0)−B′(0)2 > 0. (7)

Notice that this inequality implies that C(0) 6= 0. In order that the period
annulus of the center satisfies H(P) = (0, h0) with h0 > 0 we shall also
assume that

A(0) = 0 and C(0) > 0. (8)

It is clear that this can be done without loss of generality. This is a more
general situation than the one we shall need to prove Theorem ?? but we
find it interesting in itself. The main result that we obtain in this section
is Theorem ??, which provides an expression to compute T (h) for any
h ∈ (0, h0). From now on we define (xL, xR) to be the projection of P to
the x-axis, that is

(xL, xR) = {x ∈ R : there exists y ∈ R such that (x, y) ∈ P}.

Consequently xL < 0 < xR, and note that xL or xR may not be finite.

Remark 7. The key point in the proofs is that, for each fixed x, H(x, y) is
a polynomial of third degree with respect to y. Since we are interested in the
behaviour of T (h) when h ↗ h0 (i.e., for periodic orbits near ∂P), this is
the reason why we shall always assume that D(x) 6= 0 for all x ∈ (xL, xR).
It will be clear however that this assumption is not necessary if one is
interested only in T (h) when h & 0 (i.e., for periodic orbits near the center
at the origin). In this case, for the results that we obtain, it suffices that
D(0) 6= 0 holds.

To prove Theorem ?? we need the following three lemmas from [?] that
we include here for the sake of completeness.
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FIG. 1. The graph of H(x̄, y) in case that D(x̄) > 0.

Lemma 8. If D(x) 6= 0 for all x ∈ (xL, xR) then C(x)2−3D(x)B(x) > 0
and

(
x,
−C(x) +

√
C(x)2 − 3D(x)B(x)
3D(x)

)
∈ P for any x ∈ (xL, xR).

Proof. Assume for instance that D(x) > 0 for all x ∈ (xL, xR) and
consider any x̄ in this interval. Then there exists h̄ ∈ (0, h0) such that the
periodic orbit γh̄ has two intersection points with the straight line x = x̄,
say (x̄, y1) and (x̄, y2) with y1 < y2. Notice that the discriminant of

Hy(x̄, y) = B(x̄) + 2C(x̄)y + 3D(x̄)y2

with respect to y is precisely 4
(
C(x̄)2 − 3D(x̄)B(x̄)

)
. So, it is clear that, if

C(x̄)2 − 3D(x̄)B(x̄) ≤ 0 then on account of D(x̄) > 0 it follows that ẋ ≤ 0
on x = x̄. This clearly contradicts that γh̄ intersects twice with x = x̄, and
accordingly C(x̄)2 − 3D(x̄)B(x̄) > 0.

Note now that (x̄, y) ∈ P for all y ∈ (y1, y2) because otherwise there exist
at least four different values of y such that H(x̄, y) = h̄. In addition one can
show that y1 and y2 are located as in Figure ??. This is a consequence of
the last observation and the fact that, as h increases, the two intersection
points of γh with x = x̄ must go away from each other. The minimum of
the function y 7−→ H(x̄, y) is given precisely by

ȳ =
−C(x̄) +

√
C(x̄)2 − 3D(x̄)B(x̄)
3D(x̄)

,

and therefore in view of Figure ?? we conclude that (x̄, ȳ) ∈ P.
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At this point, given x ∈ (xL, xR) and h ∈ (0, h0), we need to precise how
many real roots has the equation H(x, y) = h. If D(x) 6= 0 then

A(x)− h + B(x)y + C(x)y2 + D(x)y3 = 0

is a third degree equation with respect to y and its discriminant (see [?])
is given by

∆(x, h) =
1

108D(x)4

(
18

(
A(x)− h

)
B(x)C(x)D(x)− 4D(x)B(x)3

− 4C(x)3
(
A(x)− h

)
+ C(x)2B(x)2 − 27D(x)2

(
A(x)− h

)2
)

.

It is well known that the signum of ∆ provides us the information that we
need. Thus, if ∆ < 0 then one root is real and the other two are complex,
if ∆ > 0 then the three roots are real and different, and finally if ∆ = 0
then the three roots are real and at least two of them are equal.

Notice in addition that the numerator of ∆(x, h) is a second degree poly-
nomial with respect to h, the coefficient of h2 is −27D(x)2, and on the other
hand one can check that its discriminant is given by

(
C(x)2−3D(x)B(x)

)3
.

Thus, for each fixed x ∈ (xL, xR), Lemma ?? shows that the equation
∆(x, h) = 0 has two real solutions, say h = F (x) and h = G(x). From now
on we fix that F (x) and G(x) are given respectively by

2C(x)3 + 27A(x)D(x)2 − 9D(x)C(x)B(x) + 2
√(

C(x)2 − 3D(x)B(x)
)3

27D(x)2

and

2C(x)3 + 27A(x)D(x)2 − 9D(x)C(x)B(x)− 2
√(

C(x)2 − 3D(x)B(x)
)3

27D(x)2
,

and consequently this allows us to write

∆(x, h) =
1

4D(x)2
(
F (x)− h

)(
h−G(x)

)
for all x ∈ (xL, xR). (9)

These functions will play an important role in order to compute the period
of each periodic orbit in P.

Remark 9. Let us mention that in fact we could assume without loss of
generality that B ≡ 0 and D ≡ ±1. Indeed, one can verify that canonical
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change of coordinates

u = ψ(x) :=
∫ x

0

ds

|D(s)|1/3
,

v = |D(x)|1/3

(
y +

C(x)−
√

C(x)2 − 3D(x)B(x)
3D(x)

)
,

brings system (??) to the Hamiltonian system given by

H̃(u, v) = Ã(u) + C̃(u)v2 ± v3,

where the coefficient ±1 of v3 depends on the signum of D in (xL, xR) and

Ã(u) = G
(
ψ−1(u)

)
and C̃(u) = 3

(
F

(
ψ−1(u)

)−G
(
ψ−1(u)

)

4

)1/3

.

Note that, on account of Lemma ??, if D(x) 6= 0 for all x ∈ (xL, xR) then
this coordinate transformation is well defined in the whole period annulus.

Lemma 10. If D(x) 6= 0 for all x ∈ (xL, xR) then

(a)G(x) = βx2+O(x3) with β > 0 and G′(x) 6= 0 for all x ∈ (xL, xR)\{0}.
(b)F (x) ≥ h0 for all x ∈ (xL, xR).

Proof. Consider any x̄ ∈ (xL, xR) \ {0} and note that if we denote

ȳ =
−C(x̄) +

√
C(x̄)2 − 3D(x̄)B(x̄)
3D(x̄)

then Hy(x̄, ȳ) = 0. Thus, taking into account that (x̄, ȳ) ∈ P by Lemma ??,
it follows that Hx(x̄, ȳ) 6= 0 (otherwise P would contain a critical point
different than the origin). On the other hand a computation shows that

G′(x) = Hx

(
x,
−C(x) +

√
C(x)2 − 3D(x)B(x)
3D(x)

)
,

and so we can assert that G′(x̄) 6= 0. This proves (a) because one can verify
that G(x) = βx2 + O(x3) with

β =
2C(0)A′′(0)−B′(0)2

4C(0)
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FIG. 2. Interpretation of x`(h) and xr(h) in terms γh.

and the assumptions (??) and (??) imply that β > 0.
Part (b) will be proved by contradiction. So assume that we have F (x̃) <

h0 for some x̃ ∈ (xL, xR). Then there exists ε > 0 so that F (x̃) < h for all
h ∈ (h0 − ε, h0). Notice also that G(x̃) < h for all h ∈ (h0 − ε, h0) because
from Lemma ?? it follows that F (x̃) > G(x̃). Hence

∆(x̃, h) =
1

4D(x̃)2
(
F (x̃)− h

)(
h−G(x̃)

)
< 0,

and therefore H(x̃, y) = h has only one real solution for all h ∈ (h0−ε, h0).
This obviously contradicts that x̃ ∈ (xL, xR), and so (b) follows.

For each h ∈ (0, h0), let [x`(h), xr(h)] be the projection of the periodic
orbit γh to the x-axis, that is

[x`(h), xr(h)] = {x ∈ R : there exists y ∈ R such that (x, y) ∈ γh}.

We have thus a geometrical definition of the endpoints x`(h) and xr(h) in
terms γh (see Figure ??). We shall next obtain a result that provides an
analytic way to compute them. To this end we define

g(x) = sgn(x)
√

G(x) = x

√
G(x)
x2

,

which by (a) in Lemma ?? is an analytic function on (xL, xR) satisfying
g′(x) > 0.
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Lemma 11. If D(x) 6= 0 for all x ∈ (xL, xR) then

(a)For each h ∈ (0, h0), ∆( · , h) is strictly posit ive in the interior of
[x`(h), xr(h)] and zero at the endpoints. In addition

x`(h) = g−1
(
−
√

h
)

and xr(h) = g−1
(√

h
)

.

(b)G(x) −→ h0 as x ↘ xL or x ↗ xR.

Proof. Fix h ∈ (0, h0) and note that

xL < x`(h) < 0 < xr(h) < xR. (10)

In view of Figure ?? it is clear that H
(
x`(h), y

)
= h has a double root for

some value of y and therefore ∆
(
x`(h), h

)
= 0. Now, since

∆(x, h) =
1

4D(x)2
(
F (x)− h

)(
h−G(x)

)
, (11)

we conclude that G
(
x`(h)

)
= h because, taking (??) into account, (b) in

Lemma ?? shows that F
(
x`(h)

) ≥ h0 > h. Thus x`(h) = g−1
(−
√

h
)
. The

fact that xr(h) = g−1
(√

h
)

follows exactly the same way. Consider next
any x̄ ∈ (

x`(h), xr(h)
)

and notice that, according to (??), then x̄ ∈ (xL, xR).
In this case by applying Lemma ?? we can assert that F (x̄) ≥ h0 > h and,
due to

G
(
x`(h)

)
= G

(
xr(h)

)
= h, (12)

that G(x̄) < h. Therefore from (??) it turns out that ∆(x̄, h) > 0, and this
proves (a). Finally (b) follows readily from (??) using that x`(h) ↘ xL and
xr(h) ↗ xR as h ↗ h0.

Remark 12. Part (a) of Lemma ?? and expression (??) show that, for
each h ∈ (0, h0),

(
F (x)− h

)(
h−G(x)

)
> 0

holds for all x ∈ (
x`(h), xr(h)

)
. We shall turn account of this fact later.

We are now almost in position to prove the main result of this sec-
tion. Before we have to describe precisely the three roots of the equation
H(x, y) = h (see [?] for instance). Thus, setting

Ψ(x, h) =
9B(x)C(x)D(x)− 27(A(x)− h)D(x)2 − 2C(x)3

54D(x)3
,
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we define

R(x, h) =
(
Ψ(x, h)− i ∆(x, h)1/2

)1/3

S(x, h) =
(
Ψ(x, h) + i ∆(x, h)1/2

)1/3
.

Then the three roots are given by

y1(x, h) = R(x, h) + S(x, h)− 1
3

C

D
(x),

y2(x, h) = −1
2
(
R(x, h) + S(x, h)

)− 1
3

C

D
(x) +

i
√

3
2

(
S(x, h)−R(x, h)

)

and

y3(x, h) = −1
2
(
R(x, h) + S(x, h)

)− 1
3

C

D
(x) +

i
√

3
2

(
R(x, h)− S(x, h)

)
.

In the sequel when we refer to some root we shall use the above notation.
From now on, given z ∈ C, Re(z) and Im(z) will denote respectively the
real and the imaginary part of z. In addition, its argument and modulus
will be denoted respectively by arg(z) and |z|. We shall also use that we
can write Ψ in terms of F and G as we did with ∆ in (??). Indeed, a
computation shows that

Ψ(x, h) =
2h− (

F (x) + G(x)
)

4D(x)
. (13)

The straight lines x = x`(h) and x = xr(h) split-up the periodic orbit
γh into two components (see Figure ??). The following result determines
them.

Proposition 13. Assume that D(x) > 0 for all x ∈ (xL, xR). Then, for
each h ∈ (0, h0), the upper component of γh is given by the the graph of
y1( · , h) :

(
x`(h), xr(h)

) −→ R and the lower one is given by the the graph
of y3( · , h) :

(
x`(h), xr(h)

) −→ R.

Proof. Fix h ∈ (0, h0) and notice that from (a) in Lemma ?? it follows
that ∆(x, h) > 0 for all x ∈(

x`(h), xr(h)
)
. Consequently, for each x in this

interval, the three roots of

A(x) + B(x)y + C(x)y2 + D(x)y3 = h (14)

are different and real. The two roots that are contained in γh (see Fig-
ure ??) are the ones that become equal at the endpoints of

[
x`(h), xr(h)

]
.
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In these endpoints, according to (a) in Lemma ??, the function G takes
the value h. Consequently, in order to decide which two branches of (??)
give γh we must compute y1(x, h), y2(x, h) and y3(x, h) at h = G(x). To
do this we shall first evaluate R(x, h) and S(x, h) at h = G(x). Note that,
since h ∈ (0, h0) and D(x) > 0 for all x ∈ (xL, xR), from (??) it follows that

Ψ
(
x,G(x)

)
=

h− F (x)
4D(x)

<
h0 − F (x)

4D(x)
.

Thus, taking into account that F (x) ≥ h0 by (b) in Lemma ??, this shows
that Ψ

(
x,G(x)

)
< 0. On account of this, and using that ∆

(
x,G(x)

)
= 0,

one can verify that

R
(
x, G(x)

)
=

1− i
√

3
2

∣∣Ψ(
x, G(x)

)∣∣1/3

and

S
(
x,G(x)

)
=

1 + i
√

3
2

∣∣Ψ(
x,G(x)

)∣∣1/3
.

Now it is easy to check that

y1

(
x,G(x)

)
=

∣∣Ψ(
x,G(x)

)∣∣1/3 − 1
3

C

D
(x),

y2

(
x,G(x)

)
= −2

∣∣Ψ(
x,G(x)

)∣∣1/3 − 1
3

C

D
(x),

and

y3

(
x,G(x)

)
=

∣∣Ψ(
x,G(x)

)∣∣1/3 − 1
3

C

D
(x).

We thus get y1

(
x,G(x)

)
= y3

(
x,G(x)

) 6= y2

(
x,G(x)

)
. We conclude there-

fore that the solutions of the equation (??) which give the periodic orbit γh

are y1

( · , h)
and y3

( · , h)
. Finally, notice that

y1(x, h)− y3(x, h) = 3 Re
(
S(x, h)

)−
√

3 Im
(
S(x, h)

)
> 0,

which is due to the fact that 3 cos(x/3)−√3 sin(x/3) > 0 for all x ∈ (0, π).
So we deduce that y1(x, h) > y3(x, h), and this completes the proof of the
result.

In case that D(x) < 0 for all x ∈ (xL, xR), a similar reasoning shows that
the upper and lower components of γh are given by y3( · , h) and y2( · , h)
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respectively. We point out that Lemma 3.5 in [?] corresponds only to
this case. However, as we will see in the proof of the next result, it is
only necessary to study one of the two cases (D > 0 or D < 0) because
the coordinate transformation (x, y) 7−→ (−x,−y) brings one to the other.
Now, the main result of this section is the following.

Theorem 14. If D(x) 6= 0 for all x ∈ (xL, xR) then, for each h ∈ (0, h0),
the period of the periodic orbit γh is given by

T (h) = 2
∫ g−1(

√
h)

g−1(−
√

h)

cos
(

1
3 arg

(
Z(x, h)

)− π
3

)
√

3
(
F (x)− h

)(
h−G(x)

)
(

F (x)−G(x)
4|D(x)|

)1/3

dx,

where

Z(x, h) = h− F (x) + G(x)
2

+ i
√(

F (x)− h
)(

h−G(x)
)
.

Proof. We begin by proving the result for the case in which D(x) > 0
for all x ∈ (xL, xR). After, using that it is true for this case, we will prove
the result in case that D(x) < 0 for all x ∈ (xL, xR).

So assume that D(x) > 0 for all x ∈ (xL, xR). In this situation the period
of the periodic orbit γh is given by

T (h) =
∫ g−1(

√
h )

g−1(−
√

h )

(
1

Hy

(
x, y1(x, h)

) − 1
Hy

(
x, y3(x, h)

)
)

dx. (15)

This follows from Proposition ?? using the equality ẋ = −Hy(x, y) to com-
pute the time and taking into account that, according to (a) in Lemma ??,

x`(h) = g−1(−
√

h ) and xr(h) = g−1(
√

h ).

Our next goal is to compute Hy

(
x, y1(x, h)

)
and Hy

(
x, y3(x, h)

)
. To this

end notice first that

H(x, y)− h = D(x)
(
y − y1(x, h)

)(
y − y2(x, h)

)(
y − y3(x, h)

)
.

Hence

Hy(x, y) = D(x)
{(

y − y2(x, h)
)(

y − y3(x, h)
)

+
(
y − y1(x, h)

)(
y − y3(x, h)

)
+

(
y − y1(x, h)

)(
y − y2(x, h)

)}
,

and so we obtain

Hy

(
x, y1

)
=D(x)

(
y1−y2

)(
y1−y3

)
and Hy

(
x, y3

)
=D(x)

(
y3−y1

)(
y3−y2

)
.
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Now one can verify that

1
Hy

(
x, y1

) − 1
Hy

(
x, y3

) =
1

D(x)
(
y1 − y3

)
{

1
y1 − y2

+
1

y3 − y2

}
.

Then, using the fact that (y1 − y3)(y1 − y2)(y3 − y2) =
√

108∆ (see [?]),
this equality yields

1
Hy

(
x, y1

) − 1
Hy

(
x, y3

) =
y1 + y3 − 2y2

D(x)
√

108 ∆
. (16)

The task is now to compute y1 + y3 − 2y2. Thus, since ∆(x, h) > 0 for all
x ∈ (

x`(h), xr(h)
)

by (a) in Lemma ??, we obtain

y1(x, h) + y3(x, h)− 2y2(x, h) = 3 Re
(
S(x, h)

)
+ 3

√
3 Im

(
S(x, h)

)
. (17)

On the other hand notice that

S(x, h) =
1

(
2D(x)

)1/3

{
h− F (x) + G(x)

2
+ i

√(
F (x)− h

)(
h−G(x)

)}1/3

=
Z(x, h)1/3

(
2D(x)

)1/3
.

Here we use (??) and (??), which give respectively the expression of ∆
and Ψ in terms of F and G, and we take into account that D(x) > 0 for
all x ∈ (xL, xR). Therefore, since one can verify that |Z(x, h)| =

(
F (x) −

G(x)
)
/2, it turns out that

S(x, h) =
(

F (x)−G(x)
4D(x)

)1/3 {
cos

(
1
3

arg(Z)
)

+ i sin
(

1
3

arg(Z)
)}

.

Consequently, we can rewrite (??) as

y1 + y3 − 2y2 = 3
(

F (x)−G(x)
4D(x)

)1/3{
cos

(
arg(Z)

3

)
+
√

3 sin
(

arg(Z)
3

)}

= 6
(

F (x)−G(x)
4D(x)

)1/3

cos
(

arg(Z )− π

3

)
.

Taking into account this equality we return to the expression in (??). Thus,
using that D(x) > 0 for all x ∈ (xL, xR), from (??) we get

D(x)
√

108 ∆ = 3
√

3
(
F (x)− h

)(
h−G(x)

)
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and hence

1
Hy

(
x, y1

) − 1
Hy

(
x, y3

) =
2 cos

(
1
3 arg(Z )− π

3

)
√

3
(
F (x)− h

)(
h−G(x)

)
(

F (x)−G(x)
4D(x)

)1/3

Thus, on account of the expression of T (h) given in (??), this proves the
validity of the theorem for the case D(x) > for all x ∈ (xL, xR).

Assume now that D(x) < 0 for all x ∈ (xL, xR). In order to prove the
result in this situation we will use that we already prove it for the case
D > 0. To this end we perform the canonical change of coordinates {u =
−x, v = −y} to the initial Hamiltonian system, and we obtain a new one
which is given by the Hamiltonian function

H̃(u, v) = Ã(u) + B̃(u)v + C̃(u)v2 + D̃(u)v3, (18)

where Ã(u) = A(−u), B̃(u) = −B(−u), C̃(u) = C(−u) and D̃(u) =
−D(−u). It is obvious that the phase portrait of the new differential sys-
tem can be obtained with a rotation of π radians of the initial one. Conse-
quently, it is clear that the projection of its period annulus is (−xR,−xL)
and that, for the values of u inside this interval, D̃(u) > 0 holds. Therefore
we can use the theorem to compute T̃ (h), the period of the periodic orbit
inside the energy level h of the new Hamiltonian system given by (??).
Note also that since the change of coordinates is area-preserving we have
T̃ (h) = T (h). Moreover, following the obvious notation, one can check that

G̃(u) = G(−u) and F̃ (u) = F (−u),

and so g̃(u) = −g(u) and Z̃(u, h) = Z(−u, h). Taking this into account it
follows that

T̃ (h) = 2
∫ eg−1(

√
h)

eg−1(−
√

h)

cos
(

1
3 arg

(
Z̃(u, h)

)− π
3

)
√

3
(
F̃ (u)− h

)(
h− G̃(u)

)
(

F̃ (u)− G̃(u)

4D̃(u)

)1/3

du

= 2
∫ g−1(−

√
h)

g−1(
√

h)

cos
(

1
3 arg

(
Z(−u, h)

)− π
3

)
√

3
(
F (−u)− h

)(
h−G(−u)

)
(

F (−u)−G(−u)
−4D(−u)

)1/3

du.

Finally, the change of variable u = −x yields

T̃ (h) = 2
∫ g−1(

√
h)

g−1(−
√

h)

cos
(

1
3 arg

(
Z(x, h)

)− π
3

)
√

3
(
F (x)− h

)(
h−G(x)

)
(

F (x)−G(x)
−4D(x)

)1/3

dx,
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and this proves the result for the case D < 0 because |D(x)| = −D(x) and
T̃ (h) = T (h).

Remark 15. It is easy to show that the real part of Z(x, h) is always
negative near the endpoints of

(
x`(h), xr(h)

)
. However, for an arbitrary

h ∈ (0, h0), it may occur that the real part of Z(x, h) becomes positive at
some value of x in the middle of this interval. This is the reason why we do
not use the function arctan(x) to compute the argument of Z(x, h). This
is not the case when h ≈ 0. Indeed, for these values of h we have

h− F (x) + G(x)
2

< 0 for all
(
x`(h), xr(h)

)

since G(0) = 0 and F (0) > 0. Thus, for periodic orbits γh near the center
we can use that

arg
(
Z(x, h)

)
= arctan


2

√(
F (x)− h

)(
h−G(x)

)

2h− (
F (x) + G(x)

)

 + π

to compute T (h).

Following Remark ??, we point out that the assumption D(x) 6= 0 for all
x ∈ (xL, xR) in Theorem ?? is not essential in order to compute T (h) for
periodic orbits γh near the center at the origin (i.e., with h & 0). Thus, for
these periodic orbits, the result is still true if we only assume that D(0) 6= 0
holds. In view of Remark ?? this leads us to the following corollary.

Corollary 16. If D(0) 6= 0 then, for each h & 0, the period of the
periodic orbit γh is given by

T (h) =
∫ g−1(

√
h)

g−1(−
√

h)

2√
3
(
F (x)− h

)(
h−G(x)

)
(

F (x)−G(x)
4|D(x)|

)1/3

cos


1

3
arctan


2

√(
F (x)− h

)(
h−G(x)

)

2h− (
F (x) + G(x)

)




 dx.

An interesting question for further research concerning the centers of
the cubic-like Hamiltonian systems is to obtain the isochronicity condition.
From our point of view, Corollary ?? can play an important role in this
direction because it provides an expression of the function h 7−→ T (h)
which depends explicitly on A, B, C and D.
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4. CASE III: A0 = B0 = 0 AND C0 6= 0

The remainder of the paper is devoted to prove Theorem ??. So recall
that in Section ?? (see Remark ??) we reduce its proof to study the centers
of the cubic-like Hamiltonian systems given by (??) and having an admis-
sible period annulus. Note in particular that D(x) = a0x

2 + b0x + c0. This
section is devoted to the case a0 = b0 = 0 and c0 6= 0. Thus D ≡ c0, and
we can therefore apply Theorem ?? to compute T (h). It will be shown the
following proposition.

Proposition 17. Assume that a0 = b0 = 0 and c0 6= 0. If P is admis-
sible then T (h) −→ +∞ as h ↗ h0.

Proof. To show this we shall first use the Poincaré compactification
of the vector field (see Section 7 in [?] for details). One can verify that
the characteristic polynomial of the critical point at the origin of the local
chart U2 is given by W (u, v) = −3cov

3. Hence the two separatrices of the
hyperbolic sector H? must be tangent to v = 0. In the Poincaré disc this
means that they are tangent to infinity and, accordingly, either xL = −∞
or xR = +∞. On the other hand, Proposition 6.3 in [?] shows that a1 = 0
is a necessary condition in order that P is admissible. Consequently, since
C(x) = 1/2 + c1x + b1x

2 + a1x
3, we have deg(C) ≤ 2.

Note that we can apply Theorem ?? because D(x) 6= 0 for all x ∈ R.
Thus, for each h ∈ (0, h0), the period of the periodic orbit γh is given by

T (h) = 2
∫ g−1(

√
h)

g−1(−
√

h)

cos
(

1
3 arg

(
Z(x, h)

)− π
3

)
√

3
(
F (x)− h

)(
h−G(x)

)
(

F (x)−G(x)
4|D(x)|

)1/3

dx,

where

Z(x, h) = h− F (x) + G(x)
2

+ i
√(

F (x)− h
)(

h−G(x)
)
.

Remark ?? shows that arg
(
Z(x, h)

) ∈ (0, π) if x ∈ (
g−1(−

√
h), g−1(

√
h)

)
and so, taking into account that 2 cos

(
(x− π)/3

) ≥ 1 for all x ∈ (0, π), we
can assert that

T (h) ≥
∫ g−1(

√
h)

g−1(−
√

h)

1√
3
(
F (x)− h

)(
h−G(x)

)
(

F (x)−G(x)
4|D(x)|

)1/3

dx.

Note that, according to Lemma ??, g−1(−
√

h) −→ xL and g−1(
√

h) −→ xR

as h ↗ h0. Therefore, applying Fatou’s Lemma it follows that

lim
h↗h0

T (h) ≥
∫ xR

xL

Φ(x) dx, (19)
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where

Φ(x) =
1√

3
(
F (x)− h0

)(
h0 −G(x)

)
(

F (x)−G(x)
4|D(x)|

)1/3

.

Let us assume for instance that xR = +∞. Then, on account of (??), to
prove the result it suffices to show that Φ(x) has order ≥ −1 at infinity.
To estimate this order notice first that, from Lemma ??, we have G(x) =
h0 + O(x−α) with α > 0 as x −→ +∞. On the other hand one can verify
that

(
F (x)−G(x)

4|D(x)|
)2/3

=
C(x)2 − 3D(x)B(x)

9D(x)2
, .

In our situation deg(C) ≤ 2, deg(B) ≤ 4 and D(x) ≡ c0. Consequently
F (x) − G(x) = P (x)3/2 where P (x) is a polynomial of degree n ≤ 4, and
so we can write

Φ(x) =
1

(4|c0|)1/3

(
F (x)−G(x)

)1/3

√
3
(
F (x)− h0

)(
h0 −G(x)

)

=
1

(4|c0|)1/3

P (x)1/2

√
3
(
P (x)3/2 + G(x)− h0

)(
h0 −G(x)

) .

This shows that the order of Φ(x) at infinity is equal to

1
2

n− 3
4

n +
1
2

α =
1
2

α− 1
4

n ≥ −1

and completes the proof of the result.

5. CASE IV: A0 = B0 = C0 = 0

In this section we prove Theorem ?? under the parameter values a0 =
b0 = c0 = 0. This corresponds to the case IV, and so it will complete the
proof of Theorem ?? (recall that the result in the case I and II is proved
in [?]). Note that, since D(x) = a0x

2+b0x+c0, in this case we have D ≡ 0.
Consequently, according to (??), the Hamiltonian function is

H(x, y) = A(x) + B(x)y + C(x)y2 (20)

where deg(A) ≤ 5, deg(B) ≤ 4 and deg(C) ≤ 3. We have to show that if
P is admissible then T (h) −→ +∞ as h ↗ h0. Notice that, by definition,
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a center with an admissible period annulus is, in particular, nonglobal.
Hence, it is clear that the result will follow once we prove the following
more general proposition.

Proposition 18. Assume that the Hamiltonian system given by (??),
where A, B and C are polynomials, has a non-degenerate center at the
origin with a nonglobal period annulus. If deg(C) ≤ 3 then T (h) −→ +∞
as h ↗ h0.

Proof. For each h ∈ (0, h0), Lemma 3.3 in [?] shows that the period of
the periodic orbit γh is given by

T (h) = 2
∫ xr(h)

x`(h)

dx√
4hC(x)−G(x)

,

where [x`(h), xr(h)] is the projection of γh on the x-axis and G := 4AC −
B2. Note also that

x`(h) ↘ xL and xr(h) ↗ xR as h ↗ h0,

where (xL, xR) is the projection of the period annulus on the x-axis. Con-
sequently, by applying Fatou’s Lemma we can assert that

lim
h↗h0

T (h) ≥ 2
∫ xR

xL

dx√
4h0C(x)−G(x)

. (21)

On the other hand, from (a) of Lemma 3.3 in [?] it follows that

1
4

G(x)
C(x)

−→ h0 as x ↘ xL or x ↗ xR. (22)

In order to prove the result we must only consider the case in which
(xL, xR) is unbounded, otherwise Corollary 3.7 in [?] shows that T (h) −→
+∞ as h ↗ h0. So we can assume that either xL = −∞ or xR = +∞, and
notice then that from (??) it follows

deg(4h0C −G) < deg(C).

Here we use that, since the period annulus is nonglobal, we have h0 < +∞.
Hence the assumption on deg(C) implies that deg(4h0C − G) ≤ 2. Now,
taking into account (??) and the fact that (xL, xR) is unbounded, this
clearly forces that T (h) −→ +∞ as h ↗ h0.



178 X. JARQUE AND J. VILLADELPRAT

6. A COUNTEREXAMPLE FOR HAMILTONIAN SYSTEMS
OF DEGREE SIX

As we mention in Section ??, from a result in [?] it follows that the period
function of any non-degenerate center of a polynomial Hamiltonian system
of second degree tends to infinity as we approach to the boundary of its
period annulus. Since Theorem ?? shows the same result for Hamiltonian
systems of fourth degree, one may wonder if the result is true for any
Hamiltonian system of even degree. We conclude the paper showing that
this is not so. To this end, taking

A(x) =
1
3

x2 (3x + 7),

B(x) =
1
3

x (x + 2)(3x2 + 4x + 2),

and

C(x) =
1
12

(x2 + x + 1)(x + 2)(3x2 + 4x + 2),

we consider the quadratic-like Hamiltonian function H(x, y) = A(x) +
B(x)y + C(x)y2. We have thus a Hamiltonian system of degree six which
one can verify that has a center at the origin. In order to study its period
annulus notice first that C(x) > 0 for all x > −2. Hence, for these values
of x, the energy level H(x, y) = h is given by the graphs of the functions

x 7−→ −B(x)±
√

4hC(x)−G(x)
2C(x)

,

where

G := 4AC −B2 =
1
3

x2(x + 2)(3x2 + 4x + 2).

For each fixed h, these functions are well defined for values of x such that
4hC(x)−G(x) ≥ 0 and this condition is equivalent to

G(x)
4C(x)

=
x2

x2 + x + 1
≤ h.

Thus, on account of Figure ??, we can assert that the period annulus of
the center at the origin is

P =
{
(x, y) ∈ R2 : 0 < H(x, y) < 1

}
.



PERIOD FUNCTION OF CENTERS 179

FIG. 3. The graph of G
4C

.

With our notation this means that h0 = 1. In addition, one can also verify
that, apart from the center at the origin, the unique critical point is located
at (−2, 4/3). Note that this critical point is not in ∂P because H(−2, 4/3) =
4/3 > 1.

We turn now to study the function h 7−→ T (h). For each h ∈ (0, 1),
Lemma 3.3 in [?] shows that the period of the periodic orbit γh is given by

T (h) =
∫ g−1(

√
h)

g−1(−
√

h)

2dx√
4hC(x)−G(x)

where g(x) =
sgn(x)

2

√
G(x)
C(x)

.

Thus, the change of coordinates x = g(u) in the expression of T (h2) yields

T (h2) =
∫ g−1(h)

g−1(−h)

2dx√
4h2C(x)−G(x)

=
∫ h

−h

1
F

(
g−1(u)

) du√
h2 − u2

,

where

F (x) =
√

C(x)g′(x) =
sgn(x)

4
C(x)√
G(x)

(
G

C

)′
(x).

It is easily seen that F is a nonvanishing analytic function on (−2, +∞) with
order 1/2 at +∞. Consequently there exists some m > 0 such that F (x) >
m for all x ∈ (−1, +∞). Since we have that g−1 ( [−h, h] ) ⊂ (−1, +∞) for
0 < h < 1 (see Figure ??), this shows that

T (h2) ≤ 1
m

∫ h

−h

du√
h2 − u2

=
π

m
for all h ∈ (0, 1).

We can assert therefore that the period function of the center at the origin
does not tend to infinity as we approach to ∂P.
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