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E-mail: sanchez@servidor.unam.mx

Submitted by E. Lacomba

The ν-principal configuration of an immersed surface M in IR4 is the set
formed by the umbilical points and the lines of principal curvatures with re-
spect to a unitary smooth vector field ν normal to M . In this article we describe
the bifurcation diagram of ν-principal configurations, where ν is parametrized
in the space of 1-jets of normal vector fields which define an isolated umbilical
point. Versal unfoldings of the nonlocally stable simple umbilical points are
obtained.
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1. INTRODUCTION

Let M be an immersed surface in IR4 and ν a unitary smooth vector field
normal to M . Let us consider the shape operator and the second fundamen-
tal form with respect to ν. We use this to define two orthogonal line fields,
the ν-principal directions, whose singularities are the ν-umbilical points.
A ν-principal configuration on M is the set formed by the umbilical points

* Partially supported by Proyecto D.G.A.P.A. IN 127498 UNAM.

359



360 M. NAVARRO AND F. SÁNCHEZ-BRINGAS

and the families of lines of maximal and minimal curvatures with respect
to the normal vector field ν, integral curves of the ν-principal directions.

Ramı́rez-Galarza and Sánchez-Bringas [10] proved that for principal con-
figurations of surfaces immersed in IR4, there is a generic class of struc-
turally stable pairs (I, ν), where I is a local immersion of a compact sur-
face M in IR4 and ν a normal vector field defining an isolated umbilical
point. Furthermore, the topological types of the corresponding principal
configurations are the same types Di, i = 1, 2, 3, of those which appear
for the generic family of Darbouxian principal configurations of surfaces
immersed in IR3, described by Gutierrez and Sotomayor [12]. This generic
class of pairs (I, ν) is called Darbouxian as well. Despite these similari-
ties between principal configurations in IR3 and IR4, we will point out a
remarkable difference. The index of a ν-umbilical point is the index as a
singularity of any of the two ν-principal directions. The famous Loewner
conjecture states that any umbilical point of a smooth surface immersed in
IR3 must have index less than or equal to one. This conjecture has been
proved to be true for analytic surfaces by several authors: H. Hamburger
[8], G. Bol [2], T. Klotz [9], C. J. Titus [13], and H. Scherbel [11]. On
the other hand, Gutierrez and Sánchez-Bringas [7] proved that, given any
integer n, there exists an analytic surface immersed in IR4 and an unitary
smooth vector field normal to M having an isolated ν-umbilical point of
index n/2.

The pairs (I, ν) with umbilical points of index greater than one appear
in the complement of the Darbouxian generic class of the corresponding
surface, namely in the bifurcation set studied here.

Given a Darbouxian ν-umbilical point p ∈ M , it is possible to find other
types of Darbouxian configurations at p by only varying the parameters of
the normal vector fields of the surface. The goal of this paper is to describe
how these configurations appear in the space N1 of parameters of 1-jets of
normal vector fields which define isolated umbilical points at p ∈ M . In fact
we obtain a bifurcation diagram of principal configurations by determining
the bifurcation set of codimensions one and two in this space. We describe
topologically this set and prove that the only singularity which belongs to
it is of cusp type.

This work was inspired by the local study of singularities of positive
quadratic differential equations, not necessarily coming from geometry, pre-
sented by Gúıñez and Gutierrez in [5], [6]. They obtain versal unfoldings
of arbitrary nonlocally stable simple singularities: D12, of codimension one
and D̃1 of codimension two. For each differential equation of lines of cur-
vature we consider the corresponding positive quadratic differential form
[Remark 3] and we obtain here versal unfoldings of nonlocally stable simple
umbilics parametrized in the space N1. It turns out that they are versal in
the space of positive quadratic differential forms and different from those
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determined by Gúıñez and Gutierrez [Remark 7]. Furthermore, this can be
stated geometrically as follows: the variation of parameters of the versal
unfolding of this type of singularities in the space of positive quadratic dif-
ferential equations, corresponds to the variation of parameters of the 1-jet
of the normal vector field.

This paper is organized as follows. Section 2 contains some generalities
used in the sequel. In Section 3 we prove the main theorem which describe
the bifurcation set of ν-principal configurations, where ν is parametrized in
the space of 1-jets of normal vector fields which define an isolated umbilical
point. In Section 4 we give versal unfoldings of the nonlocally stable simple
umbilical points.

2. PRINCIPAL CONFIGURATIONS AND UMBILICAL
POINTS IN IR4

2.1. ν-Principal Configurations
Let M be a smooth oriented surface immersed in IR4 with the Rieman-

nian metric induced by the standard Riemannian metric of IR4. For each
p ∈ M consider the decomposition TpIR

4 = TpM⊕(TpM)⊥, where (TpM)⊥

is the orthogonal complement of TpM in IR4. Let ∇̄ be the Rieman-
nian connection of IR4. Given local vector fields V,W on M , let V̄ , W̄
be some local extensions to IR4. The Riemannian connection of M is
well defined by the tangent component of the Riemannian connection of
IR4 : ∇V W =

(∇̄V̄ W̄
)>. Let X (M) and X (M)⊥ be the space of smooth

vector fields on M and the space of smooth vector fields normal to M ,
respectively. Consider the map

α : X (M)×X (M) → X (M)⊥ , α (V,W ) = ∇̄V̄ W̄ −∇V W.

This map is well defined, symmetric and bilinear.
If p ∈ M and ν ∈ (TpM)⊥ , ν 6= 0, define the function

Hν : TpM × TpM → IR, Hν (V,W ) = 〈α (V, W ) , ν〉.
Then, this function as well is symmetric and bilinear. The second funda-
mental form of M at p is the associated quadratic form,

IIν : TpM → IR, IIν (V ) = Hν (V, V ) .

Recall the shape operator

Sν : TpM → TpM, Sν (V ) = − (∇̄V̄ ν̄
)>

,

where ν̄ is a local extension to IR4 of the normal vector field ν at p and >
means the tangent component. This operator is bilinear, self-adjoint and
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for any V, W ∈ TpM satisfies the following equation

〈Sν (V ) ,W 〉 = Hν (V,W ) .

Therefore, the second fundamental form can be expressed by

II ν (V ) = 〈Sν (V ) , V 〉.

Thus for each p ∈ M , there exists an orthonormal basis of eigenvectors of
Sν in TpM , for which the restriction of the second fundamental form to the
unitary vectors takes its maximal and minimal values. The corresponding
eigenvalues k1, k2 are called the maximal and minimal ν-principal curva-
tures, respectively. The point p is ν-umbilical if the ν-principal curvatures
coincide. Let Uν be the set of ν-umbilical points in M . For any point
p ∈ M \ Uν there are two ν-principal directions defined by the eigenvectors
of Sν , these fields of directions are smooth and integrable. Then they de-
fine two families of orthogonal curves, their integrals, which are called the
ν-curvature lines, one maximal and the other minimal. The two orthog-
onal foliations with the ν-umbilical points as their singularities form the
ν-principal configuration of M, Pν = (Uν ,Lν , lν) . The differential equation
which defines the ν-principal configuration is

Sν (c′ (t)) = λ (c (t)) c′ (t) ,

where c : (−δ, δ) → M is a smooth curve determining a ν-curvature line.
In order to study the local principal configurations of a surface immersed

in IR4 in a neigborhood of a ν-umbilical point p, let us introduce a system
of coordinates x, y, z, w, where the immersed surface can be seen as the
graph of a differentiable function f : U ⊂ IR2 → IR2. In this case the
parametrization has the form

X(u, v) = (u, v, ϕ(u, v), ψ(u, v)).

We may assume that p is the origin of IR4, the tangent plane at p is
the xy-plane, and the vector field ν coincides with ∂

∂z at the origin. The
differential equation of ν-lines of curvature in this system is

(fνE − eνF ) du2 + (gνE − eνG) du dv + (gνF − fνG) dv2 = 0, (1)

where E = 〈Xu, Xu〉, F = 〈Xu, Xv〉, G = 〈Xv, Xv〉 are the coefficients
of the first fundamental form and eν = 〈Xuu, ν〉, fν = 〈Xuv, ν〉, gν =
〈Xvv, ν〉 are the coefficients of the second fundamental form with respect
to the normal vector field ν.
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The principal configuration near the origin defined by the 1-jet of the
differential equation of ν-lines of curvature is determined by the 3-jet of
the coordinate functions of the parametrization X and the 1-jet ν1 of the
normal vector field ν. So, consider the third order Taylor polynomials of ϕ
and ψ around p,

X(u, v) = (u, v, k
2

(
u2 + v2

)
+ a

6u3 + d
2u2v + b

2uv2 + c
6v3 ,

α
2 u2 + γ

2 v2 + δ
6u3 + ε

2u2v + ζ
2uv2 + η

6v3),
(2)

where k, ..., c, α, ..., η ∈ IR. The uv term of ψ has been eliminated by a
rotation of the xy-plane.

Assuming that the normal vector field ν defines an isolated umbilic at
the origin, in this parametrization the 1-jet of it has the form

ν1 = (−ku,−kv, 1, mu + nv) , (3)

where k is the value of any of the principal curvatures with respect to ν at
the origin and m,n are real numbers. Following the proof of lemma 2.4 in
[10] for the case of this parametrization of the surface, it is not difficult to
prove that for any pair (m,n) ∈ IR2 there is a normal vector field ν with
its first jet ν1 as above. Then, the 1-jet of the differential equation of lines
of curvature is written in terms of these parameters as

A1 (u, v) dv2 + B1 (u, v) du dv + C1 (u, v) du2 = 0, (4)

where

A1 (u, v) = d u + b v,
B1 (u, v) = (a− b + (α− γ)m)u + (−c + d + (α− γ) n) v,
C1 (u, v) = −d u− b v.

2.2. Simple Umbilical Points
Let I : M → IR4 be a smooth immersion of the surface M in IR4.

Consider the projective line bundle Π : PI(M) → I(M), where PI(M)
is defined in the following way. Let T (M) − {0} be the tangent bundle
without the zero section and identify any two elements (x, v̄) and (y, w̄)
which satisfy x = y and v̄ = λw̄ for λ 6= 0. The set of equivalence classes
defined by this identification constitute the set PI(M).

Let I (x) be an umbilical point in I (M) ⊂ IR4. Then there is a neighbor-
hood V (I (x)) with a canonical parametrization (2) which identifies I (x)
with 0. In these terms the ν-curvature lines are defined by the equation
(4).

The space PI (M) can be parametrized by two coordinate charts:
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(u, v; q = du/dv) , and (u, v; p = dv/du) .

Equation (4) defines in PI (M) a surface S (I, ν). In the coordinate chart
(u, v; p) this surface is defined by:

F (u, v; p) = (d u + b v) p2

+((a− b + (α− γ) m) u + (−c + d + (α− γ) n) v) p

− (d u + b v)
= A1(u, v)p2 + B1(u, v)p−A1(u, v)
= 0.

Let UI,ν be the set of ν-umbilical points of I (M). Outside Π−1UI,ν ,
S (I, ν) is a regular surface of PI (M), in fact it is a double covering of
Π−1I (M)− UI,ν . If 0 ∈ IR4 is an umbilical point, the real projective line
Π−1 (0) is contained in S (I, ν).

Condition (T). The pair (I, ν) satisfies the transversality condition in 0
if the curves defined by the zeros of the coefficients A1 (u, v) and B1 (u, v)
of equation (4) intersect in 0 transversally.

This is equivalent to the condition that S (I, ν) be regular along Π−1 (0)
and clearly, this property is independent of the parametrization.
Define the vector field F ′ in PI (M) by

F ′ = Fp∂/∂u + pFp∂/∂v + (−Fu − pFv)∂/∂p. (5)

This vector field has the following properties:
1. F ′ is tangent to S (I, ν).
2. Π∗ (F ′) vanishes only in the origin.
3. Let (u, v; pi) ∈ S (I, ν), then Π∗ (F ′ (u, v; pi)) generates the principal

line with the direction pi.
4. The eigenvalues of the linear part of the vector field F ′ at (0, 0, pi)

are:

(1) β1 = 0,
(2) β2 = 2b− a− (α− γ)m + 2(c− 2d− (α− γ)n)pi − 3bp2

i ,
(3) β3 = (a− b + (α− γ)m) + (3d− c + (α− γ)n)pi + 2bp2

i .

The singularities of F ′ | S (I, ν) in Π−1 (0, 0) are the roots of the polynomial

f (p) = bp3 + (2d− c + (α− γ)n) p2 + (a− 2b + (α− γ)m) p− d. (6)

The polynomial f defined by (6) will be called the separatrix polynomial
of the pair (I, ν). Its roots are the tool we use to describe the type of the
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principal configuration. In fact, in the generic Darbouxian class defined
below, they are in direct correspondence with the tangent directions of the
lines of curvature which contain the origin in their closure. These directions
are called principal approximations and their number is determined by
the sign of the discriminant ∆ of the separatrix polynomial (6). See [10],
Section 3.

Definition 1. The pair (I, ν) satisfies the discriminant condition in
an umbilical point, if the discriminant ∆ of the separatrix polynomial (6)
satisfies one of the following cases:

(i) D1 : ∆ > 0 and β2β3 < 0 for the unique real root of f (p).

(ii) D2 : ∆ < 0 and β2β3 < 0 for two roots of f(p) and β2β3 > 0 for the
other.

(iii) D3 : ∆ < 0 and β2β3 < 0 for the three roots of f(p).

The cases D1, D2 and D3 forms the Darbouxian class of (I, ν).

These conditions determine the topological behavior near the umbilic in the
following way: The previous construction gives a blowing up of the umbilic
with the vector field F ′ tangent to the pull back of the lines of curvature.
For the case D1, we have only one singularity at the divisor (0, 0, p) of
saddle type, defining just one principal approximation. For the case D2

we have three singularities along the divisor, two saddles and one node,
defining two principal approximations. Finally, for the case D3, we have
three saddle type singularities along the divisor defining three principal
approximations. See [10], Proposition 3.8. Obviously these conditions are
invariant under rotations of the uv-plane.

Remark 2. If one of the roots of f(p) is zero, the expression of the
separatrix polynomial in this coordinate chart can be written as f(p) =
p f2(p), and the relation between the discriminant ∆2 of the quadratic
factor f2(p) and ∆ is given by ∆ = −ρ2∆2, where ρ is a function of the
parameters.

Now, in order to define the simple umbilical points of a surface we need
some preliminary concepts.

A C∞ quadratic differential form on an oriented, connected, smooth
surface M is defined by elements of the cotangent bundle in the form ω =∑n

i=1 ϕiψi where ϕi and ψi are differential 1-forms on M of class C∞. For
each point p in M ,

ω (p) =
n∑

i=1

ϕi (p)ψi (p) : TpM → IR
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is the quadratic form on the tangent space TpM defined by

ω (p) (V ) =
n∑

i=1

ϕi (p) (V ) · ψi (p) (V ) ,

for any V ∈ TpM. If X : N → M is a C∞ diffeomorphism and ω is a C∞

quadratic differential form on M , we denote by X∗ (ω) the C∞ quadratic
differential form on N defined by

X∗ (ω) (q)(ξ) = ω (X(q)) (dXq(ξ)) ,

for q in N and ξ in TqN. We denote also this form simply by ω∗ when there
is no confussion about the diffeomorphism X.

We say that ω is positive if for every point p in M the subset ω (p)−1 (0)
of TpM is either the union of two transversal lines (in this case p is called
a regular point of ω) or all of TpM (in this case p is called a singular point
of ω).

Each positive quadratic differential form ω defines a configuration

C (ω) = {Sing (ω) , f1 (ω) , f2 (ω)},

where Sing(ω) is the set of singular points of ω and f1 (ω) , f2 (ω) are the
transversal foliations on M−Sing(ω) whose tangent lines in each regular
point p are given by the transversal lines of ω (p)−1 (0).

Let Q (M) be the manifold made up of the pairs (p, α) such that p ∈ M
and α =

∑n
i=1 φiψi, with φi and ψi in the cotangent space (TpM)∗. Then

every C∞ quadratic differential form ω on M can be considered as a C∞

section ω : M → Q (M). With this representation, the usual derivative of
ω at each p in M, Dωp, is a quadratic differential form on TpM . See [4],
p. 479.

Let ω be a positive quadratic differential form on M . A singular point
p of ω is said to be simple if Dωp is a positive quadratic differential form
on TpM . Every positive quadratic differential form ω on M with a simple
singular point p may be expressed in an appropiate local chart (u, v) :
(M,p) → (

IR2, 0
)

in the form

(u, v)∗ (ω) = (a1u + a2v + M1 (u, v)) dv2 + (b1u + b2v + M2 (u, v)) dudv

+ (c1u + c2v + M3 (u, v)) du2,

with Mi (u, v) = O(
(
u2 + v2

)1/2), i = 1, 2, 3, where

b2
1 − 4a1c1 > 0,
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and

(b2
1 − 4a1c1)(b2

2 − 4a2c2)− (b1b2 − 2a1c2 − 2a2c1)
2

> 0,

and this holds for every local chart at p ∈ M . See [4], Proposition 5.1.

Remark 3. The differential equation (1) of lines of curvature of a surface
M immersed in IR4 by I : M → IR4 with normal umbilical vector field ν is
defined by a positive quadratic differential form ω on M , and the configu-
ration of ω corresponds to the ν-principal configuration of the surface M ,
i.e., {Sing(ω) , f1 (ω) , f2 (ω)} coincide with (Uν ,Lν , lν) .

By using the preceding inequalities and the canonical parametrization of
the surface (2) it is easy to see that if p is an isolated generic ν-umbilical
point of M , it will be simple if the following inequalities holds

4d2 + (a− b + (α− γ)m)2 > 0, (7)

((a− b)b + (c− d)d + (α− γ)(bm− dn))2 > 0. (8)

The cases lying on the boundary of the open sets defined by the discrim-
inant condition are interesting from the bifurcation point of view. They
will be studied here.

Definition 4. Let p be a simple umbilical point of a surface M im-
mersed in IR4 and f the separatrix polynomial of the pair (I, ν), where
I : M → IR4 is the immersion at p with normal umbilical vector field ν.
Then the point p is called

(a) Darbouxian if f has only simple roots and condition (T) holds.
(b) D12 if f has one simple and one double root.
(c) D̃1 if f has a triple root.

3. BIFURCATION DIAGRAM

Consider an arbitrary local surface M immersed in IR4 with an isolated
umbilical point p. Generically any perturbation of the normal direction in
(TpM)⊥ makes p non umbilic. We assume this direction fixed and only
vary the first jet of the normal vector field with the condition of keeping
the property of defining an isolated umbilic at p. Let N1 denote the set
of the 1-jet of normal ν-umbilical vector fields at p. The normal form of
ν ∈ N1 given by (3) allows us to identify N1 with IR2. Let (m,n) be the
coordinates of an element of N1. Using the canonical parametrization (2)
of the surface M around p and the inequalities (7) and (8), we see that for
d 6= 0 the inequality (7) is satisfied for all (m,n) ∈ N1. Thus, to obtain the



368 M. NAVARRO AND F. SÁNCHEZ-BRINGAS

set of non simple points only remains to see where the second inequality
(8) is not satisfied, namely the points (m,n) ∈ N1 which satisfy

n =
(

b

d

)
m +

(a− b) b + (c− d) d

(α− γ) d
, (α− γ) d 6= 0. (9)

Theorem 5. Let ν ∈ N1 with coordinates (m,n) and d 6= 0, b 6= 0. The
bifurcation set of codimensions one and two, of the isolated ν-umbilical
points in the space N1 is the line (9) and a real algebraic curve Γ which has
two connected components. One of them has a singular cusp point and the
other one is a smooth curve diffeomorphic to a line. The singular point of
Γ is of type D̃1 of codimension two and the regular points of Γ are of type
D12 of codimension one except at the unique tangency point T to the line
(9). See Figure 1.

FIG. 1. Bifurcation set in the space N1.

Proof. The proof is presented in three steps. In the first one we obtain a
convenient description of the set of points of type D12 and D̃1 in the space
N1. This set consists of a real algebraic curve Γ of degree four. In the
second part we prove a lemma which describes the topological properties
of the curve Γ stablished in the statement of the theorem. In the third part
we analyse the types of principal configurations along Γ. We perform some
symbolic computations in MATHEMATICA to obtain precise expressions
in this proof.
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First Part. We are going to determine the subset of N1 where we have
bifurcations of type D12 and D̃1, which is characterized by the multiplicity
of the roots of the separatrix polynomial (6). For the first one there are
one single and one double roots and for the second one there is just one
triple root.

We shall determine the discriminant of (6) as a function of the parameters
m,n in a proper coordinate chart in order to determine its locus, where
the multiple roots appear.

Let P denote the set of separatrix polynomials written in the form

f(p) = p3 + λ2p + λ1.

We can identify P with IR2 giving coordinates (λ1, λ2) to an element of P.
Now, consider the mapping

F : N1 → P, F (m, n) = (λ1, λ2) , (10)

defined by

λ1 =
1

27b3
{(2d− c + (α− γ)n) (2 (2d− c + (α− γ)n)2 (11)

−9b (a− 2b + (α− γ)m))− 27b2d},
and

λ2 =
1

3b2
{3b (a− 2b + (α− γ)m)− (2d− c + (α− γ)n)2}. (12)

The change of parameters defined by the mapping F is the composition
F = F2 ◦ F1, where F1 : N1 → IR4 is defined by

F1 (m,n) = (c0, c1, c2, c3) ,

where ci, i = 0, 1, 2, 3, are the coefficients of the terms of i-th order of the
separatrix polynomial (6), namely

c0 = −d,
c1 = a− 2b + (α− γ)m,
c2 = 2d− c + (α− γ)n,
c3 = b,

and F2 : IR4 → P is defined by

F2 (c0, c1, c2, c3) =

(
c2

(
2c2

2 − 9c1c3

)
+ 27c0c

2
3

27c3
3

,
3c1c3 − c2

2

3c2
3

)
.



370 M. NAVARRO AND F. SÁNCHEZ-BRINGAS

The function F2 corresponds to the Vietà transformation which elimi-
nates the quadratic term of the separatrix polynomial (6) after make it
monic, yielding the form f(p) = p3 + λ2p + λ1. Then, the discriminant of
(6) is

∆ (λ1, λ2) = 4λ3
2 + 27λ2

1. (13)

We see that the subset of N1 where multiple roots occur is given by the
inverse image Γ = F−1 (C) of the subset C of P where the discriminant
vanishes,

C = {(λ1, λ2) ∈ P | ∆ (λ1, λ2) = 0} . (14)

Note that the mapping F given by (10) is an smooth covering almost ev-
erywhere, whose jacobian

J =
1

3b3
(γ − α) (a− 2b + (α− γ)m) ,

vanishes only on the line m = (a− 2b) / (γ − α). So F is a local diffeomor-
phism outside its singular set

S1 (F ) =
{

(m,n) ∈ IR2 | m =
a− 2b

γ − α

}
.

Second Part. The subset Γ of N1 is defined by the polynomial equation
4λ3

2 + 27λ2
1 = 0 with λ1, λ2 replaced by (11) and (12) respectively. Denote

by f (m,n) = 0 this equation.
It is known that a real algebraic curve Γ defined by a polynomial equation

of degree ≥ 2 in two variables consists of at most finitely many components.
More precisely, when the curve is real non-singular each of its unbounded
components are homeomorphic to a line and each of its bounded compo-
nents are homeomorphic to a circle. On the other hand, if the curve Γ is
real singular and

∑
is the set of its real singular points, then Γ −∑

is a
differentiable 1-manifold.

In this part we describe the topological properties of the curve Γ.

Lemma 5.1 The real algebraic curve Γ = F−1 (C), where F is the mapping
given by (10), has two connected components. One of them has a singularity
of cusp type and the other one is a smooth curve diffeomorphic to a line.

Proof. Consider the translation of the mn-plane which takes the origin
to

V =
1

γ − α

(
a− 2b− 3

(
bd2

)1/3
, 2d− c + 3

(
b2d

)1/3
)

.
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Then the algebraic set Γ = F−1 (C) is expressed in the new system of
coordinates (x, y) as

f (x, y) = f2 (x, y) + f3 (x, y) + f4 (x, y) = 0, (15)

where fi (x, y) , i = 2, 3, 4, are homogeneous polynomials of degree i given
by

f2 (x, y) = 27 (bd)2/3
(

3
√

bx + 3
√

dy
)2

,

f3 (x, y) = 2 (α− γ)
(

2
(

3
√

bx− 3
√

dy
)3

+ 9 (bd)1/3
(

3
√

bx− 3
√

dy
)

xy

)
,

f4 (x, y) = − (γ − α)2 x2y2.

From this we see that the origin is a singular double point of the curve
(15), and the line

3
√

bx + 3
√

dy = 0

is a double tangent line (and the only one tangent) at the origin. Further-
more, the rotation of the xy-plane with angle θ = − arctan 3

√
b/d trans-

forms (15) to f̃(x, y) = 0, which defines a curve whose tangent line at the
origin is the horizontal axis, and such that

∂3f̃

∂x3
(0, 0) =

24bd (γ − α)
[
b2/3 + d2/3

]3/2
6= 0.

These properties imply that the curve Γ has a cusp point at V . See [3], p.
82.

Now in order to describe the connected components of Γ we will deter-
mine the intersection of the vertical lines x = constant with this curve,
since f(x, y) = 0 is a cubic equation in y with coefficients defined by real
functions in x. This can be seen by writing the polynomial equation (15)
in the form

a3 (x) y3 + a2 (x) y2 + a1 (x) y + a0 (x) = 0, (16)

where

a3 (x) = 4d (γ − α) ,

a2 (x) = 27
(
b2d4

)1/3 + 6 (γ − α)
(
bd2

)1/3
x− (γ − α)2 x2,

a1 (x) = 54bdx− 6 (γ − α)
(
b2d

)1/3
x2,

a0 (x) = 27
(
b4d2

)1/3
x2 − 4 (γ − α) bx3.
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Now, for x = 0 we have a3(0) = 4d(γ − α), a2(0) = 27(b2d4)1/3 and
a1(0) = a0(0) = 0. Thus, for x = 0, equation (16) reduces to

4d (γ − α) y3 + 27
(
b2d4

)1/3
y2 = 0,

which has the solutions y1 = y2 = 0, and y3 = − 27(b2d)1/3

4(γ−α) 6= 0 (one simple
and one double root).

Claim: The sign of the discriminant ∆ (x) of (16) as a cubic equation in
y behaves like the sign of x.

Therefore, for x < 0, then ∆ < 0 and there are three different real
solutions. For x = 0, we have ∆ = 0 and there are one simple real solution
and one double solution equal to zero as we have seen. And for x > 0,
∆ > 0 and there is only one real solution.

Now, since Cardano’s formula gives differentiable solutions out of the
locus of the discriminant, namely the line x = 0, it follows that Γ − {V }
consists of regular curves. This complete the topological description of Γ.
See Figure 1.
To finish we will prove the claim in the following way: The discriminant of
equation (16) depends on x as

∆ (x) = 4b (γ − α)xh (x) , (17)

where

h(x) = (γ − α)6x6 − 27(bd2)1/3(γ − α)5x5 + 324(b2d4)1/3(γ − α)4x4

−2187bd2(γ − α)3x3 + 8748(b4d8)1/3(γ − α)2x2

−19683(b5d10)1/3(γ − α)x + 19683b2d4.

From (17) we can see that the only possibility of multiple roots for (16)
is where x = 0 or h (x) = 0.

We will prove that the function h is strictly positive for all x ∈ IR. Then
by (17) the sign of ∆ (x) and of x is the same assuming b > 0, γ > α. (For
the other cases the proof is analogous).

A straightforward computation shows that for x0 = 9(bd2)1/3/2(γ − α),
we have h′ (x0) = 0, and h′′ (x0) > 0. Thus, x0 is a critical point for which
h (x0) is a local minimum. Furthermore, h (x0) > 0. In fact, we will show
that x0 is the only critical point, and h (x0) is an absolute minimum.

For this, write h′ (x) = (x− xo)h1 (x). Then, it is easy to find that

h1 (x) = 6 (γ − α)2 h2 (x) ,
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where

h2 (x) = (γ − α)4 x4 − 18
(
bd2

)1/3
(γ − α)3 x3 + 135

(
b2d4

)1/3
(γ − α)2 x2

−486bd2 (γ − α)x + 729
(
b4d8

)1/3
.

It only remains to show that h2 (x) has no real roots. From the Ferrari
method for solving the quartic, we have that the solutions to the equation
h2 (x) = 0 are the solutions to the equation (x2 + px + k)2 = 0, where

p = − 9(bd2)1/3

γ−α , k = 27(b2d4)1/3

(γ−α)2 .

Since the discriminant of the quadratic equation x2 + px + k = 0 is

∆ = −27
(

b1/3d2/3

γ − α

)2

< 0,

the proof of the lemma is complete.

Third Part. In this part we begin showing that the points of type D12 lie
on Γ− {V, T} , where V is the cusp point of Γ,

V =
1

γ − α

(
a− 2b− 3

(
bd2

)1/3
, 2d− c + 3

(
b2d

)1/3
)

,

and

T =
1

γ − α

(
ab− d2

b
,
b2 − cd

d

)
,

is the unique point in the intersection of the non simple line (9) and the
curve Γ, as we can easily see by straightforward computations. Since it is
the unique non simple point of Γ, we have that the points D12 and D̃1 lie
on Γ− {T}.

A direct computation shows that F (V ) = (0, 0). We claim that there is
no other point in F−1 (0, 0) different from V . Suppose there is a point V ′

in F−1 (0, 0) such that V ′ 6= V .
A straightforward computation shows that if V1 ∈ S1 (F ), then F (V1) 6=

(0, 0). Therefore V ′ /∈ S1 (F ). It follows that F is a local diffeomorphism
at V ′. This property of F and the fact that (0, 0) is a cusp point of the
curve C implies that V ′ is also a cusp point of Γ but there is no other cusp
point of Γ different from V, see Lemma 5.1.

Furthermore, the unique point of type D̃1 on the space P is the origin
with preimage F−1 (0, 0) = {V } as we have seen. Thus, the points of type
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D12 in N1 are the simple points of Γ − {V }, namely, all the points along
Γ− {V, T}.

Finally, the tangency of the curve Γ with the non simple line (9) at the
point T stated in Theorem 5 is easily showed. Using the Implicit Function
Theorem we can compute the slope of Γ at that point, which is b/d. This is
the slope of the non simple line. The proof of Theorem 5 is now complete.

Corollary 6. The bifurcation diagram of the ν-principal configurations
in the space N1 is given in Figure 2 for d > 0, b > 0, and γ > α.

FIG. 2. Bifurcation diagram of principal configurations in N1.

Proof. Using the fact that the Darbouxian types of principal configura-
tions define open components on the complement of the curves Γ and the
non simple line (see [10], Theorem 3.9), it is enough to determine the type
of principal configuration in any particular point of each component. The
complement of these curves define five regions. See Figure 3.

So we make a clever choice of convenient points along the double tangent
line to the cusp component of the curve Γ to test the regions 1, 2, and 3 of
Figure 3 which becomes of type D2, D1, and D3 respectively. Since region
2 is of type D1 and region 3 is of type D3, then regions 4 and 5 have to be
of type D2 if ∆ < 0 for these regions. This happens because any unfolding
of a D12 simple umbilical point cannot deform a D1 type into a D3 type.
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See [6]. The points used for this analysis are the following:

P1 =
1
ρ
(−x0, y0), P2 =

1
ρ
(x0,−y0),

P3 =
1
ρ
(
27
4

x0,−27
4

y0),

P4 =
1
ρ
(0,−7y0), P5 =

1
ρ
(7x0, 0),

where x0 = (bd2)1/3, y0 = (b2d)1/3 and ρ = γ − α.

FIG. 3. Regions of Darbouxian Configurations.

For each of these test points Pi we obtain the corresponding normal vector
field, the sign of the discriminant ∆ of the separatrix polynomial f , which
in each case is obtained by direct computations, the roots of f , and the
eigenvalues of the vector field F ′ given by (5). Then the type of Darbouxian
principal configuration is determined for the points Pi, i = 1, 2, 3 by the
sign of these eigenvalues and the sign of ∆ according to Definition 1 and
for the points P4 and P5 only by the sign of ∆.

Remark 7. The bifurcation diagram shown in Figure 2 will help us to
determine versal unfoldings of the umbilical points of type D12 and D̃1 in
the space N1 (section 4). If for each differential equation we consider the
corresponding positive quadratic differential form [Remark 3, section 2],
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then our unfoldings turn out to be versal in the space of positive quadratic
differential forms. In [6] versal unfoldings of the general singular types D12

and D̃1 in the space of positive quadratic differential forms are obtained.
They are different to ours. However, for the case D̃1 of codimension 2 it
is shown, Remark 5.8, [6], that the bifurcation set of singularties of type
D12 in that versal unfolding is a curve of cusp type, similar to the cusp
component of the curve Γ which appears in our case. Nevertheless, those
versal unfoldings do not define families of differential equations of lines of
curvature, necessary in our case.

4. VERSAL UNFOLDINGS

In this section, we obtain versal unfoldings of the D12 and D̃1 umbilical
points.

Recall that two positive quadratic differential forms ω1 and ω2 are equiv-
alent if there is an homeomorphism h : M → M such that h(Sing(ω1)) =
Sing(ω2) and maps leaves of f1(ω1) and f2(ω1) onto leaves of f1(ω2) and
f2(ω2), respectively.

Since we have obtained the bifurcation diagram of the principal config-
urations on M defined in N1, then transversality to the bifurcation set
provides us very good candidates for versal families. Let us begin with the
D12 case.

Proposition 8. Consider the surface parametrized by

X (u, v) =
(

u, v,
k

2
(
u2 + v2

)
+

1
3
u3 +

1
2
u2v +

1
2
uv2,

1
2
u2 + v2

)
.

Then the 1-parameter family of differential equations of lines of curvature

ϑλ = (u + v) dv2 + ((1− λ)u− 4v) du dv − (u + v) du2 = 0,

defined by the family of normal vector fields

νλ (u, v) = (−ku,−kv, 1, λu + 5v) ,

is a versal unfolding of an umbilic of type D12 with λ ∈ IR, 0 < λ < 5.

Proof. From the translation defined in the proof of Lemma 5.1 we
can see that for the parametrization X and the normal vector field νλ

considered here, the line n = 5 becomes the horizontal axis in Figure 2.
Now, because the line n = 5 represents the 1-parameter family νλ in the
space N1 and this line intersects transversally the regular component of
the curve Γ when λ = 15/4 and the non simple line when λ = 5, Corollary
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6 implies that for the family ϑλ the umbilic is of type D1, D12 or D2

according to 0 < λ < 15/4, λ = 15/4 or 15/4 < λ < 5, respectively.
This suggests the versality from the transversality of the family ϑλ to the
bifurcation set at the value λ = 15/4. See [1], Section 5.3. Now, following
the approach given in [6], we give a proof. For this, consider an arbitrary
smooth family of equations of lines of curvature

ωs = a (u, v, s) dv2 + 2b (u, v, s) dudv + c (u, v, s) du2,

with parameter s ∈ IRk such that ωo has at the origin a D12 singular
point. Using the normal form obtained in Lemma 5.6 [6], it can be proved
(Proposition 4.1, [6]) that for | s | small this family ωs is topologically
equivalent to the family

ω̃s = v dv2 + 2(B1(s) u + B2(s) v) du dv − v du2.

Let us consider the real valued function ψ : U ⊂ IRk → IR defined in a
neighborhood U of the origin of IRk by

ψ (s) = −1
4
B2

2(s) +
1
2
B1(s) +

7
2
,

and the family

ϑλ = (u + v) dv2 + ((1− λ)u− 4v) du dv − (u + v) du2 = 0.

with parameter λ ∈ IR, 0 < λ < 5.
Then the unfolding induced by ψ from the family (ϑλ)λ∈IR is

ω̄s = ϑψ(s) = (u + v)dv2 + ((1− ψ (s)u− 4v)dudv − (u + v)du2.

Now, because the function ψ is continuous and ψ (0) = 15
4 , there exists a

neighborhood of the origin (smaller than U if necessary) such that ψ (s) > 0
in that neighborhood. Since the discriminants of the separatrix polynomials
of the families ω̃s and ω̄s are

∆̃ = 4
(
B2

2(s)− 2B1(s) + 1
)

and ∆̄ = (3 + ψ(s))2(15− 4ψ(s))

respectively, it follows that ∆̃ and ∆̄ only differ by a positive factor. This
implies that the family ω̃s is topologically equivalent to ω̄s. Therefore the
family ϑλ is a versal unfolding of a singularity of D12 type.

Next we are going to construct a versal unfolding of the nonlocally stable
simple umbilical point of codimension 2 of type D̃1. First, let

Γ1(m, n) = 0, Γ2(m,n) = 0
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be the connected components of the curve Γ defined in Section 3 with Γ2

being the regular component. Second, denote by n2 : IR → IR the implicit
function defined by Γ2(m,n2(m)) = 0. Finally, define

U2 = {(m,n) ∈ IR2 | n > n2(m)}.

Then we have the following proposition.

Proposition 9. Consider the surface parametrized by

X (u, v) =
(

u, v,
1
2
k(u2 + v2) +

1
3
u3 +

1
2
u2v +

1
2
uv2,

1
2
u2 + v2

)
.

Then, the two parameter family of differential equations of lines of curva-
ture

ϑ(m,n) = (u + v) dv2 + ((1−m) u + (1− n)v) du dv − (u + v) du2 = 0,

defined by the family of normal vector fields

ν(m,n)(u, v) = (−ku,−kv, 1,mu + nv),

is a versal unfolding of an umbilic of type D̃1 with (m, n) ∈ U2.

Proof. First, the separatrix polynomial of the family ϑ(m,n) has dis-
criminant

∆ (m,n) = −5−36m−4m2−4m3+48n+18mn+4m2n−24n2−m2n2+4n3.

Then the curve Γ of Lemma 5.1 is ∆(m,n) = 0 for this family and Corollary
6 implies that for (m,n) ∈ U2 the origin is an umbilical point of ϑ(m,n) of
type:

(a) D1 if ∆(m,n) > 0.
(b) D2 if ∆(m, n) < 0.
(c) D12 if (m,n) ∈ {Γ1(m,n) = 0} and (m,n) 6= (−3, 5).
(d) D̃1 if (m, n) = (−3, 5).

See Figure 2.
Now, let

ωs = a(u, v, s)dv2 + 2b(u, v, s)du dv + c(u, v, s)du2

be an arbitrary family with parameter s ∈ IRk such that ω0 has an umbilic
point of type D̃1 at the origin.
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Using the normal form obtained in Lemma 5.6 [6], it can be proved
(Proposition 4.1, [6]) that for | s | small this family ωs is topologically
equivalent to the family

ω̃s = (A1(s)u+ v)dv2 +(u−A1(s)v)du dv +(C1(s)u+(−1 + C2(s)) v)du2.

Now, consider the function ψ : U ⊂ IRk → IR2 defined in a neighborhood
U of the origin by

ψ(s) = (ψ1(s), ψ2(s)) = F−1 (C1(s), C2(s)) ,

where F is the map defined by (10).
Then, the unfolding induced by the family ϑ(m,n) via ψ is given by

ω̃s = ϑψ(s) = (u + v) dv2+[(1− ψ1(s)) u + (1− ψ2(s)) v] du dv−(u + v) du2,

with the separatrix polynomial

f̄s (u, v) = v3 + (2− ψ2(s)) v2u− ψ1(s)vu2 − u3,

whose discriminant depends on the parameter s ∈ IRk as

∆̄s = −5− 36ψ1(s)− 4ψ2
1(s)− 4ψ3

1(s) + 48ψ2(s) + 18ψ1(s)ψ2(s)
+4ψ2

1(s)ψ2(s)− 24ψ2
2(s)− ψ2

1(s)ψ2
2(s) + 4ψ3

2(s).

Now, because the separatrix polynomial of the family ω̃s is

f̃s (u, v) = v3 + C2(s)vu2 + C1(s)u3,

with discriminant

∆̃s = 4C3
2 (s) + 27C2

1 (s),

we have that for every s ∈ U ⊂ IRk there exists neighborhoods U1,U2 of
the origin and of the point (−3, 5) in IR2 respectively such that the sign of
∆̃s and of ∆̄s are the same.

This implies that the family ω̃s is topologically equivalent to the family
ω̄s.

Therefore the 2-parameter family ϑ(m,n) is a versal unfolding of an um-
bilic of type D̃1.
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4. Gúıñez, V., Positive Quadratic Differential Forms and Foliations with Singularities
on Surfaces, Trans. Amer. Math. Soc. 309 (1988), 477–502.
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