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We study the behavior of solutions of mechanical systems with polynomial
potentials of degree 3 by using a blow up of McGehee type. We first state some
general properties for positive degree homogeneous potentials. In particular,
we prove a very general property of transversality of the invariant manifolds of
the flow along the homothetic orbit . The paper focuses in the study of global
flow in the case of homogeneous polynomial potentials of degree 3 for negative
energy. The flow is fairly simple because of its gradient-like structure, although
for some values of the polynomial coefficients we have diverse behaviour of the
separatrices on the infinity manifold, which are essential to describe the global
flow.
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1. INTRODUCTION

In a previous paper [5] we studied the asymptotic behavior of the solu-
tions escaping to the infinity of configuration space for mechanical systems
with polynomial potentials of degree at most 4. The essential tool is the
application of a McGehee type blow up at infinity studied systematically by
Lacomba and Ibort [8]. McGehee [10] introduced his blow up transforma-
tion for the study of the neighborhood of triple collision in the rectilinear
three body problem. It was then extended in a more or less straightforward
way to the study of the total collapse in any n-body problem in Celestial
Mechanics.

Since we consider mechanical systems with two degrees of freedom, the
blow up at infinity glues as a boundary to any energy level a compact
surface, which is invariant under the extended flow. Since the equilibrium
points are generically hyperbolic, understanding of the flow in this compact
surface gives asymptotic information on solutions escaping to infinity.

In Section 2 we begin by recalling some general properties of the blow
up at infinity and the flow on the energy levels and the infinity surface for
mechanical systems with 2 degrees of freedom and any positive degree of
homogeneity. It turns out that the flow on the infinity surface is always
gradient-like with respect to one of the velocity coordinates. These results
were proved in [5]. Then we prove the transversality of some invariant
manifolds of the flow.

In Section 3 we restate the main properties of the flow and the topology of
the infinity manifold for cubic homogeneous potentials, which were proved
in [5] and turned out to be fundamental for studying the global flow. We
include now a new symmetry property of the flow for potentials of the form
y3 + βx3.

In Section 4 we analyze the global flow on negative energy levels for the
case when the flow on the infinity manifold has 2 saddle points. The other
cases are trivial due to the gradient-like structure of the flow. Finally, in
Section 5 we include some numerical simulations to visualize the behav-
ior of the flow described in the previous section. For completeness, other
simulations are considered for giving a sketch of the flow for positive energy.

The study of this class of mechanical systems with polynomial potentials
of degree 3 is based on the normal form which is described in Section 3.
A typical example of this situation is the Hamiltonian in IR2 with Henon-
Heiles polynomial potential

V (x, y) = −α
(
x y2 − x3/3

)
,

considered in [8]. Its normal form is

U (X, Y ) = Y 3 − 3X2Y.
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This class of potentials was considered by Grammaticos and Dorizzi [6]
, in order to classify the integrable cases.

2. GENERAL PROPERTIES FOR POSITIVE DEGREE.

In this section we study some general properties for mechanical systems
with homogeneous potentials of positive degree. Our two degrees of freedom
Hamiltonian system has then the form

H (x, y, p1, p2) =
1
2

(
p2
1 + p2

2

)− V (x, y) (1)

where V is a homogeneous function of degree d > 0 in the plane, i.e.
V (λx, λy) = λdV (x, y) for any λ > 0.

In order to apply a blow up at infinity, configuration coordinates are
changed into polar coordinates, but with the radial coordinate replaced by
its reciprocal. The new position coordinates are ρ, θ, where

ρ =
1√

x2 + y2
; x =

1
ρ

cos θ; y =
1
ρ

sin θ. (2)

Since the energy relation has to be regular at ρ = 0, the new radial and
tangential velocity components are respectively defined as

v = ρd/2
(−ρ̇/ρ2

)
, u = ρd/2

(
ρ−1θ̇

)
. (3)

Then the energy relation H = h in ρ, θ, v, u coordinates becomes

1
2

(
u2 + v2

)
= U (θ) + ρdh, (4)

where U (θ) = V (cos θ, sin θ) .
Writing Hamilton′s equations for Hamiltonian (1) in terms of the new

variables, shows the further need for a change of time scale

dt

dτ
= ρd/2−1, (5)

in order to eliminate this factor from the right hand side of all the equations.
We obtain the following system of differential equations

ρ′ = −ρ v, v′ = u2 − d
2 v2 + d U (θ) ,

θ′ = u, u′ = −d+2
2 u v + U ′ (θ) ,

(6)

where ′ = d/dτ .
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The energy level H = h in the new coordinates is defined as the 3-
dimensional manifold

Eh =
{

(ρ, θ, v, u) | ρ > 0,
1
2

(
u2 + v2

)
= U (θ) + ρdh

}
.

But since the energy relation (4) and the system of equations (6) are well
defined at infinity, i.e. ρ = 0, we can glue to Eh a 2-dimensional boundary,
the so-called infinity surface

N∞ =
{

(ρ, θ, v, u) | ρ = 0,
1
2

(
u2 + v2

)
= U (θ)

}
,

which is independent of h and invariant under the flow, because from (6)
ρ = 0 implies ρ′ = 0. Although Eh and N∞ are contained in a 4-dimensional
space, they can be represented in the 3-space of coordinates θ, v, u when
h < 0 or h > 0. The boundary N∞ is a surface of revolution defined only
at points where U ≥ 0.

For h 6= 0 the equilibrium points are defined by the conditions

ρ = 0, U ′ (θ) = 0, v = ±
√

2U (θ), u = 0.

This means that we have 2 equilibria for each critical point θ of U where
U (θ) > 0, but only one degenerate equilibrium if U (θ) = 0. It is easy to
prove the following result

Proposition 1. If U (θ0) > 0, U ′ (θ0) = 0 and U ′′ (θ0) 6= 0, the corre-
sponding equilibrium points are hyperbolic for the flow.

Under the conditions of the above proposition, we see that
a) If U ′′

0 < 0, the equilibrium point is an attractor if v0 > 0 and repeller
if v0 < 0. There is a spiralling if k2v2

0 + 4U ′′
0 < 0.

b) If U ′′
0 > 0, the equilibrium points are saddles.

If U ′′ (θ0) > 0, the non degenerate equilibrium point S+ with v (θ0) =√
2U (θ0) has a 2-dimensional stable manifold W s (S+) and the equilibrium

point S− with v (θ0) = −
√

2U (θ0) has a 2-dimensional unstable manifold
Wu (S−) .

The critical points of U generate the so-called homothetic solutions.
These are the simplest possible solutions of (6 ), defined by taking θ ≡ θ0

where U ′ (θ0) = 0. That implies u = θ′ = 0, which agrees with u = 0. We
are left with only 2 equations

ρ′ = −ρ v,

v′ = d
(
−v2

2 + U (θ0)
)

,
(7)
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which can be explicitly integrated to get ρ (τ) and v (τ) . Homothetic solu-
tions are depicted as vertical lines for h 6= 0 in θ, v, u coordinates. When
U ′′ (θ0) > 0, the homothetic solution belongs to the intersection of the
manifolds W s and Wu.

A flow is gradient-like with respect to a function g, if g is strictly increas-
ing along solution curves of the flow, unless the solution is an equilibrium
point. In [5] the following proposition was proved.

Proposition 2. The flow of (6) is gradient-like with respect to v, as
follows

(a)If h < 0 on Eh ∪N∞ (ρ ≥ 0)
(b)If h ≥ 0 on N∞ (ρ = 0)

To analyze the geometrical structure of the manifolds W s and Wu along
the homothetic orbit it is useful to point out the symmetry

(ρ, θ, v, u, τ) → (ρ, θ,−v,−u,−τ) (8)

of the system (6).
This symmetry implies that the orbit (ρ (τ) , θ (τ) , v (τ) , u (τ)) converges

to S+ when τ tends to ∞, if and only if (ρ (−τ) , θ (−τ) ,−v (−τ) ,
−u (−τ)) converges to S− when τ tends to −∞.

The variational equations along the homothetic orbit are given by

θ′ = u,
v′ = −dv (t) v,
u′ = U ′′

0 θ − (
d+2
2

)
v (τ)u,

(9)

where U ′′
0 = U ′′ (θ0) .

We parametrize the homothetic orbit ξ in such a way that ξ (0) belongs
to the plane {v = 0} . Let us consider a small neighbourghood around ξ (0) .
Let β−0 be the curve which is obtained from intersecting Wu with {v = 0}
within that neighbourghood. We denote by Tβ−0 the tangent vector to β−0
at the point ξ (0) and by ϕτ the flow of the vector field (6). When the curve
β−0 is transported by the flow ϕτ , we get the curve ϕτ

(
β−0

)
, whose tangent

vector at ξ (τ) is given by Tβ−τ = Dϕτ (ξ (τ)) ·Tβ−0 . This vector is tangent
to the manifold Wu at the point ξ (τ) , and it follows from Equation (9)
that its component in the direction v is zero.

When τ tends to −∞, we have that ξ (τ) → S−, then by continuity of
the vector field (6) it follows that Tβ−τ converges to a vector Tβ−−∞, which
is tangent to the manifold Wu at the point S−. Since Tβ−τ has a null
component along the direction v, the same happens with Tβ−−∞, then this
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vector is also tangent to N∞. Analogously a vector Tβ+
∞ is constructed for

the manifold W s.
Let α± (τ) be the argument of the projection onto the plane {(θ, u)} of

the vector Tβ±τ . From the symmetry (8) the equality α+ (τ) = −α− (−τ)
follows. So, if the manifolds W s and Wu do not intersect transversally
along the homothetic orbit, then the increment of α−, from Tβ−0 until
Tβ−−∞ must to be at least π/2. In this way we have proved the following
result

Lemma 3. Suppose that U ′′ (θ0) > 0 and h < 0. The manifolds W s and
Wu intersect transversally along the homothetic orbit if the increment of
α± (τ) from Tβ±0 to Tβ±±∞ is smaller than π/2.

We prove in the following theorem, the transversaliy of W s and Wu

along the homothetic orbit.

Theorem 4. Let U (x, y) be a homogeneous polynomial potential of de-
gree d > 0. Suppose that h < 0, U (θ0) > 0, U ′ (θ0) = 0 and U ′′ (θ0) > 0.
Then the stable manifold W s (S+) and the unstable manifold Wu (S−) in-
tersect transversally along the homothetic trajectory {θ = θ0, u = 0} .

Proof. Let (R, α) be polar coordinates in the plane {θ, u} . So, we have

θ = R cos α, u = R sin α. (10)

Thus, we get

α′ =
d

dτ

(
arctan

u

θ

)
=

1
u2 + θ2

(θu′ − uθ′) .

Using now the variational equation, we obtain the equation

α =
1

R2

(
U ′′

0 θ2 −
(

d + 2
2

)
θvu− u2

)
. (11)

The solution of Equation (7) with initial condition v (0) = 0 is given by

v (τ) =
√

2U0 tanh
(

d

2

√
2U0τ

)
. (12)

In view of the relations (10), (12) for θ, u and v (τ) , the equation (11)
reduces to

α′ = a cos2 α− b cosα sin α tanh (cτ)− sin2 α = f (α, τ) , (13)

where a = U ′′
0 , b =

√
2U0

(
d+2
2

)
, c = d

2

√
2U0.
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We will prove now that the increment of α is smaller than π/2, which
according to Lemma 3 implies the transversality of W s and Wu.

To analyze (13) we consider the initial condition τ = 0, α = α0. Where
α0 is the unique solution of the equation f (α, 0) = 0, on the interval
(0, π/2) . For each τ > 0, there exists a unique solution α (τ) of the equation
f (α (τ) , τ) = 0; equivalently, α (τ) satisfy

a cos2 α (τ)− b cos α (τ) sin α (τ) tanh (cτ) = sin2 α (τ) . (14)

Since tanh (cτ) is positive and increasing in [0,∞) and b cos α sinα is pos-
itive in (0, π/2) , it follows from (14) that α (τ) is a decreasing function
which is bounded below by 0. Moreover, as ∂f

∂α (α (τ) , τ) 6= 0, α (τ) is
differentiable. By a simple calculation we verify that the derivative α′ (0)
is smaller than 0. This fact, together with α′ (0) = 0 and α (0) = α (0) ,
imply that α (τ) > α (τ) for all τ in a small interval (0, τ0) . We will see
that this inequality is satisfied for all τ > 0. Indeed, if α (τ1) < α (τ1) for
some τ1 > 0, then we take τ0, the closest value of τ to τ1 such that τ0 < τ1

and α (τ0) = α (τ0) . Thus, α (τ) < α (τ) for all τ ∈ (τ0, τ1) . However this
is not possible, since α′ (τ0) < 0 and due to the equality f (α (τ0) , τ0) = 0,
we have α′ (τ0) = 0.

Finally, notice that f (α, τ) < 0 for all α > α (τ) . Therefore α (τ) is a
decreasing function. The theorem follows from the inequality

π/2 > α0 > α0 − α (τ) > α0 − α (τ) > 0.

3. THE FLOW ON N∞ FOR DEGREE 3

From now on we restrict ourselves to homogeneous polynomial potentials.
By reducing to a normal form, we study the topology of the infinity surface
and describe the flow on it. We consider just the case of degree 3.

The general form of a homogeneous polynomial potential of degree 3
with 2 degrees of freedom is

V (x, y) = ay3 + bxy2 + cx2y + dx3.

In order to study the different Hamiltonian flows up to diffeomorphism,
let us consider a normal form of V (x, y) up to canonical changes of coor-
dinates with a constant rescaling of time, which also preserve the form of
the kinetic energy. We obtain the normal forms

V (x, y) = γy3 + αxy2 + βx3, (15)
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V (x, y) = y3 + αxy2 + βx3, if γ 6= 0, (16)
V (x, y) = γy3 + αxy2 + x3, if β 6= 0. (17)

See details in [4]. Notice that (16) and (17) are particular cases of (15),
while in the form (15) we still have to identify cubics differing by a nonzero
scalar multiple. Let [γ, α, β] denote the class of nonzero scalar multiples
of the vector (γ, α, β) ∈ R3 \ {0} . The classes [γ, α, β] are homogeneous
coordinates for the projective plane RP2. Hence, we can think of the cubic
(15) as having coefficients in RP2. The normal form (16) corresponds to
taking the plane {(1, α, β) : α, β ∈ R} in R3 as a chart for RP2. The normal
form (17) corresponds to taking the plane {(γ, α, 1) : γ, α ∈ R} as another
chart for RP2. Both charts provide a complete description of the projective
plane.

We will analyze in detail potentials given by (16). Similar results are
valid for (17), which is used in [6], after variables x and y are exchanged.
Then we define the trigonometric polynomial U (θ) of degree 3

U (θ) = V (cos θ, sin θ) = sin3 θ + α cos θ sin2 θ + β cos3 θ,

whose derivative is given by

U
′
(θ) = sin θ[−α sin2 θ + (2α− 3β) cos2 θ + 3 sin θ cos θ].

As a consequence of Proposition 3.1 in [5], we can say that the homoge-
neous trigonometric polynomials U and U ′ of degree 3 can have 2k roots
for 1 ≤ k ≤ 3. Moreover, U (θ + π) = −U (θ) and U ′ (θ + π) = −U ′ (θ) for
any θ. In particular if U (θ0) = 0, then U (θ0 + π) = 0 and the same is true
for U ′.

It is clear that the general shape and smoothness of the infinity surface
N∞ depend of the roots of U (θ) and of U ′ (θ) .

Definition 5. Given any homogeneous trigonometric polynomial U (θ) ,
we say that U is of type {N1, N2} if U has N1 roots and U ′ has N2 roots
modulo 2π.

We see that N1 and N2 are always even numbers. From elementary
Calculus we have N2 ≥ N1. More precisely, for degree 3 we have

6 ≥ N2 ≥ N1 ≥ 2. (18)

There are only five different cases {2, 2} , {2, 4} , {2, 6} , {4, 6} and
{6, 6} , satisfying inequality (18). The function U and the topology of
N∞ in each case are depicted in Fig. 1. For type {2, 4} we have 2 different
shapes of N∞, both of them having a degeneracy consisting of two inflection
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points, which give rise to singular points of N∞ in the case where they are
located in the θ axis. In the other case, N∞ is topologically as in {2, 6},
but the gradient-like flow on it suffers a bifurcation due to the inflection
point with U > 0.

FIG. 1. Different shapes of the surface N∞ in relation to the graph of the corre-
sponding U(θ). The horizontal axes correspond to the variable θ.

We are concerned now with the description of the flow in E∞ for negative
energy. Because of the gradient-like structure, we need a flow description
only for the open regions of the parameter values where the type is {2, 6}.
At the points of the line β = 2/3 α the topology of N∞ stays the same,
but its flow bifurcates. The description of the flow in the above regions is
not so simple, and we give only a partial description. We study thoroughly
the case α = 0 to begin with, so the potential takes the form,

V (x, y) = y3 + βx3. (19)

The global flow for this case will be studied in Section 4.
For this potential, besides the symmetry (8), the system (6) has the

symmetry β → 1/β when the potential is as in(19).

Let us consider the diffeomorphisms F1 : (x, y, p1, p2) → (X, Y, P1, P2)
and F2 : (r, θ, v, u) → (r, φ, v, u) given by,

X = y, Y = x, P1 = β−1/2p2, P2 = β−1/2p1, (20)
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and

u = −β−1/2u, v = β−1/2v, θ = π/2− φ, r = r, (21)

respectively. With this notation we state the following theorem

Theorem 6. The diffeomorphism F2 transforms the system (6) with
potential U(θ) = sin3 θ+β cos3 θ and energy h into the system with potential
V(θ) = sin3 θ + β−1 cos3 θ and energy β−1h.

Proof. Recall that the McGehee equations are

ρ′ = ρ v, v′ = u2 − 3
2 v2 + 3

(
sin3 θ + β cos3 θ

)
,

θ′ = u, u′ = − 5
2u v + 3 sin θ cos θ (sin θ − β cos θ) ,

with the energy relation

1
2

(
u2 + v2

)− sin3 θ − β cos3 θ = ρ3h.

Through the change of variables given by the diffeomorphism F2 and mak-
ing θ = π

2 − φ, we obtain the equations

ρ′ = −ρβ1/2v, v′ = β1/2
(
u2 − 3

2v2
)

+ 3β1/2
(
sin3 φ + β−1 cos3 φ

)

φ′ = −β1/2u, u′ = 5β1/2

2 uv + 3β1/2 sin φ cos φ
(
β−1 cos φ− sin φ

)
,

and the energy relation

1
2

(
u2+v2

)− sin3 φ− β−1 cos3 φ = β−1ρ3h.

With a change of time scale to eliminate the factor β1/2, the transformed
equations are

ρ′ = −ρv, v′ =
(
u2 − 3

2v2
)

+ 3
(
sin3 φ + β−1 cos3 φ

)

φ′ = −u, u′ = 5
2uv + 3 sin φ cosφ

(
β−1 cos φ− sin φ

)
.

These equations coincide with the original ones, except that β is replaced
by β−1. In particular U (θ) = 0 if and only if tan3 θ = −β if and only if
tan3

(
π
2 − θ

)
= −β−1 or tan3 φ = −β−1.

Notice that since we are working with McGehee coordinates, this the-
orem implies an equivalence between the flows on the infinity manifolds.
Diffeomorphism F1 is the same as F2 but in the original coordinates. It is
canonical, but however it does not cover the infinity manifold, as we know.
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The topology of N∞ is a “peanut shaped figure” in this case, except
at β = 0, where we get type {2, 4} and N∞ is a sphere with two cusp
points. In the generic case, we denote by A+, B+ the attractor points
on N∞ corresponding to the maxima of U , and by S± the saddle points.
The θ-coordinate of A+, S± and B+ are, in increasing order 0, θ∗, π/2,
respectively.

The positive part of the corresponding function U (θ) modulo 2π is de-
fined on an interval (I0 (β) , I1 (β)) , of length π, with I0 (β) ∈ [−π/2, 0] and
I1 (β) ∈ [π/2, π]. By the translation θ 7−→ θ+I0 (β) , the point (I0 (β) , 0, 0)
becomes the origin O = (0, 0, 0) and the point (I1 (β) , 0, 0) becomes (π, 0, 0)
and the new potential is Uβ(θ) = U(θ+
I0 (β)).

Because of the symmetry (8) of the solutions of system (6), which can
be easily verified, it is enough to study the behavior of the two solutions
having as initial conditions the points (0, 0, 0) and (π, 0, 0) . Let us denote
these solutions by γ and δ, respectively. These solutions allow us to find
the separatrices of the flow on N∞, and hence they determine it completely.
Moreover, these solutions are symmetrical with respect to the plane v = 0,
and it is enough to study the part where v ≥ 0. The following result refines
Theorem 3.5 in [5].

Theorem 7. There exist values 0 < β1 ≤ β2 < β−1
2 ≤ β−1

1 of β, such
that

(a)For each β ∈ (0, β1), the ω−limit of γ is B+

(b)If β > β2, then the ω−limit of γ is A+, Similarly,
(c)If β ∈ (

0, β−1
2

)
, then the ω−limit of δ is B+

(d)If β > β−1
1 , then the ω−limit of δ is A+

(e)For β = β1, the solution γ connects the two saddle points S− and S+.
In the same way, for β = β−1

1 , the solution δ connects the same saddle
points on the other side of N∞.

Proof. Eliminating the time in equations of motion (6) with ρ = 0 and
d = 3 and using the energy relation (4), we get the equation

dv

dθ
=

5
2

√
2U (θ)− v2. (22)

We compare the solutions v (θ) of this equation with the solutions of a
similar equation where 2U (θ) is replaced by a constant 2K, i.e.

dv

dθ
=

5
2

√
2K − v2. (23)
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By direct integration, and assuming the initial condition v (θ0) = 0, we
obtain the solution

v̄ (θ) =
√

2K sin
5
2

(θ − θ0) , (24)

provided that 5
2 (θ − θ0) ≤ π/2, i.e. θ − θ0 ≤ π/5.

We begin by proving (a). Let us take θ0 = I0 and K = β and consider the
solution (24). In the interval [I0, θ∗] the inequality 0≤ 2U (θ)−v2 ≤ 2β−v2

is satisfied; hence in particular

v (θ∗) ≤ v̄ (θ∗) =
√

2β sin
5
2

(θ∗ − I0) .

On the other hand I0 = − arctanβ1/3 and θ∗ = arctan β converge to zero
as β tends to zero. Then if β is small enough, we have

v̄ (θ∗) ≤
√

2β

2
<

√
2U (θ∗). (25)

So, for this β, we have that

v (θ∗) <
√

2U (θ∗). (26)

The second inequality of (25) is true at least for β < 1, since U (θ∗) =
β

(
1 + β2

)1/2
. To prove the existence of β1, we just take the supremum of

the values of β satisfying (26). Then one verifies that for this value γ has
a saddle-saddle connection.

We now prove (b). Assume that U (θ, β) has the following property:
There exists an interval [θ0, θ1] ⊂ [I0, θ∗] such that θ1 − θ0 ≥ π/5 and√

2U (θ0) =
√

2U (θ1) ≥
√

2U (θ∗). Because of (24), the solution of (23)
with K = U (θ0) and the initial condition v (θ0) = 0, attains the value√

2U (θ0) before θ = θ1. Since the right hand side of (23) is greater or equal
that the one of (22) in the interval [θ0, θ1], the solution γ corresponding
to U (θ, β) will attain a value greater than

√
2U (θ∗) in the same interval.

Indeed, such an interval exists for β = 1, since θ∗ = π
4 > π

5 .
We claim that if this property is valid for some value β = β2, the same

is true for each β > β2. Indeed, θ∗ = arctan β is an increasing function of
β. Let θ̄ (β) be the unique negative solution of the equation

U
(
θ̄ (β) , β

)
=

β

(1 + β2)
1/2

= U (θ∗, β) . (27)
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We will prove that θ̄ (β) is a decreasing function of β. From the Implicit
Function Theorem we get

3 sin θ̄ cos θ̄
(
sin θ̄ − β cos θ̄

) dθ̄

dβ
+ cos3 θ̄ =

1

(1 + β2)3/2
.

Solving for the derivative, we have

dθ̄

dβ
=

β
(
1 + β2

)−3/2 − cos3 θ̄

3 sin θ̄ cos θ̄
(
sin θ̄ − β cos θ̄

) .

From (27), we solve for − cos3 θ̄, getting the equation

dθ̄

dβ
=
−β2

(
1 + β2

)−3/2 + β−1 sin3 θ̄

3 sin θ̄ cos θ̄
(
sin θ̄ − β cos θ̄

) .

Since -π
2 < θ̄ < 0, we see that dθ̄

dβ < 0, as asserted.
Now, β2 is the infimum of the values of β for which the ω−limit of γ is

A+. The rest of the proof follows from the symmetry β → β−1.

Numerical evidence shows that indeed β1 = β2 in the above theorem,
but we have not been able to prove it. We have also that β1 ≈ 0.2 .

4. GLOBAL FLOW FOR H < 0

In this section we study the global flow on the extended energy levels
Eh ∪ N∞ for h < 0. In this case these levels are compact manifolds with
boundary. Their flow is gradient-like everywhere, and it is completely de-
scribed by the blow up coordinates. The only case where the global flow
needs to be explicitly described is for the peanut shaped manifolds. We
give here a thorough description for the case α = 0, which is esentially
qualitative and depends only on the behavior of some separatrix curves.
Recall from Theorem 4 that any pair of middle equilibrium points S±
where U ′′ > 0 have 2-dimensional invariant submanifolds propagating and
intersecting transversally along the corresponding homothetic orbit. In
fact, when the flow is restricted to the boundary, S± are saddle points.
Because of the gradient-like structure, the global flow on the extended en-
ergy level depends on the global behavior of the separatrices of the saddles.
More precisely, it depends on the stable separatrices of S+ and the unstable
separatrices of S−. This permits us to describe how the whole invariant
2-dimensional submanifolds propagate globally with the flow on Eh ∪N∞.
This is because those submanifolds contain all the separatrices.
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Generically and by symmetry, it is enough to consider two cases: β2 <
β < β−1

2 and β < β1.
1) Case β2 < β < β−1

2 . This is the simplest one. Consider first the flow
on N∞ and the separatrices of S±. Those on the right of the Figure 2,
that is (θ > θ∗) have B+ as ω−limit or B− as α−limit. Symmetrically,
separatrices on the left of the figure have A+ as ω−limit or A− as α−limit.
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FIG. 2. Separatrices γj
± for the flow on N∞ for the case β2 < β < β−1

2 , together
with the homothetic solutions in the energy surface. Superindices 1,2 correspond to the
unstable ones, while 3,4 are the stable ones. Index + corresponds to saddle point S+

and index − to saddle point S−. Small flags are invariant surfaces in the whole manifold
Eh ∪N∞.

Looking at the flow on the manifold with boundary Eh ∪ N∞, we have
the 2-dimensional stable submanifold of S+ and also the 2-dimensional
unstable submanifold of S− intersecting transversally along the homothetic
orbit. Because of the saddle structure of S+ and S− on N∞, these invariant
submanifolds will match with separatrices at the opposite point, as shown
in Figure 3.

Hence, this intersection acts as a double hinge, which separates com-
pletely the flow into 4 disjoint regions in Eh. We describe the flow in these
4 open regions and the boundaries in between, refering to separatrix orbits
γj
± as in Figure 2:
i) For any initial condition between submanifolds bounded by orbits

γ1
± and γ3

±, the corresponding solution moves close to N∞, having B+

as ω−limit and A− as α−limit.
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FIG. 3. A close up of Figure 2, where we see how infinite strips are propagated
from the invariant surfaces of the S±, dividing Eh into four regions.

ii) If the initial condition is located between submanifolds bounded by
orbits γ2

± and γ4
±, the orbit moves close to N∞ and has A+ as ω−limit and

B− as α− limit.
iii) For any initial condition between submanifolds bounded by γ1

± and
γ4
±, the orbit has B+ as ω−limit and B− as α−limit, remaining only on

the right side of the figure.
iv)For any initial condition between submanifolds bounded by γ2

± and
γ3
±, the corresponding orbit remains only on the left side of the figure and

has A+ as ω−limit and A− as α−limit.
v) If the initial point happens to be in one of the invariant surfaces, then

the orbit remains always on either the left or the right side of the figure
with respect to the homothetic orbit. It has either S− as α−limit or S+ as
ω−limit.

2) Case β < β1. As in the previous case, separatrices on the right have
B+ as ω−limit and B− as α−limit. But the situation is not symmetrical on
the left side. The difference is that the unstable separatrix γ2

− having S− as
α−limit has B+ as ω−limit instead of A+, while separatrix γ3

+ having S+

as ω−limit goes around and has B− as α−limit instead of A−. Again the
homothetic orbit with the two invariant submanifolds generate a double
hinge, but the separation of Eh into regions becomes more complicated as
we describe below. In comparison with the case 1), as β varies one has
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passed for β = β1 through a saddle connection bifurcation where γ2
− = γ3

+

holds.
The problem is with the propagation by the flow of a portion of the

invariant submanifolds bounded by γ2
± and γ3

±. Because of symmetry (8)
it is enough to describe one of two, say the first one, as depicted in Figure
4.

+
�

�

+g�

�

+g�

�

-g�

�

-g�

	

+g

�

+g�



-g�

�

-g�

-
�

-
�

+
�

�bb <

�
q

FIG. 4. The small channel is bounded by strips γ1
+γ2
− and γ1

+γ1
− on the right side.

See explanation in the text.

Since γ2
− has B+ as ω−limit, it crosses to the right side after one turn

around the homothetic orbit, while γ2
+ stays always on the left. This forces

a splitting of the corresponding invariant surface into two portions: one of
them stays on the left, while the other one passes to the right. The first
one is generated between two consecutive turns of γ2

+. The other one runs
between γ1

+ and the part of γ2
− on the right side, but closer to N∞ than

the invariant manifold bounded by γ1
± (unstable manifold of S−). We call

this second portion a small channel, because of the way it runs closer to
N∞. Transversal sections θ < θ∗, θ = θ∗ (passing through S+ and S−) and
θ > θ∗ of Figure 4 are depicted in Figure 5.

In these sections, the traces of N∞ are ovals, invariant submanifolds
are curves inside the ovals, intersecting the ovals at points representing
traces of the separatrices. In the figure θ < θ∗, the invariant submanifolds
Wu

S− has 2 intersections: the curve γ2
+γ2

− and also the curve γ̃2
+γ̃2−. The

last one corresponds to later times along the flow, so that the invariant
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FIG. 5. Transversal slices of N∞ and the invariant strips in Figure 4. The small
channels appear as regions 1 and 2 when we pass to θ > θ∗.

submanifold went around the homothetic orbit joining A− with A+ and
came back close to our main homothetic orbit at θ = θ∗. Similarly, the
invariant submanifold W s

S+
has as intersections the curves γ3

+γ3
− and γ̃3

+γ̃3−
with the same interpretation as above, only that the last one corresponds to
earlier times along the flow. From those curves, we see that in said section,
Wu

S− and W s
S+

intersect in the heteroclinic solution C, whose trace point
is shown on both sides where the trace curves intersect. This heteroclinic
connection is in Eh, but very close to N∞, as Figure 4 depicts in Eh ∪N∞
.

The ovals and the curves inside them divide into 4 distinct regions num-
bered 1, 2, 3, 5. The couples of regions with the same number are connected
in Eh in between the invariant submanifolds.
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As we pass to section θ = θ∗, the vertical line corresponds to the homo-
thetic orbit. Regions 1 and 2 have become big since they correspond to 2
sides of the double hinge, while region 3 disappeared since it was on the
side θ < θ∗ of the hinge. The smaller region 5 (2 components) corresponds
to the beginning of the small channels. The upper component is bounded
by a portion of Wu

S− , while the lower one is bounded by a portion of W s
S+

.
In section θ > θ∗ we have a big new region numbered 4, corresponding

to the fourth side of the double hinge for θ > θ∗. Regions 1, 2 and 5 have
now shrunk. The last one is the continuation of the small channel.

This way we can describe precisely the α− and ω− limits of orbits on
the 5 open regions as follows

Region α−limit ω−limit

1 A− B+

2 B− A+

3 A− A+

4 B− B+

5 B− B+.

The α− and ω−limit for the heteroclinic connection C are S− and S+,
respectively.

Orbits in region 5 necessarily pass to the portion θ < θ∗ in some bounded
time interval. Only the first 4 regions were present in case 1) considered
earlier.

Finally, the only portions of invariant submanifolds changing from one
side to the other of Figure 5 for the extended energy level are

(a) The boundary between regions 1 and 5, contained in Wu
S− . Its ω−limit

is B+, exactly like γ2
−

(b) The boundary between regions 2 and 5, contained in W s
S+

. Its ω−limit
is B−, exactly like γ3

+.

This global behavior has been verified by computer simulations.

5. SOME NUMERICAL SIMULATIONS FOR NEGATIVE
AND POSITIVE ENERGY

In this section, we describe some numerical simulations to visualize some
aspects of the global dynamics described in the previous section. Also, a
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sketch of the flow for positive energy is given to get an idea of this case,
which is more complicated than the corresponding to negative energy. This
ilustrates some of the difficulties for the case of positive energy.

In Figure 6, the projection on the plane v − θ, of the manifold N∞
and several trajectories of the flow for β = 1 are shown; this value of β
belongs to the interval

(
β2, β

−1
2

)
. We use heavy lines to draw the invariant

manifolds of S+ and S−. The discontinuous line indicates that the curve is
on the back part of N∞, that is (u < 0) .

������ ���

	�
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q- p /
�
4 p /4 p /
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2

FIG. 6. Flow on N∞ for β2 < β < β1
2 .

We assume that from now on θ > θ∗. We know from the previous section
that trajectories which start between N∞ and W s

S+
have A+ as ω−limit.

When the trajectory starts between W s
S+

and Wu
S− , its ω−limit is B+;

moreover, if the starting point is close enough to W s
S+

, its θ coordinate is
a decreasing function of τ , in an interval of the form [0, τ̃ ] and is bounded
below by θ∗. If the orbit starts between Wu

S− and N∞, then its ω−limit
is B+. In this case the θ coordinate is an increasing function for small
and positive τ. These features can be observed by performing numerical
computations of the orbits, in the following way.

We fix θ and v such that θ > θ∗ and−
√

2U
(
θ
)

< v <
√

2U
(
θ
)
. The half-

ray
{
v = v, θ = θ

}
intersects N∞ at the points PI

(
θ, v,−u

)
, PF

(
θ, v, u

)
for some u > 0. For any positive integer number we define in the segment
[PI , PF ] , the partition {Pi}n

i=0 , with Pi =
(
θ, v,−u + 2iu

n

)
. We take Pi



448 M. FALCONI, E.A. LACOMBA AND C. VIDAL

as initial condition. When i increases from 0 to n, there appear regions
of different behaviour of the flow. Thus, there are indices i1 < i2 such
that the manifold W s

S+
is between Pi1 and Pi1+1, and the manifold Wu

S−
is between Pi2 and Pi2+1. As n increases we get better approximations. In

Figure 7 we have θ = 3π
8 , v = 0, u = −

√
2U

(
θ
) ≈ 1.29971. For n = 100,

we get i1 = 15 and i2 = 84.

�

�

q �

�

�

q

�

FIG. 7. Components of trajectories starting from points P15 (part (a)) and P84

(part(b)) as functions of τ , for case β2 < β < β−1
2 .

In the part (a) of Figure 7, the trajectory has the point A+ =
(
0,
√

2, 0
)

as
ω−limit. In part (b) of Figure 7 the trajectory goes to B+ =

(
π/2,

√
2, 0

)
.

To calculate i2 we solve numerically the system with τ running to −∞. So,
we see that the α−limit of the trajectory corresponding to P84 is B− and
the α−limit of the orbit corresponding to P85 is A−.

For β < β1, the situation is different due to the presence of the “small
channels” in the invariant manifolds (see Section IV). The trajectories in
the region θ > θ∗, whose initial point is inside of the small channels have
as ω−limit the point A+. If we consider a partition as in the above case,
and the corresponding segment crosses through the small channel, we get
indices i1, i2 such that, for all i ≤ i1, the ω−limit of the orbits is B+. When
i1 < i < i2, the ω−limit is A+ and for i ≥ i2, the ω−limit is B+.

To locate numerically the small channel for β = .15 one considers now
the segment [PI , PF ] defined by θ = 0.149, v = −.5447, u = 72.1 × 10−6.
With n = 1000, the value of i1 is 291 (see (A) of Figure 8)

Notice that θ takes negative values, which means that the orbit goes
around the homothetic orbit from A− to A+, before it reaches the point
B+ =

(
π/2,

√
2, 0

)
. The trajectory in (B) of Figure 8 has a ω−limit the

point A+ =
(
0,
√

.3, 0
)
. When i2 = 293, the corresponding orbit has again

as ω−limit the point B+.
When the energy h is positive, the flow given by (6) is not any more

gradient-like with respect to any of the variables ρ, θ, v, u, except on
N∞ Due to this fact the flow is more complicated than the corresponding
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FIG. 8. Components of trajectories starting from points Pi, for i = 291, 292, 293.
For points P291 and P293 the ω− limit is B+, while the ω− limit for P292 is A+. This
is due to the existence of the small channel.

to negative energy and of course it is more difficult to give a complete
description of the global behaviour of the flow.

In what follows, we describe some numerical simulations to get an idea
of the main features of this flow, when N∞ consists of three connected
components, each one topologically equivalent to the sphere S2. Indeed,
we consider U (θ) = sin3 θ − 3 cos θ sin2 θ + cos3 θ. In this case the flow has
6 equilibrium points

Q1 =
(
0,
√

2, 0
)

; Q′1 =
(
0,−

√
2, 0

)
,

Q2 =
(
θ2∗ ,

√
2U (θ2∗), 0

)
; Q′2 =

(
θ2∗ ,−

√
2U (θ2∗), 0

)
,

Q3 =
(
θ3∗ ,

√
2U (θ3∗), 0

)
; Q′3 =

(
θ3∗ ,−

√
2U (θ3∗), 0

)
,

here 0, θ2∗ , θ3∗ are the first 3 non negative values of θ, where U has a local
maximum. The approximate values are θ2∗ = 1.9804, v∗2 =

√
2U (θ2∗) =

1.8514, θ3∗ = 4.0577, v∗3 =
√

2U (θ3∗) = 0.9214.
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On the segment {−0.488 ≤ θ ≤ 4.378, v = 2.5, u = 0} we take the parti-
tion {Pi}80i=0, with Pi = (−0.488 + i∆θ, 2.5, 0) and ∆θ = 4.378+0.488

80 . The
system 6 was numerically integrated with Mathematica taking Pi as initial
condition, for i = 0, · · · , 80. We see that the orbits whose α−limit is Q′

1

are the ones corresponding to the points in the intervals I1 = [P42, P59] ,
I2 = [P62, P73] . For convenience we identify below the initial condition
with its orbit. The trajectories of I1 have as ω− limit the point Q2 and
the ω−limit of I2 is Q3. Notice that the trajectory P60 converges to Q1,
whereas P61 converges to Q3 and both trajectories tend to ∞ when τ tends
to −∞. Also their corresponding θ−coordinate grow up without limit. All
these facts imply the existence of trajectories which come spiralling from
the origin . Moreover, between P60 and P61 there is an invariant separatrix
of the flow. (See Figure 9)

¥
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	 �
���
�

FIG. 9. Trajectories with initial conditions in a fixed segment u = 0, v = 2.5 having
as α− limit Q′1. The energy is positive and N∞ has three components.

The trajectories of the intervals I3 = [P0, P6] and I4 = [P76, P80] have
as α−limit the point Q′2. The ω−limit of I3 is Q1 and the ω−limit of I4 is
Q3. (See Figure 10).

The point Q′
3 is the α−limit of the orbits in I5 = [P11, P22] and I6 =

[P24, P39]. The ω−limit of I5 is Q1 and Q2 is the ω−limit of I6. The orbit
P23 converges to Q1 and comes from ∞. So, we have a situation similar to
that between P60 and P61, described above. (See Figure 11).
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FIG. 10. Trajectories with initial conditions in a fixed segment u = 0, v = 2.5
having as α− limit Q′2. The energy is positive and N∞ has three components.

FIG. 11. Trajectories with initial conditions in a fixed segment u = 0, v = 2.5
having as α− limit Q′3. The energy is positive and N∞ has three components.

Finally, the intervals [P7, P10] , [P40, P41] , [P73, P75] are close to the ho-
mothetic orbits, so their trajectories have a behaviour similar to these ho-
mothetic orbits. (See Figure 12).

We remark an apparent duality between the dynamics for h < 0 and for
h > 0. The most complicated case for h < 0 is the one corresponding to
the peanut shaped N∞, while the most complicated case for h > 0 seems to
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FIG. 12. Trajectories with initial conditions in a fixed segment u = 0, v = 2.5 which
are close to the homothetic orbits for negative tau.

be when N∞ is a disjoint union of three spheres, which we have considered
above.
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