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We control parameter distortion in the generalized renormalization pro-
cedure provided a certain set of starting conditions is satisfied. This allows
us to prove that for a C∞–open set of unimodal families, almost all parame-
ters inside an interval present either stochastic dynamics or a renormalization
(in the classical sense). Moreover, easy consequences are that renormalization
happens densely on this interval and stochastic behaviour with positive mea-
sure. A wide range use of this approach would rely mostly on proving that the
starting conditions are satisfied for general families.
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1. INTRODUCTION AND RESULTS.
1.1. Introduction

The main purpose of this work is to discuss the distortion of parameter
derivatives in the onset of generalized renormalization or inducing (names
vary according to the authors), a concept which first appeared in the be-
ginning of the 80’s with a paper of Jacobson [5] and underwent many de-
velopments in the last two decades as a tool for the study of the quadratic
family and, more generally, families of unimodal functions (see definitions
in Subsection 1.4).

* Partially supported by CNPq, Grant #201118/96–3, and FAPESP, Grant
#98/10239-9.
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The use of generalized renormalization has proven to be fruitful, but the
main assertions were achieved only by enlargement to the complex setting,
motivated, among others, by the lack of estimates on the distortion of
parameter derivatives. The importance of this kind of estimates is that
once they are obtained conclusions on the parameter space follow almost
automatically from results on the configuration space.

With this in mind Jacobson proved that in the quadratic family param-
eters with stochastic behavior have positive Lebesgue measure, but at the
expense of some excluded set of parameters for which distortion could not
be controlled.

Here we intend to show that distortion control is possible even without
parameter exclusions. The price to pay is to show that for some stage of
the generalized renormalization procedure a set of conditions is satisfied,
in order that for subsequent steps the induction works. This kind of ap-
proach resembles very much how the decay of geometry (see Subsection 1.6)
has been proven for a class of unimodal functions (called quasi–quadratic),
in the beginning of the 90’s. First ([6], [7]) decay of geometry was ob-
tained provided a certain starting condition was satisfied. Secondly, one
had to show that for every map in this class the starting condition could
be achieved for some stage of the generalized renormalization ([7], [4]).

In this analogy, the present work corresponds to the first part: we give a
starting condition set of bounds on certain parameter derivatives that can
be kept by induction for every subsequent step of the generalized renor-
malization. It is not clear yet in what generality this approach can be
used or, in other words, what do we need to arrive at a step for which the
starting condition is valid. However we are able to show its potentiality, by
applying it to some families of unimodal functions specially constructed to
satisfy the starting condition at the first step of the induction. These fam-
ilies, which we call special, contain a C∞–open set of the space of families
of quasi–quadratic functions, but the parameters are taken only near the
usual last bifurcating value of unimodal families.

We prove that for these special families almost all parameters are renor-
malizable or stochastic, a result related to the one proven by Lyubich [9] for
the quadratic family or, more generally, to families of functions which ad-
mit a quadratic–like extension to the complex plane. Moreover, we are able
to recover a Jacobson–like assertion, showing that parameters with stochas-
tic behavior have positive measure, and also to obtain that renormalizable
parameters are dense.

All the undefined expressions of this introduction will be clarified along
the text. In the remaining of Section 1 we tell what is generalized renor-
malization, who are the special families for which we apply our techniques
(its existence is postponed to Subsection 2.2) and the results above men-
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FIG. 1. Maps in which generalized renormalization is applied.

tioned. Moreover, we discuss a criterion for stochasticity due to Martens
and Nowicki [12] which is also used by Lyubich in [9].

Up until this point generalized renormalization is performed for a fixed
parameter. We show still in this Section how to do it for (one–parameter)
families, although the procedure will only make sense after the control
of parameter distortion. In the sequel, we precisely state the bounds on
parameter and mixed derivatives we need to control distortion. These
bounds are much more than what is necessary to applications, but the only
set of inequalities we found that could be kept independently by induction.

We also prove in this Section the applications mentioned above, assum-
ing that our special families satisfy the starting conditions and that the
induction procedure is true. In between, we explain generalized renormal-
ization in more detail, taking profit to introduce the technical notation to
be used in the rest of the paper.

Section 2 is dedicated to show the starting conditions for the special
families and also the existence of such families. Finally, in Section 3 the
induction step is proven.

A comment about notation. We use the symbols “'”, “ >∼ ” and “ <∼ ”,
meaning that equality or inequality is true up to a small multiplicative
factor, whenever there is no danger of accumulation of small errors. In the
same way C and c will denote sufficiently large constants, all independent
of the remaining specific constants that appear along the text.

1.2. Generalized renormalization
Generalized renormalization is a concept whose precise definition may

vary according to the specific needing or results one is looking for. Here
we apply it for maps Φ of the following kind (see Figure 1). There is an
interval γ which contains the (disconnected) domain of Φ and a central
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interval γ′ ⊂ γ such that Φ(γ′) ⊂ γ, Φ(∂γ′) ⊂ ∂γ and Φ|γ′ is a unimodal
function, i.e. a function with one and only one turning point c in its
interval of definition. The remaining of dom(Φ) is a union of pairwise
disjoint intervals from a collection B, all of them contained in the interior
of γ (there could be nonempty open sets in the complement of the closure
of this union, but here this will never be the case). For each β ∈ B, we have
that Φ(β) = γ′ and Φ|β : β → γ′ is a diffeomorphism. We may suppose
that Φ is C∞ inside each connected component of its domain, although C3

is enough to our considerations.
Let 1 ≤ esc ≤ ∞ be the first positive integer such that Φesc(c) ∈ γ \ γ′.

The renormalized function Φ′ = Ren(Φ) will be defined if and only if esc <
∞ and Φesc(c) ∈ int(β), for some β ∈ B. In this case we set

γ′′ = Φ−esc(β)

as the central interval of dom(Φ′) and Φ′|γ′′ = Φ|β◦Φesc|γ′′. Besides γ′′, the
domain of Φ′ is composed by the union of all preimages of γ′′ under Φ taken
outside γ′′ and contained in γ′. This collection of intervals will be called
B′. For each β′ ∈ B′ there is a power of Φ which sends β′ diffeomorphically
onto γ′′, and this will be exactly the definition of Φ′|β′.

This scheme is described with more details in Subsection 1.13. For the
moment, we observe that starting from a map Φ = Φ0, having

dom(Φ0) = γ0 ∪
⋃

β∈B0

β ⊂ γ−1

(where γ0 corresponds to γ′ and γ−1 corresponds to γ), we obtain a se-
quence of maps {Φn}n≥0, where Φn = Ren(Φn−1), n ≥ 1. The only a
priori assumption is that for each n the critical value position implies that
Φn is renormalizable in this sense. This procedure generates a decreasing
nested sequence of intervals γ−1 ⊃ γ0 ⊃ γ1 ⊃ . . . and collections Bn of
pairwise disjoint intervals inside γn−1 for all n ≥ 0.

For the sake of clarity and later use, we call

Hn = Φn|γn ,

the central branch of γn, and for each β ∈ Bn we let B : β → γn be the
diffeomorphism B = Φn|β.

1.3. The quadratic family
This whole procedure arises naturally for families of unimodal functions

of the interval, as for example the quadratic family. The quadratic family
is the family of functions (φa)a, φa : IR → IR, where φa(x) = a − x2.
Although the parameter a is intended to vary along the real line, there is
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FIG. 2. First return map to γa.

a special range, the interval [− 1
4 , 2], with the following property: “there is

an interval Ia, symmetric with respect to the origin, such that φa(Ia) ⊂ Ia

and φa(∂Ia) ⊂ ∂Ia”. The interval Ia is defined by [−xa, xa], where −xa

is the leftmost fixed point of φa (by a parameter dependent affine change
of coordinates the interval Ia could be sent onto [0, 1], and in this case the
family would be written as x 7→ rx(1− x), with r varying between 1 and 4
as a runs through [− 1

4 , 2]).
For a > 0 we define the interval γa = [−qa, qa], where qa is the rightmost

fixed point of φa and consider the first return map Φ̃ in γa, as depicted
in Figure 2. We call αM (≡ γ0) and α±k , k = 2, . . . ,M − 1, the closure of
the connected components of the domain of continuity of Φ̃ and consider
the (continuous) extensions of Φ̃ to these intervals, giving the names A±k =
Φ̃|α±k = φk

a|α±k and H0 = Φ̃|αM = φM
a |αM (of course all the functions

depend on a, but we omit the index to avoid a cumbersome notation).
To obtain a map Φ0 like the ones described above, we look at the col-

lection B0 of all preimages β of γ0 = αM under Φ̃ which are taken outside
γ0. Then, for each β ∈ B0, Φ0|β is defined as the power of Φ̃ which sends
β diffeomorphically onto γ0. The interval γ−1 is γa and Φ0|γ0 = Φ̃|γ0.

The same construction can be done for other unimodal families, as for
example the special families we describe in the sequel. These families will
be important here since for them our methods can be easily applied, as it
was stressed in the introduction.
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1.4. Special families
We start by some definitions. The Schwarzian derivative of a C3 function

φ is given by

Sφ(x) =
D3φ(x)
Dφ(x)

− 3
2

[
D2φ(x)
Dφ(x)

]2

,

except for the points where the derivative vanishes. We say that φ is
S–unimodal in I if Sφ ≤ 0 and φ is unimodal in I (i.e. φ has one and
only one turning point in I), and quasi–quadratic if moreover the critical
point is non–degenerate. It is easy to verify that the functions of the
quadratic family are quasi–quadratic. We refer the reader to [13], Chap.IV,
for the distortion properties resulting from the assumption of non–positive
Schwarzian derivative.

Let ε0 > 0 (which will be made small accordingly), 3 > λ > 2, Ĩ ≡ Ĩa ≡
[−2,+2] and φ̃a : Ĩ → Ĩ satisfy:

• a ∈ [2− ε0, 2];
• φ̃a(Ĩ) ⊂ Ĩ and φ̃a(∂Ĩ) ⊂ ∂Ĩ, ∀a, i.e. Ĩ is a restrictive interval for φ̃a;
• (a, x) 7→ φ̃a(x) is C∞;
• φ̃a(x) = −2 + λ(x + 2) for x ∈ [−2,−xλ], where xλ = 2(λ−1)

λ+1 ;

• φ̃a(x) = −2 + λ(x− 2) for x ∈ [xλ, 2];
• φ̃a(x) = a− µ

2 x2 for x ∈ [− 1
5 , 1

5 ], for some µ > λ;
• Dφ̃a(x) is monotone in Ĩ and D2φ̃a(x) is monotone (separately) in

Ĩ ∩ {x < 0} and Ĩ ∩ {x > 0};
• D3φ̃a(x) ≤ 0 for x ≤ 0 and D3φ̃a(x) ≥ 0 for x ≥ 0.

In Subsection 2.2 we prove that such a family does exist, but in fact
we have to restrict the possible range of λ’s to certain values between 2.3
and 2.4. From the definition it is easy to verify that (Dφ̃a)2Sφ̃a ≤ 0 in
Ĩ, hence φ̃a is always quasi–quadratic. We now say that a C∞ family of
quasi–quadratic functions (φa)a for which [−2,+2] is a restrictive interval
(i.e. φa([−2, +2]) ⊂ [−2,+2] and φa({−2, +2}) ⊂ {−2,+2}) is special if
it is C∞ δ–near (φ̃a)a in [−2,+2] for some δ > 0 that we will specify
later in Section 2. It is clear that there exist open sets of special families
(among the families of maps having [−2,+2] as a restrictive interval). In
fact our results are essentially true for C3 families which are C3 near (φ̃a)a,
but we adopt infinite differentiability and C∞ topology to avoid technical
difficulties in Subsection 3.2.

The definition of (φ̃a)a resembles the family of unimodal functions stud-
ied in [1], where a Jacobson–like theorem is proven, but there the coefficient
of the quadratic part varies with the parameter.

We can use the same notation as for the quadratic family. If (φa)a is a
special family, there is an interval γa whose boundary points are the two
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preimages of the rightmost fixed point of φa (equal to xλ if φa = φ̃a), and
also the intervals αM = γ0 and α±k , k = 2, . . . ,M −1, which are the closure
of the components where the return time to γa is constant. We can also
suppose without loss of generality that 0 is the critical point for all a.

1.5. Results for special families
We say that φa is renormalizable if there is an interval Î = Îa ⊂ int(Ia)

containing 0 and a number n > 1 such that Îa is a restrictive interval for
the n–th power of φa and φn

a |Îa is a unimodal function. Let

R = {a ; φa is renormalizable} .

We say that φa is stochastic if there is an absolutely continuous φa–invariant
probability measure (a.c.p.i.m) and define

E = {a ; φa is stochastic} .

As a Corollary of [11] (see also [13],Chap.III.5), if φa is renormalizable in an
interval Îa then for almost all x ∈ Ia there is n = n(x) such that φn

a(x) ∈
Îa. If not, then according to [7] for almost all x ∈ Ia we have ω(x) =
[φ2

a(0), φa(0)]. If moreover φa is stochastic and νa is the corresponding
a.c.p.i.m. then suppµ = [φ2

a(0), φa(0)]. We prove the following Theorem.

Theorem 1. If (φa)a is a special family, then there is ε > 0 such that
φa is renormalizable or stochastic for almost all a ∈ [2− ε, 2].

Despite being a ‘bifurcation–like’ result, it is of the same kind as the one
which appears in [9] (and we make use as well of the result in [12], see
Subsection 1.7), but there the quasi–quadratic families considered admit
a quadratic–like extension (see [13], Chap.VI.1, for a definition) and no
parameter restriction is made. As the quasi–quadratic families coming
from the renormalizations are also in the same class, the analysis can go
beyond any finite number of renormalizations, and the conclusion is that
almost all finitely renormalizable parameters are stochastic. In the present
case the analysis is no longer valid for the renormalizations, since neither
they are in the same class as the original family nor all parameters can be
embraced.

On the other hand, our result is valid for an open set of families (in the
C∞ topology), while the class of families in [9] has empty interior among
C∞ families.

Notwithstanding, besides the discussion above, the important fact to re-
tain in this work is that control of parameter distortion can be achieved
inductively provided some starting condition is satisfied (see Subsection
1.9). As the special families are constructed to satisfy these starting con-
ditions, the theorems of this section can be derived as easy corollaries.
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We will be also able to prove Jacobson’s Theorem [5] for these special
families, as a consequence of our methods and [12].

Theorem 2. If (φa)a is a special family then Leb(E) > 0.

We say that φa is Misiurewicz if the critical point is neither recurrent
nor attracted to a periodic orbit, and denote by M the set of Misiurewicz
parameters. It turns out (see [14] or [13], Chap.V.3) that if a ∈ M ∩ Rc

then φa is stochastic. These parameters however are rare, as stated in the
following Theorem.

Theorem 3. If (φa)a is a special family and ε > 0 is sufficiently small,
then

Leb(M∩Rc ∩ [2− ε, 2]) = 0 .

This result is a restricted version of a result obtained by Sands [16] for
general S–unimodal real–analytic families.

Finally, another Corollary of our methods will be

Theorem 4. If (φa)a is a special family then R is dense in [2 − ε, 2],
for ε > 0 sufficiently small.

This result goes, with the limitations exposed above as well, in the same
direction as [4] and [8].

1.6. Decay of geometry
We add some data to the renormalization scheme and carry this infor-

mation throughout the induction. Suppose that we have defined a se-
quence (Φn)n≥0, where Φn = Ren(Φn−1), for all n ≥ 1. Assume that
the Schwarzian derivative of Φ0 is non–positive in every component of its
domain. Moreover, for each β ∈ B0, the corresponding diffeomorphism
B : β → γ0 admits a diffeomorphic extension from β̂ ⊃ β to γ−1 with
negative Schwarzian derivative, which implies small distortion of DB in β,
if the ratio |γ0|/|γ−1| is small (see [13],Chap.IV).

For each β ∈ Bn define

pn(β) =
|β|

dist(β, ∂γn−1)
, qn(β) =

|β|
dist(β, γn)

.

Let

rn = sup
a

|γn|
|γn−1| , pn = sup

a
sup

β∈Bn

pn(β) , qn = sup
a

sup
β∈Bn

qn(β) .

The supremum is taken among the parameters a for which renormalization
is defined up to the n–th stage, inside the parameter interval of definition
of Φ0 (see Subsection 1.8 below). We use the following Theorem.
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Theorem 5 ([6],[7]). If r0, p0 and q0 are small enough, then rn, pn

and qn tend to zero as n → ∞, and in particular rn do it exponentially.
Although they may not decrease monotonically, given r, p and q sufficiently
small (and greater than zero), if r0, p0 and q0 are sufficiently small then
rn ≤ r, pn ≤ p and qn ≤ q for all n ≥ 0. Moreover, for each β ∈ Bn the
diffeomorphism B : β → γn is extendible to a θ−1

n |β|–neighborhood of β
as the same power j such that B = Φj

0|β, diffeomorphically onto its image
(which is contained in γn−1), where θn = θ(qn, rn) and θ goes to zero as
its arguments go to zero.

The exponential decrease of rn is called decay of geometry of the general-
ized renormalization. The growth of the extendibility neighborhood of the
β’s, together with a negative Schwarzian derivative of the iterates imply
that the distortion of the B : β → γn is becoming smaller with n, or in
other words these functions are becoming ‘linear’.

We also obtain some expansion on the functions B.

Theorem 6. There is τ > 0 such that if r0, p0 and q0 are sufficiently
small and |DB| ≥ 1 + τ for all β ∈ B0 then |DB| ≥ 1 + τ for all β ∈ Bn,
n ≥ 1.

This result cannot be explicitly used in our applications, but the expan-
sion we get along iterates underlies the distortion control which is central
in this work.

1.7. A sufficient condition for stochasticity
If (φa)a is the quadratic family or one of the special families defined in

Subsection 1.4 then the corresponding initial map Φ0 we have defined satis-
fies the hypotheses in Subsection 1.6. The Schwarzian derivative property
is immediate, by its invariance under compositions. Also, the construc-
tion of Φ0 from Φ̃ gives the extendibility property of the diffeomorphisms
B : β → γ0, for β ∈ B0.

In addition, r0 = |γ0|/|γ−1| can be made as small as we wish (and also
p0 and q0, which depend directly on r0), provided that a is sufficiently
near 2 (or equivalently M is sufficiently big), and moreover the expanding
property of the functions B : β → γ0 is assured. This will be shown in
Section 2 for the special families, although for the quadratic family the
reasoning is analogous.

Therefore, for a near 2 we can apply Theorems 4 and 5, in particular to
conclude that in these cases there is decay of geometry. In fact the decay
of geometry turns out to be valid in a much larger extent, even if r0 is
not sufficiently small. This can be proven if one shows, for example, that
there is a quasi–symmetric conjugacy between Φ0 and a map Φ̃0 such that
r̃0 = |γ̃0|/|γ̃−1| is sufficiently small (see [7]), or by direct means (see [3]).
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We continue to suppose that (Φn)n≥0 is well defined. This is guaranteed
if and only if φa is neither renormalizable nor Misiurewicz (since |γn| → 0,
by Theorem 5).

As in Subsection 1.2, for each n ≥ 0 there is a number escn ≥ 1 which
is the first integer such that Φescn

n (0) ∈ γn−1 \ γn. Following [7], we say
that Φn has a central return if escn > 1, i.e. Φn(0) ∈ γn, and a non–central
return otherwise. Martens and Nowicki prove

Theorem 7 ([12]). If (φa)a is a quasi–quadratic family and

]{n ; escn = escn(a) > 1} < +∞

then φa is stochastic.

This result is used in [9] applied to families which admit a complex
quadratic–like extension to a neighborhood of their original interval of def-
inition. Here we use it for the special families constructed above, with real
techniques, to show

Theorem 8. If (φa)a is a special family, then for almost all a ∈ Rc

either φa is Misiurewicz or ]{n; escn = escn(a) > 1} < +∞.

Clearly Theorem 8 implies Theorem 1, by Theorem 7, and the fact that
Misiurewicz parameters are automatically stochastic.

1.8. Generalized renormalization in families
Let us now describe the renormalization procedure for families, instead of

fixing a parameter. We start with a parameter interval J0 where Φ0 = Φ0,a

is defined. If (φa)a is the quadratic family or a special family then we
choose J0 = AM , where

AM = {a ; φj
a(0) 6∈ γa , ∀0 < j < M and φM

a (0) ∈ γa} .

Although the domain of Φ0 may vary with a, each connected component of
dom(Φ0) has a continuation defined for all a ∈ J0. The next generation Φ1

is defined only for the parameters a such that Hesc0
0 (0) ∈ int(β) for some

β ∈ B0. Therefore the family Φ1 is defined for parameters in a union of
intervals and inside each interval the connected components of the domain
always admit a continuation. All connected components of dom(Φ1) shrink
to a point as Hesc0

0 (0) approaches one of the boundary points of β.
Precisely speaking, we proceed by induction. Let Φn = (Φn,a)a∈J,J∈Jn

be the n–th renormalization of Φ0 = (Φ0,a)a∈J0 , where Jn is a collection
of intervals, each one inside some interval of the collection Jn−1, for n ≥
1 (and J0 = {J0}). For each J ∈ Jn there is a central interval γn =
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FIG. 3. Parameter dependence of the critical value and the domain of Φn.

γn(J) which varies continuously with a ∈ J , a collection Bn = Bn(J)
of preimages of the central branch, varying continuously with a ∈ J , a–
dependent diffeomorphisms B : β → γn and a central branch Hn : γn →
γn−1 with the property that Hn(0) completely crosses γn−1 as a varies
inside J .

At this point of the exposition we may assume that Φn is well behaved
in both space and parameter. For example, the central branch is approxi-
mately quadratic, the velocity of the critical value is almost constant and
the elements β = βa move themselves with much smaller velocities. These
assumptions are justified by induction and we show they are preserved un-
der generalized renormalization. In fact, they are exactly what we want
to prove! Moreover, without loss of generality we suppose that D2Hn < 0
and |ImHn| grows with a (see Figure 3).

We divide the parameter interval J ∈ Jn in the following way. First, let
R = R(J) be the closed interval of parameters for which Hn is renormaliz-
able (similarly to the interval [− 1

4 , 2] for the quadratic family). It is easy to
see that a ∈ R if and only if esc = esc(a) = +∞ (see for example the explicit
descriptions in Subsection 1.13). Secondly, let σ(a) = − if 0 6∈ ImHn and
σ(a) = + otherwise, and define J± = {a ∈ J ; σ(a) = ±, escn(a) < +∞},
in such a way that J = J− ∪R ∪ J+. For each k ≥ 1 define

J±k = {a ∈ J± ; escn(a) = k}.
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Therefore {R, {J±k }k≥1} defines a partition of J (see Figure 3) and as a
varies along J±k the point Hk

n(0) crosses the left connected component of
γn−1 \ γn (except for J+

1 , where Hn(0) crosses the right one).
The next step is to define the collection Jn+1(J) of the elements of Jn+1

contained in J . Each J ′ ∈ Jn+1(J) can be written as

J ′ = J ′(σ, k, β) = {a ∈ J ; σ(a) = σ, escn(a) = k, Hk
n(0) ∈ βa}

for some σ = ±, k ≥ 1 and β ∈ Bn. Of course J ′(σ, k, β) ⊂ Jσ
k and if β

belongs to the right component of γn−1 \ γn then J ′(+, k, β) is not empty
only if k = 1.

1.9. Parameter distortion in generalized renormalization
The main contribution of this work is to add and control some new

data about Φn related to its derivatives involving space and parameter.
We establish the following notation. For fixed n ≥ 0 and J ∈ Jn, each
β = (βa)a∈J (or γn = (γn,a)a∈J ) is a continuous family of intervals. Note
that β is used to denote both the family and a particular β = βa if a is fixed
(we believe that this ambiguity will not cause confusion). The function
B : β → γn (resp. H = Hn : γn → γn−1) can be regarded as a two–
variable real function in x and in a, with domain {(a, x) ; a ∈ J, x ∈ βa}
(resp. {(a, x) ; a ∈ J, x ∈ γn,a}), such that B(a, βa) = γn,a, for a fixed
a ∈ J . However, we keep the old notation when dealing with compositions:
for example, B ◦ H means B(a,H(a, x)), H2 means H(a,H(a, x)) and
B−1 = B−1(a, x) is the function such that B(a,B−1(a, x)) = x. Moreover,
whenever we write B(x) we mean B(a, x), if there is no reason for doubt.
The partial derivatives are written as Bx, Ba, Hxa, etc. If j is an integer,
Hj

x will mean (Hj)x and (Hx)j is Hx to the j–th power.
We will say that the sub-family Φn = (Φn,a)a∈J , for J ∈ Jn, n ≥ 0,

satisfies the inequalities (P0)δ0 if the central branch H = Hn : γn → γn−1

obeys

|Hxx| > 0 , |Ha| > 0

and

|γn| ·
∣∣∣∣
Hxxx

Hxx

∣∣∣∣ , |γn| ·
∣∣∣∣
Hax

Ha

∣∣∣∣ , |J | ·
∣∣∣∣
Haa

Ha

∣∣∣∣ , |J | ·
∣∣∣∣
Hxxa

Hxx

∣∣∣∣ < δ0

for all x ∈ γn = γn,a and all a ∈ J .
Let us see what these conditions imply. Integrating ∂

∂x log |Hxx| we get,
for sufficiently small δ0,

1− Cδ0 ≤ Hxx

2S
≤ 1 + Cδ0
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for all x ∈ γn and for some constant S = Sa, where C is a universal
constant. By integration of this last inequality we obtain

(1− Cδ0) · 2Sx ≤ Hx ≤ (1 + Cδ0) · 2Sx ,

(1− Cδ0) · Sx2 ≤ H(x)−H(0) ≤ (1 + Cδ0) · Sx2 ,

that is, H is nearly quadratic for all a ∈ J , but the curvature S = Sa may
(in principle) vary with a. By integration of ∂

∂x log |Ha| we get

1− Cδ0 ≤ Ha

v
≤ 1 + Cδ0

for all x ∈ γn and for some constant v = va. In other words, the velocity of
H(a, x) with respect to a is approximately equal to the velocity of H(a, 0),
for any x ∈ γn. Similarly, using the other two inequalities we show that
va and Sa are almost constants along a ∈ J , justifying the definition of
constants vn = vn(J) and Sn = Sn(J), which approximate the values of
Ha(a, x) and Hxx(a, x) for all a ∈ J and x ∈ γn = γn,a.

Let us observe that generalized renormalization preserves the sign of the
product vn · Sn. In Subsection 1.8 we supposed it to be negative, and it is
indeed negative in the way we have defined the quadratic family and the
special families.

We now define a second set of derivative inequalities. We say that Φn =
(Φn,a)a∈J , J ∈ Jn, n ≥ 0, satisfies the inequalities (P1)δ1 if for all β ∈
Bn = Bn(J) and the corresponding function B : β → γn the quotients

∣∣∣∣
Ba

BxHa

∣∣∣∣ , |γn| ·
∣∣∣∣

Bxx

(Bx)2

∣∣∣∣ , |γn| ·
∣∣∣∣

Bxa

(Bx)2Ha

∣∣∣∣ ,

|γn|2 ·
∣∣∣∣
Bxxx

(Bx)3

∣∣∣∣ , |γn|2 ·
∣∣∣∣

Bxxa

(Bx)3Ha

∣∣∣∣ , |γn| ·
∣∣∣∣

Baa

(Bx)2(Ha)2

∣∣∣∣
are smaller than δ1 for all x ∈ βa and a ∈ J such that |ImHn| ≥ 1

8 |γn−1| or
ImHn ∩ U(β) 6= ∅ for a certain neighborhood U(β) of β (for the induction
we only need Im ∩ β 6= ∅, the U(β) is used in Subsection 1.14). Here Ha

means Ha(a, 0), not Ha(a, x) since x lies inside β (or else vn = vn(J), if
inequalities (P0)δ0 are already satisfied). The condition

|γn| ·
∣∣∣∣

Bxx

(Bx)2

∣∣∣∣ < δ1

assures us small distortion in β, since for x1, x2 ∈ β

|log |Bx(x1)| − log |Bx(x2)|| | ≤
∫

γn

∣∣∣∣
Bxx(B−1y)
[Bx(B−1y)]2

∣∣∣∣ dy < δ1 .
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This quotient, in particular, can be controlled in two ways: by direct cal-
culation (as for the others) or by extendibility properties, with the use
of Köebe’s Lemma (see [13],Chap. IV). It stands as an open question if
there is a method other than direct calculation to control the remaining
quotients.

The condition ∣∣∣∣
Ba

BxHa

∣∣∣∣ < δ1

can be easily understood if we translate it into the form

|B−1
a | < δ1|Ha(0)| ,

that is to say, the velocity of βa is much smaller than the velocity of Hesc
n (0).

This is valid for values of a which include the moment when β is crossed
by Hesc

n (0).
Let us remark that the final goal is to keep under control the velocity of

the critical value: it has to be almost constant along any interval J ∈ Jn,
n ≥ 0. This corresponds to the quotient in Haa. But it turns out that to
control this quotient we need also the others involving the function H and,
as a consequence, all the ones involving the functions B.

Theorem 9. If Φ0 = (Φ0,a)a∈J0 satisfies inequalities (P0)δ0 and (P1)δ1

for sufficiently small δ0, δ1 > 0, then Φn = (Φn,a)a∈J also satisfies the
inequalities for all J ∈ Jn, n ≥ 0, provided rm, pm and qm are sufficiently
small for all m ≥ 0 (which is the same as requiring r0, p0 and q0 sufficiently
small, by Theorem 5).

The proof of Theorem 9 is the content of Section 3. The following The-
orem, which will be proven in Subsection 2.1 , guarantees that Theorem 9
can be used for the special families: they satisfy the starting condition in
the hypotheses of Theorem 9.

Theorem 10. Let (φa)a be a special family. Given δ0, δ1 > 0, if M is
large enough then Φ0 = (Φ0,a)a∈AM

satisfies inequalities (P0)δ0 and (P1)δ1 .

As we have already observed, also r0 (and hence p0 and q0) can be made
sufficiently small by choosing M large. The conclusion is that Theorem
9 can be applied for the special families. Unfortunately, the same cannot
be said for the quadratic family: Hxx and Ha have a fixed amount of
distortion along x ∈ γ0 and a ∈ AM , for arbitrarily large M . Inequalities
(P1)δ1 , however, can be proven in the same way as for the special families.

1.10. Infinitely many central returns are rare: proof of
Theorem 8.
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We assume that (φa)a is a special family and J0 = AM , with M suffi-
ciently large, so that by Theorem 10 (Φ0,a)a∈J0 satisfies properties (P0)δ0

and (P1)δ1 for sufficiently small δ0 and δ1. The constants δ0 and δ1 will be
chosen in the proof of Theorem 9, and M is taken accordingly. Therefore
Theorem 9 is applied, and in particular a good control of the critical value
velocity is attained.

To use this consequence we first remark the following fact: “for any J ∈
Jn, n ≥ 0, |γn−1,a| is approximately constant”. This can be easily proven
by induction, using the quadratic approximation of the central branch and
the fact that the distance between each β ∈ Bn and the boundary of γn−1

is much larger than β. For each J ∈ Jn, n ≥ 0, let

Cent(J) = {a ∈ J ; Hn(0) ∈ γn} .

By the above considerations,

|Cent(J)|
|J | ≤ Crn ,

for some universal constant C > 0.
Let C be the parameter subset such that if a ∈ C then φa is not renor-

malizable and the critical point is recurrent (shortly, C = Rc \M), corre-
sponding exactly to the set of parameters for which (Φn)n≥0 is well defined.
We restrict ourselves to

C ∩AM =
⋂

n≥0

⋃

J∈Jn

J ,

where J0 = AM and J0 = {J0}. For each J ∈ Jn, n ≥ 0, the collection
Jn+1(J) = {J ′ ∈ Jn+1 ; J ′ ⊂ J} can be decomposed into two parts:

Jn+1(J) = J cent
n+1 (J) ∪ J ext

n+1(J) ,

where J ′ ∈ J cent
n+1 (J) if and only if J ′ = J ′(σ, k, β) for some k > 1, σ = ±

and β ∈ Bn, and J ′ ∈ J ext
n+1(J) if and only if J ′ = J ′(σ, 1, β) for some

σ = ± and β ∈ Bn.
Hence for any a ∈ C ∩ AM there is a sequence J0 ⊃ J1 ⊃ . . . ⊃ Jn ⊃ . . .

converging to a (since |Jn| <∼ 1
2 |Jn−1|, ∀n ≥ 1), such that for each n ≥ 1

either Jn ∈ J cent
n (Jn−1) or Jn ∈ J ext

n (Jn−1), thus defining a function
θa : N → {cent, ext}. According to Theorem 7, if θ−1

a ({cent}) contains only
finitely many elements then a ∈ E . We will prove that the set of a ∈ AM

such that θ−1
a ({cent}) is infinite has Lebesgue measure zero, consequently

proving Theorem 8.
For this purpose we use the so–called Borel–Cantelli Lemma: “if {Ii}i≥0

is a collection of intervals Ii ⊂ [0, 1] such that
∑

i≥0 |Ii| < ∞ then the set of
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x ∈ [0, 1] such that x belongs to infinitely many Ii’s has Lebesgue measure
zero”.

For us, θ−1
a ({cent}) is infinite if and only if a belongs to infinitely many

intervals of the set
⋃

n≥0

⋃

J∈Jn

J cent
n+1 (J) .

For any J ∈ Jn, n ≥ 0, the intervals of the collection J cent
n+1 (J) are pairwise

disjoint and contained in the interval Cent(J). Hence

1
|J |

∑
{|J ′| ; J ′ ∈ J cent

n+1 (J)} ≤ Crn ,

as we remarked above. Since
∑{|J |; J ∈ Jn} ≤ |J0| we get

∑

n≥0

∑

J∈Jn

{|J ′|; J ′ ∈ J cent
n+1 (J)} ≤ C|J0|

∑

n≥0

rn .

By Theorem 5 rn decreases exponentially and therefore the sum is finite.

1.11. Abundance of stochasticity: proof of Theorem 2
Let n ≥ 0, J ∈ Jn, Sn = Sn(J) and vn = vn(J). As Hn is almost

quadratic and the velocity of the critical value is almost constant, we can
estimate the size of the renormalization interval R(J):

2
|Sn · vn| < |R(J)| < 3

|Sn · vn| .

But we want to express |R(J)| as a fraction of |J |. Note that if a = sup J ,
then

Sn(
1
2
|γn|)2 ' |γn−1|.

On the other hand,

vn ' |γn−1|
|J | ,

taking into account that |γn−1| is almost constant. Hence

|R(J)| < r2
n|J |.

As rn < 1, ∀n ≥ 0, and (rn)n decreases exponentially, there is λ < 1 such
that r2

n < λn, ∀n ≥ 0. Then, for some C(λ) > 0,

Leb(AM \ R) ≥ |AM | ·
∞∏

n=1

(1− λn) ≥ |AM | · exp{−C(λ)
∞∑

n=1

λn} > 0.
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FIG. 4. Two possibilities for the position of the critical value.

By Theorem 1, almost all parameters in AM \ R are stochastic, proving
Theorem 2.

Observe that without any additional cost if one shows that the series∑
n≥0 r2

n is dominated by r2
0, this would imply Leb(R ∩ A)M) <∼ |AM |2,

since r0 <∼ 2|AM |1/2 (see Subsection 2.1, just before Lemma 12), and there-
fore we would have Leb(R∩[2−ε, 2]) ≤ Cε2 (a slightly weaker estimate was
obtained by Tsujii in [17] using other methods). This is the best superior
bound possible, since |R(AM )| is of the order of |AM |2.

1.12. Denseness of renormalization: proof of Theorem 4
If R was not dense in AM = J0 then there would be an infinite sequence

J0 ⊃ J1 ⊃ J2 ⊃ · · · Jn · · · of nested intervals, Jn ∈ Jn, ∀n ≥ 0, such that⋂
n≥0 Jn is an interval. On the other hand, as the velocity of the critical

value is almost constant for every J ∈ Jn, n ≥ 0, then it is easy to see that
|Jn+1| << 1

2 |Jn|, implying that the intersection must be a single point.

1.13. Generalized renormalization in detail: notation
We explain a bit more how Φn+1 = Ren(Φn) is obtained, taking profit

to establish the notation which will be used in Section 3. We will suppose
that Φn is well behaved, for example that it satisfies inequalities (P0)δ0 and
(P1)δ1 for small δ0, δ1 > 0. In particular, H = Hn : γn → γn−1 is almost
quadratic. We suppose without loss of generality that D2Hn < 0.

There are essentially two cases to consider, as shown in Figure 4: (a)
beneath renormalization or σ(a) = − and (b) beyond renormalization or
σ(a) = +. Observe that situation (b) always occurs after (a) in the param-
eter line, since in our setting Sn · vn < 0.
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FIG. 5. Fundamental domains beneath renormalization.

Beneath renormalization. We establish a division of the configuration
space into fundamental domains. Define first D−

1 as the left connected
component of γn−1 \ γn and D+

1 as the right one. Then by induction
define D−

t (resp. D+
t ) as the left (resp. right) connected component of

H−1(D−
t−1), for t ≥ 2. This definition must stop at t = esc, since H(0) ∈

D−
esc. The extremal points of D±

t are defined by D±
t = [d±t−1, d

±
t ] for t ≥ 1

and we also define a central domain Dc = [d−esc, d
+
esc] (see Figure 5 with

esc = 4).
Let P = Pn+1 be the set of preimages of elements of Bn under H. That

is to say, for every π ∈ P there is 1 ≤ t ≤ esc such that Ht(π) = β, for
β ∈ Bn. It means that π ⊂ D+

t+1 ∪D−
t+1 if t < esc and π ⊂ Dc if t = esc.

To this element π ∈ P we associate the diffeomorphism P : π → γn

given by P = B ◦Ht, where B : β → γn is the diffeomorphism associated
to β = Ht(π). Now it is clear that Bn+1 is the set of preimages of γn+1

under compositions Pj ◦ · · · ◦P1 for π1, . . . , πj ∈ P. The interval γn+1 itself
can be defined as γn+1 = H−1(π∗), where π∗ ∈ P is the element in D−

esc to
which H(0) belongs.

If x ∈ γn then there is t ≥ 1 such that Ht(x) ∈ γn−1 \ γn. These iterates
can be decomposed, in general, as

Ht = FE ◦ FS ◦ F0 ◦ FH .
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FIG. 6. Detail of the critical region beneath renormalization.

This decomposition will be made in the same way for both beneath and
beyond renormalization. In the case we treat here, beneath renormaliza-
tion, FH = Id. If x ∈ H−1([H2(0),H(0)]) (see Figure 6) or esc = 1 then
F0 = H, otherwise F0 = Id. Observe that |Hi(x)| and |DH(Hix)| are
growing with i. Let i0 be the first integer such that |DH(Hi0(F0x))| ≥ 4
and define FS = Hi0 . It may happen that |DH(F0x)| ≥ 4, in this case set
FS = Id. Finally, FE is defined by the remaining powers of H.

Beyond renormalization. Let x− be the leftmost fixed point of H and
x+ 6= x− such that H(x+) = x−. As in the other case, we divide the space
outside [x−, x+] into fundamental domains. Let D−

1 (resp. D+
1 ) be the

left (resp. right) connected component of γn−1 \ γn. By induction, define
D−

t and D+
t as the left and right connected components of H−1(D−

t−1), for
t ≥ 2. Differently from before, this induction never stops, and the D−

t and
D+

t accumulate, respectively, on x− and x+. For t ≥ 1, let D±
t ≡ [d±t−1, d

±
t ]

(see Figure 7).
Also inside [x−, x+] we make subdivisions. Let [p−, p+] = H−1({x ≥

x+}), q+ be the rightmost fixed point of H and q− 6= q+ be such that
H(q−) = q+. We divide the interval [x−, q−] (resp. [q+, x+]) into intervals
ω−k = [q−k , q−k−1] (resp. ω+

k = [q+
k−1, q

+
k ]), for k ≥ 1, such that the functions

Hk : ω±k → [q−, q+] are diffeomorphisms. In addition, we divide [q−, p−]
(resp. [p+, q+]) into intervals α−k (resp. α+

k ), for k ≥ 2, such that H(α±k ) =
ω+

k−1 (analogously to the definitions in Subsections 1.3 and Subsection 1.4,
but we keep the same notation since there is no danger of confusion).

Let BH
n+1 ⊂ Bn+1 be the set of direct preimages of γn+1 under pow-

ers of H. These preimages are located in the gaps of the Cantor set
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FIG. 7. Fundamental domains beyond renormalization.

ΛH ≡ ⋂
i≥0 H−i([x−, x+]) and if β̃H ∈ BH

n+1 then its corresponding dif-
feomorphism B̃H : β̃H → γn+1 is given by B̃H = Hi for some i ≥ 1.

As in the previous case we also produce a set P = Pn+1 of preimages of
γn, taking all possible preimages of the elements of Bn under iterates of H.
These preimages spread around in the domains D±

t , inside the central gap
[p−, p+] and between the gaps of the Cantor set ΛH .

The set Bn+1 is the union of BH
n+1 with all the preimages of {γn+1}∪BH

n+1

under all possible compositions Pj ◦ · · · ◦ P1, for π1, . . . , πj ∈ P. Therefore
to each β̃ ∈ Bn+1 the diffeomorphism B̃ : β̃ → γn+1 is given either by the
composition B̃H ◦Pj−1 ◦ · · · ◦P1 or by the composition Pj ◦Pj−1 ◦ · · · ◦P1,
for some β̃H ∈ BH

n+1, π1, . . . , πj ∈ P, j ≥ 1.
If x ∈ γn, either x ∈ ΛH or there is t ≥ 1 such that Ht(x) ∈ γn−1 \ γn.

The latter is the only possibility if x ∈ β̃ for some β̃ ∈ Bn+1. We decompose
the orbit as Ht = FE ◦FS ◦F0 ◦FH , where this time FS = Id. If x belongs
to [x−, q−] or [q+, x+] then FH = Hi, where i is the first integer such that
Hi(x) ∈ [p−, p+], otherwise FH = Id. If FH(x) ∈ [p−, p+] then F0 = H,
otherwise F0 = Id. And FE = Hi if FS ◦ F0 ◦ FH(x) ∈ D±

i+1, for some
i ≥ 1, otherwise FS ◦ F0 ◦ FH(x) ∈ D+

1 and FE = Id.

Notation remark. For coherence, we define the set P0 as the set

{α−2 , α−3 , . . . , α−M−1, αM , α+
M−1, . . . , α

+
3 , α+

2 } ,
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in the sense of the definitions in Subsections 1.3 and 1.4.

1.14. Misiurewicz are rare: proof of Theorem 3
We only sketch the main ideas involved and let the details to the reader,

using the notation introduced until now.
As we have already observed before, φa is Misiurewicz if and only if φa

is not renormalizable and Φn+1 is not defined for some n ≥ 0. This will
happen if and only if Hesc

n (0) ∈ Γn, where

Γn =


 ⋃

β∈Bn

int(β)




c

.

The set Γn (which clearly depends on a) admits a decomposition

Γn = Γ−1
n ∪ Γ0

n ∪ Γ1
n ∪ . . . ∪ Γn

n

defined in the following way. For each n ≥ 0, let

Γ−1
−1 =

M−1⋃

k=1

∂α±k ,

Γ̃n
n =

⋂

j≥1

⋃

{π1,...,πj}∈Pj
n

(Pj ◦ · · · ◦ P1)
−1 (γn−1 \ int(γn)) ,

ΛH =
⋂

i≥0

H−i
n

(
[x−, x+]

)
,

(ΛH = ∅ if σ = −), and

Γn
n = Γ̃n

n ∪ ΛH .

By induction on n, for each −1 ≤ m < n define

Γm
n =

⋃

j≥0

⋃

{π1,...,πj}∈Pj
n

(Pj ◦ · · · ◦ P1)
−1


⋃

i≥1

H−i
n (Γm

n−1)


 .

The sets Γ̃n
n, n ≥ 1 and ΛH are called dynamically defined Cantor sets

(see [15], Chap. 4), the former with infinitely many branches. They clearly
have measure zero since for each j ≥ 1 a hole with a definite fraction
of the total remaining measure is suppressed. This is guaranteed by the
non–positive Schwarzian derivative and the resulting distortion properties.
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The suppressed fraction is given by, up to a constant factor, the ratio
|γn−1|/|γn|. The sets Γn have as well measure zero, for they are formed by
countable preimages of the Γm

m, 0 ≤ m ≤ n.
To each point x in Γ̃n

n it is naturally assigned a code, which is given by the
sequence π = {π1, π2, . . .} ∈ P∞m such that x ∈ π1 and Pj◦· · ·◦P1(x) ∈ πj+1

for all j ≥ 1. As each π ∈ Pn has a continuation π = πa defined for all
a ∈ J , then also x ∈ Γ̃n

n has a continuation x = xa defined for all a ∈ J .
The same idea can be applied to the Cantor set ΛH .

Moreover, a code can be also assigned to each point y ∈ Γn, by determin-
ing how it is obtained by successive preimages of a point x ∈ Γm

m for some
m ≤ n. Anyway, as a varies along J the escaping image of the critical point
Hesc

n (0), esc = esc(a) crosses a countable intertwined union of (pre-)images
of dynamically defined Cantor sets Γm

m in γn−1 \ γn. It turns out that this
crossing is always transverse. This can be proven directly in the same way
as we calculate the quotients |Ba/BxHa| for each β ∈ Bn.

We want to show that

M(J) = {a ∈ J ; Hesc
n (0) ∈ Γn}

has Lebesgue measure zero. However, the informations we have above are,
at least in principle, not enough to prove it. We illustrate the idea of the
proof by showing that the set

M∗(J) = {a ∈ J ; Hn(0) ∈ Γ̃n
n}

has Lebesgue measure zero. The ideas can be easily applied to M(J),
remarking in addition that |Hesc

a (0)| ≥ |Ha(0)| (see Lemma 62).
If we admit Theorem 9 to be valid, then inequalities (P1)δ1 are satisfied

for some δ1 > 0 small. In particular, this implies that
∣∣∣∣

Ba

BxHa

∣∣∣∣ < δ1

for all x ∈ βa and a ∈ J such that |ImHn| ≥ 1
8 |γn−1| or ImHn ∩ U(β) 6= ∅

for a certain neighborhood U(β) of β. The neighborhood U(β) can be
specified at this point (see Subsection 3.6). If β = (Pj ◦ · · · ◦P1)−1(γn), for
some collection {π1, . . . , πj} ⊂ Pn, then U(β) = (Pj ◦ · · · ◦P1)−1(γn−1). As
remarked above, by distortion properties,

|β|
|U(β)| ≥ C−1 |γn|

|γn−1|
for some universal constant C > 0. If we take the parameter intervals

J(β) = {a ∈ J ; Hn(0) ∈ βa} ⊂ J̃(β) = {a ∈ J ; Hn(0) ∈ U(βa)}
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then

|J(β)|
|J̃(β)| ≥ C−1 inf

a∈J̃(β)

|γn,a|
|γn−1,a| .

The right hand side of this last inequality constitutes in fact an inferior
bound for the proportion suppressed after each step j + i, i ≥ 0, inside
J̃(β). The result is a zero Lebesgue measure set.

2. THE STARTING CONDITION
2.1. Proof of Theorem 10.

In this Section we prove that inequalities (P0)δ0 and (P1)δ1 are satisfied
for (Φ0,a)a∈AM with δ0, δ1 small, provided that M is sufficiently large. For
this purpose, we will need to evaluate all the mixed derivatives listed in
Subsection 1.9. Some problems arising here and their solutions give us a
clue of the proof of Theorem 9, postponed to Section 3.

We have already defined the intervals γa = [q−a , q+
a ] ⊂ Ia = [x−a , x+

a ],
where φa(q±a ) = q+

a and φa(x±a ) = x−a , a partition {αM , {α±k }k=2,...,M−1}
of γa, as well as the diffeomorphisms A±k : α±k → γa and the unimodal
function H : αM → γa. As we wish to study these functions, we also need
some terminology for iterates outside γa. Let

ω±1 = ω±1,a = φ−1
a (γa) ∩ {±x > 0}

and by induction define, for all k ≥ 1,

ω±k+1 = φ−1
a (ω−k ) ∩ {±x > 0}

(see Figure 8). We remark that a ∈ cl(AM ) if and only if φa(0) ∈ ω+
M−1.

With these definitions, we have

αM = φ−1
a (ω+

M−1) , α±k = φ−1
a (ω+

k ) ∩ {±x > 0} .

For each ω±k , k ≥ 1, there is a diffeomorphism W±
k : ω±k → γa, where

W±
k = φk

a|ω±k . To avoid confusion, we define F (a, ·) ≡ φa, so that now Fa
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must be understood as the derivative of F with respect to the parameter.
In this way, we have

H = W+
M−1 ◦ F |αM , A±k = W±

k−1 ◦ F |α±k .

Observe that by our construction, F is nearly quadratic in α−M−1 ∪ αM ∪
α+

M−1, if M is large (it might be exactly quadratic if φa = φ̃a, see Subsection
1.4).

As (φa)a is C3 near (φ̃a)a, we assume that there is δ > 0 and C > 0 such
that

1. |Fa − 1|, |Fxx + µ| < δ if x ∈ [− 1
5 ,+ 1

5 ];
2. |Fa|, |Fxx|, |Fax|, |Fxxx|, |Faa|, |Fxxa| < C if x ∈ γa;
3. |Fa|, |Fxx| < δ if x 6∈ γa;
4. |Fax|, |Fxxx|, |Faa|, |Fxxa| < δ if x 6∈ γa or x ∈ [− 1

5 , + 1
5 ].

Lemma 11. Let W = W±
k , for k ≥ 1. Then

1.the absolute values of the quotients

Wa

Wx
,

Wxx

(Wx)2
,

Wxa

(Wx)2
,

Waa

(Wx)2
,

Wxxx

(Wx)3
,

Wxxa

(Wx)3

are smaller than δ, for all x ∈ ω±k ;
2.Wx ' −|γa| · |ω+

k |−1.

Proof. The proof is straightforward, using the Appendix and the uni-
form expansion of nearly λ along the iterates.

Before continuing, we observe that

|αM | <∼
(

8
µ
|ω+

M−1|
)1/2

,

|ω+
M−1| is almost constant for a ∈ AM (by Lemma 11) and |AM | ' |ω+

M−1|.
Lemma 12. For all x ∈ αM and a ∈ AM ,

1.|Ha| ' |γa| · |ω+
M−1|−1;

2.|Hxx| ' µ|ω+
M−1|−1;

3.the absolute values of the quotients

|αM | · Hxxx

Hxx
, |αM | · Hxa

Ha
, |AM | · Haa

Ha
, |AM | · Hxxa

Hxx

are smaller than δ.
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Proof. 1) Write W = W+
M−1. Then H = W+

M−1 ◦ F and Ha = FaWx +
Wa. By Lemma 11, |Wa| < δ|Wx|, hence |Ha| ' |Wx|; 2) As Hxx =
Wxx(Fx)2 + WxFxx, we deduce that |Hxx| ' |Fxx| · |Wx|, since

Wxx(Fx)2

WxFxx
<

1
µ

∣∣∣∣
Wxx

(Wx)2

∣∣∣∣ · (Fx)2|Wx| < 2δ ,

(use Lemma 11 and |Fx| <∼
(
2µ|ω+

M−1|
)1/2

, for x ∈ αM ); 3) Appendix plus
the previous estimates; note that M does not need to be very large.

Lemma 13. Let A = A±k , 2 ≤ k ≤ M − 1. There is C > 0 such that for
all x ∈ α±k and a ∈ AM ,

1.
∣∣∣ Aa

AxHa

∣∣∣ <
|ω+

M−1|
|Fx| ,

2.
∣∣∣ Axx

(Ax)2

∣∣∣ < δ + C
|AxFx| ,

3.
∣∣∣ Axa

(Ax)2Ha

∣∣∣ < C|ω+
M−1| ·

(
1
|Fx| + 1

|AxFx|
)

,

4.
∣∣∣ Aaa

(Ax)2(Ha)2

∣∣∣ < C
|ω+

M−1|2
(Fx)2 ,

5.
∣∣∣ Axxx

(Ax)3

∣∣∣ < δ + C
(

1
|AxFx| + 1

|(Ax)2Fx|
)

,

6.
∣∣∣ Axxa

(Ax)3Ha

∣∣∣ < C|ω+
M−1|

(
1
|Fx| + 1

|AxFx| + 1
|Ax(Fx)2| + 1

|(Ax)2Fx|
)

,

where Fx = Fx(a, x) and Ha = Ha(a, 0).

Proof. Appendix and evaluations on F .

Corollary 14.

∣∣∣∣
A±

k,a

A±
k,x

Ha

∣∣∣∣ < |ω+
M−1|1/2, for all k = 2, . . . , M − 2.

The functions A±i are uniformly expanding for i = 2, . . . ,M − 2, but for
i = M − 1 there may be contracting regions near the boundary of αM , for
low values of a ∈ AM .

Lemma 15. |A±k,x| ≥ 2
k
2 , for all k = 2, . . . ,M − 2.

Proof. We do the proof for (φ̃a)a and sufficiently large M . With small
effort one easy generalizes to any special family (φa)a δ–C3 near (φ̃a)a, for
δ sufficiently small. We use that 2 < λ < 3 and µ < 2λ (see Subsection
2.2, just after Lemma 31).

Consider F (a, x) = φ̃a(x) and F̂ (a, x) = a − µ
2 x2. By the definition of

(φ̃a)a, F̂ coincides with F for small x. Moreover, as |D2F (x)| ≤ µ for every
x ∈ I, then F̂ (a, x) ≤ F (a, x), ∀x ∈ I.

Let qk be the right endpoint of ω+
k , for k ≥ 1. For the family (φ̃a)a, these

points do not depend on the parameter. We have

|DA±k (x)| ≥ λk−1DF (a, F−1(a, qk−1))



246 EDUARDO COLLI

for all 2 ≤ k ≤ M − 1. But |DF (a, x)| must be greater than λ
xλ
|x|, i.e.

greater than λ|x| (since xλ < 1), hence |DA±k (x)| ≥ λk|F−1(a, qk−1)|.
On the other hand,

|F−1(a, qk−1)| ≥ |F̂−1(a, qk−1)| =
√

2
µ

(a− qk−1) .

We compare this last value with |F̂−1(2, qk−1)| =
√

2
µ (2− qk−1). As k ≤

M − 2 and a ∈ ω+
M−1, then a − qk−1 ≥ |ω+

k | + |ω+
k+1| + . . . + |ω+

M−2| and
2− qk−1 ≥ |ω+

k |+ |ω+
k+1|+ . . ., so

√
2− qk−1√
a− qk−1

≤
√

1 + 2λk−M+1 .

Therefore, as 2− qk = λ−k(2− xλ) > λ−k,

|DA±k (x)| ≥ 2
k
2

√
(λ/2)k

1 + 2λk−M+1
.

We claim that (λ
2 )k > 1+2λk−M+1 for all 2 ≤ k ≤ M−2, if M is sufficiently

large, and then the Lemma follows. Note that (λ
2 )2 > 1 + 2λ3−M and

(λ
2 )M−2 > 1 + 2λ−1, if M is big. As t 7→ (λ

2 )t and t 7→ 1 + 2λt−M+1 are
convex functions, they do not intersect and the claim is valid.

Lemma 16. If x ∈ α±M−1 and dist(F (x), ω+
M−1) ≥ 1

16 |ω+
M−2| then we

have |DF (x)| > 1
32 |ω+

M−2|1/2 and |A+
M−1,x| > 1

16 |ω+
M−2|−1/2.

Proof. If M is big then α±M−1 ⊂ [− 1
5 , 1

5 ], where F (x) ' a − µ
2 x2 and

|DF (x)| ' µ|x|. Let x′ be the nearest point to x such that F (x) ∈ ∂ω+
M−1

and Max be the maximum value of |DF | in α−M−1 ∪ αM ∪ α+
M−1. Then

|x| ≥ |x− x′| ≥ (Max)−1 1
16
|ω+

M−2| .

On the other hand

Max <∼ µ

√
2
µ

(|ω+
M−1|+ |ω+

M−2| ,

hence

|DF (x)| >∼
1
16

√
µ

2(1 + λ−1)
|ω+

M−2|1/2 .
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As A±M−1,x = (W+
M−2,x ◦ F ) · Fx and |W+

M−2,x| ' 2xλ|ω+
M−2|−1 then

|A+
M−1,x| >

1
16

√
µ

1 + λ−1
|ω+

M−2|−1/2 .

A rough estimate on λ and µ based on their definition in the Appendix
implies the Lemma.

To distinguish between low and high values of a ∈ AM we define

d = d(a) = |ImF ∩ ω+
M−1| · |ω+

M−1|−1 .

By Lemma 11, the distortion of W+
M−1,x is small, so

|ImH|
|γa| ' d.

Lemma 17. If d ≥ 2−8 then, for all x ∈ α±M−1 and M large enough we
have |Fx| > 1

16 |ω+
M−1|1/2 and |A±M−1,x| ≥ 4|ω+

M−1|−1/2.

Proof. If d ≥ 2−8 then for all x 6∈ αM

|Fx| >
√

2µ · 2−8|ω+
M−1| >

1
16

√
2µ|ω+

M−1|1/2 .

As A±M−1 = W+
M−2 ◦ F , then

|A±M−1,x| >∼ 2xλ|ω+
M−2|−1 · |ω+

M−1|1/2 > 2λ|ω+
M−1|−1/2 ,

since |ω+
M−2| ' λ−1|ω+

M−1|.
Corollary 18. There is a constant C > 0 such that in any one of the

following hypotheses (compatible with a ∈ AM ): a) i = 2, . . . , M − 2 and
x ∈ α±i , b) i = 2, . . . , M −1, d ≥ 2−8 and x ∈ α±i , c) i = M −1, x ∈ α±M−1

and dist(F (x), ω+
M−1) ≥ 1

16 |ω+
M−2|, if we call A = A±i then

1.
∣∣∣ Aa

AxHa

∣∣∣ < C|ω+
M−1|1/2,

2.
∣∣∣ Axx

(Ax)2

∣∣∣ < δ + C
|Ax| |ω

+
M−2|−1/2,

3.
∣∣∣ Axa

(Ax)2Ha

∣∣∣ < C|ω+
M−1|1/2,

4.
∣∣∣ Aaa

(Ax)2(Ha)2

∣∣∣ < C|ω+
M−1|,

5.
∣∣∣ Axxx

(Ax)3

∣∣∣ < δ + C
|Ax| |ω

+
M−2|−1/2,
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6.
∣∣∣ Axxa

(Ax)3Ha

∣∣∣ < C
|Ax| .

Proof. Appendix and the previous Lemmas.

Lemma 19. For all i = 2, . . . , M − 1 and x ∈ α±i ,
∣∣∣∣∣

A±i,a
A±i,xHa

∣∣∣∣∣ <
1
4

1
|A±i,x|

.

Proof. Appendix plus the facts that Fa ' 1 for x ∈ α±i , i large, and M
is large enough.

Having already the estimates for the Ai’s, we can now consider their
compositions. The next lemma is the easiest situation.

Lemma 20. Let d = d(a) ≥ 2−8. Given δ1 > 0, then
∣∣∣∣

Ba

BxHa

∣∣∣∣ < δ1

for every β ∈ B0 and x ∈ β, if M is sufficiently large.

Proof. Write B = Pj ◦ . . . ◦ P1, where Pi = Aσi

ki
, σi ∈ {+,−} and

ki ∈ 2, . . . , M − 1. Then, using the Appendix,

∣∣∣∣
Ba

BxHa

∣∣∣∣ =

∣∣∣∣∣
j∑

i=1

Pi,a

Pi,xHa
· 1
Pi−1,x . . . P1,x

∣∣∣∣∣ < C|ω+
M−1|1/2 < δ1,

if M is sufficiently large, using Corollary 18 with hypothesis b) and Lemma
15.

Now we look at the more difficult situation where d = d(a) < 2−8.
Remark that we are only interested in the case where β ∩ ImH 6= ∅ (to
be precise, U(β) ∩ ImH 6= ∅, for some neighborhood U(β) of β), following
the requirements of inequalities (P1)δ1 (Subsection 1.9). First we state a
simple Lemma.

Lemma 21. |α±2 | > 3−2|γa|.
Proof. As A±2 (α±2 ) = γa, A±2 = F 2|α±2 and |DF | <∼ λ < 3 the Lemma

follows.

If d = d(a) < 2−8 and β ∩ ImH 6= ∅ then in particular β ⊂ α+
2 , by

Lemma 21. More than that, we have

dist(β, qa) <∼ d.
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As a consequence, the first iterates of x ∈ β are done inside α+
2 , near

qa. For x ∈ β, define n0 = n0(x) ≥ 1 as the minimal number such that
(A+

2 )n0(x) 6∈ α+
2 .

Let α+ = α+(M) (resp. α− = α−(M)) be the interval contained in α+
M−1

(resp. α−M−1) such that if x ∈ α+ (resp. x ∈ α−) then dist(F (x), ω+
M−1) <

1
16 |ω+

M−2| (in particular, such an x must satisfy A±M−1(x) ∈ α+
2 ). As re-

marked above, this is the region of possible ‘loss’ of derivative.
Assuming that Pj ◦ · · · ◦P1(β) = γ0 ≡ αM , where Pi = Aσi

ki
, σi ∈ {+,−},

ki ∈ 2, . . . ,M − 1, i = 1, . . . , j, we propose the following decomposition of
orbits. For x ∈ β, let 1 < i1 < i2 < . . . < ir < j be the maximal sequence
such that

Pil−1 ◦ Pil−2 ◦ · · · ◦ P1(x) ∈ α+ ∪ α+ ,

for all l = 1, . . . , r.
By the definitions above, i1(x) > n0(x). Lemma 22 below says that

eventual losses when the orbit of x ∈ β visits the ‘bad’ region α+ ∪ α−

are compensated by the n0(x) first iterates. This kind of compensation
is used only for the last visit to the bad region. The previous visits are
compensated by iterates in the way stated by Lemma 23. From Lemma 25
on both Lemmas are put together to control inequalities (P1)δ1 .

Lemma 22. For any l = 1, . . . , r,

|P1,xP2,x . . . Pn0,x|−1 ·
∣∣∣∣

Pil,a

Pil,xHa

∣∣∣∣ < C

(
11
10

)−n0

|ω+
M−1|1/2

and

|P1,xP2,x . . . Pn0,x|−1 · |Pil,x|−1 < C

(
11
10

)−n0

|ω+
M−1|1/2 .

Proof. By Lemma 13,

∣∣∣∣
Pil,a

Pil,xHa

∣∣∣∣ < C
|ω+

M−1|1/2

√
d

.

On the other hand, for any y, z ∈ α±2 we have |A±2,x(y)| < (1 + δ)|A±2,x(z)|,
for some δ > 0 small (since Dφ̃a is monotone and φa is C3 near φ̃a).
Observe that Pi = A+

2 for all i = 1, . . . , n0. We have, for x ∈ β,

|Pn0,xPn0−1,x . . . P2,xP1,x(x)| · |x− q+| > C−1 ,

since Pn0 ◦ · · · ◦ P1(x) 6∈ α+
2 and the distortion of the derivative of Pn0 ◦

· · · ◦ P1 is controlled in [x, q+], by the expansivity for each iterate. We get
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(assuming n0 even, without loss of generality)
∣∣∣Pn0

2 ,x . . . P2,xP1,x

∣∣∣ · (1 + δ)n0/4 > C−1d−1/2.

Hence

|Pn0,x . . . P1,x| > C−1d−1/2 ·
(

21/4

(1 + δ)1/4

)n0

,

by Lemma 15.

The following Lemma says that |Pil,x|−1 can be compensated by the
subsequent iterates before il+1.

Lemma 23. There is i < il+1 − il such that

|Pil,x|−1 · |Pil+1,xPil+2,x . . . Pil+i,x|−1 < C

(
11
10

)−i

|ω+
M−2|1/2 .

Proof. The idea is the following. If |Pil,x| is small it means that y =
Pil−1 ◦ · · · ◦ P1(x) is very near αM . But this implies that Pil

(y) is in α+
2

and very near q+. The subsequent iterates, all done near q+, compensate
the loss of derivative coming from |Pil,x|.

First we put Pil,x = A±M−1,x in relation with |Pil
(y)− q+|:

|A±M−1,x| '
|γa|

|ω+
M−2|

|Fx(y)| >
√

2µ
|γa|

|ω+
M−2|

(
dist(F (y), ω+

M−1)
|ω+

M−2|

)1/2

,

hence, by the small distortion of W+
M−2,

|Pil
(y)− q+|−1/2 > |ω+

M−2|−1/2|A±M−1,x|−1 .

Choose the first integer i satisfying

|(A+
2 )i(Pil

(y))− q+| > 1
32

.

As in the proof of Lemma 22, using the Mean Value Theorem and bounded
distortion properties to obtain

|D(A+
2 )i(Pil

(y))| · |Pil
(y)− q+| > C−1

and

|D(A+
2 )i/2(Pil

(y))| · (1 + δ)i/4 > C−1|Pil
(y)− q+|−1/2
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and the Lemma follows.

In the decomposition of orbits, add the following definitions: i0 = 0,
ĩ0 = n0 and ĩl = il + i, where i is given by the previous Lemma, for each
l ≥ 1.

For the next Lemmas, let β ∈ B0 be given by β = (Pj ◦ · · · ◦ P1)−1(γ0)
and let B̃ = Pj̃ ◦ · · · ◦ P1|β, where 1 ≤ j̃ ≤ j.

All the results are valid for x ∈ β and a ∈ AM , with the condition that
β∩ ImH 6= ∅. In fact, this restriction in the parameter is only needed when
d = d(a) < 2−8 and when Lemma 22 must be used.

Let us remark at this point that the same idea underlies the proof of
Theorem 9, in Section 3. Every loss of derivative must be compensated,
if possible, by subsequent iterates, otherwise by the first iterates, which
is only guaranteed with a restriction on the parameter. It is to be noted,
however, that this restriction on the parameter is not a problem when one
passes to the next stage of the induction (only preimages of γn intersected
by H are used to generate preimages of γn+1).

For some of the proofs we will use the following simple Corollary of
Lemma 22. It means that when the orbit of β hits γ0 all previous losses in
the derivative are already compensated, and a definite expansion is indeed
obtained. This kind of reasoning is also behind the proof of Theorem 6,
which we do in Section 3. This Corollary gives us, indeed, the assumption
of Theorem 6.

Corollary 24. For every x ∈ β and 1 ≤ i < j

|Pj,x . . . Pi+1,x| ≥
(

11
10

)j−i

,

if M is sufficiently large.

Lemma 25. Given δ1 > 0, if M is sufficiently large then
∣∣∣∣∣

B̃a

B̃xHa

∣∣∣∣∣ < δ1

for all x ∈ β, β ∈ B0, and a such that d = d(a) ≥ 2−8 or ImH ∩ β 6= ∅.
Proof. In view of Lemma 20 we can suppose d < 2−8. We consider two

cases: i = il or il < i < il+1, for some l ≥ 0. If i = il, l ≥ 1, we write

Pi,a

Pi,xHa
· 1
Pi−1,x . . . P1,x

=
Pi,a

Pi,xHa
· 1
P1,x . . . Pĩ0,x

×

×
l−1∏
s=1

1
Pis,x

· 1
Pis+1,x . . . Pĩs,x

l−1∏
s=0

1
Pĩs+1,x . . . Pis+1−1,x
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which, by Lemmas 22 and 23, is bounded by

(
C|ω+

M−2|1/2
)l

(
11
10

)−i

.

If il < i < il+1 for some l ≥ 0 then the reasoning is analogous, but one has
to use that

|Pil,x|−1 · |P1,x . . . Pĩ0,x|−1 < C

(
11
10

)−ĩ0

|ω+
M−1|1/2 ,

from the second inequality of Lemma 22.

Lemma 26.

|γ0|
|Pj,x . . . Pj̃+1,x|

·
∣∣∣∣∣

B̃xx

(B̃x)2

∣∣∣∣∣ < δ1 .

Proof. Write, using the Appendix,

B̃xx

(B̃x)2
=

j̃∑

i=1

Pi,xx

Pj̃,x . . . Pi+1,x(Pi,x)2
.

By Lemma 13,

|γ0|
∣∣∣∣

Pi,xx

(Pi,x)2

∣∣∣∣ < |γ0|
(

δ +
C

|Pi,xFx|
)

.

We have two cases: i = il, for some l ≥ 1 or il < i < il+1, for some l ≥ 0.
If i = il then the i–th term is bounded by

|γ0| 1
|Pj,x . . . Pi+1,x|

(
δ +

C

(Fx)2
· |ω+

M−2|
)

< δ|γ0|2−j+i + C|γ0| · |ω+
M−2|

1
|Pj,x . . . Pĩl+1,x|

· 1
|Pĩl,x

. . . Pi+1,x|(Fx)2
,

using Corollary 24. The last fraction is bounded by a constant, since
|ω+

M−2|(Fx)−2 is bounded by 3|Pil
− q+|−1 and the fifth inequality of the

proof of Lemma 23 applies, by the definition of ĩl. Therefore for i = il the
i–th term is bounded by C|γ0|( 11

10 )−j+ĩl .
If il < i < il+1 then the i–th term is bounded by

|γ0| · C

|Pj,x . . . Pi+1,x| < C

(
11
10

)−j+i

|γ0| ,
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by Corollaries 18 and 24.
Therefore the Lemma follows provided |γ0| is sufficiently small, i.e. M

is sufficiently large.

We omit the proof of the following Lemma, as they follow the same ideas
of Lemmas 25 and 26. Lemmas 25, 26 and 27 are stated for B̃, since their
quotients appear in the proof of Lemmas 27, 28, 29 and 30.

Lemma 27.

|γ0|
|Pj,x . . . Pj̃+1,x|

·
∣∣∣∣∣

B̃xa

(B̃x)2Ha

∣∣∣∣∣ < δ1 .

Lemma 28.

|γ0| ·
∣∣∣∣∣

B̃aa

(B̃x)2(Ha)2

∣∣∣∣∣ < δ1 .

Lemma 29.

|γ0|2 ·
∣∣∣∣∣
B̃xxx

(B̃x)3

∣∣∣∣∣ < δ1 .

Lemma 30.

|γ0|2
∣∣∣∣∣

B̃xxa

(B̃x)3Ha

∣∣∣∣∣ < δ1 .

2.2. Existence of special families
We show here that the family (φ̃a)a referred in Subsection 1.4 does ac-

tually exist. This task will be split into two parts: find a suitable λ and
then define the family.

We consider only the negative axis and force φ̃a to be an even func-
tion. Take two (continuous, piecewise linear) functions, which later will be
related to Dφ̃a, called fλ and gλ, defined in the following way:

1. fλ(x) = λ, ∀x ∈ [−2,−xλ + 2
10 ],

2. fλ(x) = −µx , ∀x ∈ [−xλ + 2
10 , 0],

3. gλ(x) = fλ(x), ∀x ∈ [−2,−xλ + 1
10 ] ∪ [−xλ + 3

10 , 0] ,
4. gλ(x) = −µ̃x + d , ∀x ∈ [−xλ + 1

10 ,−xλ + 3
10 ],

where µ = µ(λ) = λ
xλ− 1

5
and µ̃ > 0, d > 0 are such that gλ(−xλ + 1

10 ) = λ

and gλ(−xλ + 3
10 ) = −µ(−xλ + 3

10 ) (note that µ̃ < µ).
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Lemma 31. If λ ∈ [2.36, 2.37] then

∫ 0

−2

gλ(x)dx < 4 <

∫ 0

−2

fλ(x)dx.

Proof. The functions
∫ 0

−2
gλ and

∫ 0

−2
fλ grow with λ, for λ > 2. By

straightforward calculation,
∫ 0

−2
fλ = 4 for λ = 2.359 . . . and

∫ 0

−2
gλ = 4 for

λ = 2.374 . . ..

Now pick a fixed λ as in Lemma 31 (for example λ = 2.365) and call f =
fλ, g = gλ (this implies, in particular, µ ∈ [3.8, 3.9]). Let ϕ be a positive
even C∞ bump function with support in [−1,+1] and

∫ +1

−1
ϕ(x)dx = 1 and

define the associated family ϕδ(x) = 1
δ ϕ(x

δ ). Observe that if

ψδ(x) =
∫ x

−∞
ϕδ(y)dy

then, by the symmetry of ϕ,
∫ +1

−1
ψδ(x)dx is independent of δ and always

equal to 1. Let xi = −xλ + i
10 , i = 1, 2, 3, and consider the following two

families of functions,

hf,δ(x) = −µϕδ(x− x2),

hg,δ(x) = −µ̃ϕδ(x− x1)− (µ− µ̃)ϕδ(x− x3),

for δ < 1
10 . Observe that hf,δ

δ→0−→ D2f and hg,δ
δ→0−→ D2g in the sense of

distributions.
Let φ̃f,δ and φ̃g,δ be defined by D3φ̃f,δ = hf,δ and D3φ̃g,δ = hg,δ, with

constants of integration given by φ̃f,δ(−2) = −2 = φ̃g,δ(−2), Dφ̃f,δ(−2) =
λ = Dφ̃g,δ(−2) and D2φ̃f,δ(−2) = 0 = D2φ̃g,δ(−2).

Some properties are verified: i)
∫ 0

−2
D2φ̃f,δ(x)dx =

∫ 0

−2
D2φ̃g,δ(x)dx =

−λ, since ϕ is even; in other words, we have Dφ̃f,δ(0) = Dφ̃g,δ(0) = 0; ii)
Dφ̃f,δ(x) = Dφ̃g,δ(x) = λ for all x ∈ [−2,−xλ]; iii) Dφ̃f,δ(x) = Dφ̃g,δ(x) =

−µx, for all x ∈ [−xλ + 4
10 , 0]; iv)

∫ 0

−2
Dφ̃f,δ(x)dx

δ→0−→ ∫ 0

−2
f(x)dx and

∫ 0

−2
Dφ̃g,δ(x)dx

δ→0−→ ∫ 0

−2
g(x)dx.

By property iv) and Lemma 31, we can choose δ0 sufficiently small in
such a way that

∫ 0

−2

Dφ̃g,δ(x)dx < 4 <

∫ 0

−2

Dφ̃f,δ(x)dx
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and then let φ̃f ≡ φ̃f,δ0 , φ̃g ≡ φ̃g,δ0 .
Finally, take the family of convex combinations

φ̃t = (1− t)φ̃g + tφ̃f .

Then φ̃t satisfies, for all t ∈ [0, 1],

1. D3φ̃t(x) ≤ 0, for x ≤ 0;
2. Dφ̃t(x) = λ for x ∈ [−2,−xλ] and Dφ̃t(x) = −µx for x ∈ [−xλ+ 4

10 , 0];
3. φ̃t(0) < 2 for t = 0 and φ̃t(0) > 2 for t = 1, hence equal to 2 for some

0 < t0 < 1.

By an affine coordinate change in the parameter t 7→ a, given by a(t) =
φ̃t(0), we have

φ̃a(x) = a− µ

2
x2

for x ∈ [−xλ + 4
10 , 0] ⊃ (− 1

5 , 1
5 ).

3. PARAMETER DISTORTION BY INDUCTION

3.1. Coordinates, extendibility and subordination.
In this Section, we aim at proving Theorem 9. First we introduce coor-

dinate changes both in space and parameter to obtain uniform estimates
along the induction, independent of n. Recalling the notation presented
in Section 1, we look at some J ∈ Jn and the correspondent sub-family
Φn = (Φn,a)a∈J , with its central branch H = Hn : γn → γn−1 and its
preimages of the central branch B : β → γn, β ∈ Bn. Let a0 = a0(J)
be such that H(a0, 0) = 0, S = S(J) be the “mean” curvature of H and
v = v(J) the “mean” velocity of the critical value, as defined in Subsection
1.9. Then define w = −Sx and b = −Sv(a−a0) and let T be the expression
of H = H(a, x) in these new coordinates, i.e.

T (b, w) = −SH(a0 − S−1v−1b,−S−1w) .

It is easy to see that such a coordinate change does not affect inequalities
(P0)δ0 , and the same is true for the new expressions of the functions B :
β → γ0. The main feature of the particular coordinate change above is
that T is near the quadratic family b−w2 (for b varying along the interval
−SvJ + Sva0 and w along Sγn,a), in the sense that |Tww + 2| ≤ δ0 and
|Tb − 1| ≤ δ0.

However it will be easier to keep the old notation, with H, a and x
instead of T , b and w, i.e. from now on we suppose that the coordinate
change is already done. Moreover, based on Theorem 5 we assume that
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there are small numbers r > 0, p > 0 and q > 0 such that rn ≤ r, pn ≤ p
and qn ≤ q, for all n ≥ 0.

First we state two simple quantitative facts which are consequence of the
linear coordinate change above.

Lemma 32. In the new coordinates, |J | ' |γn−1| and if H(0) ∈ γn then
|γn| > r−1.

Proof. The first assertion follows from Ha ' 1 and that |γn−1| is approx-
imately constant for a ∈ J , as remarked in Subsection 1.10. If H(0) ∈ γn

then
(

1
2 |γn|

)2 ' 1
2 |γn−1|, which implies |γn| >∼ 2r−1 > r−1.

Now we recall the definition of fundamental domains in Subsection 1.13,
in the case where esc = escn > 1 (or in other words H(0) ∈ γn, a central
return). The following Lemma is a standard application of the distortion
properties of H, which has negative Schwarzian derivative (this follows
from the inequalities (P0)δ0 , together with the monotonicity of its deriva-
tive). We skip the proof and refer the reader to [13], Chap.IV, for standard
techniques.

Lemma 33. Let β ∈ Bn, β ⊂ D−
1 , t ≥ 2 and η ⊂ D±

t such that
Ht−1(η) = β. Then

|η|
dist(η, d±t−1)

≤ 10pn(β) ,
|η|

dist(η, d±t )
≤ qn(β).

From the statement of Theorem 5 we know that for every β ∈ Bn there is
a concentric θ−1

n |β|–neighborhood of β where B : β → γn can be extended
diffeomorphically as the same power of the original return map Φ : γ−1 →
γ−1, where θn = θn(rn, qn−1).

This fact is simple to prove by induction, so let us show it for n + 1.
Following the notation of Subsection 1.13, for each β̃ ∈ Bn+1 the corre-
sponding diffeomorphism B̃ : β̃ → γn+1 is given either by Pj ◦ · · · ◦P1 or by
B̃H ◦Pj−1 ◦ · · · ◦P1, where Pi : πi → γn, i = 1, . . . , j, πi a preimage of some
βi ∈ Bn under iterates of H (hence Pi = Bi ◦Hti , where Bi : βi → γn) and
B̃H is an iterate of H landing on γn+1.

In the first case, B̃ is extendible to B̃ : (Pj ◦ · · · ◦ P1)−1(γn) → γn. As
β̃ = (Pj ◦ · · · ◦P1)−1(γn+1) and |γn+1| · |γn|−1 ≤ rn+1 then the domain has
been at least enlarged by C−1rn+1, where C is a universal constant, by the
distortion properties coming from the negative Schwarzian derivative ([13],
Chap.IV).

In the other case the extendibility is determined by a (universal) constant
factor of the codomain extendibility of B̃H , by two reasons: first, Pj−1 ◦
· · · ◦P1(β̃) must be an element of BH

n+1, the set of preimages of γn+1 under
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iterates of H, each one placed inside a gap of the Cantor set ΛH , so that B̃H

extends (in the codomain) at most to the boundary of γn by one side and
at most to the critical point by the other; second, Pj−1 ◦ · · · ◦P1 extends in
such a way that its codomain is the whole γn, hence containing the possible
extension of the domain of B̃H . Now the codomain extendibility of B̃H is
at least |p+ − p−| · |γn+1|−1, which is approximately greater than q

−1/2
n ,

by Lemma 33. Once more the negative Schwarzian derivative implies our
claim.

We can define for each β ∈ Bn a neighborhood U(β) to which B : β → γn

is extendible with small distortion. Here “small distortion” means that
there is some small δ > 0 such that Bx(x1)/Bx(x2) ≤ 1+δ for any x1, x2 ∈
β. This neighborhood is still much greater than β, by a factor C−1θ−1

n , for
a universal constant C > 0.

If β1, β2 ∈ Bn then we say (following [6]) that β1 is subordinated to
β2 if β1 ⊂ U(β2), and that β1 and β2 are independent if neither β1 is
subordinated to β2 nor β2 is subordinated to β1.

Observe that the θ−1
n |β|–neighborhood of a preimage β ∈ Bn is always

contained in the connected component of γn−1\γn to which β belongs (this
can be seen in the arguments above). Therefore to each β ∈ Bn, t ≥ 2 and
η ⊂ D±

t such that Ht−1(η) = β we also assure a θ−1
n |η|–neighborhood of ex-

tendibility contained in D±
t and a neighborhood U(η) where this extension

has small distortion. This allows us to define the notion of subordination
and independence for a pair η1, η2 inside the same fundamental domain
D±

t .
The following Lemma is valid as well for η1, η2 as above.

Lemma 34. If β1 ∈ Bn is subordinated to β2 ∈ Bn then

|β1|
dist(β1, β2)

<∼ q .

Proof. As U(β2) is mapped with small distortion on a neighborhood
of γn and the image of β1 is also a preimage of γn, say β3, which satisfies
|β3| ≤ qndist(β3, γn), the Lemma follows.

3.2. Iterates near the saddle–node bifurcation
For some estimates in the parameter region “beneath renormalization”

(a ∈ J− or σ(a) = −) we will proceed in a slightly different way according
to the value of k. First we take k0 such that if k ≤ k0 and a ∈ J−k
then |H(a, 0)| ≥ 2, maximal with this property. The value of k0 is big
if |γn| is big, so that it can be controlled directly by r (see Lemma 32).
Then we define the following partition of J−: Ja = J−1 , Jb =

⋃k0
k=2 J−k ,

Jc =
⋃k1

k=k0+1 J−k , Jd =
⋃

k>k1
J−k , where k1 will be defined below.
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Let as = supk J−k , corresponding to the lower boundary point of the
renormalization interval R(J), which is the parameter where the saddle–
node bifurcation occurs. We can assume that as = − 1

4 by a linear parame-
ter change of coordinates very near the identity, in view of the δ0–proximity
of H to the true quadratic family. Analogously we can suppose that x0,
the saddle–node point for as, is equal to − 1

2 . The higher order differential
estimates of H are invariant under these changes, although not the absolute
values of Hxx and Ha. But the factor of the linear change of coordinates is
near 1, for example between 1− 10δ0 and 1 + 10δ0, so that for all practical
purposes the new values of Hxx and Ha are still very near respectively to
−2 and 1 and do not affect the estimates.

According to [18] (see also [2]) there are points xl < x0 < xr and a
parameter value ã < as such that for all a ∈ [ã, as] and x ∈ [xl, xr] the
map H is the time–one map of the flow determined by a vector field X. In
fact, xl, xr and ã can be chosen fixed with respect to any family H suffi-
ciently near the quadratic family. Hence the constant δ0, which determines
this proximity, is chosen accordingly to the choice of xl, xr and ã for the
quadratic family. Moreover, if δ0 is sufficiently small, all the bounds on the
derivatives of X can be supposed to be uniform over all such H. We can
write

H(a, x) = x−A(as − a)−B(x− x0)2

+ D(as − a)(x− x0) + E(as − a)2 + ψ(a, x)

where A, B > 0 and

ψ(a, x)
|(a, x)− (as, x0)|2 −→ 0

as (a, x) tends to (as, x0). Analogously,

X(a, x) = −Ã(as − a)− B̃(x− x0)2

+ D̃(as − a)(x− x0) + Ẽ(as − a)2 + ψ̃(a, x)

where Ã, B̃ > 0 and

ψ̃(a, x)
|(a, x)− (as, x0)|2 −→ 0

as (a, x) tends to (as, x0).
We choose xl and xr sufficiently near x0 and ã sufficiently near as so

that the following two Lemmas are satisfied.

Lemma 35. |X(a, x)| ≥ 1
2 Ã(as − a) for all x ∈ [xl, xr] and ã < a < as.
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Proof. Straightforward, using the expressions above.

Lemma 36. There is C > 0 such that |H(a, x)− x| ≤ C|X(a, y)| for all
v ∈ [Hx, x], x ∈ [H−1xl, xr] and ã < a < as.

Proof. If xl, xr and ã are conveniently chosen, then

|H(a, x)| ≤ 2A(as − a) + 2B(x− x0)2

and

|X(a, x)| ≥ 1
2
Ã(as − a) +

1
2
B̃(x− x0)2

implying

|H(a, x)− x| ≤ C̃|X(a, x)|.
Let Mx = min{|X(a, y)|; v ∈ [Hx, x]}. There are only three possibilities for
the point where Mx is attained: 1. Mx = |X(a, x)|, 2. Mx = |X(a, Hx)|,
and 3. Mx = |X(a, y0)| for some y0 ∈ (Hx, x). If 1. is valid then the
Lemma is proven with C = C̃. In case 2., we observe that X(a,Hx) =
DH(x) ·X(a, x), hence |X(a, x)| ≤ 2|X(a,Hx)| if xl ≈ x0 ≈ xr and ã ≈ as,
proving the Lemma with C = 2C̃. Finally in case 3. we observe that

|X(a, y0)| < |X(a, x)| < |X(a,H−1y0)|

since D2X < 0. By the previous argument

|X(a, y0)| > 1
2
|X(a,H−1y0)| > 1

2
|X(a, x)|

and the Lemma is also proven with C = 2C̃.

From now on we fix xl, xr and ã and define a new parameter value a1

between ã and as. The parameter a1 will be sufficiently near as to validate
the following assertions and will define the number k1 of the beginning of
this section in the following way:

k1 = min{k ; J−k ⊂ [a1, as]}.

Define

Γ(a) =
∫ xl

xr

1
X(a, x)

dx

so that

xl = ΨΓ(a)(a, xr),
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where Ψ is the flow of X. We will also use the notation Ψ(t, a, x) ≡ Ψt(a, x)
for this flow.

For as > a > a1 the function Γ is C∞ and strictly increasing (see [2]).
Therefore for each l bigger than some l0 there is a unique a∗l satisfying
Γ(a∗l ) = l. If we write Γ(a) = l + σl(a) then σl : [a∗l , a

∗
l+1] → [0, 1] is

an increasing C∞ diffeomorphism onto [0, 1]. So we can define the inverse
maps

al =
(
σl|[a∗

l
,a∗

l+1]

)−1

: [0, 1] −→ [a∗l , a
∗
l+1].

The proof of the following Lemma is contained in [2].

Lemma 37.

1.liml→∞ l(as − a∗l )
1/2 = M , so that for large l

1
2

M2

l2
≤ (as − a∗l ) ≤ 2

M2

l2
;

2.for a ∈ [a∗l , a
∗
l+1] and large l

(i)C−1l3 ≤ D1Γ(a) ≤ Cl3;

(ii)C−1l5 ≤ D2Γ(a) ≤ Cl5.

Let x ∈ [xl, xr] and let j be the integer such that H l+1xl < Hjx ≤ H lxr.
We are interested in the derivatives of Hj . For that, define first the function

τ(a, z, x) =
∫ x

z

1
X(a, u)

du

which satisfies x = Ψ(τ(a, z, x), a, z) and for each 0 ≤ i ≤ l the function

ti(a, x) = τ(a, Hi(a, xr), x).

The number ti(a, x) is positive and smaller than one if Hi+1xr < x ≤ Hixr.
In this case i + j = l and

Hj(a, x) = Ψ(−σl(a) + ti(a, x), a, xl). (1)

This expression will be used for derivatives of Hj involving the parameter,
but only when i is such that Hx(a, Hixr) < 1. The other cases can be
recovered if we write

Hj(a, x) = Ψ(τ(a,H−l+i(a, xl), x), a, xl) (2)
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and work with estimates on H−1 instead of H.
For the first parameter derivative of ti(a, x) we apply the chain rule

d

da
ti(a, x) =

=
∫ Hi(a,xr)

x

1
X(a, u)2

∂X

∂a
(a, u)du− 1

X(a,Hixr)
d

da
Hi(a, xr). (3)

Lemma 38. Let i be such that Hx(a,Hsxr) < 1 for all s ≤ i. Then∣∣ d
daHi(a, xr)

∣∣ < 2l and
∣∣∣ d2

da2 Hi(a, xr)
∣∣∣ ≤ Cl3.

Proof. As, for each 1 < s ≤ i

d

da
Hs(a, xr) = Ha(a,Hs−1) + Hx(a,Hs−1)

d

da
Hs−1(a, xr)

then, using the hypothesis and Ha ' 1,
∣∣∣∣

d

da
Hs(a, xr)

∣∣∣∣ < 2 +
∣∣∣∣

d

da
Hs−1(a, xr)

∣∣∣∣ .

The result follows by induction. For the other derivative the reasoning is
analogous.

Lemma 39. There is C > 0 such that for all i such that Hx(a, x) < 1,
x ∈ [Hi+1xr,H

ixr] and a > a1 then
∣∣∣∣

d

da
ti(a, x)

∣∣∣∣ ≤ Cl3.

If i = 0 the derivative is simply bounded by C.

Proof. The minimum of |X(a, x)| in [Hi+1xr,H
ixr] is attained for some

u0. By Lemma 36, |Hixr − Hi+1xr| ≤ C|X(a, u0)|. So the first term of
the R.H.S. of Equation (2) is bounded by Cl2, according to Lemma 35
and Lemma 37.1.. Also by these Lemmas and Lemma 38, the second term
is bounded by Cl3. For i = 0 observe only that |X(a, x)| ≥ C−1 for all
x ∈ [Hxr, xr], a > a1.

Lemma 40. There is C > 0 such that for all i such that Hx(a, x) < 1,
x ∈ [Hi+1xr,H

ixr] and a > a1 then

∣∣∣∣
d2

da2
ti(a, x)

∣∣∣∣ ≤ Cl5.
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Proof. Write

d2

da2
ti(a, x) =

d

da

[
∆(a, x, Hi(a, xr))− 1

X(a,Hixr)
d

da
Hi(a, xr)

]

where

∆(a, x, y) =
∫ y

x

[X(a, u)]−2 ∂X

∂a
(a, u)du.

and proceed as in Lemma 39.

Lemma 41. There is C > 0 such that for a > a1

1.C−1 ≤ |Hj
x| ≤ Cl2 for all x ∈ [xl, xr];

2.C−1 ≤ |Hj
x| ≤ C for all x ∈ [Hxr, xr];

3.|Hj
a| ≤ Cl3 for all x ∈ [xl, xr];

4.|Hj
a| ≥ C−1l3 for all x ∈ [Hxr, xr];

5.|Hj
aa| ≤ Cl6 for all x ∈ [xl, xr];

6.|Hj
xx| ≤ C|Hj

x|2 for all x ∈ [xl, xr];
7.|Hj

xxx| ≤ C|Hj
x|3 for all x ∈ [xl, xr];

8.|Hj
xa| ≤ C|Hj

x|l3 for all x ∈ [xl, xr];
9.|Hj

xxa| ≤ C|Hj
x|2l3 for all x ∈ [xl, xr].

Proof. The proof is carried on with the help of the formula in the
Appendix. We use Equation (1), assuming that x ∈ [Hi+1xr,H

ixr], for
i such that Hx ◦ Hixr < 1. Otherwise a similar procedure can be done
using Equation (2) for Hj and adapting Lemmas 39 and 40 for H−1 and
xl instead of H and xr.

1. |Hj
x| ≤ C min{|X(a, x)|−1;x ∈ [xl, xr]}, according to (A.1) (see Ap-

pendix). So |Hj
x| ≤ Cl2 using Lemmas 35 and 37.1. As |X| ≥ C−1 in

[Hxl,H
−1xl] and |X| ≤ C in [xl, xr] the other inequality follows easily;

2. |X| ≥ C in [Hxr, xr];
3. the first term of (A.4) is bounded by Cl3, by Lemmas 37.2(i) and

39. The function Ψ is evaluated in a bounded domain, since | − σl +
ti| ≤ 2 and λ ∈ [a1, as], so ∂Ψ

∂a is bounded by some constant C (if one
wants to be more precise, it is enough to observe that θ = ∂Ψ

∂a satisfies the
differential equation θ′ = ba,x(t)+da,x(t)θ, where ba,x(t) = Xa(a,Ψ(t, a, x))
and da,x(t) = Xx(a,Ψ(t, a, x)));

4. by Lemma 39, if i = 0 then |∂ti

∂a | ≤ C, and |σ̇l| ≥ C−1l3 by Lemma
37.2(i). As |X ◦Hj | ≥ C−1 and |∂Ψ

∂a | ≤ C the result follows;
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5. by Lemmas 37.2(ii) and 40, the dominant term of (A.6) is

Hj
a ·Xx ◦Hj ·

[
−σ̇l +

∂ti
∂a

]
,

which is smaller than Cl6 by item (3), Lemma 37.2(i) and Lemma 39;
6. using (A.2), with |X ◦Hj | > C−1;
7. using (A.3);
8. |Hj

xa| ≤ C|X|−1 + C|X|−1 · |Hj
a| + |X|−2 ≤ C|X|−1(l3 + |X|−1) by

(A.5); but |X|−1 ≤ Cl2, so |Hj
xa| ≤ C|X|−1l3 ≤ C|Hj

x|l3;
9. |Hj

xxa| ≤ C|X|−3 + C|X|−2 · |Hj
a| ≤ C|Hj

x|2l3, by (A.5).

Lemma 42. Let x ∈ [−2,H(0)] ∪ [−H(0), 2] and FS be the least power
of H such that FS(x) ≤ −2. Then

|FS,x|−1 ,

∣∣∣∣
FS,xx

(FS,x)2

∣∣∣∣ ,

∣∣∣∣
FS,xxx

(FS,x)3

∣∣∣∣ ≤ C1; ,

|FS,a| , |FS,x| ,

∣∣∣∣
FS,xx

FS,x

∣∣∣∣ ,

∣∣∣∣
FS,xa

FS,x

∣∣∣∣ ,

∣∣∣∣
FS,xxa

(FS,x)2

∣∣∣∣ ≤ C2 ,

|FS,aa| ≤ C3 ,

where (C1, C2, C3) = (C, Cl3, Cl6) if a ∈ Jd and (C1, C2, C3) = (C,C, C)
if a ∈ Jc. Moreover if x ∈ [H2(0), H(0)] then |FS,a| ≥ C−1l3 if a ∈ Jd,
|FS,a| ≥ C−1 if a ∈ Jc and |FS,a|, |FS,xx| ≤ C in both cases.

Proof. When a ∈ Jd it suffices to divide the orbit of x into three parts:
to the right of xr, inside [xl, xr] and to the left of xl. The first and third
parts have all the derivatives bounded by constants, the second is dealt
with Lemma 41 and the composition of the three gives the result. For
a ∈ Jc we bound all the derivatives by some constant which may depend
on the choice of a1.

Remark. The constant C > 0 that appear in the lemmas of this subsection
depends mostly on the estimates for FS when a ∈ Jc ∪ Jd and is directly
affected by the choice of a1 (as well as xl and xr). However this constant
can be ‘killed’ by the small constants r, p, q, δ0 and δ1 (and even |Hs

x| for
s ≥ k0) since by their dependence on ε (or M) they can be made small
after the choice of a1, xl and xr.

3.3. Horseshoe estimates
Consider now the parameter region “beyond renormalization”, i.e. σ = +

(or else a ∈ J+), recalling the definitions given in Subsection 1.13. There
we have defined a partition of the interval [x−, x+]: (a) the central interval
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[p−, p+], which is the preimage of {x ≥ x+}; (b) the point q+ ∈ (p+, x+),
fixed point of H, and its preimage q− ∈ (x−, p−); (c) a partition {ω+

i =
[q+

i , q+
i−1]}i≥1 (resp. {ω−i = [q−i−1, q

−
i ]}i≥1) of [q+, x+] (resp. [x−, q−]) such

that Hi(ω±) = [q−, q+]; and (d) a partition {α+
i = [q̃+

i , q̃+
i−1]}i≥1 (resp.

{α−i = [q̃−i−1, q̃
−
i ]}i≥2) of [p+, q+] (resp. [q−, p−]) such that Hi(α±i ) = ω+

i−1.
Observe that q̃+

1 = q+ and q̃−1 = q−.
The following two Lemmas are easily proven by straightforward calcula-

tions.

Lemma 43. Let x 6= y be such that H(a, x) = H(a, y). Then |x|/|y| ≤
1− 2δ0, if δ0 is small.

Lemma 44. |x+| ≥ 2(1− δ0) if δ0 is small.

Define d = da = H(a, 0) − x+
a and for x ∈ [x−, x+] \ [p−, p+] let l =

l(x) ≥ 1 be such that H lx ∈ [p−, p+]. With these hypothesis we state the
following Lemmas.

Lemma 45. If d ≥ 1
2 then |Hj

x| ≥
(

4
3

)j for all 1 ≤ j ≤ l.

Proof. For all x 6∈ [p−, p+], |Hx| >∼ 2d1/2 > 4
3 .

Lemma 46. If d < 1/2 there is C > 0 such that the following assertions
are valid.

1.|Hj
x| ≥ C−1d1/2(4/3)j, for all 1 ≤ j ≤ l;

2.|H l
x| ≥ (4/3)l;

3.
∑j

i=0 |Hi
x|−1 ≤ Cd−1/2;

4.
∑j

i=1 |Hi
x ◦Hj−i|−1 ≤ Cd−1/2, for all 1 ≤ j ≤ l;

5.
∑l

i=1 |Hi
x ◦H l−i|−1 ≤ C.

Proof. Immediate consequence of Lemma 47, that we state in the se-
quel.

Lemma 47. Let d < 1/2 and 0 ≤ n0 < n1 < n2 < . . . < ns ≤ l be such
that Hnt ∈ [q−, q+] and Hj 6∈ [q−, q+] if j 6= nt, for all t = 0, . . . , s. Then,
for all t,

1.|Hx ◦Hnt | ≥ 3
2d1/2.

2.|Hj
x ◦Hnt | ≥ 2j−1|Hx ◦Hnt |, for all 2 ≤ j ≤ nt+1 − nt;

3.|Hnt+1−nt
x ◦Hnt | ≥ (

4
3

)nt+1−nt ;
4.|Hj

x| ≥ 2j, for j ≤ n0.

Proof. For 0 ≤ t ≤ s, the point Hnt of the orbit belongs to [q−, p−] ∪
[p+, q+], hence to some α±i , for i ≥ 2. If t < s then Hnt+1 is the first return
to [q−, q+], and in this case nt+1 − nt = i. The Lemma follows from the
estimates below.
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i. 2(1+ d
4 −cδ0) ≤ x+ ≤ 2(1+d+cδ0) and 1+ d

4 −cδ0 ≤ q+ ≤ 1+2d+cδ0,
for some constant c > 0;
ii. if x ≤ q−1 or x ≥ q+

1 then |Hx| ≥ 3;
iii. if d < 1/2 and δ0 is small then |Hx| ≤ 5 for all x ∈ [x−, x+];
iv. as a consequence of the previous item, x+ − q+

i ≥ 5−i, for all i ≥ 0;

v. let x ∈ α±i , i ≥ 2; then |Hx| >∼ |Hx(q̃+
i−1)| ' 2

√
d + x+ − q+

i−2 ≥ 2(x+−
q+
i−2)

1/2 ≥ 10× 5−i/2. Hence, for x ∈ α±i , i ≥ 2,

|Hi
x| ≥ 10× 5−i/2 × 3i−2 × 2 >

(
4
3

)i

using that |Hx| ≥ 2 for x ∈ [q−1 , q+
0 ] ∪ [q+

0 , q+
1 ].

Lemma 48. Let d < 1/2, x ∈ [x−, x+]\ [p−, p+] and l be the first integer
such that H lx ∈ [p−, p+]. Then there is C > 0 such that

1.
∣∣∣Hj

a

Hj
x

∣∣∣ ≤ Cd−1/2 for all 1 ≤ j ≤ l;

2.
∣∣∣ 1

Hl−j
x ◦Hj

Hj
xx

(Hj
x)2

∣∣∣ ≤ Cd−1/2 for all 1 ≤ j ≤ l;

3.
∣∣∣ 1

Hl−j
x ◦Hj

Hj
xa

(Hj
x)2

∣∣∣ ≤ Cd−1 for all 1 ≤ j ≤ l;

4.
∣∣∣ Hl

aa

(Hl
x)2

∣∣∣ ≤ Cd−3/2;

5.
∣∣∣ Hl

xxx

(Hl
x)3

∣∣∣ ≤ Cd−1;

6.
∣∣∣ Hl

xxa

(Hl
x)3

∣∣∣ ≤ Cd−3/2;

Proof. The proof is a straightforward application of the Appendix, the
properties of H, the preceding Lemmas and also items (1), (2) and (3),
which are used to prove (3), (4), (5) and (6).

Lemma 49. Let d ≥ 1
2 , x ∈ [x−, x+] \ [p−, p+] and j ≥ 1 such that

Hjx ∈ [x−, x+]. Then

1.
∣∣∣Hj

a

Hj
x

∣∣∣ < 2d−1/2;

2.
∣∣∣ Hj

xx

(Hj
x)2

∣∣∣ < 2d−1;

3.
∣∣∣ Hj

xa

(Hj
x)2

∣∣∣ < 3d−1;

4.
∣∣∣ Hj

aa

(Hj
x)2

∣∣∣ < 10d−3/2;

5.
∣∣∣ Hj

xxx

(Hj
x)3

∣∣∣ < 25d−3/2;
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6.
∣∣∣ Hj

xxa

(Hj
x)3

∣∣∣ < 25d−3/2;

Proof. If d ≥ 1
2 all iterates are expanded by M ≡ 2d1/2. We use the

Appendix, together with the following facts: jM−j ≤ 3
2 for all j ≥ 1 and

d < 1
2 |γn−1|, hence |γn|−1 < M−1.

3.4. Estimates on expanding regions
In this subsection we will be dealing with the properties of powers of

H taken far away from the origin. To be more specific, we consider as
hypothesis an initial point x0 outside [x−, x+] if σ = +, or outside [−2, 2]∪
H−1([H2(0),H(0)]) if σ = − (see Figures 6 and 7). We denote xt = Ht(x0)
for 0 ≤ t ≤ j, where xj ∈ D−

1 and j ≥ 1. The following two lemmas relate
xt and xt+1 for subsequent use in Lemma 52.

Lemma 50. If σ = + then |xt|2 >∼ |xt+1| for all 0 ≤ t ≤ j − 1.

Proof. As xt < 0 for all t ≥ 1, a + |xt+1| ' |xt|2 together with a > 0
implies the Lemma.

Lemma 51. If σ = − then |x0|2 >∼ 2
3 |x1| and |xt|2 >∼ 8

9 |xt+1| for all 1 ≤
t ≤ j − 1.

Proof. For all t ≥ 0

|xt+1|
|xt|2 ' |H(0)|+ |xt|2

|xt|2 = 1 +
|H(0)|
|xt|2 .

We consider two cases: if |H(0)| ≥ 2 we use |xt| >∼ |H(0)| and if |H(0)| < 2
we use |xt| ≥ 2. In both cases

|H(0)|
|x0|2

<∼
1
2

and, for t ≥ 1,

|H(0)|
|xt|2 ≤ |H(0)|

|x1|2
<∼
|H(0)|
|x0|4

<∼
1
8
,

proving the Lemma.

In what follows we consider an additional hypothesis. We suppose that
xj ∈ β for some β ∈ Bn and let η be such that x0 ∈ η and Hj(η) = β.

Lemma 52. Following the notation above,

|β| ·
j∑

t=1

1
Hj−t

x (xt)[Hx(xt−1)]2
< q.
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Proof. First we verify that the sum is geometric, with the dominant
term given by t = j. Dividing the (t + 1)–term by the t–term we obtain,
approximately,

[Hx(xt−1)]2

Hx(xt)
' 4|xt−1|2

2|xt| .

By Lemmas 50 and 51 (in fact 51 gives the worst estimate) this quotient
is greater than 8

5 for t ≥ 2 and greater than 6
5 for t = 1, characterizing

the geometric growth with t. The dominant term is given by t = j and is
approximately equal to

1
4

1
|xj−1|2

<∼
2
9

1
|xj | .

The Lemma follows since |β| · |xj |−1 ≤ q.

Remark. As a Corollary of the proof of Lemma 52 we also have

|β|2 ·
j∑

t=1

1
[Hj−t

x (xt)]2 · [Hx(xt−1)]4
< q2

and, for 1 ≤ s < j,

|Hs(η)| ·
s∑

t=1

1
Hs−t

x (xt) · [Hx(xt−1)]2
< q,

using also Lemma 33 for this inequality. Moreover we observe that by
distortion properties we have |Hs(η)| ' |β| · |Hj−s

x (xs)|−1.

We call FE = Hj and, using the Appendix together with the estimates
above and the induction hypotheses, we obtain the following Lemma.

Lemma 53.

1.
∣∣∣FE,a

FE,x

∣∣∣ <∼ 1
3 ;

2.|β| ·
∣∣∣ FE,xx

(FE,x)2

∣∣∣ < 2q;

3.|β| ·
∣∣∣ FE,xa

(FE,x)2

∣∣∣ < 2q;

4.|β| ·
∣∣∣ FE,aa

(FE,x)2

∣∣∣ < 2q;

5.|β|2 ·
∣∣∣ FE,xxx

(FE,x)3

∣∣∣ < 4q2;

6.|β|2 ·
∣∣∣ FE,xxa

(FE,x)3

∣∣∣ < 5q2.
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Proof. Observe also that |β| · |γn|−1 · |FE,x|−1 <∼ q.

The following Lemma is about the expansion in the critical value’s orbit
when σ = + and d < 1/2.

Lemma 54. If σ = + and d < 1
2 then |Hesc−1

x (H(0))| ≥ 1
2
|γn−1|
|γn| d−1 ≥

1
2r−1d−1, where d was defined in Subsection 3.3.

Proof. Write k = esc to avoid a cumbersome notation. Let x̂ ∈ D+
k+1

be such that |Hk
x (x̂)| · |D+

k+1| = |D−
1 |. We have

|Hk−1
x (H(0))| ≥ |Hk−1

x (x̂)| = |D−
1 |

|D+
k+1|

· |Hx(Hk−1x̂)|−1.

We have |D+
k+1| < d and |Hx(Hk−1x̂)| < |Hx(d−1 )|. Moreover, |D−

1 | '
1
2 |γn−1| and also |Hx(d−1 )| <∼ |γn|, so that

|Hk−1
x (H(0))| > 1

2
d−1 |γn−1|

|γn| .

3.5. Tools to prove differential conditions
We set now all the notational convention needed to the following two

sections, in such a way that all the statements and symbols have to be
addressed to this introduction or to previous definitions (mainly Subsection
1.13).

Let β∗ ∈ Bn be the preimage of the central branch which contains
Hesc(0), esc = esc(a), and let B∗ : β∗ → γn be its associated func-
tion. We write H ′ = B∗ ◦ F ∗E ◦ F ∗S ◦ H : γn+1 → γn if σ = −, and
H ′ = B∗ ◦ F ∗E ◦H : γn+1 → γn if σ = +, according to the decomposition
of orbits explained in Subsection 1.13. Here γn+1 = H−1(η∗), where η∗ is
the connected component of H−esc+1(β∗) to the left of the origin if σ = −,
to the right of the origin if σ = + (and η∗ = β∗ if esc = 1). The function
associated to η∗ is denoted by G∗ : η∗ → γn and |G∗w| ' |η∗|−1 · |γn|, by
usual distortion properties.

For each π ∈ Pn+1 in γn there is an associated diffeomorphism P :
π → γn given by the composition P = B ◦ FE ◦ FS ◦ F0 if σ = − or
P = B ◦FE ◦F0 ◦FH if σ = +, where B : β → γn is the function associated
to an element β ∈ Bn contained in D−

1 .
Moreover, for each β̃H ∈ BH

n+1 the associated function B̃H : β̃H → γn+1

is a power of H whose corresponding orbit is done inside [x−, x+]. This
kind of preimage only occurs for σ = + as it has been stressed in Subsection
1.13.
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For each β̃ ∈ Bn+1 there are two ways of writing its associated function
B̃ : β̃ → γn+1: B̃ = Pj ◦ Pj−1 ◦ · · · ◦ P1 or B̃ = F̃ ◦ Pj−1 ◦ · · · ◦ P1, for
some j ≥ 1, where each Pi : πi → γn is associated to πi ∈ Pn+1, for all
i = 1, . . . , j. The second decomposition is allowed only if σ = +. By the
definition of πi ∈ Pn+1 there is an element βi ∈ Bn such that πi is sent
onto βi by some power of H. To be more specific, we can formally write,
taking together cases σ = + and σ = − and in the same way as described
before,

Pi = Bi ◦ FE,i ◦ FS,i ◦ F0,i ◦ FH,i,

where each one of the functions, except Bi, can be the identity, depending
on the sign of σ or the position of πi. We call ηi = (F0,i ◦ FH,i)(πi),
ξi = FH,i(πi) and Gi = Bi ◦ FE,i ◦ FS,i : ηi → γn.

Following Subsection 3.1 we can also define a concentric C−1θ−1
n |ηi|–

neighborhood U(ηi) of ηi such that G : ηi → γn is extendible with δ–
distortion to U(ηi), so that we can use the notion of subordination for the
pair (ηi, η

∗) (ηi and η∗ will be automatically independent if ηi does not
belong to the same fundamental domain that η∗ belongs).

For 1 ≤ i ≤ j − 1 define the compositions Ai = Pi ◦ Pi−1 ◦ · · · ◦ P1,
Aj ≡ B̃, and B̃i = Pj ◦ · · · ◦ Pi or B̃i = F̃ ◦ Pj−1 ◦ · · · ◦ Pi, according to
the case considered, and the intervals β̃i ≡ B̃−1

i (γn+1). In the first case,
β̃i ⊂ π̃i ≡ B̃−1

i (γn) ⊂ πi. Also the definition Wi = FH,i+1 ◦ Ai will be
important for our purposes.

The following Lemma collects a few small tricks which will be used in
the proof of many other Lemmas.

Lemma 55.

1.|η∗| · |γn|−1 < 1;
2.|η∗| · |γn|−2 < p (and other assertions involving βi’s, ηi’s, etc);
3.|γn+1| · 1

2 |Wi|−1 <∼ 1 for i = 0, . . . , j − 1;
4.|Bw| ' |γn| · |β|−1 for β ∈ Bn;
5.if FS,i 6= Id then |FS(ηi)| < 10q, if F ∗S 6= Id then |η∗| < 10q and

|γn+1|2 < 40q.

Proof. 1. By induction, |B∗
w| > 1 and F ∗E , F ∗E ◦ F ∗S are expanding;

2. for σ = − use Lemma 33, the expansion of F ∗E and the geometry; for
σ = + analogous, taking into account that now dist(η∗, ∂γn−1) is always
smaller than |ImH|; 3. for Wi does not belong to γn+1; 4. by the small
distortion property of the preimages of the central branch; 5. if FS,i is
non–trivial, FS,i(ηi) ⊂ F−1

E,i(D
−
1 ) and we apply Lemma 33 to the fact that

|F−1
E,i(D

−
1 )| is not much bigger than one; the other two inequalities follow

similar reasonings.
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Lemma 56.

1.C−1l3 ≤ |H ′
a| · |G∗x|−1 ≤ Cl3 if a ∈ Jd ;

2.C−1 ≤ |H ′
a| · |G∗x|−1 ≤ C if a ∈ Jc ;

3.1 ≤ |H ′
a| · |G∗x|−1 < 3

2 if a ∈ Jb ;
4.|H ′

a| · |G∗x|−1 ' 1 if a ∈ Ja .

Proof. We write, using the Appendix:

H ′
a

G∗x
= Ha +

F ∗S,a

F ∗S,x

+
1

F ∗S,x

· F ∗E,a

F ∗E,x

+
1

F ∗S,xF ∗E,x

· B∗
a

B∗
x

.

Lemma 42 says that C−1 ≤ |F ∗S,x| ≤ C for a ∈ Jc∪Jd, C−1l3 ≤ |F ∗S,a| ≤ Cl3

if a ∈ Jd, C−1 ≤ |F ∗S,a| ≤ C if a ∈ Jc and F ∗S = Id if a ∈ Ja ∪ Jb. Moreover
|F ∗E,a| · |F ∗E,x|−1| <∼ 1

3 by Lemma 53 and |B∗
a| · |B∗

x|−1 < δ1 by induction,
and the Lemma follows.

Lemma 57. If σ = + then 2
3

<∼ |H ′
a| · |G∗x|−1 <∼ 1.

Proof. By an analogous development as in the proof of Lemma 56, but
now paying attention to signals.

Corollary 58. If σ = + and d < 1
2 then |H ′

a| ≥ 1
4
|γn−1|
|γn| d−1.

Proof. Combine Lemmas 57 and 54.

Lemma 59. If σ = −, let G = B ◦ FE ◦ FS at a point x that does not
belong to H−1[H2(0),H(0)] or, if σ = +, let G = B ◦ FE at a point x that
does not belong to [x−, x+], where B : β → γn is the function associated to
some β ∈ Bn. Then

1.
∣∣∣ Ga

GxH′
a

∣∣∣ < C |η∗|
|γn| ;

2.
∣∣∣ Gxx

(Gx)2

∣∣∣ < 2δ1|γn|−1;

3.
∣∣∣ Gxxx

(Gx)3

∣∣∣ < 2δ1|γn|−2;

4.
∣∣∣ Gxa

(Gx)2H′
a

∣∣∣ < Cδ1
|η∗|
|γn|2 ;

5.
∣∣∣ Gaa

(Gx)2(H′
a)2

∣∣∣ < Cδ1
|η∗|2
|γn|3 ;

6.
∣∣∣ Gxxa

(Gx)3H′
a

∣∣∣ < Cδ1
|η∗|
|γn|3 .

Proof. With the Appendix and almost all the previous Lemmas, pro-
vided q is sufficiently small with respect to δ1.

As an immediate application of Lemma 59 we can prove the differential
conditions of H ′ = G∗ ◦H, since G∗ satisfies the hypothesis of Lemma 59.
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Lemma 60. |H ′
xx| ' 2|G∗x ◦H| in γn+1.

Proof. We write

H ′
xx = G∗xx(Hx)2 + G∗xHxx.

As |Hx|2 ' 4|x|2 <∼ |γn+1|2, |Hxx| ' 2 and |G∗x| ' |γn| · |η∗|−1 then

∣∣∣∣
G∗xx(Hx)2

G∗xHxx

∣∣∣∣ <∼
1
2
|γn+1|2 · |γn|

|η∗| ·
∣∣∣∣

G∗xx

(G∗x)2

∣∣∣∣ .

By Lemma 59 and since |γn+1|2 <∼ 4|η∗| we conclude that |H ′
xx| ' |Hxx| ·

|G∗x| and the Lemma is proven.

Lemma 61. For x ∈ γn+1

1.
∣∣∣xH′

xxx

H′
xx

∣∣∣ < δ0;

2.
∣∣∣xH′

xa

H′
a

∣∣∣ < δ0;

3.|γn| ·
∣∣∣ H′

aa

(H′
a)2

∣∣∣ < δ0;

4.|γn| ·
∣∣∣ H′

xxa

H′
xxH′

a

∣∣∣ < δ0.

Proof. We use the Appendix, Lemma 59 for G∗ and many other lem-
mas.

In Subsection 1.14 we used the following Lemma.

Lemma 62. Whenever esc > 1 then |Hesc
a (0)| ≥ Ha(0)|.

Proof. We write Hesc = FE ◦ FS ◦ H if σ = − and Hesc = FE ◦ H
if σ = +. In the latter case, Hesc

a = FE,a + FE,x, with FE,x < 0 and
|FE,a| · |FE,x|−1 <∼ 1

3 , by Lemma 53. But |FE,x| ≥ 4 and the Lemma follows
in this case. In the former case, Hesc

a = FE,a + FE,x(FS,a + FS,xHa). Since
in this case all x–derivatives are positive on iterates of the critical value
and Ha ' 1, this number is positive. The Lemma follows since FE,a > Ha

(use the Appendix and the fact that in expanding regions the derivatives
are bigger than one).

3.6. Mean expansion
The main goal of this subsection is to obtain some properties for the

x–derivative of the functions Pi that enter in the composition of B̃. This
is will be the main ingredient to control distortion of mixed derivatives.

Let Y be the distance between the center of H(β̃) and H(0), let Z =
|ImH| and X = Z − Y . Define ω = X/Z and τ = X/Y . The variables X,
Y , Z, ω and τ are functions of β̃.
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ω = X
Z

1
2

Case A: ω < 1
2

Case B: ω >

β

H(β)

X

Y

Z

H

FIG. 9. Two cases for the position of β̃.

We say that β̃ is in Case A if ω < 1
2 and in Case B otherwise (see Figure

9).
Here we determine once and for all the neighbourhood U(β̃) of β̃ referred

to in Subsection 1.9. Writing B̃ = Pj ◦ · · · ◦ P1 or B̃ = F̃ ◦ Pj−1 ◦ · · · ◦ P1,
as in the beginning of the previous Subsection, we observe in particular
that, in Case A, P1 = B1 ◦ H, and therefore U(β̃) ⊂ π1. In Case B it
will be useful to note that there are basically two cases to consider: (a)
dist(β̃, ∂γn) ≥ 2

15 > 1
8 and (b) otherwise. The latter situation also obliges

P1 = B1 ◦H and U(β̃) ⊂ π1.

Lemma 63. In Case B, if ImH ′ ∩ U(β̃) 6= ∅ then

|ImH ∩ η∗| > 1
8
|η∗|.

Proof. If dist(β̃, ∂γn) ≥ 2
15 then the Lemma is immediate. Otherwise

U(β) ⊂ π1 and as G∗ has small distortion,

|ImH ∩ η∗|
|η∗| ' |ImH ′|

|γn| .

Since ImH ′ ∩π1 6= ∅ then |ImH ′ ∩ γn| ≥ dist(π1, ∂γn). But dist(π1, ∂γn) '
dist(β̃, ∂γn) > (1−

√
2

2 )|ImH|1/2 > 1
8 |γn| and the Lemma follows.

Lemma 64. In Case A, if ImH ′ ∩ π1 6= ∅ then

|γn+1| >∼ ω1/2|η∗|1/2.
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Proof. As dist(β1, ∂γn−1) ' ω|ImH| and |Hx| <∼ |γn| then

dist(π1, ∂γn) >∼ |γn|−1ω|ImH|

Therefore

|γn+1| >∼ 2
[
dist(π1, ∂γn)

|η∗|
|γn|

]1/2

>∼ ω1/2|η∗|1/2.

Lemma 65. In Case A, if ImH ′ ∩ π1 6= ∅ then

|P1,x| >∼
1
2
p−1ω−1.

Proof. In Case A, P1 = B1◦H, hence |P1,x| = |B1,x|·|Hx| >∼
|γn|
|β1| ·

√
2

2 |γn|.
But |β1| < pω|γn|2 by Lemma 55.

Lemma 66. For all i = 1, . . . , j, if ηi is subordinated to η∗ then |Pi,x| ≥
|(Gi ◦H)x| ≥ q−1/2p−1/2.

Proof. As Pi = Gi ◦ H ◦ FH,i and FH,i is an expansion (if it is
not the identity), by Lemmas 45 and 46, then |Pi,x| ≥ |(Gi ◦ H)x| ≥
q−1/2p−1/2. We have |Gi,x| ' |γn| · |ηi|−1 and since dist(ηi, η

∗) >∼ q−1|ηi|,
then |Hx| >∼ 2q−1/2|ηi|1/2. Hence

|(Gi ◦H)x| > 2q−1/2|γn| · |ηi|−1/2 > q−1/2p−1/2

by Lemma 55.

Lemma 67. If η∗ is subordinated to ηi or η∗ and ηi are independent then

|Pi,x| ≥ |(Gi ◦H)x| > p−1 |η∗|1/2

|γn| .

Proof. In both cases dist(ηi, η
∗) >> |η∗|, so that |Hx| >> |η∗|1/2.

Hence

|(Gi ◦H)x| >>
|η∗|1/2

|γn| · |γn|2
|ηi|

and the Lemma follows using Lemma 55.
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Lemma 68. Let x̃ be the point in ξi = FH,i(πi) at the greatest distance
from the origin. Then

|(Gi ◦H)x(x̃)| >∼ max
x∈ξi

|(Gi ◦H)x(x)|.

Proof. As the distortion of Gi is small any eventual big non–uniformity
of (Gi ◦H)x is due to H. In other words, as |Gi,x| is almost constant in ηi

and |Hx|ξi
| attains its maximum at x̃, the Lemma follows.

Lemma 69. Let x ∈ ξi and let

ω̂ = ω̂(Hx) = |ηi|−1 · dist(Hx, boundary point of ηi nearest η∗).

Then |Pi,x(F−1
H,i(x))| ≥ |(Gi ◦H)x(x)| ≥ p−1/2ω̂1/2.

Proof. We have

1
|ξi|

∫

ξi

|(Gi ◦H)x|dx =
|γn|
|πi|

>∼ 2p−1/2

hence |(Gi ◦H)x(x̃)| > 3
2p−1/2, where x̃ is defined as in Lemma 68. Write

|(Gi ◦H)x(x)| = |(Gi ◦H)x(x̃)| ·
∣∣∣∣
Gi,x(Hx)
Gi,x(Hx̃)

∣∣∣∣ ·
∣∣∣∣
Hx(x)
Hx(x̃)

∣∣∣∣ >
|x|
|x̃|p

−1/2.

It is easy to see that |xx̃ | > ω̂1/2, proving the Lemma.

Corollary 70.

1.If B̃ = Pj ◦ · · · ◦ P1 then |Pj,x| > (4p)−1/2 for all x ∈ P−1
j (γn+1);

2.if B̃ = F̃ ◦Pj−1◦· · ·◦P1 then |Pj−1,x| > (10p)−1/2 for all x ∈ P−1
j−1(β̃H);

3.more generally, if FH,i+1 6= Id for some i = 1, . . . , j − 1 then |Pi,x| >
(10p)−1/2 for all x ∈ P−1

i (πi+1).

Proof. Use Lemma 69, with ω̂ ' 1
2 in the first case and ω̂ > 1

10 in the
second and third cases.

Remark. The conclusion for the Pi,x’s in the Corollary 70 are exactly the
same for the corresponding (Gi ◦H)x’s.

Lemma 71. For all i = 1, . . . , j

∣∣∣∣
Pi,a

Pi,xH ′
a

∣∣∣∣ < C(
|γn|
|γn−1| +

|η∗|
|γn| · |Wi−1|−1) ,
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or even smaller than C |η∗|
|γn|W

−1
i−1 if FH,i = Id.

Proof. Write Pi = Gi ◦ H ◦ FH,i and use the Appendix with Lemmas
56, 57, 59, 48 and 49. If FH,i 6= Id but d ≥ 1

2 then also in this case the
bound can be taken as C |η∗|

|γn|W
−1
i−1.

Lemma 72. In Case A
∣∣∣∣

P1,a

P1,xH ′
a

∣∣∣∣ ≤ C(r + p).

Proof. It is enough to apply Lemma 71 after observing that in Case A,
|W0|−1 < 2p1/2|η∗|−1/2, and since |η∗|1/2 · |γn|−1 < p1/2, by Lemma 55.

Lemma 73. In Case B, if ImH ′ ∩ U(β̃) 6= ∅ then

∣∣∣∣
Pi,a

Pi,xH ′
a

∣∣∣∣ < C
|γn+1|
|γn|

for all i = 1, . . . , j.

Proof. By Lemma 63, |Wi−1| > 1
3 |η∗|1/2 for all i = 1, . . . , j, hence by

Lemmas 63 (implying |γn+1| > 2
3 |η∗|1/2) and 71 we obtain the inequality.

Lemma 74. In Case A, if ImH ′ ∩ π1 6= ∅ then

|P1,x|−1 ·
∣∣∣∣

Pi,a

Pi,xH ′
a

∣∣∣∣ < p

for any i = 1, . . . , j.

Proof. In Case A, |P1,x| ≤ 2pω, by Lemma 65. On the other hand, as
|Wi−1|−1 < |γn+1|−1 < ω−1/2|η∗|1/2, by Lemma 64, then the expression
above is smaller than

2pωC(r +
|η∗|1/2

|γn| ω−1/2),

which is smaller than p if r and p are sufficiently small.

Lemma 75. Let 1 ≤ i ≤ j − 1. If |Pi,x| ≤ 2 for some x0 ∈ P−1
i (πi+1)

then

1.|(Pi+1 ◦ Pi)x| ≥ 1
8p−2,

2.|Pi,x|−1 ·
∣∣∣ Pi+1,a◦Pi

(Pi+1,x◦Pi)H′
a

∣∣∣ ≤ p,
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for all x ∈ P−1
i (πi+1).

Proof. Let x ∈ P−1
i (πi+1) be such that |Pi,x(x)| ≤ 2 and z = FH,i(x).

It means, by Lemma 69, that ω̂(Hz) ≤ 4p. As the distortion of Gi is small,
then we have dist(πi+1, ∂γn) · |γn|−1 <∼ ω̂. It is not difficult to see that in
fact dist(x, ∂γn) · |γn|−1 ' ω̂ for all x ∈ πi+1. Let us estimate Pi+1,x for
x ∈ πi+1 as a function of ω̂, if ω̂ < 5p. First, we note that in this case
H(πi+1) = βi+1.

Let Ŷ be the distance between the center of βi+1 and T (0), Ẑ = Z =
|ImH| and X̂ = Ẑ− Ŷ . We have |Hx ◦Pi| >∼ 2Ŷ 1/2 restricted to P−1

i (πi+1)

and |Bi+1,x ◦H ◦ Pi| ' |γn| · |βi+1|−1 ≥ |γn|p−1X̂−1. But 1
2 |γn| '

√
Ẑ =√

Ŷ + X̂ implies

|Pi+1,x| = |Bi+1,x ·Hx| ≥ 4p−1

(
Ŷ

X̂

)1/2
√

1 +
Ŷ

X̂

for all x ∈ πi+1. We claim that Ŷ X̂−1 ≥ (10ω̂)−1, which implies, by
Lemma 69, the first assertion of the Lemma.

To prove the claim, observe only that Y ≥
[√

Z (1− 4ω̂)
]2

.

To prove the second assertion, note that |Pi| ' 1
2 |γn|, so by Lemma 71,

∣∣∣∣
Pi+1,a ◦ Pi

(Pi+1,x ◦ Pi)H ′
a

∣∣∣∣ ≤ 2C
|η∗|
|γn|2 ,

since FH,i = Id. On the other hand, according to Lemma 66, as there is
x ∈ πi such that |Pi,x| ≤ 2 then ηi cannot be subordinated to η∗, hence by
Lemma 67

|Pi,x| ≥ p−1 |η∗|1/2

|γn|
and the result follows, since |η∗|1/2 · |γn|−1 < p1/2 and p is small.

Remark. The first assertion of Lemma 75 can be stated for (Gi ◦ H)
instead of Pi in the following way. If |(Gi ◦H)x| ≤ 2 for some x0 such that
Gi ◦H(x0) ∈ πi+1 then

|(Gi+1 ◦H)x · (Gi ◦H)x| ≥ 1
8
p−2,

where Gi+1 ◦H is taken at Gi ◦H(x0) (in fact, by the proof of Lemma 75
we see that Gi+1 ◦H = Pi+1).

Corollary 76. For all 1 ≤ i ≤ j and 0 ≤ i0 ≤ j − i let ∆i,i0 ≡∣∣∣∏i+i0
t=i Pt,x ◦At−1

∣∣∣.
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1.if |Pi+i0,x| ≥ 2 then ∆i,i0 ≥ 2i0 ;
2.if |Pi+i0,x| < 2 then ∆i,i0 ≥ 2i0−1p−1|η∗|1/2|γn|−1;
3.if |Pi+i0,x| ≥ 1

4p−1/2 then ∆i,i0 ≥ 1
4 · 2i0−1p−1/2;

4.in any case ∆i,i0 ≥ 2i0−1p−1|η∗|1/2|γn|−1.

Proof. According to Lemma 75(1) if |Pt,x| < 2 then |Pt+1,x| ≥ 2,
moreover |Pt,x ·Pt+1,x| ≥ 1

8p−2 ≥ 22. Hence (1) is immediate. If |Pi+i0,x| <
2 then by Lemmas 66 and 67 we must have |Pi+i0,x| ≥ p−1|η∗|1/2|γn|−1. As
|Pi+i0−1,x| ≥ 2 then by item (1) we must have ∆i,i0−1 ≥ 2i0−1 and item (2)
follows. If |Pi+i0,x| ≥ 1

4p−1/2 then in particular |Pi+i0,x| ≥ 2. There are two
possibilities: if |Pi+i0−1,x| ≥ 2 then ∆i,i0−1 ≥ 2i0−1 and item (3) follows,
otherwise |Pi+i0−1,x| < 2 implies |Pi+i0−2,x| ≥ 2 and ∆i,i0−2 ≥ 2i0−2;
moreover, |Pi+i0−1,x ·Pi+i0,x| ≥ 1

8p−2 ≥ p−1/2 and item (3) follows as well.
Finally, similar reasonings and the fact that the estimate of Lemma 67 is
always worse than the estimate of Lemma 66 imply item (4).

Remark. The Lemma is also valid if we define

∆i,i0 ≡
∣∣∣∣∣
i+i0∏

t=i

(Gt ◦H)x(Wt−1)

∣∣∣∣∣

and consider |(Gi+i0 ◦ H)x| instead of |Pi+i0,x|, according to the Remark
following Lemma 75.

Corollary 77. |B̃x| ≥ 4
3 .

Proof. Just apply Corollary 70 and 76(3), for the two types of decom-
position of B̃, as well as the results of Subsection 3.3.

3.7. Derivatives of the Pi’s
To prove the Lemmas below it is enough to carefully apply the Appendix

to Pi = Gi ◦H ◦FH,i, with the help of the Lemmas proven in the preceding
subsections. The inequalities involving F̃ are always consequences of Lem-
mas 48 (for d < 1

2 ) and 49 (for d ≥ 1
2 ) together with |γn+1| · 1

2d−1/2 < q1/2.

Lemma 78. For all i = 1, . . . , j

|γn+1| ·
∣∣∣∣

Pi,xx

(Pi,x)2

∣∣∣∣ < 4
|γn|
|γn−1| + 2δ1

|γn+1|
|γn| + 2|(Gi ◦H)x|−1,

but the first term of the R.H.S can be omitted if FH,i = Id. Moreover,

|γn+1| ·
∣∣∣∣∣

F̃xx

(F̃x)2

∣∣∣∣∣ < C
|γn+1|
d1/2

< Cq1/2.
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Lemma 79. For all i = 1, . . . , j

|γn+1|2
∣∣∣∣
Pi,xxx

(Pi,x)3

∣∣∣∣ <
δ1

4
(1 + |(Gi ◦H)x|−1 + |(Gi ◦H)x|−2).

Moreover,

|γn+1|2 ·
∣∣∣∣∣
F̃xxx

(F̃x)3

∣∣∣∣∣ < Cq.

Lemma 80. For all i = 1, . . . , j

|γn+1| ·
∣∣∣∣

Pi,xa

(Pi,x)2H ′
a

∣∣∣∣ < Θxa
G,i + Θxa

H,i ,

where

Θxa
G,i = (δ1 + δ0)C

|η∗|
|γn|2

(
1 + |(Gi ◦H)x|−1

)

and, if FH,i 6= Id,

Θxa
H,i = C(

|γn|
|γn−1| +

|η∗|
|γn| )(δ1

|γn+1|
|γn| + |(Gi ◦H)x|−1) ,

otherwise Θxa
H,i = 0. Moreover,

|γn+1| ·
∣∣∣∣∣

F̃xa

(F̃x)2H ′
a

∣∣∣∣∣ < Cq1/2

Lemma 81. For all i = 1, . . . , j

|γn+1|2 ·
∣∣∣∣

Pi,xxa

(Pi,x)3H ′
a

∣∣∣∣ < Θxxa
G,i + Θxxa

H,i ,

where

Θxxa
G,i = (δ1 + δ0)C

|η∗|
|γn|2

( |γn+1|
|γn| + |(Gi ◦H)x|−1

)

and

Θxxa
H,i = 1 + |(Gi ◦H)x|−1 + |(Gi ◦H)x|−2

if FH,i 6= Id, otherwise Θxxa
H,i = 0. Moreover,

|γn+1|2 ·
∣∣∣∣∣

F̃xxa

(F̃x)3H ′
a

∣∣∣∣∣ < Cq.
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Lemma 82.

|γn+1| ·
∣∣∣∣

Pi,aa

(Pi,x)2(H ′
a)2

∣∣∣∣ < Θaa
G,i + Θaa

H,i ,

where

Θaa
G,i = (δ1 + δ0)C

|η∗|2
|γn|3 (1 + |(Gi ◦H)x|−1 + |Wi−1|−1)

and

Θaa
H,i = (Cδ1)

|η∗|2
|γn|3 + C|(Gi ◦H)x|−1 .

Moreover,

|γn+1| ·
∣∣∣∣∣

F̃aa

(F̃x)2(H ′
a)2

∣∣∣∣∣ < Cq1/2 .

3.8. Proof of the differentiable conditions
Now we are ready to prove the induction for the quotients involving

the derivatives of B̃. The estimates are valid for every x ∈ β̃ and we
always assume that a is such that ImH ′∩U(β̃) 6= ∅ (even if sometimes this
condition is not used).

From now on we define

∆−1
i,i+i0

≡
∣∣∣∣∣
i+i0∏

t=i

(Gt ◦H)

∣∣∣∣∣

−1

.

Lemma 83. For all i = 1, . . . , j,
∣∣∣∣

Ai,a

Ai,xH ′
a

∣∣∣∣ < δ1.

Proof. Based on the Appendix we write, if B̃ = Pj ◦ · · · ◦ P1,

Ai,a

Ai,xH ′
a

=
P1,a

P1,xH ′
a

+
i∑

t=2

(At−1,x)−1 Pt,a

Pt,xH ′
a

.

This expression holds for i < j or for i = j if B̃ = Pj ◦ · · · ◦ P1. If i = j

and B̃ = F̃ ◦ Pj−1 ◦ · · · ◦ P1 we change the term in t = j by

(Aj−1,x)−1 F̃a

F̃xH ′
a

,
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which is smaller than Cp1/2, using Corollaries 70 and 76 for Aj−1,x and for
the rest Lemma 48 and Corollary 58, if d < 1/2, or else Lemmas 49 and
57 if d ≥ 1/2. Returning to the first expression, we suppose first that we
are in Case B. Using Lemma 73 and Corollary 76(4) we obtain the bound
C(r + p).

In Case A, C(r + p) bounds the first term, by Lemma 72. Next, we use
conveniently Lemmas 74 and 75(2), in the following way. For t > 2, if
|Pt−1,x| ≥ 2 then by Corollary 76(1) |Pt−1,x · · ·P2,x|−1 ≤ 2−t+2, so that by
Lemma 74 ∣∣∣∣(At−1,x)−1 Pt,a

Pt,xH ′
a

∣∣∣∣ ≤ 2−t+2p.

Otherwise, by Lemma 75(1) we have |Pt−2,x| ≥ 2, and so |Pt−2,x · · ·P1,x|−1

is smaller or equal than 2−t+2, by Corollary 76(1). Now we can use Lemma
75(2) to obtain exactly the same expression as above. The Lemma follows
if p and r are sufficiently small with respect to δ1.

Lemma 84. For all i = 1, . . . , j − 1 or for i = j and B̃ = Pj ◦ · · · ◦ P1,

|γn+1| ·
∣∣∣∣

Ai,xx

(Ai,x)2

∣∣∣∣ < 2
i∑

t=1

∆−1
t+1,i + ∆−1

t,i .

Proof. By the Appendix

Ai,xx

(Ai,x)2
=

i∑
t=1

At,x

Ai,x
· Pt,xx

(Pt,x)2

and the Lemma immediately follows using Lemma 78. We use also that

|γn+1| ·
∣∣∣∣∣

F̃xx

(F̃x)2

∣∣∣∣∣ < C
|γn+1|
d1/2

< Cq1/2.

Corollary 85.

|γn+1| ·
∣∣∣∣∣

B̃xx

(B̃x)2

∣∣∣∣∣ < δ1

Proof. We take i = j in the previous Lemma, if B̃ = Pj ◦ · · · ◦ P1,
and use Corollaries 70 and 76. If B̃ = F̃ ◦ Pj−1 ◦ · · · ◦ P1 the procedure is
analogous.
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Lemma 86.

|γn+1|2
∣∣∣∣∣
B̃xxx

(B̃x)3

∣∣∣∣∣ < δ1

Proof. Suppose B̃ = Pj ◦ · · · ◦ P1, without loss of generality. Using the
Appendix we write

|γn+1|2 B̃xxx

(B̃x)3
=

j∑

i=1

|γn+1|2 Pi,xxx

(Pi,x)3
1

(B̃i+1,x)2
+

+3
j∑

i=2

|γn+1| Pi,xx

(Pi,x)2
· |γn+1| Ai−1,xx

(Ai−1,x)2
· 1
B̃i+1,xB̃i,x

.

The first sum is bounded by

δ1

4

j∑

i=1

(∆−1
i+1,j + ∆−1

i,j )2 ,

which is smaller than 6δ1p, following the remark just after Corollary 76.
By Lemmas 79 and 84 the second sum is bounded by

12
j∑

i=2

i−1∑
t=1

(∆−1
i,j + ∆−1

i+1,j)(∆
−1
t+1,j + ∆−1

t+1,j) ,

which is smaller than, for example, 3000p, using Corollary 76 and the
Remark following it. The Lemma follows if p is small.

Lemma 87. For all i = 1, . . . , j − 1 or for i = j and B̃ = Pj ◦ · · · ◦ P1,

|γn+1| ·
∣∣∣∣

Ai,xa

(Ai,x)2H ′
a

∣∣∣∣ <
δ1

5

(
1 +

i∑
t=2

∆−1
t,i

)
+ Ci∆−1

1,i .

Proof. By the Appendix

Ai,xa

(Ai,x)2
=

i∑
t=1

Pt,x

Ai,x
· Pt,xa

(Pt,x)2
+

i∑
t=2

At−1,a

At−1,x
· Pt,xx

(Pt,x)2
· 1
Pi,x · · ·Pt+1,x

where Pi,x · · ·Pt+1,x ≡ 1 if t = i. Let us first analyse the second term of
the sum, multiplied by |γn+1| · |H ′

a|−1. By Lemmas 83 and 78 it is bounded
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by

δ1

20

(
1 +

i∑
t=2

∆−1
t,i

)
.

For the first term of the sum we use Lemma 80 and Corollary 76 (and its
Remark) a few times to get, if p is small,

∆−1
t+1,i∆

−1
1,t−1ΘG,t < 2−ip

and

∆−1
t+1,i∆

−1
1,t−1ΘH,t < p∆−1

t+1,i + C∆−1
1,i ,

and the Lemma follows.

Corollary 88.

|γn+1| ·
∣∣∣∣∣

B̃xa

(B̃x)2H ′
a

∣∣∣∣∣ < δ1

Proof. If B̃ = Pj ◦ · · · ◦ P1 it is enough to apply Lemma 87 with i = j

and use Corollary 76. If B̃ = F̃ ◦ Pj−1 ◦ · · · ◦ P1 it is a combination of
Lemma 87 with i = j − 1, Corollaries 70(2) and 76 and Lemma 80.

Lemma 89.

|γn+1|2
∣∣∣∣∣

B̃xxa

(B̃x)3H ′
a

∣∣∣∣∣ < δ1

Proof. We write

|γn+1|2 B̃xxa

(B̃x)3H ′
a

= S1 + S2 + S3 + S4 + S5

where

S1 =
j∑

i=1

|γn+1|2 Pi,xxa

(Pi,x)3H ′
a

· 1
(B̃i+1,x)2Ai−1,x

,

S2 =
j∑

i=2

|γn+1|2 Pi,xxx

(Pi,x)3
· Ai−1,a

Ai−1,xH ′
a

· 1
(B̃i+1,x)2

,

S3 = 2
j∑

i=2

|γn+1| Pi,xx

(Pi,x)2
· |γn+1| Ai−1,xa

(Ai−1,x)2H ′
a

· 1
B̃i+1,xB̃i,x

,
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S4 =
j∑

i=2

|γn+1| Pi,xa

(Pi,x)2H ′
a

· |γn+1| Ai−1,xx

(Ai−1,x)2
· 1
(B̃i+1,x)2Ai,x

,

S5 =
j∑

i=2

|γn+1| Pi,xx

(Pi,x)2
· |γn+1| Ai−1,xx

(Ai−1,x)2
· Ai−1,a

Ai−1,xH ′
a

· 1
B̃i+1,xB̃i,x

.

Special attention must be paid to S1 and S4, since in these cases one
needs to distinguish between FH,i = Id and FH,i 6= Id. If FH,i 6= Id,

|S1| <
j∑

i=1

(∆−1
i+1,j)

2∆−1
1,i−1 + ∆−1

1,j∆
−1
i+1,j + ∆−1

1,j∆
−1
i,j .

By Corollaries 70(3) and 76(3), ∆−1
1,i−1 ≤ p1/2. The remaining ∆’s are well

controlled by Corollaries 70(1) and 76(3) and after all |S1| can be bound
by a multiple of p. If FH,i = Id then the ‘problematic’ term

(δ1 + δ0)C
|η∗|
|γn|2

j∑

i=1

(∆−1
i+1,j)

2∆−1
1,i−1

is also bounded by a multiple of p (for p small, of course, to kill constants),
since by Corollary 76(4) ∆−1

1,i−1 ≤ p|γn| · |η∗|−1/2. For S4 we proceed
similarly. The sums S2, S3 and S5 are easier, and also the case where
B̃ = F̃ ◦ Pj−1 ◦ · · · ◦ P1.

Lemma 90.

|γn+1| ·
∣∣∣∣∣

B̃aa

(B̃x)2(H ′
a)2

∣∣∣∣∣ < δ1

Proof. By the Appendix

B̃aa

(B̃x)2
= S1 + S2 + S3 ,

where

S1 =
j∑

i=1

|γn+1| Pi,aa

(Pi,x)2(H ′
a)2

· 1
B̃i+1,x(Ai−1,x)2

,

S2 = 2
j∑

i=2

|γn+1| Pi,xa

(Pi,x)2H ′
a

· Ai−1,a

Ai−1,xH ′
a

· 1
B̃i+1,xAi−1,x

,
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S3 =
j∑

i=2

|γn+1| Pi,xx

(Pi,x)2
·
(

Ai−1,a

Ai−1,xH ′
a

)2

· 1
B̃i+1,x

.

The sums S2 and S3 and part of S1 are treated in the same way as in the
preceding Lemmas, with an eventual distinction between FH,i = Id and
FH,i 6= Id. The only new problem comes from S1, where we have to bound

j∑

i=1

C(δ1 + δ0)
|η∗|2
|γn|3 |Wi−1|−1∆−1

i+1,j(∆
−1
1,j−1)

2 .

In Case B, |Wi−1|−1 < 5|η∗|−1/2, hence using Corollary 76(4)

|η∗|2
|γn|3 |Wi−1|−1(∆−1

1,i−1)
2 < 5p5/2 .

In Case A we use ∆−1
1,1 ≤ 2pω (by Lemma 65) and γn+1 >∼ ω1/2|η∗|1/2

(by Lemma 64), hence |Wi−1|−1 <∼ 2ω−1/2|η∗|−1/2. Then, as ∆−1
1,i−1 =

∆−1
1,1∆

−1
2,i−1,

|η∗|2
|γn|3 |Wi−1|−1(∆−1

1,i−1)
2 < 8p9/2ω3/2 .

As ω < 1,
∑j

i=1 ∆−1
i+1,j < Cp1/2 (by Corollaries 70(2) and 76(3)) and

p is small with respect to δ1, the Lemma follows. The case where B̃ =
F̃ ◦ Pj−1 ◦ · · · ◦ P1 is analogous.

APPENDIX: GLOSSARY OF FORMULA

A.1. ITERATES NEAR THE SADDLE–NODE

The formula below are used in the context of Subsection 3.2. We use the
following notational conventions: Hj

x means the x–partial derivative of the
function Hj defined by induction by Hj(a, x) = H(a,Hj−1(a, x)). We con-
sider x ∈ [Hi+1(a, xr), Hi(a, xr)], for i such that Hx(a, Hi(a, xr)) < 1 (the
remaining cases are similar). In this case, we write Hj(a, x) = Ψ(−σl(a) +
ti(a, x), a, xl), where Ψ is the flow of the field X and the functions σl and
ti are explained in the referred Subsection. This expression is used for
Hj

a and Hj
aa. When there is no argument it means that the derivative is

taken in (a, x). For the field X, X itself means X(a, x) and X ◦Hj means
X(a,Hj(a, x)). Finally, Ψ is evaluated always at (−σl(a) + ti(a, x), a, xl)
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(as well as its partial derivatives).

Hj
x =

X ◦Hj

X
(A.1)

Hj
xx =

X ◦Hj

X2

(
Xx ◦Hj −Xx

)
(A.2)

Hj
xxx = X◦Hj

X3

[
(Xx ◦Hj)2 + 2(Xx)2 − 3Xx ·Xx ◦Hj+

+ X ◦Hj ·Xxx ◦Hj − X ·Xxx]
(A.3)

Hj
a = X ◦Hj ·

[
−σ̇l +

∂ti
∂a

]
+

∂Ψ
∂a

(A.4)

Hj
xa =

1
X

(
Xa ◦Hj + Hj

a ·Xx ◦Hj
)− X ◦Hj

X2
Xa (A.5)

Hj
xxa = −2

X ◦Hj

X3
Xa

(
Xx ◦Hj −Xx

)
+

+
1

X2

{[
Xa ◦Hj + Hj

a ·Xx ◦Hj
] · [Xx ◦Hj −Xx

]}
+

+
1

X2

{
X ◦Hj · [Xxa ◦Hj + Hj

a ·Xxx ◦Hj −Xxa

]}
(A.6)

Hj
aa =

∂2Ψ
∂a2

+
[
−σ̈l +

∂2ti
∂a2

]
·X ◦Hj +

+ 2
[
−σ̇l +

∂ti
∂a

]
· [Xa ◦Hj + Hj

a ·Xx ◦Hj
]

(A.7)

A.2. COMPOSITIONS OF DIFFEOMORPHISMS.

Let Gi ≡ Fi ◦ . . . ◦ F1, G = Gr for r > 1 and Qi = Fr ◦ . . . ◦ Fi.

Ga

Gx
=

r∑

i=1

Fi,a

Gi,x
(A.8)

Gxx

(Gx)2
=

r∑

i=1

Fi,xx

Qi+1,x(Fi,x)2
(A.9)
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Gxa

(Gx)2
=

r∑

i=1

Fi,xa

Fi,xGr,x
+

r∑

i=2

Fi,xx

Qi+1,x(Fi,x)2
· Gi−1,a

Gi−1,x
(A.10)

Gaa

(Gx)2
=

r∑

i=1

Fi,aa

Gi,xGr,x
+

+2
r∑

i=2

Fi,xa

Fi,xGr,x
· Gi−1,a

Gi−1,x
+

r∑

i=2

Fi,xx

Qi+1,x(Fi,x)2
·
(

Gi−1,a

Gi−1,x

)2

(A.11)

Gxxx

(Gx)3
=

r∑

i=1

Fi,xxxFi,x

(Qi+1,x)2(Fi,x)4
+

+3
r∑

i=2

Fi,xx

Qi+1,x(Fi,x)2
· 1
Qi,x

Gi−1,xx

(Gi−1,x)2
(A.12)

Gxxa

(Gx)3
=

r∑

i=1

Fi,xxa

Gr,xQi+1,x(Fi,x)2
+

+
r∑

i=2

Fi,xxxFi,x

(Qi+1,x)2(Fi,x)4
· Gi−1,a

Gi−1,x
+

r∑

i=2

Fi,xa

Fi,xGr,x
· 1
Qi,x

Gi−1,xx

(Gi−1,x)2
+

+2
r∑

i=2

Fi,xx

Qi+1,x(Fi,x)2
·
[

2
Qi,x

Gi−1,xa

(Gi−1,x)2
+

Gi−1,a

Gi−1,x
· 1
Qi,x

Gi−1,xx

(Gi−1,x)2

]

(A.13)

A.3. CRITICAL COMPOSITIONS.

Let H ′ = G∗ ◦H. Then

H ′
a = G∗a + G∗xHa (A.14)

H ′
xx = G∗xx(Hx)2 + G∗xHxx (A.15)

H ′
xxx = G∗xHxxx + G∗xxx(Hx)3 + 3HxHxxG∗xx (A.16)

H ′
xa = HxaG∗x + HxG∗xa + HxHaG∗xx (A.17)
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H ′
aa = G∗xHaa + G∗aa + G∗xaHa + G∗xx(Ha)2 (A.18)

H ′
xxa = G∗xHxxa + G∗xxa(Hx)2 + G∗xxxHa(Hx)2 +

+ 2G∗xxHxaHx + G∗xaHxx + G∗xxHaHxx (A.19)
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3. J. Graczyk and G. Świa̧tek. Induced expansion for quadratic polynomials, Ann.
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Astérisque 261 (2000), 173–200.

10. M. Lyubich. Almost every real quadratic map is either regular or stochastic, Stony
Brook IMS Preprint 1997/8, July 1997.
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