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We generalize the classical Markov inequality, relating the maximum of
the polynomial and the maximum of its derivative on the interval, in two
directions: first we replace polynomials by functions in “Bernstein classes”
(studied in [4],[5]). Second, and more important generalization is that similar
inequality is established for Wronskians of different order; of the system of
polynomials (or function in a given Bernstein class).

1. INTRODUCTION

The classical Markov inequality [3] bounds the maximum modulus of
the derivative of the polynomial f on the interval through the maximum
modulus of the polynomial itself on the same interval :

max
x∈[−1,1]

|f ′(x)| ≤ d2 max
x∈[−1,1]

|f(x)|, (1)

where d is the degree of the polynomial f .
First of all, the mere existence of the bound of this form, with a certain

constant, depending only on d, is immediate ; the two norms

||f ||1 = max
x∈[−1,1]

|f(x)| and ||f ||2 = ||f ||1 + max
x∈[−1,1]

|f ′(x)|

on the finite -dimensional space of all polynomials of degree d, are equiva-
lent. Hence ||f ||2 ≤ Kd||f ||1, and max |f ′(x)| ≤ (Kd − 1) max |f(x)|.

1This research was supported by the Israel Science Foundation, Grant No. 117/99-1
and by the Minerva Foundation.
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80 N.ROYTVARF

The same argument allows to get (nonsharp!) versions of the Bernstein
inequality [1], relating the maximum of f on [-1,1] and on the cofocused
ellipse, and of many similar results.

The constant d2 in (1) is sharp and it is attended on fd -a Chebyshev
polynomial of degree d .

Notice also that (1) has no ”pointwise” consequence : f ′ does not have
to vanish at zeroes of f .

In this paper we suggest a generalization of 1 in two directions; first,
instead of functions and their derivatives we consider Wronskians of various
orders of a system of functions. Secondly , we allow these functions and
Wronskians to be not necessary polynomials, but rather functions with
known ”Bernstein constants” ( which is the ratio of the modulus of the
function on two concentric disks in lC ; such classes have been considered
in [5, 6]).

These generalizations are motivated by applications to linear ODE’s,
some of which we shortly present in the last section.

Definition 1. Let f1, ..., fn be analytic functions and I = (i1, · · · , in)
i1>0, · · · , in>0 be a multi-index. We define

Wn,I(f1, · · · , fn) := det




f
(i1)
1 · · · f

(i1)
n

...
...

f
(in)
1 · · · f

(in)
n


 , where

f (j) denotes the j-th order derivative of f .
If I = (0, 1, · · · , n− 1), Wn,I is equal to the usual Wronskian, which we

denote as Wn.

Wn(f1, · · · .fn) := det




f1 · · · fn

f ′1 f ′n
...

...

f
(n−1)
1 f

(n−1)
n




.

Our main result is the inequality of the form

max
|x|≤r

|Wn,I(x)| ≤ C max
|x|≤r

|Wn(x)|, (2)

with x ∈ lC and for any multi-index I.
Let us discuss shortly the structure of the inequality (2) and its relation

to the classical Markov inequality (1).
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For n = 1, W = f , and WI = f (i); for f a polynomial we get the
usual Markov inequality ( for any order of the derivative; notice, that our
constants are not sharp). However, for f in Bernstein classes we get a
useful, although simple, new fact.

For n>2 let us give a ”geometric explanation” of (2) in the spirit of the
first remark above. Wn(f1, ..., fn) ≡ 0 if and only if the functions f1, ..., fn

are linearly dependent. In this case any Wronskian Wn,I also vanishes.
Thus vanishing of W implies vanishing of any WI . On the space V of n-
tuples of polynomials f1, ..., fn of fixed degrees, max|x|≤r |W (x)| vanishes
exactly on the subset

∑
, where f1, .., fn ( or , equivalently, the vectors

of theire coefficients ) are linearly dependent. Therefore, max|x|≤r |WI(x)|
also vanish on

∑
, for any I.

Now these maxima are semialgebraic functions on V , so the existence
of a certain inequality , bounding max |WI | through max |W | is a general
fact in the spirit of the Nullstellensatz ( or Lojasiewicz inequality).

However , because of a nonlinear nature of the problem , and since we
have to consider semialgebraic functions on V , and not just polynomials ,
to get in this way any specific inequality of the form (2) would be, probably,
not easy.

Below we give an explicit proof of (2), which clarifies the algebraic struc-
ture of the Wronskians WI and the relations between them. This proof
extends directly to functions in Bernstein classes.

Also here no pointwise estimate of the form (2) is possible. This fact
is closely related to the appearence of singularities in the linear ODE’s ,
generating a given linear family of regular analytic function ( see section
(4) below).

2. THE POLYNOMIAL CASE

Theorem 2. Let f1(x), ..., fn(x) be polynomials, x ∈ lC. Then for any
multy-index I = (i1, ..., in) the following inequality holds:

max
|x|≤r

|Wn,I(x)| ≤ γ max
|x|≤r

|Wn(x)| , (3)

where γ depends only on the degrees of polynomials, multi-index I and ra-
dius r and may be effectively computed .

Remark 3. Unlike the classical Markov inequality the constant in in-
equality (3), which we obtain, is not sharp.
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Remark 4. The replacement of the segment to the disk is not essen-
tial.Using the classical Bernstein inequality [1] the inequality on a disk
reduces to the inequality on a segment.

The main tecnical point of the proof is that for some classes of functions
one can estimate C-norm of the ratio of two functions through the ratio of
C-norms of the nominator and the denominator, assuming, that the ratio
of the functions also belongs to the same class. The simplest case is when
both functions are polynomials and the one is a multiple of the other.

Lemma 5 (Division Lemma). Let f, g, and f/g be polynomials of de-
gree n,m, and n−m respectively, then

max
|x|≤r

|f
g
| ≤ γ(n,m)

max|x|≤r |f |
max|x|≤r |g|

,

where γ depends only on n,m.

This is a special case of a “Polynomial Hironaka Division Theorem”, see
e.g. [2].

Now we present the proof of Theorem 2.

Proof. For the case n = 1 we have

max|x|≤r|f ′(x)| ≤ c1max|x|≤r|f(x)| ,

and similar inequalities for higher order derivaties.
This follows directly from the classical Markov inequality. Here and

below ci, β, µ, γ denote constants, depending only on the degrees of the
polynomials involved and on r. To simplify the presentation we mostly do
not compute them explicitly.

(a) Consider the case n = 2. This case contains all the main features
of the general one, but is much simpler from the technical point of view.

Solving the differential equation

f1 · f ′2 − f ′1f2 = W2

with respect to f2, one obtains

f2 = C · f1 + S · f1 ,

where C is a constant and S =
∫

W2/f2
1 . One has

f
(k)
2 = Cf

(k)
1 + S · f (k)

1 +
k∑

i=1

Ci
k(W2/f2

1 )(i−1)f
(k−i)
1 .
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Putting into W2,I these expressions for the derivative of f2, one obtains

W2,I(f1, f2) := det

(
f

(i1)
1 f

(i1)
2

f
(in)
1 f

(in)
2

)
=

= det

(
f

(i1)
1

∑i1
j=1 Cj

i1
(W2/f2

1 )(j−1) · f (i1−j)
1

f
(i2)
1

∑i2
j=1 Cj

i2
(W2/f2

1 )(j−1) · f (i2−j)
1

)
.

Denote Î := max(i1, i2). We obtain

W2,I =
φ(W2, f1)

f
2(Î−1)
1

.

It is easy to see, that φ(W2, f1) is a linear operator with respect to W2 and

a homogeneous function of degree 2(Î−1) with respect to (f1, f
′
1, · · · , f (Î)

1 ).
Direct computation, taking into account Markov inequality (1), yields the
inequality

max
|x|≤r

|φ| ≤ β · max
|x|≤r

|W2| · (max
|x|≤r

|f1|)2(Î−1), (4)

where β is a constant, depending only on the multyindex I and the degrees
of the polynomials f1, f2.

Since W2,I is also a polynomial this means, that f
2(Î−1)
1 divides φ. There-

fore according to Lemma 5 (”division lemma”)

max
|x|≤r

|W2,I | ≤ c2

max |φ|
|x|≤r

max|x|≤r |f1|2(Î−1)
. (5)

Finally, combining (4) with (5) one obtains the inequality

max
|x|≤r

|W2,I(x)| ≤ γ2 max
|x|≤r

|W2(x)| ,

where γ2 = β · c2.

(b) Consider now the general case (n > 2). We will represent Wn,I in
the same form as in the case n = 2, that is, as the fraction

Wn,I(x) =
φ(x)

W
2(Î−1)
n−1 (x)

, (6)
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where Î = max(i1, · · · , in), and estimate |φ(x)| in the same manner:

max
|x|≤r

|φ| ≤ β max
|x|≤r

|Wn|(max
|x|≤r

|Wn−1|)2(Î−1), (7)

where β depends only on r, I, deg fi, i = 1 · · ·n. Since the fraction
(6) is also a polynomial, we use the ”division” lemma above, and bound
max|x|≤r |Wn,I | through the value of the fraction max|x|≤r |φ(x)|

max|x|≤r |W 2(Î−1)
n−1 |

.

Next, taking onto account (7), one immediately comes to the desired
inequality.

We compute β of (7),using induction with respect to Wronskian’s order.
Assume that the induction hypothesis holds, i.e., for any multi-index I one
has

max
|x|≤r

|Wn−1,I | ≤ γn−1 · max
|x|≤r

|Wn−1| ,

where γn−1 depends only on I, r and deg fi, i = 1 · · ·n− 1.
Consider the poynomial fn as the solution of the linear non-homogeneous

ODE (with respect to the unknown y)

det




f1 · · · fn−1 y
f ′1 · · · f ′n−1 y′

...

f
(n−1)
1 · · · f

(n−1)
n−1 y(n−1)




= Wn .

The general solution of this equation is given by the formula

y =
n∑

i=1

Cifi + < Fn−1 ◦ bn >1 , (8)

where Ci are arbitrary constants, and Fn−1 is the fundamental matrix,

Fn−1 =




f1 · · · fn−1

...

f
(n−2)
1 · · · f

(n−2)
n−1


 ,
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bn is an integral of the vector F−1
n−1 ◦




0
...

0

Wn/Wn−1




, and < >1 means the

first component of an n-element vector. Putting the RHS of (8) into Wn,I

one has

Wn,I = det




f
(i1)
1 · · · f

(i1)
n−1 < Fn−1 ◦ bn >

(i1)
1

...

f
(in)
1 · · · f

(in)
n−1 < Fn−1 ◦ bn >

(in)
1


 =

= det




f
(in)
1 · · · f

(i1)
n−1 <

∑i1−1
k=0




k

i1


 F

(k)
n−1 ◦ b

(i1−k)
n >1

...

f
(in)
1 · · · f

(in)
h−1 <

∑i1−1
k=0




k

in


F

(k)
n−1 ◦ b

(in−k)
n >1




. (9)

The column (< F
(i1)
n−1 ◦ bn >1, · · · < F

(in)
n−1 ◦ bn >1) is a linear combination

of the other ones. It makes a zero contribution into the final result; only
b
(k)
n with k > 1 can enter the expression for Wn,I . One has

b(k)
n = F−1

n−1◦




0
...
0

Wn

Wn−1




(k−1)

=
k−1∑

i=0




i

k − 1


 (F−1

n−1)
(i)◦




0
...
0

Wn

Wn−1




(k−1−i)

.

Putting this into (9) gives

Wn,I =
n∑

j=1

Wn−1,In−1,ĵ
·

∑

k1+k2+k3=ij−1




k2 + k3

k1 + k2 + k3


 ·




k2

k2 + k3


 · l(k1,k2,k)

(10)
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where

l(k1,k2,k)
=< F

(k1)
n−1 ◦ (F−1

n−1)
(k2) ◦




0
...
0

Wn

Wn−1




(k3)

>1 ,

where In−1,ĵ = (i1, · · · , ij−1, ij+1, · · · , in).
Consider first the matrix

Sk1,k2 = F
(k1)
n−1 ◦ (F−1

n−1)
(k2).

It is not difficult to check, that its elements have the form:

∑
α

∑
α1,···,αk2−1

Cα,α1,···,αk2−1 ·Wn−1,Iα

∏k2−1
p=1 W

(αp)
n−1

W k2
n−1

with absolute constants Cα,α1,···,αk2−1 and Iα = (α1, · · · , αn−1), where αp ≤
max(k1, k2) + n, p = 1, · · · , n− 1.

Taking into account the previous representation we reduce (10) to the
form

Wn,I =
φ

W
2(Î−1)
n−1

,

where Î = max(ii · · · in). Now, taking into account the induction hypoth-
esis

max
|x|≤r

|Wn−1,I | ≤ γn−1 max
|x|≤r

.|Wn−1| ,

one arrives to the inequality

max
|x|≤r

|φ| ≤ β max
|x|≤r

|Wn| · (max |Wh−1|)2(Î−1) ,

where β is an “absolute” constant, which may be computed, via the formula
(10). The proof is completed.

3. THE CASE OF THE FUNCTIONS WITH KNOWN
BERNSTEIN CONSTANTS

Definition 6. Let Ω ⊆ lC be a bounded domain, K ⊆ Ω a compact, and
let f be analytic in Ω and continuous on Ω̄.
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We call the ratio

B(f,K, Ω) = max
Ω̄
|f |/ max

K
|f | ,

the Bernstein constant of f on (K, Ω).
Let DR denote the closed disk of radius R > 0, centered at 0 ∈ lC.

Definition 7. Let R > 0, 0 < α < 1 and K > 0 be given and let
f be holomorphic in a neighbourhood of DR. We say that f belongs to
the Bernstein class B1

R,α,K if max

DR

|f |/ max

DαR

|f | ≤ K (or, in other words, if

B(f, αDR, DR) ≤ K).

Example 8. One can check that if f is a polynomial of degree n, than
for any R, α, as above f ∈ B1

R,α,1/αn .

Example 9. Let y(x) be an algebraic function, given by an equation :

pd(x)yd + pd−1(x)yd−1 + · · ·+ p1(x)y + p0(x) = 0 ,

with pj(x) - polynomials in x of degree m. Let ỹ(x) be one of the branches
of y and assume that ỹ is regular over D2R. Then ỹ(x) ∈ B1

R,α,K(α,d,m),
for any α, where K(α, m) depends only on α and the degree m, see [5].

Theorem 10. Let f1 · · · fn be regular functions in the disk D(0, R). Sup-
pose that for some α, 0 < α < 1,

Wi = Wi(f1, · · · , fi) ∈ B1
R,α,K for i = 1 · · ·n .

Then for any r < R and for any multyindex I = (i, · · · , in) the following
inequality holds:

max
|x|≤r

|Wn,I(x)| ≤ γ · max
|x|≤r

|Wn(x)| , (11)

where γ = γ(R, α, r,K, I) depends only on parameters given in the brackets
and may be effectively computed through them.

Instead of the “division lemma” we need here

Theorem 11 (Division Theorem). Let f, g and f/g be holomorphic
functions in the disk D(0, R), and g ∈ B1

R,α,K1
. Let r = αR. Then

max
|x|≤r

|f
g
| ≤ µ · max|x|≤R |f |

max|x|≤r |g|
; (12)
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here µ can be effectively computed through R,α, K1.
If in addition f ∈ B1

R,α,K , then the inequality (12) turns into inequality

max
|x|≤r

|f
g
| ≤ Kµ · max|x|≤r |f |

max|x|≤r |g|
. (13)

The proof of this theorem also follows from Hironaka division theorem
(see [2]), taking into account that for functions in Bernstein classes the
norms max|x|≤r(·) and max|x|≤R(·) are equivalent. Another proof can be
found in [5].

To prove Theorem 10 we also need the following lemma.

Lemma 12. Let f be a holomorphic function in the disk D(0, R), f ∈
B1

R,α,K . Then for any R′ ≤ R and any 0 < α′ < 1, f ∈ B1
R′,α′,K′ ; here

K ′ = K ′(R, α, R′, α′,K) can be explicitely computed through the pharame-
tres, given in the brackets.

The proof as well as the explicit formula for K ′, can be founds in [5].

Now we present the proof of Theorem 10.

Proof. For any f analytic in ∆R by the Cauchy inequality one has for
r < R that

max
|x|≤r

|f (i)(x)| ≤ K

2π(R− r)i+1
· max
|x|≤r

|f(x)| , (14)

where K = B(f, Dr, DR) is the Bernstein constant of f on (DR, Dr) . This
replaces Markov inequality for polynomials. Here the dependence on R
(or more accurately on 1

R−r ) enters. The proof for the Wronskians of the
order n > 1 is essentially the same as in the polynomial case (Theorem 2)
and is distinguished from this case by using ”division theorem” instead of
polynomial ”division lemma” . We present here only the case n = 2.

Exactly as in polynomial case, solving the differential equation

f1 · f ′2 − f ′1f2 = W2

with respect to f2, and substituting into

W2,I = det




f
(i1)
1 f

(i1)
2

f
(i2)
1 f

(i2)
2


 ,
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we obtain

W2,I =
φ(W2, f1)

f
2(Î−1)
1

, where Î := max(i1, i2).

As above φ(W2, f1) is a linear operator with respect to W2 and homoge-

neous function of degree 2(Î − 1) with respect to (f1, f
′
1, · · · , f (Î)

1 ). Let us
estimate |φ| on the disk with radius r0 = (R + r)/2. Direct computation,
taking into account (14) yields the inequality

max
|x|≤r0

|φ| ≤ β · max
|x|≤r0

|W2| · ( max
|x|≤r0

|f1|)2(Î−1), (15)

where

β =
K2

(r − r0)I+1

Î∑

j=1

j−1∑
p=0




j

Î







p

j − 1


 (j − p)!(j − p− 1)j−p−1

(2π)j−p−1
Kj−p

1 .

(16)

Here K1 and K2 are the upper bounds for the Bernstein constants

B(f1, Dr0 , DR) and B(W2, Dr0 , DR) ,

respectively, given by Lemma 12 through the values R, r, r0,K. Since W2,I

is also holomorhpic this means, that we may apply Theorem 11 to functions
φ, W2,I and f

2(Î−1)
1 . Therefore

max
|x|≤r

|W2,I | ≤ µ ·
max |φ|
|x|≤r0

max|x|≤r |f1|2(Î−1)
, (17)

where µ depends only on the values r0, r/r0, B(f2(Î−1)
1 , Dr, Dr0). Finally,

combining (15) with (17) and taking into account that

max
|x|≤r0

|f1| ≤ K̂1 · max
|x|≤r

|f1| and max
|x|≤r0

|W2| ≤ K̂2 · max
|x|≤r

|W2|,

where

K̂1 = B(f1, Dr, Dr0) and K̂2 = B(W2, Dr, Dr0)

one obtains the inequality

max
|x|≤r

|W2,I(x)| ≤ β · µ · K̂2(Î−1)
1 · K̂2 max

|x|≤r
|W2(x)| ,
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where β is given by (16) , µ, K̂1, K̂2 are effectively computed through the
values R, α,K.

4. APPLICATION: BERNSTEIN CONSTANT OF A LINEAR
FAMILY OF FUNCTIONS

In this section we outline a typical application of the inequality of The-
orem 10.

Let f1, · · · , fn be regular function in the disk D(0, R). We want to bound
the Bernstein constant ( on a smaller concentric disks) of a linear combi-
nation f =

∑n
i=1 λifi, uniformly in λ = (λ1, · · · , λn) ∈ lCn.

Knowing the Bernstein constants of fi is not enough : indeed, for f1 and
f2 = f1 + εg , with g having a big Bernstein constant , 0 < ε << 1 , the
Bernstein constants of f1 and f2 may be small , while g = (1/ε)(f2 − f1).

The following theorem shows that an additional information on the
Wronskians , given by the generalized Markov inequality , enough suffices.

Theorem 13. Let f1 · · · fn be regular functions in the disk D(0, R).
Suppose, that for some r ≤ R and multi-indices Ii; i = 1, · · · , n, where
Ii = (0, 1, i− 1, i + 1 · · ·n), the following inequality holds:

max
|x|=r

|Wn,Ii(f1 · · · fn)| ≤ A max
|x|=r

|Wn(f1 · · · fn)|,

where A is a constant .
Then, for any R̃ < r, α > 0 and for any λ = (λ1 · · ·λn) ∈ lCn

f =
n∑

i=1

λifi ∈ B1
R̃,α,K

,

with K depending only on A, R̃ and α and may be effectively computed
through them.

We present here the outline of the proof.

Proof. First, linear combinations f =
∑n

i=1 λifi are exactly solutions of
the linear differential equation W (f1 · · · fn, y) = 0,- which may be rewritten
as

y(n) + (Wn,In−1/Wn)y(k−1) + · · ·+ (Wn,I0/Wn)y = 0 , (18)

where Ii = (0, 1, · · · , i− 1, i + 1, ·, n).
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Using the assumptions of the theorem, one can show that W belongs
to a certain fixed Bernstein class. Hence , the number of singularities of
the coefficients of (18) i.e. the number of zeroes of W in D(0, r) can be
effectively bounded (see [4]).

Consequently , we can find a certain subring < in the disk D(0, r) , of
the size , effectively bounded from below , free of singularities of (18).

Now the assumptions of the Theorem 13 and the Theorem 11 allow us
to estimate the coefficients of (18) in <.

This, in turn gives the possibility to bound the Bernstein constant of any
solution in the ring <.

Finally, knowing that the solutions f =
∑n

i=1 λifi of (18) are in fact reg-
ular over the whole disk D(0, r) , we can deduce from above their Bernstein
constant on the whole disk (see Lemma 12). This completes the proof of
the Theorem 13.

Now by our main result, the Markov inequality for Wronskians, to check
the conditions of Theorem 13 it is enough to show that the Wronskians
Wi(f1, .., fn) , i = 1, .., n, belong to certain effectively known Bernstein
classes. This information turns out to be easily available in many important
situations.

For example, for functions

fi(x) = Ri(x)αi · exp Si(x),

where αi are complex numbers and Ri, Si are rational function , One can
easily show , that any Wronskian has the same form. In turn, assuming that

|αi| ≤ c, and that the functions Si(x), represented as Si(x) =
∑d

j=0
tijxj

∏d0
j=1

(x−aij)
,

satisfy |tij | ≤ T , one can show that such functions belong on each disk to
a certain Bernstein class, explicitly specified through c and T .

As a result we get an effective estimate of the Bernstein constant of the
linear family

f(x) =
n∑

i=1

Ri(x)αi · exp Si(x),

on each couple of concentric disks, in term of the degrees and of the same
constant c and T only. Compare with [4].

This result can be extended as follows.

Theorem 14. Let y1, ..., yn be solutions of n differential equations

ẏ = A1y, ..., ẏ = Any

respectively, where Ai (i = 1, ..., n) are algebraic functions. Suppose that
Ai are meromorfic branches of algebraic functions in the disk D(0, R), i.e.
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Ai are not ramified in D(0, R) and their only singularities there are poles.
Suppose that Ai are defined by polynomials of degree at most d. Suppose in
addition that |Ai(x)| are bounded by A on a certain subring < of D(0, R)
of the size ∆.

Then if a linear combination yλ =
∑n

i=1 λiyi is regular in the disk
D(0, R) its Bernstein constants in the disk D(0, R/2) can be bounded ef-
fectively in terms of n, d, A, ∆.
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