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In this paper we study homoclinic loops in R3 which are nondegenerate
in the sense of Šil’nikov ([21]) and with real principal eigenvalues in 1 : 1
resonance, i.e. homoclinic loops which have the strong inclination property
and which are tangent to the principal eigenvectors. We are interested here
in the higher codimensional cases. It is known that the dynamics of such
systems is given by a 1-dimensional map. Using the ideas exposed in [5], we are
able to show that, as for the “nontwisted” loops (cf. [17]), this 1-dimensional
map admits a nice asymptotic expansion allowing to treat homoclinic loop
bifurcations of arbitrarily high codimension and to exhibit an explicit bound for
the number of isolated periodic solutions generated under small perturbations.
The computations of the bound rely on derivation-division algorithms and
Khovanskĭı’s fewnomials theory.
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*This work was supported by Le Ministère de l’Éducation Nationale de l’Enseignement
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1. INTRODUCTION

In studying families of vector fields depending on parameters it is natural
to pay a special interest to generic families depending on a small number
of parameters as these are more likely to be encountered in applications.
There is no general pattern for the organization of bifurcations occuring in
generic k-parameter families, but certain bifurcations can be studied for ar-
bitrary codimensions. Examples of these are given by the Hopf bifurcation.
The codimension 1 Hopf bifurcation is concerned with the appearance or
disappearance of a limit cycle from a singular point as a pair of eigenvalues
crosses the imaginary axis. The Hopf bifurcation of codimension k occurs
when there are additional degeneracies at the level of higher order terms
in the normal form. Similarly the homoclinic loop bifurcation through a
hyperbolic saddle has been studied in the plane for arbitrary codimensions
[15]. Another example is the study of the cusp of order n in the plane
[12, 13], i.e. the study of the bifurcation of a singular point of nilpotent
type and multiplicity 2 in the plane, the codimension being decided by
higher degree terms in the normal form.

One strong motivation to study the higher order bifurcations (local or
global) is that they are the organizing centers for the bifurcation diagrams
of many multi-parameter families occuring in modelling (for instance [10]).

The complete studies mentioned above have been possible because of the
powerful techniques that have been developed for analyzing vector fields in
the plane. In these problems the most important and difficult question is
the control of the number of limit cycles (isolated periodic solutions). The
technique to analyse this is to “compute” the Poincaré first return map on
a section. For instance in the case of the homoclinic loop in the plane this
return map is calculated as the composition of a transition map (Dulac
map) in the neighborhood of the saddle point with a regular transition far
from the point. When the codimension increases it is necessary to be more
precise in the calculations. In that respect the Dulac map is calculated
in suitable Ck coordinates in which the system and its perturbation have
a nice normal form. The normalizing coordinates are not unique. When
looking to more complicated situations than the homoclinic loop we can
use the freedom on the choice of the normalizing coordinates to simplify
the regular transition map(s). This operation allows to determine the in-
trinsic generic properties of these maps determining the codimension and
the bifurcation diagrams.

For most other classes of bifurcations a complete study is still out of
reach. However, in the planar case it is highly believed that the num-
ber of limit cycles appearing by perturbation of a polycycle in a generic
k-parameter family is uniformly bounded. This is the Hilbert-Arnold prob-
lem which we can state as: “Prove that, for any n, the bifurcation number
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B(n) is finite, where B(n) is the maximum cyclicity of nontrivial polycy-
cles occuring in generic n-parameter families”. The equivalent of Hilbert-
Arnold problem is obviously false in dimensions greater than 2, the obvious
counter-example being given by Šil’nikov’s example of a homoclinic loop
in R3 through a saddle point with a pair of complex eigenvalues: under
adequate conditions on the eigenvalues a perturbation of the homoclinic
loop leads to horseshoes and chaos.

However not all bifurcations in R3 lead to such wild behaviour. It is
an interesting question to identify genericity conditions which ensure that
the dynamics created in a bifurcation remains under control and that its
complexity can be measured in terms of the codimension of the bifurcation.
The work of this paper is within that general framework.

More precisely in this paper we consider some homoclinic bifurcations
in R3 from the point of view desribed above. We specialize to homoclinic
bifurcations through a saddle point with real eigenvalues. We consider
here nondegenerate bifurcations in the sense of Šil’nikov. A homoclinic
loop through a saddle point with two negative and one positive eigenvalues
is nondegenerate in the sense of Šil’nikov if

1. it is tangent to the principal eigenvectors;
2. the stable manifold together with its tangent space approaches the

strong stable manifold along the homoclinic orbit, i.e in a tubular neigh-
borhood of the homoclinic loop the strongly stable manifold is part of the
adherence of the stable manifold. (This is often referred to as the “strong
inclination property”.)

In such systems there exists an attractor which sits in a topological 2-
dimensional invariant manifold and contains all the bifurcating dynamics.
Hence all bifurcating periodic solutions have period 1 or 2 (in a tubular
neighborhood of the homoclinic loop) and there is no chaotic behaviour
[6, 18, 19, 17]. The attractor can be either an annulus or a Möbius band.
In the first case we say that the loop is non twisted and all periodic orbits
have period one. In the second case the loop is twisted.

The codimension 1 case, when the sum of the principal eigenvalues does
not vanish was studied by Šil’nikov in [20, 21] and leads, under pertur-
bation, to a unique periodic orbit. In 1987, Yanagida [22] showed that
resonant bifurcation (when the sum of the two principal eigenvalues van-
ishes) could lead to the birth of periodic curves of periodic 2. In 1990
Chow, Deng and Fiedler [2] studied the codimension 2 case by means of
the Lyapunov-Schmidt reduction.

Nondegenerate homoclinic loops (in the sense of Šil’nikov) with the
two principal eigenvalues in 1:1 resonance were later studied in the non
twisted case by the following method [17]: a suitable reduction to nor-
mal form allows the exact calculation of the transition map (Dulac map)
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in a neighbourhood of the saddle point, and its composition with a Ck–
diffeomorphism gives the first return map. The use of a derivation-division
algorithm allows to bound the number of fixed points. The method pro-
vides a bound for the number of isolated periodic solutions generated under
perturbation of the higher codimension homoclinic loops, i.e. what we call
the finite cyclicity property of the loop and allows to show the finite cyclic-
ity property for all finite codimensions. The optimality of the bound is still
an open question which is not addressed here.

The study of the twisted case for small codimension was done in [5]
in the case where the Möbius band is sufficiently differentiable. It was
done by projecting the dynamics on the band. In the present paper we
extend the result to arbitrary finite codimension. Since the Möbius band
is not sufficiently differentiable, we do not project the dynamics on the
band. We exhibit a bound for the number of isolated periodic solutions
generated under perturbation of a twisted homoclinic loop of arbitrary
finite codimension (the finite cyclicity property).

As we need to study periodic solutions of period 2, it is natural to con-
sider the 2-return map (the second iterate of the Poincaré map). In fact
we work with an equivalent displacement map defined on a 2-dimensional
section. The domain of the displacement map shrinks to a point as λ → 0
(λ = 0 corresponds to the unperturbed case). The first step is a blow up
(a method first introduced by Jebrane and Mourtada in [9]). The effect
of the blow-up is to stretch the domain to a quasi-rectangular domain.
The existence of the invariant manifold allows to reduce the map to a 1-
dimensional map via a global use of the implicit function theorem. Finally
we reduce the problem to that of giving a bound for the number of ze-
ros of a 1-dimensional map Vλ(t) on the unit interval I. The map Vλ(t)
is analytic everywhere except at the endpoints of the interval. Hence we
divide our study in three regions. Near the end points the function has
an asymptotic expansion with generalized monomials which are totally or-
dered. This allows to bound the number of zeros of Vλ(t) in a neigborhood
of each of the endpoints. In the middle interval the number of zeros is
obviously uniformly bounded since the map Vλ(T ) is analytic on a com-
pact domain, depending on λ in a compact parameter space. The special
form of the funtion Vλ(t) allows to find an explicit bound for the number of
zeros. This comes from the fact that the function is very close to a Pfaffian
function, the number of zeros of which can be studied by the theory of
fewnomials of Khovanskii. The knowledge of the asymptotic expansion of
Vλ(t) near the endpoints of I and of the Pfaffian function allows to define
the codimension of the loop. Although in the paper the codimension of the
loop is defined rather soon, the full justification of the definition can only
come from the study of Vλ(t) in the different regions. The strategy of proof
is simple. However in practice it involves long and complicated calculations
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as the number of terms and functions appearing in Vλ(t) is very large. A
great part of the work is concerned with grouping terms adequately in the
form of a term times a quantity of the form 1 + O(t) or (1 + O(1− t)) near
the endpoints, and of the form 1 + O(λ) in the middle region.

The paper is divided into two parts. The first part contains preliminaries,
the definition of codimension and of the function Vλ(t). In the second part,
we prove the finite cyclicity property of twisted nondegenerate homoclinic
loops of finite codimension.

2. THE ASYMPTOTIC EXPANSION OF THE
1-DIMENSIONAL MAP.

2.1. Setting and Framework of the Problem
Let Xλ be a p–parameter family of C∞–vector fields on R3 which has

for λ = 0 a homoclinic loop Γ0 through a saddle point at the origin
(Figure 1). We consider families Xλ for which the origin is a hyper-
bolic strongly 1-resonant saddle, i.e. the set of eigenvalues of the lineariza-
tion of X0 at the origin of R3 is {ν1(0),−ν2(0),−µ(0)} and is such that
0 < ν1(0) = ν2(0) = 1 < µ(0) and µ(0) 6∈ Q (the only resonance comes from
ν2(0) = ν1(0)). The resonant monomial u is given by u = xy.

Since (0, 0) ∈ R3 × Rp is hyperbolic, we take a small neighborhood Λ of
λ = 0 such that the saddle point has eigenvalues ν1(λ) > 0 > −ν2(λ) >
−µ(λ). There exists a CN–change of coordinates and a rescaling of time
such that the system defining the family can be written in the neighborhood
of the singular point in the following way (cf. Theorem 3 in [7])

ẋ = x

u̇ = u

(
α1(λ) +

K∑

i=1

αi+1(λ)ui

)

ż = z

(
−µ(λ) +

K∑

i=1

βi(λ)ui

)
,

(1)

where u = xy, α1(λ) = 1 − ν2(λ)/ν1(λ). We can suppose (after scaling)
that the normal form is valid in a ball of radius 2.

The first return map (the Poincaré map) is the composition of two maps:
a local transition map ∆λ between two sections to the stable and unstable
manifolds which is defined in a neighborhood U0 of the singularity, and a
regular map Rλ defined far from the singularity by the flow near Γ0. The
local transition map ∆λ, called the Dulac map as in the planar case, is
calculated using the normal form coordinates.
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Definition 1. Let the origin be a saddle point with three real eigen-
values −µ < −ν2 < 0 < ν1. The homoclinic loop Γ0 is nondegenerate in
the sense of Šil’nikov if it satisfies the following two properties:

(i) Γ0 approaches the origin along the principal stable eigenvector (i.e.
the eigenvector of the eigenvalue −ν2);

(ii) the stable manifold together with its tangent space approaches the
strong stable manifold along the homoclinic orbit, i.e. in a tubular neigh-
borhood of the invariant 1-manifold, the strong stable manifold is part of
the adherence of the stable manifold. (This property is often referred to as
the “strong inclination property”.)

Let U be a sufficiently small tubular neighborhood of Γ0. For all λ ∈ Λ ⊆
Rp with Λ a neighborhood of 0 ∈ Rp, let Σ1 = {y = 1} be a transversal of
X0 intersecting the local stable manifold of the origin, and let T1 = {x = 1}
be a transversal of X0 intersecting the local unstable manifold of the origin
(cf. Figure 1). (x, y, z) provides natural parametrizations (x, z) of Σ1 and
(Y1, Z1) of T1 (cf. Figure 1). We denote by Pλ = (P1,λ,P2,λ) the first
return map on T1.

s1

t1

y

z

x

z0

u

P
Sfrag

replacem
entsxyz
T

1

z
0UΣ
1

Figure 1. The homoclinic loop Γ0.

The regular transition mapRλ(Y1, Z1) from T1 to Σ1 is a CK–orientation
preserving diffeomorphism

Rλ(Y1, Z1) =




C0(λ) +
K∑

i+j>0

Cij(λ)Y i
1 Zj

1

D0(λ) +
K∑

i+j>0

Dij(λ)Y i
1 Zj

1




+ Řλ(Y1, Z1), (2)
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where C10(0)D01(0)−C01(0)D10(0) > 0 (orientation preserving), C0(0) = 0
but D0(0) = z0 need not vanish, and Řλ(Y1, Z1) is CK and K-flat at
Y1 = 0 = Z1.

Lemma 2. System (1) is nondegenerate if C10(0) 6= 0. The loop is
twisted (resp. nontwisted) if C10(0) < 0 (resp. C10(0) > 0). The stable
manifold for the twisted case is illustrated in Figure 2.
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Figure 2. The invariant stable manifold in the twisted case.

Definition 3.

1. Let
{
Xλ

}
λ∈Λ

be a family of CK vector fields on R3 such as in our
framework. We say that Γ0 has finite cyclicity in the family

{
Xλ

}
λ∈Λ

if there exists N ∈ N, ε > 0 and a neighborhood Λ0 of λ0 in Λ such that
for all λ ∈ Λ0, the number n(ε, λ) of isolated periodic orbits γ of Xλ with
distH(γ, Γ) ≤ ε is less than N , where distH is the Hausdorff distance on
compact sets.

2. Let

n(ε,Λ0) = sup
λ∈Λ0

{
n(ε, λ)

}
.

The cyclicity of Γ0 in the family
{
Xλ

}
λ∈Λ

is the minimum integer n(ε, Λ0)
when ε and the diameter of Λ0 go to 0. We note it Cycl(Γ0,Xλ).

3. We say that Γ0 has absolute finite cyclicity if there exists a finite
upper bound to all n(ε, Λ0) in any family

{
Xλ

}
λ∈Λ

and sufficiently small ε

and we note it Cycl(Γ0).



158 L.S. GUIMOND AND C. ROUSSEAU

2.2. The Return Map Pλ

In this section we recall the asymptotic expansion of the local transition
map ∆λ described in [17]. We also define generalized monomials as they
appear in the expansions.

r
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P
Sfrag
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entsxy
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∆
λz
T

1

Γ
0

Σ
1

Figure 3. The maps Rλ and ∆λ such that Pλ
def
= ∆λ ◦ Rλ.

The transition maps for planar systems have been thoroughly studied.
Roussarie for instance uses generalized monomials which are well-ordered
and behave adequately under differentiation (cf. [15], [14], and [16]). These
monomials have the form xiωj(x, λ) where

α1(λ) = 1− ν2(λ)
ν1(λ)

ω(x, λ) =





x−α1(λ) − 1
α1(λ)

if α1(λ) 6= 0

− ln(x) if α1(λ) = 0 .

The generalized monomials have the property that for all k > 0:

lim
α1(λ)→0

xkωj(x, λ) = −xk lnj(x),

and this holds uniformly on [0, X] for any fixed X > 0.
We will need to differentiate several times asymptotic expansions in

which appear monomials of the form xkωj . To write the result of the
differentiation in a simple form, it is useful to introduce the following con-
cepts.
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Definition 4.

1. ([14]). Let K ∈ N, ψ(x, λ) a CK–function on ]0, ε[×Λ0 such that
ψ(0, 0) = 0, and a positive continuous function ξ(x, λ) with ξ(0, λ) = 0.
We say that ψ(x, λ) is IK

0

(
ξ(x, λ)

)
if for every n ∈ N such that n ≤ K, we

have

lim
x→0

ξn(x, λ)
∂nψ(x, λ)

∂xn
= 0

uniformly on Λ0.
2. Let ψ(x, λ) ∈ IK

0

(
ξ(x, λ)

)
. We say that ψ(x, λ) ∈ JK

0

(
ξ(x, λ)

)
if for

every n ∈ N such that n ≤ K, we have

lim
λ→0

∂nψ(x, λ)
∂xn

= 0

uniformly on [0, X] for all fixed X.

The generalized monomials xkω(x, λ) are IK
0

(
ρ(x, λ)

)
, where ρ(x, λ) =

x1+α1(λ)ω(x, λ).

Lemma 5 ([9]). Let f(x, λ) be a CK–function on [0, x0[×Λ such that
f(0, λ) = 0. Then there exists a CK–function g(x, λ) with g(0, λ) = 0 and
such that for all a > 0, we have

ω
(
ax(1 + f), λ

)
=

[
1 + O(α1(λ)

)]
ω(x, λ) + g(x, λ)− ln(a)

[
1 + O

(
α1(λ)

)]
.

The Dulac map ∆λ = (∆1,λ, ∆2,λ) from Σ1 to T1 has the following form
[17]

∆λ(x, z) =


 x +

K∑

i=1

αi(λ)xiω(x, λ)
(
1 + ψi(x, λ)

)
+ φ1,K(x, λ)

zxµ(λ)
(
1 + ϕ2,K(x, λ)

)


 (3)

=
(

Y1

Z1

)
,

where ψi(x, λ) are IK−i
0

(
ρ(x, λ)

)
, ϕ2,K(x, λ) is IK

0

(
ρ(x, λ)

)
, and φ1,K(x, λ)

is CK and K–flat at x = 0.
Note that the Dulac map is not one to one for points of the form (0, z).

The inverse ∆−1
λ (Y1, Z1) of the Dulac map ∆λ(x, z) is computed by writing
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Equation (3) for the system with reverse time. In fact, for points of T1

with Y1 > 0, it is of the form

∆−1
λ (Y1, Z1) =


 Y1 +

K∑

i=1

αi(λ)Y i
1 ω(Y1, λ)

(
1 + ψi(Y1, λ)

)
+ φ1,K(Y1, λ)

Z1Y
−µ(λ)
1

(
1 + ϕ2,K(Y1, λ)

)




(4)

=
(

x
z

)

where functions ψi(Y1, λ) are I
K−i

0

(
ρ(Y1, λ)

)
, ϕ2,K(Y1, λ) are I

K

0

(
ρ(Y1, λ)

)
,

and φ1,K(Y1, λ) is CK and K–flat at Y1 = 0. Moreover

ω(Y1, λ) =





Y −α1
1 − 1

α1
if α1 6= 0

− ln(Y1) if α1 = 0
(5)

where

α1(λ) = − α1

1− α1
= −α1

(
1 + O(α1)

)

and αi(λ) = −αi(λ) + pi(λ) with pi(λ) some polynomial in the αi′ with
i′ < i. Note that although ∆−1

2,λ(Y1, Z1) is not defined at Y1 = 0, however

Z1Y
−µ(λ)
1 is bounded on ∆λ(Σ1), the region of T1 where N–curves can

appear.
As mentioned in [4], a change of coordinates

(x, y, z) → (x, y, z)

tangent to the identity preserving the type of the normal form (1) generates
a pair of maps f1

λ and f2
λ such that

f1
λ ◦∆λ ◦ f2

λ = ∆λ, (6)

where ∆λ is the Dulac map expressed in the (x, y, z) coordinates.

Lemma 6. In Equation (6), the maps f1
λ and f2

λ have the following form:

f1
λ(Y,Z) =

(
Y

(
1 +

K∑

i=1

a1
i (λ)Y i

)
, Z

(
1 +

K∑

i=1

b1
i (λ)Y i

))
,



NONDEGENERATE HOMOCLINIC LOOP IN R3 161

and

f2
λ(x, z) =

(
x

(
1 +

K∑

i=1

a2
i (λ)xi

)
, z

(
1 +

K∑

i=1

b2
i (λ)xi

))
. (7)

Proof. Let

f1
λ(Y,Z) =


Y


1 +

K∑

i+j=1

a1
ij(λ)Y iZj


 , Z


1 +

K∑

i+j=1

b1
ij(λ)Y iZj







and

f2
λ(x, z) =


x


1 +

K∑

i+j=1

a2
ij(λ)xizj


 , z


1 +

K∑

i+j=1

b2
ij(λ)xizj





 . (8)

We want to find coefficients a`
ij(λ) and b`

ij(λ) such that the relation f1
λ ◦

∆λ ◦ f2
λ = ∆λ holds. Looking at the coefficients of xjµ in f1

λ ◦∆λ ◦ f2
λ, one

obtains that a1
ij(λ) = a2

ij(λ) = 0 and b1
ij(λ) = b2

ij(λ) = 0 for j > 0.

2.3. Geometric Preliminaries
The nondegeneracy hypotheses impose important geometric constraints

on the bifurcating dynamics.

Definition 7. Let Γ0 be a homoclinic loop of X0(x). Fix U a small
tubular neighborhood of Γ0. Assume Γ ⊆ U with Γ some orbit of Xλ(x)
intersecting a section of U N–times.

1. If Γ is an homoclinic loop then it is called an N-homoclinic loop.
2. If Γ is a periodic curve then it is called an N–periodic curve.
3. An N-curve is either an N-homoclinic loop or an N–periodic curve.

As long as U is chosen small enough, the above definitions are indepen-
dent of the choice of U .

Facts 8. In our framework, we have the following facts.

1. There exists a C [µ]–Möbius band depending on λ and containing the
bifurcating dynamics (cf. [18] and [19]).

2. If there is a 2-curve on the Möbius band then there is one and only
one 1–periodic curve that coexists with the 2-curve.
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3. The cyclicity of Γ0 is bounded by 1 plus the number of 2-curves bifur-
cating from Γ0.

4. Denote by β(λ) =
(
C0(λ), D0(λ)

)
the first intersection of Wu with Σ1

(cf. Figure 4). A necessary condition for the existence of periodic solutions
is C0(λ) > 0.

5. All fixed points (Y1, Z1) ∈ T1 of the 2-return map satisfy, for λ suffi-
ciently small, R1,λ(Y1, Z1) ∈

[
0, C0(λ)

]
.
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Figure 4. Parts of the bifurcated 1-homoclinic loops in R3.

2.4. Main Result
The different bifurcations that can occur will be described by their type

(a 4−tuple) from which we can give a bound for the cyclicity.
The codimension k associated to a type will describe the minimal num-

ber ` of parameters such that the bifurcation occurs in an l−family. The
knowledge of k is sufficient to give a bound for the cyclicity, but this bound
is not explicit. Particular cases can be studied easily.

Before we state the main result, we define the type and the codimension
of nondegenerated homoclinic loop.

Definition 9. [17] The generalized monomials {1, xi+jµω`(x, λ) | 1 ≤
i + j ≤ K, 0 ≤ ` ≤ i, and ` ≤ 1 if j = 0} are totally ordered with respect
to flatness at x = 0 in the following way

xi+jµω`(x, λ) ≺ xi′+j′µω`′(x, λ) ⇐⇒
{

i + jµ < i′ + j′µ or
i + jµ = i′ + j′µ and ` > `′.

(9)
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We will only be working with monomials of the form (i, 0, `) and (i, j, 0).

Definition 10. Let k(i1, i2, j, `) denote the number of generalized
monomials of the form (i, 0, `) and (i, j, 0) and of order lower than
xi1+ji2+jµω`(x, λ).

Here are examples of orders (depending on the value of µ).

1 ≺ xω ≺ x ≺ xµ ≺ x2ω ≺ x2 ≺ x1+µ ≺ x2µ ≺ x3ω ≺ · · · if 1 < µ < 1.5,

(10)

1 ≺ xω ≺ x ≺ xµ ≺ x2ω ≺ x2 ≺ x1+µ ≺ x3ω ≺ x3 ≺ · · · if 1.5 < µ < 2,
(11)

1 ≺ xω ≺ x ≺ x2ω ≺ x2 ≺ xµ ≺ x3ω ≺ x3 ≺ x1+µ ≺ · · · if 2 < µ < 3.
(12)

In Equations (10) and (11) k(2, 0, 0, 1) = 4, and in Equation (12)
k(2, 0, 0, 1) = 3.

Definition 11. Let Γ0 be a nondegenerated loop in R3 for which the
return map is the composition of the two maps given in (2) and (3).

1. Γ0 is nondegenerate of finite codimension if it is not degenerate in
the sense of Šil’nikov [21] and one of the following generic conditions holds:

(i) α1(0) = 0 and C10(0) 6= −1, we say that Γ0 is of type (1, 0, 0, 0).

(ii) ∃ I1 such that C10(0) = −1, αi(0) = Ci0(0) = 0 for all i < I1,
Cij(0)D`0(0) = 0 for all i + j` + jµ < I1, and αI1(0) 6= 0, we say that Γ0

is of type (I1, 0, 0, 1).

(iii) ∃ I1 such that C10(0) = −1, αi(0) = Ci0(0) = 0 for all i <
2I1 + 1, Cij(0)D`0(0) = 0 for all i + j` + jµ < 2I1 + 1, α2I1+1(0) = 0, and
C2I1+1,0(0) 6= 0, we say that Γ0 is of type (2I1 + 1, 0, 0, 0).

(iv) ∃ I1, I2, J , with J > 0, such that C10(0) = −1, αi(0) = Ci0(0) = 0
for all i < I1+I2J +Jµ, Cij(0)D`0(0) = 0 for all i+j`+jµ < I1+I2J +Jµ,
and CI1J (0)DI20(0) 6= 0, we say that Γ0 is of type (I1, I2, J, 0).

2. Let Γ0 be of finite type. If (I1, I2, J, L) is the type of Γ0, then Γ0 is
said to be of codimension k with k = k(I1, I2, J, L).
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Table 1.

Type and value of n (given in (13)) together with the conditions for small codimensions
(assuming the existence of the loop).

codim
3 4 5

values of µ

1 < µ < 1.5
(0, 0, 1, 0)

n = 3

α1 = 0

C10 = −1

C01D0 6= 0

(2, 0, 0, 1)

n = 5

α1 = 0

C10 = −1

C01D0 = 0

α2 6= 0

(1, 0, 1, 0) ; n = 5

α1 = α2 = 0

C10 = −1, C01 = 0

C11D0 6= 0

(0, 1, 1, 0) ; n = 5

α1 = α2 = 0

C10 = −1 , D0 = 0

C01D10 6= 0

1.5 < µ < 2

(0, 0, 1, 0)

n = 3

α1 = 0

C10 = −1

C01D0 6= 0

(2, 0, 0, 1)

n = 5

α1 = 0

C10 = −1

C01D0 = 0

α2 6= 0

(1, 0, 1, 0) ; n = 5

α1 = α2 = 0

C10 = −1, C01 = 0

C11D0 6= 0

(0, 1, 1, 0) ; n = 5

α1 = α2 = 0

C10 = −1, D0 = 0

C01D10 6= 0

2 < µ < 3

(2, 0, 0, 1)

n = 5

α1 = 0

C10 = −1

α2 6= 0

(2, 0, 0, 1)

n = 5

α1 = α2 = 0

C10 = −1

C01D0 6= 0

(3, 0, 0, 1) ; n = 7

α1 = α2 = 0

C10 = −1

C01D0 = 0

α3 6= 0

µ > 3

(2, 0, 0, 1) ; n = 5

α1 = 0

C10 = −1, α2 6= 0

(3, 0, 0, 1) ; n = 7

α1 = α2 = 0

C10 = −1, α3 6= 0

(3, 0, 0, 1) ; n = 7

α1 = α2 = α3 = 0

C10 = −1, C30 6= 0
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Table 1.

Type and value of n (given in (13)) together with the conditions for small codimensions
(assuming the existence of the loop).

codim
6 7 8

values of µ

1 < µ < 1.5

(0, 0, 2, 0)

n = 5

α1 = α2 = 0

C10 = −1

C01D0 = 0

C01D10 = 0

C11D0 = 0

C02D0 6= 0

(3, 0, 0, 1)

n = 7

α1 = α2 = 0

C10 = −1

C01D0 = 0

C11D0 = 0

C01D10 = 0

C02D0 = 0

α3 6= 0

(3, 0, 0, 0)

n = 7

α1 = α2 = α3 = 0

C10 = −1

C01D0 = 0

C11D0 = 0

C01D10 = 0

C02D0 = 0

C30 6= 0

1.5 < µ < 2

(3, 0, 0, 1)

n = 7

α1 = α2 = 0

C10 = −1

C01D0 = 0

C11D0 = 0

C01D10 = 0

α3 6= 0

(3, 0, 0, 0)

n = 7

α1 = α2 = α3 = 0

C10 = −1

C01D0 = 0

C11D0 = 0

C01D10 = 0

C30 6= 0

2 < µ < 3

(3, 0, 0, 0)

n = 7

α1 = α2 = α3 = 0

C10 = −1

C01D0 = 0

C30 6= 0
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Remark 12.

1. The codimension k(I1, I2, J, L) depends on I1 +JI2, J , L. Conversely,
from k(I1, I2, J, L) and µ we can recover I1 + JI2, J , L.

2. Unfortunately, Definition 11 can only be justified a posteriori from the
proof of Theorem 14 below. Indeed the conditions above concern precisely
the coefficients of a function Vλ(t) appearing in (35) below and whose zeros
are in 1 : 1 correspondence with the fixed points of the 2−return map.

Proposition 13. Conditions (i)–(iv) are intrinsic.

Proof. Using Lemma 6 we can simplify the expression of Rλ so that
for the first nonvanishing Ci′0, i′ is odd. Moreover, for each j > 0, the
first nonvanishing Cij is intrinsic; the first nonvanishing Di0 is intrinsic.
Also the first nonvanishing αi is intrinsic. Indeed, the action of maps as
the f i

λ of Lemma 6 allows to simplify the expression of Rλ. In the case
C10(0) < 0, we can choose f i

λ such that

f2
λ ◦ Rλ ◦ f1

λ(Y1, Z1) =



C0(λ) +
K∑

i=1

Ci,0(λ)Y i
1 +

∑
0<i+j<K

j>0

Cij(λ)Y i
1 Zj

1

D0(λ) +
K∑

i+j>0

Dij(λ)Y i
1 Zj

1




+ R̂λ(Y1, Z1),

where, if there exists i′ such that Ci′0(0) 6= 0, the minimum of such i′ is
odd.

The finite cyclicity property can be stated in the following way.

Theorem 14. If Γ0 is of type (I1, I2, J, L), I = I1 + JI2 and

n = 2(I + [Jµ]) + 1. (13)

Then

Cycl(Γ0) ≤ A(n)
[
n(4n2 + 16n + 37) + 3

4

]
= n3 + 4n2 + 9n +

[
n + 3

4

]
.

In particular, A(n) depends only on k(I1, I2, J, L).

For all values of µ > 1, the condition to have a homoclinic loop of
codimension 1 is α1 6= 0. If α1 = 0 and C10 6= −1, then Γ0 is of codimension
≥ 2. For all higher codimensions, the conditions depend on the value of µ.
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In table 1, we give the conditions for small codimensions together with the
type.

From now on we will assume that Γ0 has finite codimension k, i.e. that
there exist I1, I2, J and L such that Γ0 is of type (I1, I2, J, L).

2.5. New Parametrization on T1

Following the ideas introduced by Jebrane and Mourtada in [9] and the
techniques used in [5], we look for a “good” parametrization of the transver-
sals Σ1 and T1. In the new parametrization the asymptotic expansion of
the displacement map will be easier to compute.

The idea of the new parametrization is to change Y1 to Y so that the
first coordinate of Rλ becomes linear in Y . Namely, let (Y1, Z1) ∈ T1.
We note by (x, z) its image on Σ1 by the diffeomorphism Rλ, i.e. (x, z) =
Rλ(Y1, Z1). Then from Equation (2) we have the following.

Rλ(Y1, Z1) =
(

x

z

)
=

(
C0(λ)
D0(λ)

)
+

(
f1,λ(Z1)
f2,λ(Z1)

)
+

(
r1,λ(Y1, Z1)
r2,λ(Y1, Z1)

)
, (14)

where fi,λ(0) = 0 = ri,λ(0, Z). Let

Θ(Y1, Z1) =
( −r1,λ(Y1, Z1)

Z1

)
, (15)

and set (Y, Z) = Θ(Y1, Z1) as the new parameterization of T1. Since by
hypothesis C10(0) 6= 0, we have

Jac(Y1,Z1)(Y, Z)(0, 0) =
∣∣∣∣
−C10(λ) 0

0 1

∣∣∣∣ = −C10(λ) > 0,

for all λ ∈ Λ. We can thus inverse Equation (15). We obtain a solution
(Y1, Z1) = Θ−1(Y,Z), where

Θ−1(Y,Z) =




∑

1≤i+j≤K
i>0

ηij(λ)Y iZj + Y · aK,λ(Y,Z),

Z


 =

(
Y1

Z1

)

(16)

in which aK,λ(Y,Z) is CK−1 and (K − 1)–flat at (0, 0).

Lemma 15. The coefficients ηij(λ) in Equation (16) are given below.

1. η10(λ) =
(− C10(λ)

)−1;
2. ηij(λ) = Cij(λ)ηi+1

10 (λ) + Pij(λ), where Pij(λ) is a polynomial in
C−1

10 (λ) and the C`m(λ) with (l, m) ≺ (i, j).
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Proof. We simply substitute Equation (15) in Equation (16).

1. For the coefficient of Y , we obtain the relation

−η10(λ)C10(λ) = 1.

2. Using induction, we obtain that the coefficient of Y I
1 ZJ

1 is given by
the relation

(−1)ICI
10(λ)ηIJ (λ) + P ′ij(λ)− η10(λ)CIJ(λ) = 0.

Let us note by R̃λ(Y, Z) = Rλ ◦ Θ−1(Y, Z) the expression of Rλ in the
new parameterization (15):

R̃λ(Y, Z) =
(

C0(λ)
D0(λ)

)
+

(
f1,λ(Z)− Y

f2,λ(Z) + r2,λ

(
Y1(Y, Z), Z

)
)

, (17)

where every function is CK in (Y, Z, λ).
Consider the displacement map

δ̃λ(Y,Z) =
(

δ̃1,λ(Y, Z)
δ̃2,λ(Y, Z)

)
= G̃λ(Y,Z)− ∆̃−1

λ (Y, Z) (18)

(
G̃λ(Y,Z)

def
= Rλ ◦∆λ ◦ Rλ ◦Θ−1(Y, Z)

∆̃−1
λ (Y, Z)

def
= ∆−1

λ ◦Θ−1(Y,Z)

)
.

The map δ̃λ(Y, Z) has, for small values of the parameter, the same num-
ber of zeros as the 2-return map.

Let

X = C0(λ) + f1,λ(Z)− Y = R̃1,λ(Y,Z). (19)

Then from equations (3) and (17), we have that

∆λ ◦ R̃λ(Y, Z)

=




X +
K∑

i=1

αiX
iω(X,λ)

(
1 + ψi,λ(X)

)
+ φ1,K,λ(X)

Xµ




K∑

i+j=0

Dij(η10Y )iZj
(
(1 + O(λ) + ϕij,λ(X, Z)

)
+ φ2,K,λ(X, Z)







where D00(λ) = D0(λ), every coefficient is a function in λ, ϕij,λ(X, 0) is
IK
0 (X), ϕij,λ(0, Z) and φi,K,λ(X, Z) are CK and K-flat.
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Since the map (Y, Z) → (X,Z) in Equation (19) is a diffeomorphism, we
can work with either system of coordinates.

2.6. The Blow-up
It is still out of reach to control directly expansions with terms of the

form Xiωj(X) and of the form Y jωm(Y ). The main step in bounding the
number of zeros of Equation (18) is to use an adequate blow-up that will
allow us to:

• extend in a “bijective” way the function ∆̃−1
λ (Y,Z) to Y = 0.

• bring the domain of the functions to “square-like” domains.
• divide the study of this dynamics in several regions in order to avoid

to have simultaneously X and Y small.

We will blow-up the variables X and Z (this will induce a blow-up of the
Y variable).

Before introducing the blow-up, we notice that the system in normal
form (1) is invariant under coordinate changes of the form

(x, y, z) = (x, y,Az),

so we can assume that either z0 = 0 or z0 = 1/2. (We choose z0 = 1/2
instead of z0 = 1 because this allows to work in the region |z| < B < 1).
Also, from Equation (3), we have

∆2,λ(x, z) = zxµ(λ) [1 + ϕ2,K,λ(x)] ,

where, by Fact 8.5., x ∈ [0, C0(λ)] and, since we are working in a small
neighborhood of (0, z0) ∈ Σ1, z ∈ [z0 − ε0, z0 + ε0] with ε0 > 0 as small as
we want. We have that

|Z| = |∆2,λ(x, z)| ≤ (|z0|+ ε0
)
xµ(λ)[1 + ε1] ≤ xµ(λ),

where C0(λ) ≤ ε1 for all λ ∈ Λ, i.e. N–curves intersect transversals T1 and
Σ1 in specific regions which we call domains of interest.

This suggests the blow-up (X,Z) = Φ(s, t), where

Φ(s, t) =
(

tC0(λ)
sC

µ(λ)
0 (λ)

)
=

(
X
Z

)
(20)

where, by Fact 8.5., t ∈ [0, 1].
This blow-up has two important consequences.

1. In the blow-up coordinates, the point corresponding to Γ0 has coor-
dinates (s, t) = (s0, 0), where s0 = z0

( − C10(0)
)−µ. Indeed, it is clear,
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from the construction of the blow-up, that t = 0 corresponds to the z–axis
on Σ1. Its inverse image by Rλ yields the upper bound of the coordinate
Y of the domain of interest on T1. This is reflected in the first line of
Equation (17):

Y = C0(λ) + f1,λ(Z)−X = C0(λ)(1− t) + f1,λ(Z).

On the other hand,

∆−1
2,λ

(
Y1(Y, Z), Z

)
= ∆̃−1

2,λ(Y, Z) (21)

= ∆̃−1
2,λ

(
tC0(λ), sCµ(λ)

0 (λ)
)

Then if we evaluate (21) at |λ| = 0 = t

∆−1
2,λ

(
Y1(Y, Z), Z

)∣∣∣
|λ|=0=t

= s0

(− C10(0)
)µ

= R̃2,λ

(
tC0(λ), sCµ(λ)

0 (λ)
)∣∣∣
|λ|=0=t

= z0.

Equation (21) also implies that s
(− C10(0)

)µ ∈ [
z0 − ε0, z0 + ε0

]
.

2. Geometrically, this blow-up acts on T1 by separating curves with dif-
ferent asymptotic behavior at Y = 0 allowing an extension, in the domain
of interest on Σ1, of the diffeomorphism ∆̃λ(x, z) to the values with x = 0
(cf. Figure 5 for the case z0 = 1/2): the domain of interest on Σ1 (DIΣ1)
is illustrated in Figure 5.a ; the image of DIΣ1 by ∆λ, noted DIT1 is illus-
trated in Figure 5.b; finally, we illustrate DIT1 in the blown-up coordinates
(s, t).
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Figure 5. Effect of the blow-up on ∆̃λ(Σ1) in the case z0 = 1/2.
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2.7. Dividing the Study in Two Regions
Equation (18) has the same number of zeros as the 2-return map. Hence

we may get an explicit bound for the cyclicity (given in Theorem 14) by
studying the zeros of Equation (18) in the blown-up coordinates for t ∈
[0, 1]. It is convenient to divide the study into the following three regions:

t ∈ [0, ε] , t ∈ [ε, 1− ε] , and t ∈ [1− ε, 1].

In this section we will show that it is sufficient to only consider the values
t ∈ [0, 1−ε], i.e. only the two regions t ∈ [0, ε] and t ∈ [ε, 1−ε]. The intuitive
geometric reason is an argument of symmetry: what occurs near t = 1 is
similar to what occurs near t = 0. First we need to develop the different
terms in Equation (18).

Let

U(t) = C0(λ)(1− t) ; X(t) = C0(λ)t. (22)

Definition 16. The notation OA,λ is used to denote a function which
is at least J

K−2(I1+JI2+[Jµ]+1)
0 . (A is a multi-index numbering such func-

tions.)

For all 0 < ε < 1 we have from (19) and (20) that in the blown-up
coordinates and for t ∈ [0, 1− ε],

Y = C0(λ)(1− t) + f1,λ

(
Cµ

0 (λ)s
)

= C0(λ)(1− t)

(
1 +

f1,λ

(
Cµ

0 (λ)s
)

C0(λ)(1− t)

)

= U(t)
(
1 +O1,λ(s, t)

)
,

and from (16)

Y1 =
K∑

i+j=1

ηijC
i+jµ
0 (1− t)isj

(
1 +O2,i,j,λ(s, t)

)
+ CK

0 O3,K,λ(s, t) (23)

= η10U(t)
(
1 +O4,λ(s, t)

)
.

Lemma 17. Let ω(Y1, λ) be defined as in (5). Then

Y i
1 ω(Y1, λ) = η

i−α1(λ)
10 U i(t)ω

(
U(t), λ)

(
1 +O5,i,λ(s, t)

)

+ ηi
10U

i(t)
(
ω(η10, λ)

(
1 +O6,λ(s, t)

)
+O7,λ(s, t)

))
. (24)
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Proof. From Equation (23) we have

ω(Y1, λ) = ω
(
U(t), λ

)(
η
−α1(λ)
10 +O8,λ(s, t)

)
+ ω

(
η10 ·

(
1 +O9,λ(s, t)

)
, λ

)
.

Lemma 18. Let Φ(s, t) be defined in Equation (20).

∆̃−1
λ ◦Φ(s, t) =




∑

1≤i+j≤K
(i>0)

ηijC
i+jµ
0 (1− t)isj

(
ζi(λ) +O10,i,j,λ(s, t)

)

η−µ
10 (1− t)−µs

(
1 +O11,λ(s, t)

)




+




K∑

i=1

αiη
i−α1
10 U i(t)ω

(
U(t), λ

)(
1 +O5,i,λ(s, t)

)
+ CK

0 φ3,K,λ(s, t)

0




(25)

where ζi(λ) = 1 + ηi
10ω(η10, λ) and φ3,K,λ is CK and K–flat at 0.

Proof. We substitute Equation (24) in the first component of Equa-
tion (4).

Lemma 19. Let X(t) be defined in (22), Φ in (20) and G̃λ in (18).

G̃λ ◦ Φ(s, t) =
(

C0

D0

)
+

(
C10

D10

) K∑

i=1

αiX
i(t)ω

(
X(t), λ

)(
1 +O12,i,λ(t)

)

+
K∑

i+j=1

(
Cij

Dij

)
Xi+jµ(t)

(
D0 + f2,λ(Cµ

0 s) + r2,λ

(
Ỹ1 ◦ Φ(s, t), Cµ

0 s
))j

+ CK
0

(
φ3,K,λ(s, t)
φ4,K,λ(s, t)

)
, (26)

where φi,K,λ are CK and K–flat at 0.

Proof. The result comes from the fact that C10(λ) 6= 0,

α`X
`ω(X, λ)(1 + f) + α`X

`+kωj(X, λ)(1 + g) = α`X
`ω(X,λ)(1 + h),

and if ` ≤ k

α`X
`ω(X,λ)(1 + f) + ∗α`αkX`+kωj(X, λ)(1 + g) = α`X

`ω(X,λ)(1 + h)
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where, if f and g are IK
0 , h is IK

0 .

Let us denote

δ1,λ(s, t)
def
= δ̃1,λ ◦ Φ(s, t),

where δ̃1,λ is defined as the first line of (18).

Proposition 20. There exists ε > 0 sufficiently small such that for each
intersection point (s, t) of a 2-periodic orbit with the transversal T1 with
t ∈ (1 − ε, 1], the t-coordinate of the second intersection point necessarily
belongs to [a, 1− ε] with a ∈ [0, ε]. Hence the number of 2–periodic orbits is
bounded by the number of fixed points of P 2

λ with t-coordinate in [0, 1− ε].

Proof. We are looking for orbits of period 2. Any such orbit generates
two fixed points of the 2-return map. Also, when there exists an orbit of
period 2, the orbit of period 1 exists.

Let M2 be the 2-dimensional invariant manifold containing all the bifur-
cating dynamics, t1(λ) and t2(λ) be the t-coordinates of the intersection
points of the orbit of period 2 with T1, and t0(λ) be the one with the orbit
of period 1. It was shown in [17] that the intersection of M2 with Σ1 (and
thus with T1) is a graph, thus t1(λ) < t0(λ) < t2(λ).

To show the lemma, it is then sufficient to show that, whenever an orbit
of period 2 exists, then t1(λ) and t2(λ) cannot be both close to 1 for λ ∈ Λ.

Let us first look at Equation (18). We have that

δ1,λ(s, t)
C0(λ)

= 1 + C10(λ)C−α1(λ)
0 (λ)t1−α1(λ)

− η10(λ)C−α1(λ)
0 (λ)(1− t)1−α1(λ) + O(λ).

Let L12 be the straight line in T1 passing through (t1, s1) and (t2, s2). L12

can be parametrized by t. The first derivative of the restriction of δ1,λ(s, t)
to L12 is of the form

∗C−α1(λ)
0 (λ)t−α1(λ) + ∗C−α1(λ)

0 (λ)(1− t)−α1(λ) + O(λ). (27)

Since δ1,λ(s, t) has at least two zeros in L12, the expression (27) has at least
one zero, say t3. Thus for any ε1 > 0 sufficiently small, both C

−α1(λ)
0 and

C
−α1(λ)
0 must be bounded, i.e. we are interested in the region Λ1 of the

parameter space Λ where there exist m,M > 0 such that

0 < m < C
−α1(λ)
0 (λ) < M. (28)

Indeed, when t3 ∈ [ε1, 1 − ε1], condition (28) follows directly from the
vanishing of (27). If t3 ∈ [0, ε1) or t3 ∈ (1 − ε1, 1], we need to split the
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discussion in the two cases α1 < 0 and α1 > 0. In the case α1 > 0 and for
sufficiently small λ, C

−α1(λ)
0 (λ) À 0 and C

−α1(λ)
0 (λ) is small. Moreover,

we have that for all t ∈ (0, 1)

0 ≤ (1− t)−α1(λ) ≤ 1;

t−α1(λ) ≥ 1. (29)

From Equation (29), C
−α1(λ)
0 (λ)t−α1(λ) À 0. The vanishing of equation

(27) at t3 excludes t3 small and t3 large.
In the case α1 < 0 we use the same argument as in the case α1 > 0 where

we interchange t and (1− t), and also α1(λ) and α1(λ).

3. THE FINITE CYCLICITY PROPERTY

3.1. Reduction to a 1−Variable Problem
This reduction is made possible by the existence of the invariant Möbius

band. In practice it is achieved via the implicit function theorem to solve
δ2,λ(s, t) = δ̃2,λ ◦ Φ(s, t) = 0, yielding s as a function of t.

Let us introduce the two following variables:

ν1 = X(t)ω
(
X(t), λ

)
and ν2 = U(t)ω

(
U(t), λ

)
(30)

where X(t) and U(t) are defined in (22).
Since Y = U(t) + f1,λ

(
Cµ

0 s
)
, using Lemma 17, we can consider the

function δ2,λ(s, t) (the second line of (18)) as a CK function of the variables
s, t, tµ, ν1 and ν2. We use the notation:

Fλ (s, t, tµ, ν1, ν2) = δ2,λ(s, t), (31)

i.e. Fλ is CK in its variables. For all points of the curve

s1(t) = D0η
µ
10(0)(1− t)µ, (32)

we have:

{
F0 (s1(t), t, 0, 0) = 0
∂sF0 (s1(t), t, 0, 0) = −(− C−1

10 (0)(1− t)
)−µ

< 0.

We can apply the implicit function theorem to Equation (31) to solve for
s around any solution of Equation (32) in a small neighborhood of λ = 0.
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Moreover, for a sufficiently small neigbourhood Λ′ of λ = 0 we can write
s explicitly in terms of (t, tµ, ν1, ν2) which are functions of t only. From
Lemmae 18 and 19, the equation Fλ = 0 is equivalent to (after substitution
of the νi using Equation (30)):

s · (1 +O13,λ(s, t)
)

= ηµ
10(1− t)µ

×
[

K∑

i=0

Di0


C0t +

K∑

j=1

αj(C0t)jω(C0t, λ)
(
1 +O14,j(t)

))



i

+ D01(C0t)µ

×
(

K∑

i=0

Di0η
i
10

(
C0(1− t)

)i(1 +O15,i,λ(s, t)
)

+ D01C
µ
0 s

(
1 +O16,λ(s, t)

)
)]

.

(33)

Lemma 21. The zeros of δ2,λ(s, t) (the second line of (18)) in the neigh-
bourhood of a solution of Equation (32) are of the form

(
s(t), t

)
where

s(t) = ηµ
10(1− t)µ

×
K∑

i=0

Di0

[ (
C0t

(
1 +O17(t)

)
+ α1(C0t)ω(C0t, λ)

(
1 +O18(t)

))i

+ D01η
i
10C

i+µ
0 tµ(1− t)i

(
1 +O19,i(t)

)
]

(34)

Proof. Equation (34) is obtained directly from Equation (33) using the
fact that, since D10 6= 0 or D01 6= 0 (because Rλ is a diffeomorphism),
we can group all terms either in a term with a coefficient Di0 6= 0 or with
coefficient D01.

We use the notation

Vλ(t) = δ1,λ

(
s(t), t

)
.
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Proposition 22. The fixed points of the 2–return map are in one to
one correspondance with the zeros of the map Vλ(t), where

Vλ(t) = c +
K∑

i=1

Ci
0

(
αit

iω(C0t, λ)
(
1 +O20,i(t)

)

− αi(1− t)iω(C0(1− t), λ)
(
1 +O21,i(t)

)
)

+
K∑

i+j=1

Ci+jµ
0

∑
||M||=j
M=(m`)
0≤`≤k

(
j

M

)

×
K∏

`=0

(
D`0C

`
0

)m`

(
Cijt

i+jµ(1− t)
P

`m`
(
1 +O22,M,i,j(t)

)

− (1− δi0)ηij(1− t)i+jµt
P

`m`
(
1 +O23,M,i,j(t)

)
)

(35)

where c = c(λ) is some constant, δi0 is the Kronecker delta, and
(

j
M

)
is the

multinomial coefficient

(
j

M

)
=

j!
m1!m2! · · ·mK !

.

Remark: Note that Γ0 is of finite codimension if and only if at least one of
the coefficients in Vλ(t) is nonvanishing, up to an adequate power of C0.

Proof (Proof of Proposition 22). We need to apply Lemmae 18 and 19 in
which we replace s by its value s(t) given in Lemma 21. To substitute it in
equations (25) and (26) we first need to calculate sj and

(
D0 +f2,λ(Cµ

0 s)+
r̃2,λ ◦ Φ(s, t)

)j (see (14) and (17)).

sj(t) = ηjµ
10 (1− t)jµ

( ∑
||M||=j
M=(m`)

(
j

M

) K∏

`=0

(
D`0C

`
0t

`
)m`

(
1 +O24,M (t)

)

+ α1(C0t)ω(C0t, λ) · F1,j,λ(t)

)
.
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Also we have

D0 + f2,λ(Cµ
0 s) + r̃2,λ ◦ Φ(s, t)

= D0

(
1 +O25(t)

)
+ D01C

µ
0 s

(
1 +O26(t)

)

+
K∑

i=1

Di0η
i
10C

i
0(1− t)i

(
1 +O27,i(t)

)

= D0

(
1 +O28(t)

)
+

K∑

i=1

Di0η
i
10C

i
0(1− t)i

(
1 +O29,i(t)

)

+ D01C
µ
0 ηµ

10(1− t)µ
K∑

i=1

Di0

((
C0t

(
1 +O30,i(t)

)

+ α1C0tω(C0t, λ)
(
1 +O31,i(t)

))i

+ D01C
i+µ
0 tµ(1− t)i

(
1 +O32,i(t)

)
)

= D0

(
1 +O28,i(t)

)
+

K∑

i=1

Di0C
i
0(1− t)i

(
ηi
10

(
1 +O29,i(t)

)
+ ∗Cµ

0 tµO33,i(t)
)

+ D01C
µ
0 ηµ

10(1− t)µ

×
K∑

i=1

Di0

(
C0t

(
1 +O30,i(t)

)
+ α1C0tω(C0t, λ)

(
1 +O31,i(t)

))i

= D0

(
1 +O28(t)

)
+

K∑

i=1

Di0η
i
10C

i
0(1− t)i

(
1 +O34,i(t)

)

+ D01C
µ
0 ηµ

10(1− t)µ
K∑

i=1

Di0α1C0tω(C0t, λ)
(
1 +O31,i(t)

)
F2,i,λ(t),

where F2,1,λ(t) ≡ 1 and for i > 1, the F2,i,λ(t) are IK
0 (t). Therefore

(
D0 + f2,λ(Cµ

0 s) + r̃2,λ ◦ Φ(s, t)
)j

=
∑

||M||=j
M=(m`)

(
j

M

) K∏

`=0

(
D`0η

`
10C

`
0(1− t)`

)m`
(
1 +O35,M (t)

)

+ α1C
1+µ
0 tω(C0t, λ)F2,λ(t),

where, for terms in ω, all the Di0 are included in F2,λ(t) which is IK
0 (t).

The result follows from Lemmae 18 and 19. We have used the hypothesis
that Γ0 is of finite codimension to get rid of the higher order terms in
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the expansion. Indeed there exists at least one nonvanishing term of the
expansion in which we can include the higher order terms.

Corollary 23. For codimensions 1 and 2, Vλ(t) is of the same form
as studied in [5], i.e.

Vλ(t) = c + C0

(
α1tω(C0t, λ)

(
1 +O20,1(t)

)

−α1(1− t)ω(C0(1− t), λ))
(
1 +O21,1(t)

))
+ C0t(C10 + η10)

(
1 +O36(t)

)
.

We will limit our study to codimensions k > 2
(
i.e. α1(0) = 0 and

C10(0) = −1 = −η10(0)
)
.

3.2. The differentiability properties of the generalized
monomials

In the region t ∈ [0, ε], we use a derivation-division algorithm on Vλ(t)
which is a generalization of Rolle’s theorem. Each derivation must kill one
term. In between the derivations we multiply the function by functions
which are positive for t in the whole region (0, 1 − ε). The details of the
algorithm are long to write and lead to an explicit bound which is a function
of µ(λ), see Propositions 26 and 27.

We recall the nice differential properties of the generalized monomials
(which can be found in [17] for instance).

1. Everywhere in the sequel, ∗ denotes a nonvanishing constant (which
may be a differentiable function of λ).

2.

dω(x, λ)
dx

= −x−1−α1(λ) = x−1
(
α1(λ)ω(x, λ) + 1

)
.

3. The derivative of a monomial g = xβω`(x, λ) is

dg

dx
= ∗xβ−1ω`(x, λ)[1 + g1(x, λ)],

where g1(x, λ) is IK
0 (x).

4. More generally, if i and ` are integers such that ` ≤ i ≤ h, then

dh
(
xiω`(x, λ)

)

dxh
=





xi−h−α1(λ)

`−1∑

j=0

∗ωj(x, λ) if i < h

∑̀

j=0

∗ωj(x, λ) if i = h.



NONDEGENERATE HOMOCLINIC LOOP IN R3 179

5. If h < β,

dh
(
xβω`(x, λ)

)

dxh
= ∗xβ−hω`(x, λ)[1 + fβh`(x, λ)],

where fβh`(x, λ) is IK
0 (x).

The n–th derivative of a generalized monomial f1 = xi+jµω`(x, λ) is thus
given by

∂nf1

∂xn
=





∗xi−n+jµ(λ)ω`
(
x, λ

)
[1 + fij`n(x, λ)]

if j ≥ 1 or
j = 0 and n < i

∑̀

k=0

∗ωk
(
x, λ

)
if j = 0 and n = i

∗xi−n−α1(λ)ω`−1
(
x, λ

)
[1 + fij`n(x, λ)] if j = 0 and n > i,

where fijln(x, λ) are IK−n
0 (x).

Lemma 24.

1.Let fi(X, λ) be IK−n
0

(
ρ(X,λ)

)
, and let Fi(t)

def
= fi

(
tC0(λ)

)
. Then

Fi(t) is JK−n
0 (t).

2.Let f i(Y, λ) be IK−n
0

(
ρ(Y, λ)

)
, and let F i(t)

def
= f i

(
C0(λ)(1 − t +

f̃1,λ(t))
)
. Then on [0, 1−ε], F i(t, λ) is analytic in t and limλ→0 F i(t, λ) = 0

uniformly.

Proof. We have that for all 0 ≤ n ≤ K − (k + 1)

lim
X→0

(
X1+α1(λ)ω

)n ∂nfi(X, λ)
∂Xn

= 0 = lim
Y→0

(
Y 1+α1(λ)ω

)n ∂nf i(Y, λ)
∂Y n

,

uniformly for λ ∈ Λ. Since
X

X1+α1(λ)ω(X,λ)
is bounded, we then have the

following limit:

lim
X→0

Xn ∂nfi(X, λ)
∂Xn

= 0 = lim
Y→0

Y n ∂nf i(Y, λ)
∂Y n

.

We easily obtain that for all 0 ≤ n ≤ K − (k + 1)

lim
C0(λ)→0

∂nF i(t, λ)
∂tn

= lim
C0(λ)→0

∂nFi(t, λ)
∂tn

= 0 = lim
(t,λ)→(0,0)

tn
∂nFi(t, λ)

∂tn
,
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the first limits being uniform in λ.

3.3. Algorithm for t ∈ [0, ε] with Γ0 of codimension k

The idea here is to write an asymptotic expansion for Vλ(t) in terms of
well-ordered monomials such as those in (9)–(12). A bound for the number
of small zeros is then found by an iteration of Rolle’s theorem in the form
of a succession of derivations and divisions. The exact treatment depends
on the type of the bifurcation.

In this section, the notation Oλ(t) is used to note a function such that
if we note Oλ(0) = f(λ), then f(λ) = O(λ) and Oλ(t) − f(λ) is at least
J

K−2(I1+JI2+[Jµ]+1)
0 (t). Thus

lim
(t,λ)→(0,0)

∂j
tOλ(t) = 0,

for all 0 ≤ j ≤ K − 2(I1 + JI2 + [Jµ] + 1).

3.3.1. Case 1: Γ0 of type (I1, I2, J, L) with (J, L) 6= (0, 0).

This is the case where αI1(0) 6= 0 or CI1JDI20 6= 0. Let I = I1 +JI2 and

I3 =

{
I2 if I2 6= 0
I = I1 otherwise.

The introduction of I3 is motivated by the fact that when DI20 6= 0, then
terms Di0 with i > I2 can be grouped with the DI20 term.

Lemma 25. For t ∈ (0, ε], the vanishing of the (I +[Jµ]+1)th derivative
of Equation (35) is equivalent to the vanishing of

T I+[Jµ]+1,λ(t) =
I+[Jµ]∑

i=1

∗Ci
0αit

i
(
1 +O37,i,λ(t)

)

+
∑

1≤i+j≤I+Jµ
j 6=0

Ci+jµ
0 pij(λ)ti+jµ+α1(λ)

(
1 +O38,i,j,λ(t)

)
, (36)

where

pij(λ)
def
=

∑
||M||=j
M=(m`)
0≤`≤I3

∑
i≤i1+

P
m``≤I+[(J−j)µ]
0≤i1≤i

∗Ci1+
P

m``−i
0 Ci1j

(
I3∏

`=0

Dm`

`0

)
,

(37)
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and ∗ are nonvanishing functions of λ.

Proof. For t ∈ (0, ε], Vλ(t)
(
Equation (35)

)
is of the following form

Vλ(t) = c +
I+[Jµ]∑

i=1

Ci
0

(
αit

iω(C0t, λ)
(
1 +O38,i,λ(t)

)

− αi(1− t)iω(C0(1− t), λ))
(
1 +O21,i,λ(t)

)
)

+ Vλ(t),

where, using the relation (1 − t)A =
∑A

i′=0 ∗ti
′
, the rest function Vλ(t) is

of the form

Vλ(t) =
I+Jµ∑

i+jµ=1

Ci+jµ
0

∑
||M||=j
M=(m`)
0≤`≤k

(
j

M

) I3∏

`=0

(
D`0C

`
0

)m`

(
Cijt

i+jµ(1− t)
P

`m`

× (
1 +O30,M,i,j(t)

)− (1− δi0)ηij(1− t)i+jµt
P

`m`
(
1 +O31,M,i,j(t)

)
)

=
I+Jµ∑

i+jµ=1

Ci+jµ
0 ti

[ ∑
||M||=j
M=(m`)
0≤`≤I3

∑
i≤i1+

P
m``≤I+[(J−j)µ]
0≤i1≤i

∗Ci1+
P

m``−i
0 Ci1j

×
(

I3∏

`=0

Dm`

`0

)
tjµ

(
1 +O39,M,i1,j,λ(t)

)

−
∑
||N||=j
N=(n`)
0≤`≤I3

0≤Pn``≤i

∑

i≤i2+
P

n``≤I+[(J−j)µ]

∗(1− δi20)C
i2+

P
n``−i

0 ηi2j

×
(

I3∏

`=0

Dn`

`0

)
(1− t)jµ

(
1 +O40,N,i2,j,λ(t)

)
]
+CI+Jµ

0 O41,k,λ(t).

The rest function CI+Jµ
0 O41,k,λ(t) can be included in the term with coeffi-

cient ∗CI
0αI or ∗CI+Jµ

0 CI1JDJ
I20

. The (I+[Jµ]+1)th derivative of equation
Vλ(t) is then of the form

I+[Jµ]∑

i=1

∗Ci−α1(λ)
0 αi

(
ti−(I+[Jµ]+1+α1(λ))

(
1+O42,i,λ(t)

)
+∗(1+O43,i,λ(t)

))

+ VI+[Jµ]+1,λ(t), (38)
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where VI+[Jµ]+1,λ(t) is of the following form:

VI+[Jµ]+1,λ(t)

=
∑

1≤i+jµ≤I+Jµ
j 6=0

Ci+jµ
0

[ ∑
||M||=j
M=(m`)
0≤`≤I3

∑
i≤i1+

P
m``≤I+[(J−j)µ]
0≤i1≤i

∗Ci1+
P

m``−i
0 Ci1j

×
(

I3∏

`=0

Dm`

`0

)
ti−(I+[Jµ]+1)+jµ

(
1 +O44,M,i1,j,λ(t)

)

−
∑
||N||=j
N=(n`)
0≤`≤I3

0≤Pn``≤i

∑

i≤i2+
P

n``≤I+[(J−j)µ]

∗Ci2+
P

n``−i
0 (1− δi20)ηi2j

(
I3∏

`=0

Dn`

`0

)

× (
1 +O45,N,i,j,λ(t)

)
)

. (39)

Indeed for all i + jµ < I + [Jµ] + 1,

dI+[Jµ]+1ti(1− t)jµ

dtI+[Jµ]+1
= ∗(1 +O46,i,j,λ(t)

)
,

with ∗ a nonvanishing function of λ.
We multiply Equation (38) by tI+[Jµ]+1+α1(λ) and in the first summation

we include C
−α1(λ)
0 in ∗ using Equation (28). We can then factor ti in the

term with coefficient ∗Ci
0αi,

(
ti

(
1 +O42,i,λ(t)

)
+ ∗tI+[Jµ]+1+α1(λ)

(
1 +O43,i,λ(t)

))
= ti

(
1 +O37,i,λ(t)

)
.

Moreover, if j 6= 0,

ηi2j(λ) = Ci2j(λ) +
∑

0<j′<j, i′<i2

Ci′j′(λ) ·O(λ). (40)

Hence all terms in the second summation of VI+[Jµ]+1,λ(t)
(

Equation (39)
)

have the form ∗Ci′j′
(∏I3

`=0 Dm`

`0

)
multiplied by at least the same power

of C0 and a greater power of t than the corresponding term in the first
summation. Thus

VI+[Jµ]+1,λ(t) =
I+Jµ∑

i+jµ=1

Ci+jµ
0 pij(λ)ti+jµ−α1(λ)

(
1 +O38,i,j,λ(t)

)
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where pij(λ) is defined in (37). Indeed, fix (i, i2, j, N) with





||N || = j

0 ≤
I3∑

`=0

n`` ≤ i

i ≤ i2 +
I3∑

`=0

n`` ≤ I + [(J − j)µ].

Then from Equation (40)

ηi2j

(
I3∏

`=0

Dn`

`0

)
tI+[Jµ]+1 =


Ci2j(λ) +

∑

0<j′<j, i′<i2

Ci′j′(λ) ·O(λ)




(
I3∏

`=0

Dn`

`0

)
tI+[Jµ]+1. (41)

Moreover, if j > j′ and N = N ′ + N ′′ with any N ′ = (n′`) such that
||N ′|| = j′, then

I3∏

`=0

Dn`

`0 =
I3∏

`=0

D
n′`
`0 ×

I3∏

`=0

D
n
′′
`

`0 .

Let Equation (41), and for each j′ < j choose such a N ′. Then

ηi2j

(
I3∏

`=0

Dn`

`0

)
tI+[Jµ]+1 = tI+[Jµ]+1

×


Ci2j(λ)

(
I3∏

`=0

Dn`

`0

)
+

∑
1<i′+j′µ<i2+jµ

(j′ 6=0)

Ci′j′(λ)

(
I3∏

`=0

D
n′`
`0

)
·O(λ)


 ,

(42)

i.e. the term in Equation (42) with coefficient Ci′j′(λ) can be included
in the rest function of the corresponding term in the first summation of
Equation (38) with M = N ′.

To simplify Equation (36), we homogenize the coefficients. Let the fol-
lowing homogenization.
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{
∗αi(λ) = C

(I−i)+Jµ
0 τ i(λ)

∗pij(λ) = ∗C0(λ)(I−i)+(J−j)µρij(λ) (j 6= 0).
(43)

Then, coefficients τ i(λ) and ρij(λ) may not be bounded at 0. To eliminate
this problem, let

L(λ) =




∑
(i,j)≤(I,J)

j 6=0

(
τ2

i (λ) + ρ2
ij(λ)

)



1/2

> δ > 0,

where the first inequality comes from the finite codimension hypothesis.
Indeed

{
τ I(0) = αI(0) 6= 0 if L = 1
ρIJ (0) = pIJ(0) = CI1J(0)DJ

I20
(0) 6= 0 if L = 0 6= J.

Let




τi(λ) =
τ i(λ)
L(λ)

ρij(λ) =
ρij(λ)
L(λ)

.
(44)

Remark: There are N = k(I1, I2, J, L)−(I+[Jµ]) equations in system (44).

Hence, even if L(λ) is not bounded at λ = 0, at least one of the inequalities
τi(λ) ≥ 1/N or ρij(λ) ≥ 1/N is satisfied.

We divide T I+[Jµ]+1,λ(t)
(
Equation (36)

)
by CI+Jµ

0 L(λ).

TI+[Jµ]+1,λ(t) =
I+[Jµ]∑

i=1

τit
i
(
1 +O47,i,λ(t)

)

+
∑

1<i+jµ≤I+Jµ
j 6=0

ρijt
i+jµ+α1

(
1 +O48,i,j,λ(t)

)
. (45)

Proposition 26. For sufficiently small λ ∈ Λ, Vλ(t) has at most
k(I1, I2, J, L) + 1 zeros in [0, ε]. (k(I1, I2, J, L) is defined in Definition 10.)

Proof. All terms corresponding to polynomial terms in Equation (35)
have been killed by derivation, thus there are at most k(I1, I2, J, L)− (I +
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[Jµ]) terms in Equation (45). Moreover, monomials ti and ti+jµ+α1(λ)

with j 6= 0 are well ordered and form a Chebyshev system (cf. [17]). Us-
ing a derivation-division algorithm in each cone where either τi or ρij is
the largest coefficient, we thus obtain that for sufficiently small λ ∈ Λ,
TI+[Jµ]+1,λ(t) has at most k(I1, I2, J, L) − (I + [Jµ]) zeros in [0, ε]. The
result follows from Rolle’s theorem.

Remark: As stated in the previous proof, monomials ti and ti+jµ+α1(λ)

with j 6= 0 are well ordered and form a Chebyshev system. If a function
has an expansion in these monomials and if at least one of the coefficients is
nonvanishing, then a derivation-division algorithm yields that the number
of its small zeros is at most the order of the nonvanishing coefficient minus
one.

3.3.2. Case 2: Γ0 of type (2I1 + 1, 0, 0, 0).

When Γ0 is of type (I, 0, 0, 0), with I = 2I1+1, we must be careful in the
algorithm not to kill the leading term tI with coefficient ∗CI

0CI0. Indeed,
following the proof of Lemma 25, the Ith derivative of Equation (35) is of
the form

T I,λ(t) =
I−1∑

i=1

∗Ci
0αit

i−I−α1(λ)
(
1 +O49,i,λ(t)

)

+ ∗CI
0αI

(
ω
(
C0t, λ

)(
1 +O50,I1,λ(t)

)
+ ∗ω(

C0(1− t), λ
)(

1 +O51,I1,λ(t)
))

+

( ∑
1≤i+jµ≤I

j 6=0

∗Ci+jµ
0 pij(λ)ti−I+jµ

(
1+O52,M,i,j(t)

)
)

+∗CI
0pI0

(
1+O53,I,λ(t)

)

(46)

where, up to multiplication by a nonvanishing function of λ, the pij(λ) are
the ones given in Equation (37), and

pI0(λ) = ∗(CI0(λ) + (−1)I+1ηI0(λ)
)
.

Let the homogenization given in Equation (43). We subdivide the param-
eter space in the following cones:
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E`(Λ1)
def
=

{
λ ∈ Λ1

∣∣ |τ`|(λ) = max
k≤I

(m,n)≤(I,0)

(|τk(λ)|, |ρmn(λ)|)}

Eij(Λ1)
def
=

{
λ ∈ Λ1

∣∣ |ρij(λ)| = max
k≤I

(m,n)≤(I,0)

(|τk(λ)|, |ρmn(λ)|)},

with 0 ∈ Λ1 ⊆ Λ.
The only cone which requires a discussion different from Proposition 26 is

the cone EI0(Λ1). We need to subdivide the cone EI0(Λ1) in the following
ones:

E1
I0(Λ1)

def
=

{
λ ∈ EI0(Λ1)

∣∣ |τI | ≤ |τ1|
}

E2
I0(Λ1) = Λ1\E1

I0(Λ1).

Since
(
τi(λ), ρij(λ)

) ∈ Sk,

Λ1 =

(
I⋃

`=0

E`(Λ1)

) ⋃



⋃
0<i+jµ<I

(j 6=0)

Eij(Λ1)




⋃
EI0(Λ1).

Notice that if

E′
`(Λ1)

def
=

{
λ ∈ E2

I0(Λ1)
∣∣ |τ`(λ)| = max

k≤I
(m,n)<(I,0)

(|τk(λ)|, |ρmn(λ)|)}

E′
ij(Λ1)

def
=

{
λ ∈ E2

I0(Λ1)
∣∣ |ρij(λ)| = max

k≤I
(m,n)<(I,0)

(|τk(λ)|, |ρmn(λ)|)|},

then

E2
I0(Λ1) =

(
I⋃

`=0

E′
`(Λ1)

)⋃



⋃
0<i+jµ<I

(j 6=0)

E′
ij(Λ1)


 . (47)

Proposition 27. For sufficiently small λ ∈ Λ, Vλ(t) has at most
k(I, 0, 0, 0) zeros in [0, ε]. (k(I1, I2, J, L) is defined in Definition 10.)

Proof. We first divide Equation (46) by CI
0L(λ) and denote by T̃I,λ(t)

the resulting equation.

1. Let λ ∈ E1
I0(Λ). In T̃I,λ(t), we group the terms with coefficient in

τI with the terms with coefficient in τ1 (|τI/τ1| < 1 if τ1 6= 0 or both
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terms vanish). The monomials in T̃I,λ are then well ordered and form a
Chebyshev system. The result follows from the remark above.

2. Let λ ∈ E2
I0(Λ1). We first divide T̃I,λ(t) by

(
1 +O53,I,λ(t)

)
and then

differentiate once with respect to t. We obtain a function whose vanishing
is equivalent to the vanishing of TI+1,λ(t), see Equation (45). The result
follows from Proposition 26 and Equation (47).

3.4. Algorithm for t ∈ [ε, 1 − ε] with Γ0 of codimension k

Here we need to bound the number of zeros of an analytic function (Vλ)
on a global domain. The idea to compute this bound is that a certain
derivative of Vλ(t) is close, uniformly in λ, to a Pfaffian function with only
isolated zeros, the number of zeros of which can be explicitly estimated.
The explicit estimation is a lovely application of Khovanskĭı’s fewnomial
theory.

3.4.1. Case 1: Γ0 of type (I1, I2, J, L) with (J, L) 6= (0, 0).

Let I = I1 + JI2 and, as in the previous section,

I3 =

{
I2 if I2 6= 0
I = I1 otherwise.

Lemma 28. For t ∈ [ε, 1−ε] the vanishing of the (I+[Jµ]+1)th derivative
of Equation (35) is equivalent to the vanishing of

T I+[Jµ]+1,λ(t) =
I+[Jµ]∑

i=1

∗Ci
0αi

(
ti(1− t)I+[Jµ]+1

(
1 +O54,i,λ(t)

)

+ (−1)I+[Jµ]tI+[Jµ]+1(1− t)i
(
1 +O55,i,λ(t)

))

+
∑

1≤i+jµ≤I+Jµ
j 6=0

Ci+jµ
0 ti

(
qijt

jµ(1− t)I+[Jµ]+1
(
1 +O56,i,j,λ(t)

)

− q̌ijt
I+[Jµ]+1(1− t)jµ

(
1 +O57,i,j,λ(t)

))
, (48)
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where

qij(λ)
def
=

∑
||M||=j
M=(m`)
0≤`≤I3

∑
0≤i1≤i

i≤i1+
P

m``≤I+(J−j)µ

∗Ci1+
P

m``−i
0

(
I3∏

`=0

(
D`0(λ)

)m`

)
Ci1j(λ),

and

q̌ij(λ)
def
=

∑
||N||=j
N=(n`)
0≤`≤I3

∑
0≤Pn``≤i

i≤i2+
P

n``≤I+(J−j)µ

∗Ci2+
P

n``−i
0

(
I3∏

`=0

(
D`0(λ)

)n`

)
(1−δi20)ηi2j(λ).

Remark 29. All coefficients qij(λ) in the summation are equal, up to
multiplication by a nonvanishing function of λ, to the corresponding coef-
ficient pij(λ) defined in Equation (37).

Proof (Proof of Lemma 28). The (I + [Jµ] + 1)th derivative of Equa-
tion (35) has the form

I+[Jµ]∑

i=1

∗Ci−α1(λ)
0

(
αit

i−(I+[Jµ]+1+α1(λ))
(
1 +O58,i,λ(t)

)

+(−1)I+[Jµ]+1αi(1−t)i−(I+[Jµ]+1+α1(λ))
(
1+O59,i,λ(t)

)
)

+VI+[Jµ]+1,λ(t),

(49)

where

VI+[Jµ]+1,λ(t) =
∑

1≤i+jµ≤I+Jµ
j 6=0

||M||=j
A+B=I+[Jµ]+1

0≤B≤Pm``

i1+
P

m``=i

Ci+jµ
0

×
(

pi1,j,A,B,M ti1+jµ−A(1− t)
P

m``−B
(
1 +O60,M,i1,j,A,B,λ(t)

)

− p̌i1,j,A,B,M t
P

m``−B(1− t)i1+jµ−A
(
1 +O61,M,i1,j,A,B,λ(t)

)
)

,
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with

pi1,j,A,B,M (λ)
def
= f1,i1,j,A,B,M (λ)

(
I3∏

l=0

(
Dl0(λ)

)ml

)
Ci1j(λ),

and

p̌i1,j,A,B,M (λ)
def
= f2,i1,j,A,B,M (λ)

(
I3∏

l=0

(
Dl0(λ)

)ml

)
(1− δi10)ηi1j(λ),

where coefficients fi,i1,j,A,B,M (λ) are nonvanishing functions appearing as
a result of the derivations which, in the sequel, we simply write as ∗.

We multiply Equation (49) by tI+[Jµ]+1(1 − t)I+[Jµ]+1 and, in the first
summation, we include C

−α1(λ)
0 in ∗ using Equation (28). We can then

factor ti in the term with coefficient ∗Ci
0αi. Indeed, using the identity

ti−α1(λ) = ti
(
1 + (t−α1(λ) − 1)

)
= ti

(
1 +O62,i,λ(t)

)
,

ti−α1(λ)(1− t)I+[Jµ]+1
(
1 +O58,i,λ(t)

)

+ (−1)I+[Jµ]tI+[Jµ]+1(1− t)i−α1(λ)
(
1 +O59,i,λ(t)

)

= ti(1−t)I+[Jµ]+1
(
1+O54,i,λ(t)

)
+(−1)I+[Jµ]tI+[Jµ]+1(1−t)i

(
1+O55,i,λ(t)

)
.

From Equation (49), we then obtain a function of the form

I+[Jµ]∑

i=1

∗Ci
0αi

(
ti(1− t)I+[Jµ]+1

(
1 +O54,i,λ(t)

)

+ (−1)I+[Jµ]+1tI+[Jµ]+1(1− t)i
(
1 +O55,i,λ(t)

))
+ VI+[Jµ]+1,λ(t),
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where

VI+[Jµ]+1,λ(t) =
∑

1≤i+jµ≤I+Jµ
j 6=0

Ci+jµ
0

×
∑

||M||=j
i1+

P
m``=i

∑
A+B=I+[Jµ]+1

0≤B≤Pm``

[
(1− t)I+[Jµ]+1

×
(
pi1,j,A,B,M ti1+I+[Jµ]+1+jµ−A(1− t)

P
m``−B

(
1 +O60,M,i1,j,A,B,λ(t)

))

− tI+[Jµ]+1

×
(
p̌i1,j,A,B,M t

P
m``−B(1−t)i1+I+[Jµ]+1+jµ−A

(
1+O61,M,i1,j,A,B,λ(t)

))
]
.

(50)

Consider, for fixed (i, j,M), the polynomial

∑

i≤i1+
P

m``≤I+(J−j)µ

∑
A+B=I+[Jµ]+1

0≤B≤Pm``

C
i1+

P
m``−i

0 pi1,j,A,B,M ti1+I+[Jµ]+1−A

× (1− t)
P

m``−B , (51)

and, for fixed (i, j, N), the polynomial

∑

i≤i2+
P

n``≤I+(J−j)µ

∑
A+B=I+[Jµ]+1

0≤B≤Pn``

C
i2+

P
n``−i

0 p̌i1,j,A,B,N

× t
P

n``−B(1− t)i2+I+[Jµ]+1−A. (52)

Let pi,j,M (λ)
(
resp. p̌i,j,N (λ)

)
be the coefficient of the monomial ti in

Equation (51)
(
resp. (52)

)
after expansion of terms of the form (1 − t)a.

Then from Equation (50),

VI+[Jµ]+1,λ(t) =
∑

1≤i+jµ≤I+Jµ
j 6=0

Ci+jµ
0

[
tjµ(1− t)I+[Jµ]+1

×
( ∑

||M||=j
i1+

P
m``=i

∑
A+B=I+[Jµ]+1

0≤B≤Pm``

pi1,j,A,B,M ti1+I+[Jµ]+1−A(1− t)
P

m``−B
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× (
1 +O60,M,i1,j,A,B,λ(t)

)
)
− tI+[Jµ]+1(1− t)jµ

×
( ∑

||N||=j
i2+

P
n``=i

∑
A+B=I+[Jµ]+1

0≤B≤Pn``

p̌i2,j,A,B,N t
P

n``−B(1− t)i2+I+[Jµ]+1−A

× (
1 +O61,N,i2,j,A,B,λ(t)

)
)]

=
∑

1≤i+jµ≤I+Jµ
j 6=0

Ci+jµ
0 ti

[
tjµ(1−t)I+[Jµ]+1

( ∑
||M||=j
M=(m`)
0≤`≤I3

pi,j,M

(
1+O63,M,i,j,λ(t)

)
)

− tI+[Jµ]+1(1− t)jµ

( ∑
||N||=j
N=(n`)
0≤`≤I3

p̌i,j,N

(
1 +O64,i,j,λ(t)

)
)]

.

Let the following homogenization of the coefficients:





∗αi(λ) = C
(I−i)+Jµ
0 τ i(λ)

∗qij(λ) = C0(λ)I−i+(J−j)µρij(λ),
∗q̌ij(λ) = C0(λ)I−i+(J−j)µρ̌ij(λ).

Once again coefficients τ i(λ), ρij(λ) and ρ̌ij(λ) may not be bounded at 0.
However, since

ρI,J(λ) = CI1J (λ)

(
DJ

I2,0(λ) +
I2∑

i2=0

Di2,0hI1,i2,J(λ)
)

+
I1+JI2+Jµ∑

i1+ji2+jµ=1

Ci1,jDi2,0hi1,i2,j(λ)

where hi1,i2,j(λ) are polynomials in Cij(λ) and D`0(λ), either τ I(0) =
αI(0) 6= 0 or ρI,J(0) = CI1J(0)DJ

I2,0(0) 6= 0. We can thus compactify the
coefficient space as we did in section 3.3.1.

Lemma 30. For t ∈ [ε, 1−ε] the vanishing of the (I+[Jµ]+1)th derivative
of Equation (35) is equivalent to the vanishing of GI+[Jµ]+1,λ

(
t, (1−t)µ, tµ

)
,
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where

GI+[Jµ]+1,λ(t, y, z) =
2I+[Jµ]+Jµ+1∑

i+(j+l)µ=1

ξijlt
iyjzl +O65,λ,k(t, y, z),

with ξijl(λ) polynomials in τi′(λ), ρi′j′(λ) and ρ̌i′j′(λ).

Proof. We divide T I+[Jµ]+1,λ(t)
(
Equation (48)

)
by CI+Jµ

0 L(λ) and
obtain

˜̃̃
T I+[Jµ]+1,λ(t) =

I+[Jµ]∑

i=1

τi

(
ti(1− t)I+[Jµ]+1 +(−1)I+[Jµ](1− t)itI+[Jµ]+1

)

+
∑

1≤i+jµ≤I+Jµ
j 6=0

ti
(
ρijt

jµ(1− t)I+[Jµ]+1− ρ̌ijt
I+[Jµ]+1(1− t)jµ

)
+O66,k(t).

(53)

The result follows by setting ξijl(λ) such that

G(
t, (1− t)µ, tµ

)
=

˜̃̃
T I+[Jµ]+1,λ(t).

Proposition 31. Let n = 2(I + [Jµ]) + 1. For sufficiently small λ ∈ Λ,
Vλ(t) has at most 1

2

(
n(4n2 + 16n + 37) + 1

)
zeros in [ε, 1− ε].

To prove this proposition, we will need the following lemma.

Lemma 32. Let 0 < t2 < t3. If T (t, λ)
def
= P (t, λ)+f(t, λ) where P (t, λ)

and f(t, λ) are some analytic functions depending on λ, and f(t, λ) is such
that for all n ≤ k we have on [t2, t3]

lim
λ→0

∂nf(t, λ)
∂tn

= 0.

We suppose P (t, 0) 6≡ 0. Let N be a bound for the number of zeros of P (t, λ)
on [t2, t3], for λ in a neighborhood of Λ0. Then there exists a neighborhood
ΛP ⊆ Λ0 of λ = 0 such that T (t, λ) has at most N zeros on [t2, t3].

Proof. This result is stated in [9] for P a polynomial. The proof is
similar.

Let N ∈ N such that for all sufficiently small λ, P (t, λ) has at most N

zeros counted with multiplicities on [t2, t3]. Moreover, assume there exists



NONDEGENERATE HOMOCLINIC LOOP IN R3 193

a sequence (λn)n∈N converging to 0 and such that T (t, λn) has at least M

zeros counted with multiplicities in [t2, t3]:

t(1)n ≤ t(2)n ≤ · · · ≤ t(M)
n .

We can take a subsequence (λnk
)nk∈N such that the t

(i)
nk converge on [t2, t3]

to t(i) with

t(1) ≤ t(2) ≤ · · · ≤ t(M).

Since limλ→0 f(t, λ) = 0 uniformly on [t2, t3], we have that P
(
t(i), 0

)
= 0

for all 1 ≤ i ≤ M .
We now show that the zeros t(i) of P (t, 0) are counted with multiplicities:

this is done using Rolle’s theorem. Let t(j) = t(j+1) = · · · = t(j+s). Using
Rolle’s theorem for the derivatives of T (t, λnk

), we can find convergent
sequences (tnk,`) with limnk→∞ tnk,` = t(j) such that t

(j)
nk ≤ tnk,` ≤ t

(j+s)
nk

and

∂`T

∂t`
(
tnk,`, λnk

)
= 0 for ` ≤ j − 1.

Since

lim
λ→0

∂nf(t, λ)
∂tn

= 0,

uniformly in t ∈ [t2, t3], we have

∂`P

∂t`
(
t(j), 0

)
= 0 for ` ≤ j − 1.

Therefore T (t, λ) has at most N zeros counted with multiplicities, i.e. M ≤
N .

Proposition 31 can be proven using Lemma 32 and the following theorem.

Theorem 33. Let f1(t, tµ, (1− t)µ) be a polynomial of degree at most n

in the variables t, tµ and (1− t)µ, f 6≡ 0, and let Pn(t) = f1(t, tµ, (1− t)µ).
Then for all ε > 0 and µ irrational, the number of zeros of Pn(t) on [ε, 1−ε]
counted with multiplicity is bounded from above. Moreover

#0

(
Pn(t)

) def
= #

{
t ∈ [ε, 1− ε] | Pn(t) = 0

} ≤ n(2n2 + 8n + 18),

where the solutions t are counted with multiplicities.
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Proof. The proof is delayed until section 3.6.

Proof (Proof of Proposition 31). As shown in the proof of Lemma 30,
the vanishing of the (I+[Jµ]+1)th derivative of Equation (35) is equivalent
to the vanishing of GI+[Jµ]+1,λ

(
t, tµ, (1 − t)µ

)
which is of the form stated

in Lemma 32. Let

Pλ(t, y, z) =
2I+[Jµ]+Jµ+1∑

i+(j+l)µ=1

ξijlt
iyjzl,

and

fλ(t, y, z) = O65,λ,k(t, y, z).

Then from Equation (53),

GI+[Jµ]+1,λ

(
t, tµ, (1− t)µ

)
= Pλ

(
t, tµ, (1− t)µ

)
+ fλ

(
t, tµ, (1− t)µ

)
.

To conclude, we use Theorem 33. To apply the theorem, we simply have
to show that Pλ

(
t, tµ, (1− t)µ

)
is not trivial. We compactify the coefficient

space as we did in Section 3.3.2.

1. Let λ ∈ Ei1(Λ1), then

Gλ(t, y, z) = t(1− t)P1,λ(t) +
∑

1≤i+(j+l)µ≤2I+[Jµ]+Jµ
j+l>0

ξijlt
iyjzl +O67,k(t, x, z),

where P1,λ(t) is the following (nontrivial) polynomial

P1,λ(t) =
I+[Jµ]−1∑

i=0

τi+1

(
ti(1− t)I+[Jµ] + (−1)I+[Jµ](1− t)itI+[Jµ]

)

=
I+[Jµ]−1∑

i=0

ci(λ)ti + o(tI+[Jµ]−1),

where the ci(λ) are obtained by expanding all terms (1 − t)A. P1,λ(t)
is nontrivial. Indeed, let V1(t) = (c0, c1t, . . . , cI+[Jµ]−1t

I+[Jµ]−1), V2 =
(τ1, τ2, . . . , τI+[Jµ]) and letMλ(t) be the lower triangular (I+[Jµ]×I+[Jµ])
matrix with mij,λ(t) = ∗ti−1 such that V T

1 (t) = Mλ(t) · V T
2 . Then P1,λ(t)

is not identically zero since V2 6= 0 (τi1 6= 0) and Mλ(t) is inversible for all
(t, λ) ∈ [ε, 1− ε]× Λ1.
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2. Let λ ∈ Ei1j1(Λ1), then

Gλ(t, y, z) = (1− t)I+[Jµ]zj1P2,λ(t) +
∑

j 6=j1

ξijlt
iyjzl +O68,k(t, x, z),

where P2,λ(t, z) is the following (nontrivial) polynomial:

P2,λ(t) =
I+[(J−j)µ]∑

i=0

ρij1t
i.

We have thus shown that for sufficiently small λ ∈ Λ,
˜̃̃
T I+[Jµ]+1,λ(t) has

at most n(2n2 + 8n + 18) zeros and the result follows yielding at most
n(2n2 + 8n + 18) + 1

2 (n + 1) zeros for Vλ(t).

3.4.2. Case 2: Γ0 be of type (2I + 1, 0, 0, 0)

Proposition 34. Let n = 4I + 3. For sufficiently small λ ∈ Λ, Vλ(t)
has at most 1

2

(
n(4n2 + 18n + 37) + 1

)
zeros in [ε, 1− ε].

Proof. We proceed as in the proof of Proposition 27, but we subdivide
the cone EI0(Λ1) in a different way.

We have that the vanishing of the Ith derivative of Equation (35) is
equivalent to the vanishing of

ŤI,λ(t) =
I−1∑

i=1

τi

(
ti−I−α1

(
1+O69,i,λ(t)

)
+ ∗(1− t)i−I−α1

(
1+O70,i,λ(t)

))

+ τI

(
ω
(
C0t, λ

)(
1 +O71,I,λ(t)

)
+ ∗ω(

C0(1− t), λ
)(

1 +O72,I,λ(t)
))

+
∑

1≤i+jµ≤I+Jµ
j 6=0

(
ρijt

i+jµ−I
(
1+O73,i,j,λ(t)

)−∗ρ̌ijt
i(1−t)jµ−I

(
1+O74,i,j,λ(t)

))

+ ρI0

(
1 +O75,I,λ(t)

)
.

Let

E1′′
I0 (Λ1)

def
=

{
λ ∈ Λ1

∣∣ |τI | ≤ |λ| · |τ1|
}

E2′′
I0 (Λ1) = Λ1\E1′′

I0 (Λ1).
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As before, if

E′′′
` (Λ1)

def
=

{
λ ∈ E2′′

I0 (Λ1)
∣∣ |τ`(λ)| = max

k<I
(m,n)<(I,0)

(|τk(λ)|, |ρmn(λ)|, |τI(λ)|)}

E′′′
ij (Λ1)

def
=

{
λ ∈ E2′′

I0 (Λ1)
∣∣ |ρij(λ)| = max

k<I
(m,n)<(I,0)

(|τk(λ)|, |ρmn(λ)|, |τI(λ)|)},

then

E2′′
I0 (Λ1) =

(
I⋃

`=0

E′′′
` (Λ1)

)⋃



⋃
0<i+jµ<I

(j 6=0)

E′′′
ij (Λ1)


 .

1. Let λ ∈ E1′′
I0 (Λ1). In ŤI,λ(t) we group the term with coefficient in τI

with the term with coefficient in τ1 (|τI/τ1| ≤ |λ| if τi 6= 0 or both terms
vanish). We obtain a function of the form of Equation (53). Note that in
Proposition 27, the term with coefficient in τI is added as O(t) whereas
here it is added as O(λ).

2. Let λ ∈ E2′′
I0 (Λ1). We divide ŤI,λ(t) by

(
1 + O75,I,λ(t)

)
which is

nonzero on [ε, 1 − ε] for λ in a sufficiently small neighborhood and differ-
entiate once more with respect to t. We obtain a function of the form of
Equation (53) (but in which all coefficients may be small).

The result follows using the same argumentation as in the proof of Propo-
sition 31.

3.5. General conclusion for t ∈ [0, 1] with Γ0 of codimension k

Proposition 35. Let Γ0 be of type (I1, I2, J, L), I = I1 + JI2, and
n = 2(I + [Jµ]) + 1. There exists a neighborhood Λ0 of λ = 0 such Vλ(t)
has at most N = 1

2

(
n(4n2 + 16n + 37) + 1

)
roots on [0, 1].

Proof. As we saw in the previous sections, we can divide the coefficient
space in several cones noted E`(Λ1) and Eij(Λ1). We prove the result on
each cone.

Let us restrict the parameter space to any of the cones. Moreover, assume
the nth-derivative V

(n)
λ (t) of Vλ(t) has a maximum of d zeros on this cone.

Choose a sequence {λi}i∈N converging to 0 such that V
(n)
λi

(t) has d zeros.
Of those d zeros, assume m0 go to 0 and m1 go to 1 (the m` can of course
be 0). Let 1 − t1 be the lower bound of the set of roots that go to 1, and
t2 the upper bound of the set of roots that go to 0. Note ε2 = min{t1, t2},
the minimum of the two.
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We then have that V
(n)
0 (t) is of the following form:

V
(n)
0 (t) =

I+[Jµ]∑

i=1

τi

(
ti(1− t)I+[Jµ]+1 + (−1)I+[Jµ](1− t)itI+[Jµ]+1

)

+
∑

1≤i+jµ≤I+Jµ
j 6=0

ti
(
ρijt

jµ(1− t)I+[Jµ]+1− ρ̌ijt
I+[Jµ]+1(1− t)jµ

)
+V

(n)
k,0 (t),

(54)

in which we can factor tm0(1− t)m1 and where

V
(n)
k,0 (t) =





τI+[Jµ](1− t)I+[Jµ]tI+[Jµ]×(
(1− t) + (−1)I+[Jµ]t

)




if (J, L) 6= (0, 0)
or if the cone is

E2
I0(Λ1)

ρI0(1− t)ItI otherwise.

Let G̃λ

(
t, (1 − t)µ, tµ

)
= V

(n)
0 (t). As in the proof of Proposition 31, the

result follows from Khovanskĭı’s fewnomials theory if Equation (54) is non-
trivial, which was proven either in Proposition 31 or in Proposition 34,
since G̃λ(t, y, z) is of degree at most 2(I + [Jµ]) + 1−m0 −m1.

Corollary 36. Let Γ0 be of type (I1, I2, J, L), I = I1 + JI2, and n =
2(I + [Jµ]) + 1. Then Cycl(Γ0) ≤ 1

4

(
n(4n2 + 10n + 37) + 3

)
.

Proof. The result follows from Proposition 35 and Facts 8.

3.6. Khovanskĭı’s fewnomial theory and proof of Theorem 33.

In this section we prove Theorem 33. The result is obtained using
Khovanskĭı’s method of reducing a transcendental system to nondegen-
erate polynomial ones; our setting is one of the simplest nontrivial cases
of the theory. The theory in its full generality can be found in [11]. In
their article [8], Il’yashenko and Yakovenko used the theory to bound the
cyclicity of elementary polycycles on R2 in generic families. Section 2 of
their paper is certainly a good introduction to the subject. We illustrate
the theory for the simplest case, when Pn(t) has nondegenerate zeros.

3.6.1. The zeros of Pn(t) are solutions of a system of transcendental equa-
tions on R3.

We first transform the problem of bounding the number of zeros of Pn(t)
to bounding the number of solutions of a transcendental system on R3.
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Define the following two functions on R3:

{
f2,A(t, y, z)

def
= y −Atµ

f3,B(t, y, z)
def
= z −B(1− t)µ,

(55)

where (A,B) ∈ R+2 and consider the system of transcendental equations

S0 =





f1(t, y, z) = 0
f2,1(t, y, z) = 0
f3,1(t, y, z) = 0,

(56)

defined on Dε, where

Dε
def
= [ε, 1− ε]× [

εµ, (1− ε)µ
]2 ⊆ R3.

Lemma 37. Solving Pn(t) = 0 on [ε, 1−ε] is equivalent to solving system
S0 on Dε.

We use Khovanskĭı’s method to compute an explicit upper bound for the
number of isolated zeros of the transcendental system S0, system (56). The
method consists in transforming the transcendental problem in algebraic
ones, allowing to use Bezout’s theorem. This is done in four main steps:

1. We verify that the system has a finite number of solutions which are
then isolated.

2. We unfold the transcendental systems in a family of systems where all
degeneracies have been eliminated in the generic systems.

3. Using the fact that the manifolds {f2,A = 0} and {f3,B = 0} are
integral separating solutions of polynomial Pfaff equations (to be defined
below), we embed the system in a nondegenerate system S of Pfaff forms
and polynomials. Indeed the transcendental functions f2,1 and f3,1 in S0 are
separating solutions of polynomial Pfaff 1-forms. For instance the function
f2,1 is an integral solution of the polynomial Pfaff 1-form

w2
def
= tdy − µydt,

and the function f3,1 is an integral solution of the polynomial Pfaff 1-form

w3
def
= (1− t)dz + µzdt.

The two solutions in Dε are given in Figure 6.
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Figure 6. The manifolds
�
f2,1 = 0

	
and

�
f3,1 = 0

	
in Dε.

4. Finally we iterate Khovanskĭı’s reduction method to bound the num-
ber of zeros of S by the sum of the number of zeros of polynomial systems
having nondegenerate roots and to which we can apply Bezout’s theorem.

3.6.2. The smooth manifold with boudary Mε ⊇ Dε.

The theory applies to systems defined on smooth manifolds. We must
thus define a smooth manifold with boundary Mε which contains Dε and
on which the system (55) is smooth. Let

Mε
def
=

{
(t, y, z) ∈ R3|F (t, y, z)

def
= t(1− t)y(1− y)z(1− z) ≥ ε3µ(1− ε)3

}
,

and denote by M0
ε its interior. We then have that Mε ⊇ Dε. We can also

choose ε small and such that the algebraic surface f1 = 0 is in general
position with respect to the boundary F = ε3µ(1− ε)3.

3.6.3. Bounding the number of solutions of S0.

Lemma 38. For all (A, B) ∈ R+2, the system

S0,A,B =





f1(t, y, z) = 0
f2,A(t, y, z) = 0
f3,B(t, y, z) = 0

has a finite number of solutions.

Proof. By hypothesis the polynomial f1(t, y, z) has at least one nonzero
coefficient.

1. If f1 is a polynomial in only one of the variables t, y, or z, the result
follows (e.g. from Rolle’s theorem).
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2. If f1 is a polynomial in at least the y and t variables, we can write f1

as a function of y of the following form (in the neighbourhood of 0):

f1(t, y, z) =
∑

i≥0

f̃i(t, z)yi.

Zeros of f1 are thus solutions of the following equation:

−f̃0(t, z) =
∑

i≥1

f̃i(t, z)yi. (57)

There exists i ∈ N+ such that after expanding z = B(1 − t)µ (if it occurs
in the f̃i) as a function of t in the neighbourhood of 0 and substituting
y = Atµ, Equation (57) can be written in the following form:

ak1t
k1

(
1 + O(t)

)
= bk2t

k2+iµ
(
1 + O(t)

)
, (58)

where bk2 6= 0. Let k3 = min{k1, k2 + iµ}, and let ck3 be the nonzero
coefficient corresponding to k3. Dividing Equation (58) by tk3 and taking
t = 0, we get that there exists ε > 0 sufficiently small such that the system
has no zeros for t ∈ (0, ε). From the analycity of the functions on (0, 1)3,
we have that on any Mε with ε > 0 the system has a finite number of
solutions.

3. If f1 is a polynomial in only the z and t variables, we use the same
argument as in the previous case where we interchange y and z, and expand
around z = 0 and t = 1.

3.6.4. Khovanskĭı’s reduction procedure

In this section, we will only consider the case where f1 = 0 is a nonde-
generate algebraic surface (a regular surface), i.e. f1 = 0 has no singular
points in Mε, and f1 = f3,1 = 0 is a nondegenerate curve in f3,1 = 0. This
simple case illustrates all important geometric ideas of the method. The
result is true for a general algebraic surface f1 = 0, but the generalization
of the method is much more technical since we need to control all possible
pathologies (cf. [11], Chapter 3).

Definition 39. A contact point of a curve and a vector field in the
plane is a point of the curve in which the tangent vector to the curve and
the vector of the vector field are collinear.

It is easily seen that between two points of intersection of a connected
component of f1 = f3,1 = 0 with f2,1 = 0 there exists a contact point of
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f

g

PSfrag replacements

Σ
Γ2,1

Figure 7. Example of contact points on {f3,1 = 0}: Σ = {f1 = f3,1 = 0} and
Γ2,1 = {f2,1 = f3,1 = 0}

f1 = f3,1 = 0 and w2 (Figure 7) . Hence

#0

(
Pn(t)

) ≤ number of contact points of f1 = f2,1 = 0 and w2 = 0

+ number of noncompact connected components of f1 = f3,1 = 0.

Define the following map ∗ mapping 3-forms to functions.

Definition 40. Let α = fdx ∧ dy ∧ dz be a 3-form on Mε. Then

∗(α)
def
= f.

The equation of the contact points on f1 = f3,1 = 0 is given by

f1 = f3,1 = 0

W1
def
= ∗(w3 ∧ w2 ∧ df1) (deg W1 = n + 1),

which we can again consider as a Pfaffian system:

S1 =





f1 = 0
W1 = 0
w3 = 0.

(59)

Each noncompact connected component of f1 = f3,1 = 0 intersects ∂Mε

in at least two points. Hence the number of noncompact components is



202 L.S. GUIMOND AND C. ROUSSEAU

bounded by

1
2
#{f1 = f3,1 = F = 0}, (60)

where ∂Mε = {F = 0}. We can also consider (60) as a Pfaffian system

S2 =





f1 = 0
F = 0
w3 = 0.

(61)

The elimination of w3 in systems (59) and (61) is similar although it is
simpler in system (61). We now consider the curve f1 = W1 = 0 which, for
the moment, we suppose regular.

Between two intersection points of f1 = W1 = 0 with f3,1 = 0 there is at
least one contact point with w3. Hence

#0{f1 = W1 = f3,1 = 0} ≤ #
{
f1 = W1 = ∗(df1 ∧ dW1 ∧ w3)

}

+
1
2
#{f1 = W1 = F = 0}

= 2n2(n + 1) + 3n(n + 1).

Let

W2
def
= ∗(df1 ∧ dW1 ∧ w3) (deg = 2n)

W3
def
= ∗(df1 ∧ dF ∧ w3) (deg = n + 5).

In the case of system (61), F = 0 is a compact manifold without boundary.
Hence

#0{f1 = f3,1 = F = 0} ≤ #
{
f1 = F = W3

}
= 6n(n + 5).

Therefore

#0

(
Pn(t)

) ≤ #
{
f1 = W1 = W2

}

+
1
2

(
#{f1 = W1 = F = 0}+ #

{
f1 = F = W3

})
,

i.e.

#0

(
Pn(t)

) ≤ 2n2(n + 1) + 3n(n + 1) + 3n(n + 5) = n(2n2 + 8n + 18).
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3.6.5. The case of degenerate systems

As we have seen, the case of degenerate systems can be of different nature:

1. the intersections are not transversal: the remedy is to count points
with multiplicity;

2. the surface f1 = 0 is not regular;
3. the intersection of the surface f1 = 0 with f3,1 = 0 is not a regular

curve;
4. the curve f1 = W1 = 0 is not regular.

The solution exhibited by Khovanskĭı is to introduce an unfolding of the
Pfaffian system

Sλ,6 =





f1,λ
def
= f1(t) +

k∑

i+jµ=0

aijlt
iyjzl = 0

w2,λ
def
= w2 +

3∑

i=1

(ξ2i0 + ξ2i1t + ξ2i2y + ξ2i3z)dxi = 0

w3,λ
def
= w3 +

3∑

i=1

(ξ3i0 + ξ3i1t + ξ3i2y + ξ3i3z)dxi = 0

with x1 = t, x2 = y, x3 = z and λ = (aijl, ξ2ij , ξ3ij).
We repeat the previous argument (Section 3.6.4) for all systems Sλ,6

where λ is a regular value of the parameter (a value for which none of the
previous pathologies occur) in a small neighborhood Λ of 0. Let Λ0 ⊆ Λ be
the set of regular values of the parameter and B(λ) the bound obtained by
the method. (This set Λ0 is of full mesure, cf. [11, Prop. 3, Section 3.9].)
Then

#0

(
Pn(t)

) ≤ max
λ∈Λ0

B(λ).

This ends the proof of Theorem 33.
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Pavao Mardešić, Abdelraouf Mourtada, and Dana Schlomiuk for stimulat-
ing discussions.

REFERENCES



204 L.S. GUIMOND AND C. ROUSSEAU

1. V. I. Arnold, Geometrical methods in the theory of ordinary differential equations,
2nd ed., Grundlehren der Mathematischen Wissenschaften, vol. 250, Springer Verlag,
New-York USA, 1988.

2. S.-N. Chow, B. Deng, and B. Fiedler, Homoclinic bifurcation at resonant eigen-
values, J. Dynam. Differential Equations 2 (1990), no. 2, 177–244.

3. B. Deng, Homoclinic twisting bifurcations and cusp horseshoe maps, J. Dynam.
Diff. Eq. 5 (1993), no. 3, 417–467.

4. A. Guzmán and C. Rousseau, Genericity conditions for finite cyclicity of elemen-
tary graphics, J. Diff. Eq. 155 (1999), 44–72.

5. L.-S. Guimond, Homoclinic loop bifurcations on a Mobis band, Nonlinearity 12
(1998), no. 1, 59–78.

6. A. J. Homburg, Global aspects of homoclinic bifurcations of vector fields, vol. 121,
Mem. Amer. Math. Soc., no. 578, American Mathematical Society, 1996.

7. Y. S. Il’yashenko and S. Y. Yakovenko, Finitely-smooth normal forms of local
families of diffeomorphisms and vector fields, Russian Math. Ser. 46 (1991), no. 1,
1–43.

8. Y. S. Il’yashenko and S. Y. Yakovenko, Finite cyclicity of elementary polycycles
in generic families, Amer. Math. Soc. Trans. 165 (1995), no. 2, 21–95.

9. M. A. Jebrane and A. Mourtada, Cyclicité finie des lacets doubles non triviaux,
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