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The computation of the number of limit cycles which appear in an analytic
unfolding of planar vector fields is related to the decomposition of the dis-
placement function of this unfolding in an ideal of functions in the parameter
space, called the Ideal of Bautin. On the other hand, the asymptotic of the
displacement function, for 1-parameter unfoldings of hamiltonian vector fields
is given by Melnikov functions which are defined as the coefficients of Taylor
expansion in the parameter. It is interesting to compare these two notions and
to study if the general estimations of the number of limit cycles in terms of
the Bautin ideal could be reduced to the computations of Melnikov functions
for some 1-parameter subfamilies.
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1. INTRODUCTION

Let X = XH be a real analytic Hamiltonian vector field with a closed
orbit γ and let (X, γ) be the germ of X near γ. We want to consider analytic
unfoldings (Xλ, (γ, 0)) i.e., germs of analytic families near γ with X0 = X
and a parameter λ ∈ (IRk, 0). Recall that the cyclicity of (Xλ, (γ, 0)),
noted Cycl(Xλ, (γ, 0)) is the upper bound of the number of limit cycles
which bifurcate from γ at λ = 0. In the present case of a closed orbit, the
cyclicity is just the upper bound of the number of zeros which bifurcate in
a function unfolding. To see this, one considers a transversal arc σ to γ,
parameterized by x ∈] − η, η[ with η > 0. For any η′, 0 < η′ < η, there
exists a neighborhood of 0 ∈ IRk such that one can define a return map for
Xλ from ]− η′, η′[ to ]− η, η[ :
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P (x, λ) :]− η′, η′[×W →]− η, η[.

The map P (x, λ) is analytic. One defines the displacement function :

δ(x, λ) = P (x, λ)− x

The cyclicity Cycl(Xλ, (γ, 0)) is defined by :

Cycl(Xλ, (γ, 0)) = Inf{N(ε1, ε2) | ε1 → 0, ε2 → 0}

where N(ε1, ε2) = Sup{N(ε1, λ) | ‖λ‖ ≤ ε2} and N(ε1, λ) is the number
of isolated roots of {δ(x, λ) = 0} on ]− ε1, ε1[. Here we choose 0 < ε1 ≤ η′

and λ ∈ W.
It follows for instance from the theorem of Gabrielov [9] that the cyclicity

is always finite (see also [6], [14]). An important question is to compute it
explicitely for a given unfolding. This is easy for 1-parameter unfoldings.
Suppose given such an unfolding, parameterized by ε ∈ (IR, 0). One can
expand the displacement function δ(x, ε) in series of ε. If the unfolding is
not trivial, i.e. if Xε is not an Hamiltonian vector field for each ε, then
there is a number ν 6= 0 and an analytic function Mν(x), not identical to
zero, such that :

δ(x, ε) = ενMν(x) + o(εν)

The function Mν is called the (first) Melnikov function of the unfolding.
Its order or multiplicity at {x = 0} is a majorant for the cyclicity.

It is easy to compute explicitely this order. One associates to Xε its dual
1-form unfolding ωε = dH + εω̃ + o(ε). If ν = 1 the Melnikov function is
given by the integral M1(x) =

∫
γx

ω̃ where γx is the level of H by x ∈ σ
and γ = γ0.

If ν > 1, similar integral formulas to compute Mν(x) were obtained by
J.P.Françoise. ([4], [5], [7]; see also [15]. It is easy to deduce from them the
order of Mν(x) at 0.

These observations about the Melnikov functions of 1- parameter unfold-
ings, arise the following question : is it possible to reduce the computation
of the cyclicity of a general unfolding to the computation of Melnikov func-
tions?.(see [8] for instance)

Let us consider again a general analytic unfolding (Xλ, (γ, 0)). It seems
natural to consider analytic arcs ξ(ε) : (IR, 0) → (IRk, 0) through the origin
in the parameter space, and to look at the 1-parameter unfoldings Xξ(ε)

obtained by restriction. Let Mξ be the order of the first Melnikov function
of Xξ(ε) (we take Mξ = 0 if Xξ(ε) is a trivial unfolding). We will call Mξ,
the Melnikov multiplicity of the arc ξ. The principal result of this paper is to
prove that the Melnikov functions indeed give a majorant for the cyclicity :
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Theorem 1. Cycl(Xλ, (γ, 0)) ≤ SupMξ, where the upper bound is taken
above all the analytic arc germs at 0 ∈ Rk.

It would seem reasonable to prove the above theorem, using the selecting
lemma of Milnor [12]. A version of the selecting lemma for sub-analytic sets
appeared in [2], in the line of the theory of semi-analytic and sub-analytic
sets developped in [11] and [3]. (a more recent introduction to this theory
can be found in [1]) The subset in the parameter space in which the number
of limit cycles near γ is equal to Cycl(Xλ, (γ, 0)) is a sub-analytic subset
which contains 0 in its closure. Then, one can select inside, an analytic
arc ξ0(ε) such that for each ε, one has exactly n = Cycl(Xλ, (γ, 0)) zeros
xε

1, . . . , x
ε
n, for the equation {δ(x, ξ0(ε)) = 0} and xε

i → 0 when ε → 0. As
a consequence, Cycl(Xλ, (γ, 0)) ≤ MξO .

Here, we will give a different proof, based on the desingularization of the
Bautin Ideal. The definition of this ideal, associated to the unfolding Xλ,
will be recalled below. The advantage of this proof is to give an algorithm
to find an explicit arc ξ0(ε) as above. This allows a computation of an
index sM defined below in paragraph 4. This index is an upper bound for
Cycl(Xλ, (γ, 0)).

2. THE BAUTIN IDEAL OF AN ANALYTIC UNFOLDING

Let us consider an analytic unfolding Xλ as above, with λ = (λ1, . . . , λk) ∈
(IRk, 0). Expanding the displacement map at {x = 0},

δ(x, λ) =
∞∑

i=0

ai(λ)xi

we define the Bautin ideal I of Xλ to be the ideal generated by the germs
(ai, 0) in the ring O = O0(IRk) of analytic germs of functions at 0 ∈ IRk.
This ideal is Noetherian and then generated by a finite number of germs :
I = O{ϕ1, . . . , ϕl}. We recall now some definitions and simple basic results
from [13],[14]. First, one can decompose locally the function δ in the system
of generators {ϕ1, . . . , ϕl} :

δ(x, λ) =
l∑

i=1

ϕi(λ)hi(x, λ)

where the factors hi are analytic in a neighborhood of (0, 0) ∈ IR× IRk.
For a 1-parameter nontrivial unfolding Xε, one has

δ(x, ε) = ενMν(x) + o(εν)
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for some ν and a Melnikov function Mν(x) which is non identical to zero.
In this case, the Bautin Ideal is the ideal generated by εν , at 0 ∈ IR, and
all the following considerations are trivial.

Next, one can choose the system of generators to be minimal in the sense
that classes of the ϕi generate a vector space basis of I/MI (M is the
maximal ideal of the ring O). This follows of the Nakayama’s lemma and
the dimension l = dimIRI/MI is a well-defined invariant for I. Let us
suppose chosen such a minimal system of generators. The factor functions
Hi(x) = hi(x, 0), where the hi come from a decomposition of δ as above,
are also well-defined (independent on the choice of the hi) and moreover,
the system of analytic functions {H1, . . . , Hl} is independent over IR.

It follows from this independence that we can define an index sR (see
[14]), by :

sR = Inf{n | dim IR{jnH1(0), . . . , jnHl(0)} = l}

Another way to define the index sR is the following. There exist adapted
minimal systems of generators for I such that :

ord(H1) < ord(H2) < . . . < ord(Hl)

( if g(x) is any analytic germ at 0 ∈ IR, ord(g) is the order of g at {x = 0}).
It is easy to see that sR = ord(Hl), for any adapted minimal system

of generators. This index sR does not depend on the choice of a minimal
system of generators. Moreover, it is proved in [14] that one have the
bound :

Cycl(Xλ, (γ, 0)) ≤ sR

To prove this inequality, one considers a covering of a small neighborhood
W of 0 ∈ IRk by the sets :

Vi = {λ ∈ W || ϕi(λ) |≥| ϕj(λ) |, j = 1, . . . , l}

and proves that on each Vi the behavior of δ is dominated by the one of
ϕi. This implies that on Vi, the number of roots of {δ = 0} is less than
ord(Hi).

It is possible to obtain a better result by restricting the choice of i to
well-chosen subsets I ⊂ {1, . . . , l}. Taking any r, 0 < r ≤ 1, one can define
larger sets :

V r
i = {λ ∈ W || ϕi(λ) |≥ r | ϕj(λ) |, j = 1, . . . , l}

We have now the following :
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Proposition 2. Suppose that there exists some r, 0 < r ≤ 1, and some
I ⊂ {1, . . . , l}, such that ∪i∈IV

r
i is a neighborhood of 0 ∈ W, then

Cycl(Xλ, (γ, 0)) ≤ Sup{ord(Hi) | i ∈ I}

The proof of this proposition is exactly the same as the proof for sR

given in [14], which corresponds to r = 1 and I = {1, . . . , l}.
Let us consider now any analytic arc ξ(ε) through the origin in the pa-

rameter space. We can restrict the unfolding to this arc. The displacement
function of this restriction is just :

δ(x, ξ(ε)) =
∑

ϕ(ξ(ε))hi(x, ξ(ε))

It follows from this the inequality Mξ ≤ sR and then sA = SupξMξ ≤ sR.
In the following paragraphs, one will use the above proposition to prove

that sA is an upper bound for the cyclicity.

3. THE CASE OF A BAUTIN IDEAL GENERATED BY
MONOMIALS

In this paragraph we consider the very special following case : the Bautin
Ideal is assumed to have an adapted minimal set of generators which are
monomials in (λ1, . . . , λk).

Let us introduce the following notations :

β = (β1, . . . , βk) ∈ INk, λ = (λ1, . . . , λk) ∈ (IRk, 0), λβ = λβ1
1 . . . λβk

k

We suppose that the Bautin ideal I is generated by S = {λβ1
, . . . , λβl}

for some finite set {β1, . . . , βl} ⊂ INk. The set

∆ = S + INk

is the Newton’s diagram of the ideal. It is generated by the subset of its
minimal points M in the sense that ∆ = M+INk, and the elements of M are
minimal in ∆ for the partial order defined by the norm | β |= β1 + . . .+βk.

In fact , as {λβ1
, . . . , λβl} is supposed to be a minimal set of generators,

we have that M = {λβ1
, . . . , λβl}.

Let us consider now the convex hull ∆c of ∆ in INk and the subset E
of extremal points of ∆c. One have E ⊂ d∆c = ∆ ∩ ∂∆c ⊂ M. We will
call E, the set of convex extremal points. This set E is the 0-skeleton of a
simplicial decomposition of ∂∆c.
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Example 3. For k = 2 and S = M = {λ8
1, λ

6
1λ2, λ

4
1λ

2
2, λ

2
1λ

4
2, λ1λ

7
2, λ

8
2},

one has E = {λ8
1, λ

4
1λ

2
2, λ

2
1λ

4
2, λ

8
2} since λ6

1λ2 ∈ d∆c\E and λ1λ
7
2 ∈ M\d∆c.

From now on, we change somewhat the indexation, writing {ϕβ = λβ |
β ∈ M} for the given set of generators. In this set of generators, the
decomposition of the displacement function, is written :

δ(x, λ) =
∑

β∈M

ϕβ(λ)hβ(x, λ)

Let Hβ(x) = hβ(x, 0) for any β ∈ M, and O(β) = ord(Hβ). By assump-
tion, the map β → O(β) is injective from M to IN (but have nothing to do
with the lexicographic order among the coefficients β).

We introduce now the index sE = Sup{O(β) | β ∈ E}. Clearly, one has
sE ≤ sR where sR is the index defined in the last paragraph, for the general
unfolding. One wants to establish the following :

Theorem 4. (a) Cycl(Xλ, (γ, 0)) ≤ sE ,
(b) sE ≤ SupξMξ where the upper bound is taken over all the analytic

arcs ξ(ε) through 0 ∈ IRk.

Remark 5. In the proof we will give an explicit arc ξ0(ε) = εα =
(εα1 , . . . , εαk) for some α = (α1, . . . , αk) ∈ INk such that sE = Mξ0 .

Proof. Let W be a sufficiently small neighborhood of 0 ∈ IRk. Using
the indexation by the β ∈ M, we introduce as above the sets :

V r
β = {λ ∈ W || ϕβ(λ) |≥ r | ϕ′β(λ) |, ∀β′ ∈ M}

The point (a) will be a consequence of the proposition 2 if we prove that
for some r, 0 < r ≤ 1, the union of the V r

β , for β ∈ E, is a neighborhood
of the origin in W. This property is equivalent to the following one :

There exists a constant C > 0 such that, on some compact neighborhood
W of O ∈ IRk, one has that Sup{| ϕβ(λ) || β ∈ E} ≥ C | ϕβ′(λ) | for any
β′ ∈ M.

Observe first, that for any β′ ∈ M, there exists some β′′ ∈ ∂∆c such that
β′ ∈ β′′ + INk. Then it suffices to prove the above claim for the β′ ∈ ∂∆c.
Let β′ be any coefficient in ∂∆c. It belongs to a simplex of the simplicial
decomposition of ∂∆c, with the set E as 0-skeleton. Then, there exist
coefficients µβ ≥ 0 for β ∈ E, such that

∑
β∈E µβ = 1 and β′ =

∑
β∈E µββ.

This implies the following formula :

ϕβ′ = λβ′ =
∏

β∈E

ϕ
µβ

β
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The desired inequality follows from it, if we take C = D|E|−1, where D =
Sup{| ϕβ(λ) |} for β ∈ E and λ ∈ W.

To prove the point (b), we show that for any β0 ∈ E, we can find a
monomial arc :

ξ0(ε) = εα = (εα1 , . . . , εαk)

such that Mξ = O(β0). To this end, one chooses α such that the hyperplane
direction {u → α · u =

∑
αiui} has a strict contact with ∆c : this means

that there exists an affine hyperplane P ⊂ INk, parallel to this direction,
with the property that P ∩∆c = {β0}.

For any monomial β one has ϕβ(ξ(ε)) = εβ·α and, as the contact is strict,
one has that β · α > β0 · α for all β ∈ M\{β0}.

It follows from this the expansion that one has

δ(x, ξ(ε)) = εβ0·αHβ0(x) + o(εβ0·α)

As a consequence it follows the identity Mξ = ordHβ0 . This means that

sE = O(β0) = Mξ

for the given arc ξ, if we choose β0 such that O(β0) = sE .

Remark 6. In the next paragraph, we will need a slightly more general
version of the theorem 4 : The parameter will be equal to Λ̃ = (Λ,Λ′), and
the Bautin ideal will have an adapted minimal system of generators Λβ ,
depending only on the variable Λ. It is trivial to extend the theorem to this
case.

4. THE CASE OF A GENERAL BAUTIN IDEAL

To reduce the case of a general ideal to the particular of an ideal gener-
ated by monomials, we will use the desingularization theorem of Hironaka
[10] for real analytic functions.

Let us recall it briefly. One considers a germ of an analytic function ϕ
at the origin of IRk. Then, there exists a pair of an algebraic manifold of
dimension k and an algebraic compact subset (A,Σ), a surjective proper
analytic map Π from this pair to (IRk, 0), such that Π−1(0) = Σ which
gives to ϕ ◦ Π the property of normal crossing. This means the following.
Each point Λ̃0 ∈ Σ has a chart W with analytic coordinates Λ̃ = (Λ,Λ′),
with Λ̃0 = 0 ∈ IRk and Λ = (Λ1, . . . , Λc), Λ′ = (Λ′1, . . . , Λ

′
k−c), for some

c, 1 ≤ c ≤ k. On this chart, the composition map ϕ ◦ Π : W → IRk is
monomial :

ϕ ◦Π(Λ̃) = u(Λ̃)Λβ
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where u(0) 6= 0 and β ∈ INc

We want to apply this theorem to the Bautin Ideal I of an unfolding
(Xλ, (γ, 0)). We suppose that we have chosen an adapted minimal set of
generators {ϕ1, . . . , ϕl} for I. We apply the above Hironaka’s desingulariza-
tion theorem to the product function ϕ =

∏l
i=1 ϕi. Then, for each Λ̃0 ∈ Σ

and in the coordinates of normal crossing for ϕ, we can write for each
i = 1, . . . , l :

Φi(Λ̃) = ϕi ◦Π(Λ̃) = ui(Λ̃)Λβi

where ui(0) 6= 0 and βi ∈ INc

The existence of a system of normal crossing coordinates implies that
the set Σ is a union of a finite number of strata σ1, . . . , σd, the boundary
of each one being a union of strata of strictly smaller dimension.

Let σ be one of these strata and c(σ) its codimension, 1 ≤ c(σ) ≤ k. For
each function Φi, the associate coefficient βi is constant, all along σ. We
call it ∆σ(i).

Let us look more closely to the induced unfolding (XΠ(Λ̃), (γ, Λ̃0)). Its
displacement function is equal to :

δ̃(x, Λ̃) = δ(x, Π(Λ̃)) =
l∑

i=1

Φi(Λ̃)h̃i(x, Λ̃)

where h̃i(x, Λ̃) = hi(x, Π(Λ̃)).

We call S(σ) = ∆σ({1, . . . , l}) the image of {1, . . . , l} in INc and M(σ) the
subset of minimal points of S(σ), as in the last paragraph. Each β ∈ S(σ)
is contained in a set {β′}+INk, for some β′ ∈ M(σ), not necessarily unique.
Let us call Mσ(i) a map which associates an element β′ ∈ M(σ) to each
i ∈ {1, . . . , l}, when β = ∆σ(i) and β ∈ {β′} + INk. Taking together the
factors h̃i we can rewrite δ̃ :

δ̃(x, Λ̃) =
∑

β∈M(σ)

Λβh̄β(x, Λ̃)

where h̄β(x, Λ̃) =
∑
{i|Mσ(i)=β} ui(Λ̃)Λ∆σ(i)−βh̃i(x, Λ̃).

It follows from this formula that the Bautin’s Ideal Ĩ of the induced
unfolding is generated by the Λβ for β ∈ M(σ). This set of generators is
clearly minimal. As above we consider the factor functions of the decom-
position, H̄β(x) = h̄β(x, 0). As the numbers ordHi for the ideal I, are two
by two distinct, we have, for all β in M(σ) :

ordH̄β = Inf{ordHi | ∆σ(i) = Mσ(i) = β}
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As a consequence, the numbers ordH̄β are also two by two distinct and
the set {Λβ | β ∈ M(σ)} is an adapted minimal system of generators for the
induced unfolding. Moreover, it does not depend on the choice of the point
Λ̃0 on σ. Let us call E(σ) ⊂ M(σ), the set of convex extremal points and
sE(σ) the index defined in the last paragraph.We can apply the results of
the last paragraph for the induced unfolding at any point Λ̃0. In particular
its cyclicity is bounded by sE(σ).

Let us consider now the given initial unfolding (Xλ, (γ, 0)). We define for
it the following index :

sM = SupσsE(σ)

Now, as the image by the map Π of a neighborhood of Σ in A covers
a neighborhood of 0 in IRk and as Σ is compact, it is easy to show that
Cycl(Xλ, (γ, 0)) is equal to the upper bound of the cyclicities of the induced
unfoldings at the different points Λ̃0 of Σ. In fact, just a finite number of
such points is sufficient. Also, the image by the map Π of an analytic arc
at a point Λ̃0 of Σ is an analytic arc at 0 in IRk. Then, as a consequence of
theorem 4 we obtain, for a general unfolding (Xλ, (γ, 0)) :

Theorem 7. (a) Cycl(Xλ, (γ, 0)) ≤ sM ,
(b) sM ≤ SupξMξ where the upper bound is taken over all the analytic

arcs ξ(ε) through 0 ∈ IRk.

Remark 8. We can interpret the index sM as the multiplicity of the
Melnikov function associated to a particular analytic arc Π ◦ ξ̃ where ξ̃ is
a monomial arc at a point Λ̃0 in a stratum σ with a maximal index sE(σ),
chosen as in the last paragraph.

5. FINAL REMARKS

The index sM which is an upper bound for the cyclicity, may be different
from it. For instance, if δ(x, ε) = εx2, one has sM = 2, but the cyclicity is
equal to one. In general the cyclicity does not just depend on the values of
the functions Hi(x) = hi(x,O). For instance, if δ(x, ε) = εx2 + ε2, sM = 2
and the cyclicity is also equal to two, because one has the term ε2.

The question to see if the index sM is equal to the cyclicity depends
on the properties of the ideal. Let us say that the ideal I is regular if
it has a minimal set of independent generators {ϕ1, . . . , ϕl} ( this means
that {dϕ1 ∧ . . . ∧ dϕl(0) 6= 0}. We can also suppose that this minimal set
of generators is adapted. Then if the sequence of orders is the sequence
0, . . . , l − 1, one find that the cyclicity is equal to sM = l − 1. Moreover in
this case, the bifurcation diagram of δ is analytically diffeomorphic to the
product of IRk−l by the bifurcation diagram of the universal unfolding of
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codimension l − 1 : µ0 + µ1x + . . . + µl−1x
l−1. If the sequence of orders

has some gap, i.e. if sM > l− 1, it is possible to prove that the cyclicity is
always greater or equal to l − 1 ([14]).

The bound sM is attained in general, by the Melnikov multiplicity Mξ

of a non-linear arc ξ. It is easy to construct examples where the maximum
of the Melnikov multiplicity over all the linear arcs through the origin for
instance, is strictly smaller than sM .

As it is mentioned in the introduction, it is possible to work directly with
the cyclicity. If λ = Φ(µ) is an analytic map, such that Φ(0) = 0, one can
look at the induced unfolding X̃µ = XΦ(µ). Obviously, Cycl(X̃µ, (γ, O)) ≤
Cycl(Xλ, (γ, O)). Conversely, as indicated in the introduction, it is possible
to obtain Cycl(Xλ, (γ, O)) by considering the unfolding induced along a
single well-chosen analytic arc. Then, one has the equality :

Cycl(Xλ, (γ, O)) = Sup{Cycl(Xξ(ε), (γ, O)) | ξ}

where the supremum is taken over all the analytic arcs ξ through the origin
in the parameter space. Nevertheless, it is not possible in general to com-
pute easily the cyclicity along an arc, but just to bound it by the Melnikov
multiplicity and then, the above formula reduces to the inequality proved
in theorem 1.

The index sM may be strictly smaller than the index sR. For instance,
if we consider the displacement function δ(x, λ) = λ2

1 + λ1λ2x
2 + λ2

2x, one
has sR = 2 and sM = 1.

The definition of the index sM seems to depend on the choice of an
adapted minimal system of generators and also of the desingularization. It
is possible to obtain an index depending just on the unfolding by consider-
ing the lower bound of the values of the index sM for the different choices.
In fact, one may conjecture that sM is indeed independent of these choices.
It would be the case if it was true that sM coincides with the upper bound
SupξMξ.

Let us give an example where it is the case. One supposes that k = 2.
One supposes also there exists a desingularization such that for each stra-
tum σ of dimension 0, the set of convex extremal points E(σ) is lim-
ited to {β1(σ), β2(σ)} ⊂ IN2, where β1(σ), β2(σ) ∈ IN∗ and β1(σ) =
(β1(σ), 0), β2(σ) = (0, β2(σ)). Let ξ(ε) be any analytic arc through the
origin in the parameter space. One can lift it to the desingularization do-
main into an analytic arc ξ̃(ε) through a point Λ̃0 of some strata σ. If σ
is of dimension one, E(σ) reduces to a point β ∈ IN and Mξ̃ = O(β). If σ
is of dimension zero, we will apply the hypothesis. We call F (σ) the side
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[β1(σ), β2(σ)] of ∂∆c. We have ξ̃(ε) = (v1ε
α1(1 + o(ε)), v2ε

α2(1 + o(ε)) for
v1, v2 6= 0, and α1, α2 ∈ IN∗.

If the direction β → β · α is parallel to F (σ), i.e. if α1β1(σ) = α2β2(σ) =
ν, the displacement function is equal to :

δ(x, ξ̃(ε)) = ενM̃(x) + o(εν)

where M̃(x) =
∑

β∈F (σ)∩M(σ) uβvβxO(β). Here, the uβ are some non zero

constants and vβ = vβ1
1 vβ2

2 for β = (β1, β2).
Since the orders O(β), for β ∈ F (σ) ∩ M(σ) are two by two distinct,

Mξ̃ = ord(M̃) is equal to Inf{O(β) | β ∈ F (σ) ∩ M(σ)}, which is less
Sup{O(β1(σ)), O(β2(σ))}.

If the direction β → β · α is not parallel to F (σ), for instance if α1 or
α2 = 0, there exists a line parallel to it, which contains just one point of
E(σ) : β = β1 or β2. In this case, Mξ̃ = O(β).

In all the case we obtain that Mξ = Mξ̃ ≤ Sup{O(β) | β ∈ E(σ)} ≤ sM .
This gives that, SupξMξ ≤ sM and finally, using theorem 7, the equality
sM = SupξMξ.
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Krakow (1986).
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