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For a Lipschitzian vector field in IRn, angular velocity of its trajectories
with respect to any stationary point is bounded by the Lipschitz constant.
The same is true for a rotation speed around any integral submanifold of the
field. However, easy examples show that a trajectory of a C∞-vector field in
IR3 can make in finite time an infinite number of turns around a straight line.
We show that for a trajectory of a polynomial vector field in IR3, its rotation
rate around any algebraic curve is bounded in terms of the degree of the curve
and the degree and size of the vector field. As a consequence, we obtain a
linear in time bound on the number of intersections of the trajectory with any
algebraic surface.

1. INTRODUCTION

Let v(x), x ∈ IRn, be a Lipschitzian vector field, defined in a certain
domain of IRn. Let x0 be a stationary point of v, v(x0) = 0. Then for any
x 6= x0, the angular velocity of the trajectory of v, passing through x, with
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respect to x0, does not exceed

‖v(x)‖
‖x− x0‖ =

‖v(x)− v(x0)‖
‖x− x0‖ ≤ K

where K is the Lipschitz constant of v. In particular, for any trajectory w(t)
of the field v, the length of the spherical curve s(t) = w(t)−x0

‖w(t)−x0‖ between t1
and t2 does not exceed K(t2 − t1).

Exactly in the same way, one can prove that for any linear subspace
L ⊆ IRn, which is invariant for v (i.e. for any x ∈ L, v(x) is tangent to L),
the rotation speed of v in the orthogonal direction is bounded by K.

On the other hand, the rotation of W around a straight line, which is
not invariant under v, can be unbounded, even for v – a C∞-vector field.

Consider the following example: Let Φ : IR3 → IR3 be a diffeomorphism,
defined by

Φ(x1, x2, x3) = (x1, x2, x3)

for x1 ≤ 0,

Φ(x1, x2, x3) = (x1, x2 + ω1(x1), x3 + ω2(x1))

for x1 ≥ 0, where

ω1(x1) = e−1/x2
1 cos(

1
x1

) ,

ω2(x1) = e−1/x2
1 sin(

1
x1

) .

One can easily check that Φ is a C∞-diffeomorphism of a neighborhood of
0 ∈ IR3. Now the image of the positive x1-semiaxis under Φ is a line w,
which makes an infinite number of turns around 0x1 in any neighborhood
of the origin.

Consider a vector field v in IR3, which is an image under Φ of the constant
vector field (1, 0, 0). Clearly, w is a trajectory of the C∞-vector field v,
and it makes an infinite number of turns around 0x1 in finite time. In
coordinates,

v(x1, x2, x3) = (1, ω′1(x1), ω′2(x1)) .

Notice that in this example, the orthogonal components of v on the line 0x1

itself have an infinite number of sign changes, accumulating to the origin.

The main result of this paper is that the kind of a degeneracy, represented
by the above example, is impossible for polynomial (in fact, for analytic)
vector fields and submanifolds. The main point of the proof is that too fast
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rotation of a trajectory around a submanifold forces too many sign changes
of (some of) orthogonal components of the vector field on this manifold.

There exists a rich theory of nonoscillation of trajectories of algebraic
vector fields (see [1],[2],[4]-[7]). We believe that in this paper we provide a
simple, but adequate additional reason for such a nonoscillation.

For an algebraic vector field v in IR3 define its norm ‖v‖ as the sum of
the absolute values of the coefficients of the polynomials, defining this field.

Below we always assume that all the objects considered (trajectories of
the vectorfields, algebraic curves) are contained in the unit ball B in IR3.

Theorem 1. Rotation of any trajectory w(t) of an algebraic vector field
v in IR3 around an algebraic curve V , between the time moments t1 and
t2, is bounded by

C1(d1, d2) + C2(d1, d2)‖v‖(t2 − t1)

Here the constants C1(d1, d2) and C2(d1, d2) depend only on the degrees
d1, d2 of the field v and the curve V, respectively. We postpone definition
of a “rotation around an algebraic subvariety” till Section 2 below.

Theorem 2. For any trajectory w(t) of an algebraic vector field v, and
for any algebraic surface W in IR3, the number of intersection points of
w(t) with W between the time moments t1 and t2 is bounded by

C3(d1, d2) + C4(d1, d2)‖v‖(t2 − t1) .

As far as the dependence on the norm ‖v‖ and on the time interval is
concerned, these bounds are obviously sharp. Taking in the example above
ω1 and ω2 to be polynomials in x1 of degree d with d real roots on [0, 1]
(shifted one with respect to another), we get d turns around the x1-axis
in time one. Hence the dependence of the constants Ci on d, obtained
in Proposition 3 below, is also sharp. Finally, rescaling the time in this
example, we get d turns in an arbitrarily small time. Taking then the
polynomials ω1 and ω2 to be sufficiently small, we see that the first term
in the inequality of Theorem 1 cannot be omitted. The same vector field
and the plane x3 = 0 provide examples for Theorem 2.

2. PROOFS

In fact, we give a detailed proof only of a special case of Theorem 1
(Proposition 3 below), and an outline of the proofs of Theorems 1 and 2.
We plan to present the details in [3].
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Proposition 3. Rotation of any trajectory w(t) of an algebraic vector
field v in IR3 around any straight line l between the time moments t1 and
t2, is bounded by

C1(d) + C2(d)‖v‖(t2 − t1) ,

assuming that the projection of w(t) on l is monotone in this time interval.

Here d is the degree of v. The rotation of w(t) around l is defined as a
rotation around zero of the projection of w(t) onto the orthogonal plane to
l.

We can assume l to be the axis 0x1. Let M be the maximum of the
partial derivatives ∂vi

∂x2
, ∂vi

∂x3
, i = 2, 3 in B. Clearly, M is bounded by twice

the degree of v, multiplied by the norm of v. M is also the the Lipschitz
constant of v in the orthogonal direction 0x2x3.

Assume that from t1 to t2 the trajectory w(t) made N turns around 0x1.
Then the rotation velocity of w around 0x1 “mostly” exceeds 2πN

t2−t1
. More

accurately, one can show by an easy integral-geometric argument, that for
“many” directions q in the plane 0x2x3, the projection of the orthogonal
velocity vector (0, v2, v3) of w onto q takes at least [C1N ] times both the
values C2N

t2−t1
and − C2N

t2−t1
, in alternating order (where C1 and C2 are cer-

tain absolute constants). Assume now that N
t2−t1

≥ ( 2
C2

)M , where M is,

y1
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FIG. 1.

as above, the Lipschitz constant of v in the orthogonal direction 0x2x3.
Assuming also that the direction q coincides with 0x2, we obtain that at
least at κ = [C1N ] points yj on the trajectory w, v2(x)/(x2

2 + x2
3)

1/2 takes
the value 2M , and at least at other κ points zj it takes the value −2M .

Now consider the projections y′j and z′j of yj and zj onto the line 0x1, and
denote by δj (ρj) the distance between yj and y′j (zjand z′j respectively).
Since the Lipschitz constant of v2, v3 in the orthogonal direction 0x2x3
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does not exceed M , and since v2(yj) ≥ 2Mδj , v2(zj) ≤ −2Mρj , we get
v2(y′j) ≥ Mδj > 0, v2(z′j) ≤ −Mδj < 0 (see Figure 1).

Since, by assumptions, the projection of the trajectory on the line is
monotone, the points y′j , z

′
j alternate. Hence between each couple of them

there is a zero of v2. But v2, restricted to 0x1, is a polynomial of degree at
most d = deg v. Hence κ ≤ d, or N ≤ 1

C1
d.

What we have shown is that if the “average rotation speed” N
t2−t1

of the
trajectory around the line l is big ( N

t2−t1
≥ ( 2

C2
)M ), then it makes at

most 1
C1

d turns around l. In other words, the trajectory can keep a high
rotation velocity only for a short time interval.

Easy examples show that if the rotation is slow enough, all the orthogonal
components of v may preserve the sign on the axis 0x1. Consider, for
instance, the field

v(x1, x2, x3) = (1, 1− ρ + ρx3, 1− ρ− ρx2) ,

with ρ = x2
2 + x2

3. Then on the axis 0x1, v(x1, 0, 0) = (1, 1, 1), but any
trajectory of v, starting on the cylinder ρ = 1, remains on this cylinder and
rotates around 0x1 with the angular velocity 1

2π .
Now we have two possibilities: either N

t2−t1
≤ ( 2

C2
)M , and hence N ≤

( 2
C2

)(t2− t1)M , or N ≤ 1
C1

d. Taking into account that M does not exceed
twice the degree d of v, multiplied by the norm of v, we conclude that in
both cases the rotation N does not exceed C1(d) + C2(d)‖v‖(t2− t1), with
C1(d) = 1

C1
d and C2(d) = 4d

C2
. This completes the proof of Proposition 3.

Let us now give a short outline of the proof of Theorems 1 and 2.
First of all, the assumption of the monotonicity of the projection of

the trajectory on the line, can be reduced as follows. If the number of the
”monotonicity intervals” of the projection is small, one can use Proposition
3. If, in contrary, the projection of our trajectory on the line l oscillates,
one can show that there is a point on l, such that the rotation around this
point is of the same order as the rotation around l. But one can show that
the rotation rate around a point is bounded for any Lipschitzian vector
field.

Extension to any algebraic curve (instead of the straight line) is rather
straightforward. However, we are not aware of any ”invariant” definition of
a ”metric” rotation around a curve. Consequently, we use a noninvariant
definition, where the orthogonal plane to the straight line is replaced by a
family of parallel planes, transversal to the curve.

To complete the proof of Theorem 1, we have to take into account a pos-
sible oscillation of the curve itself, but for algebraic curves this oscillation
can be bounded in terms of the degree.
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Theorem 2 is implied by Theorem 1, as follows. If the trajectory of a
polynomial vector field v crosses an algebraic surface W , the sign of the
normal (to W ) component of v corresponds to the direction of the crossing.
Hence multiple crossings happen alternatively at the parts of W , where the
normal component of v is positive or negative, respectively. But then one
can show that our trajectory necessarily rotates around the algebraic curve,
defined in W by vanishing of the normal component of v.

Both the statements of the results above and the proofs can be extended
to higher dimensions. However the technical difficulties seem to be rather
serious. We plan to present some of these extensions separately.
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