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Université Pierre et Marie Curie, Paris VI Paris, France
E-mail: jpf@ccr.jussieu.fr

Submitted by J.Llibre

Bautin made some years ago a decisive contribution to the algebraic ap-
proach of the perturbation theory of periodic orbits of plane polynomial vec-
tor fields. This article presents first steps of a general framework in which a
generalization of Bautin’s ideas to any dimension could be developed. The
main result is the generalization of the algorithm of the successive derivatives
of return mappings for 2-dimensional systems to any dimension in this frame-
work.
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1. INTRODUCTION

These last years, the dynamics of plane systems was extensively stud-
ied and several new techniques were developed. Some are specific to 2-
dimensional systems but mostly often these methods can be appropriately
extended to multi-dimensional systems. The algorithm of the successive
derivatives was derived some years ago [1] to find the first non-vanishing
derivative (relatively to the parameter ε) of the return mapping (near the
origin) of a plane vector field X0 + εX1 of type:

X0 + εX1 = x∂/∂y − y∂/∂x+
ε
∑d

i,j/i+j=2[ai,jx
iyj∂/∂x + bi,jx

iyj∂/∂y]. (1)

The algorithm was then used in the center-focus problem (cf. [1]), which
directly relates to Hopf bifurcations of higher order and to several other
problems on limit cycles of plane vector fields.
How to extend appropriately this situation in any dimension? We have
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to perturb a dynamics which is integrable and displays only periodic or-
bits. Assuming that the perturbation depends of finitely many parameters
(say for instance it is polynomial), we expect also that the perturbed sys-
tem displays a first return-mapping which is analytic with a Taylor expan-
sion with coefficients which depend polynomially of the parameters. This
return-mapping should label all the periodic orbits (at first return)of the
perturbed system by its fixed points. The principal aim of this article is to
present a framework where such demands are realized.In this framework, a
generalization of the algorithm of the successive derivatives is provided.

2. CONTROLLED NAMBU DYNAMICS AND
(*)-PROPERTY

Let f = (f1, ..., fn−1) : Rn → Rn−1 be a generic submersion (meaning
that f is a submersion outside a critical set f−1(C), where C is a set
of isolated points). Let Ω = dx1∧dx2∧...dxn be a volume form on Rn.
Consider the vector field X0 such that:

ιX0dx1∧dx2∧...∧dxn = df1∧...∧dfn−1. (2)

The functions fi, (i = 1, ..., n− 1) are first integrals of the vector field X0:

dfi∧ιX0dx1∧dx2∧...∧dxn = (X0.fi)dx1∧dx2∧...∧dxn

= dfi∧df1∧df2∧...∧dfn−1 = 0.
(3)

This type of dynamics is well-known in Physics and named Nambu’s dy-
namics.

For c varying in a neighborhood of 0, assume that the curves f−1(c) have
a compact connected component γc. Let Σ be a small neighborhood of the
zero-section of the normal bundle to γ0. For c small enough, the curves γc

are closed periodic orbits of X0 and they cut transversely Σ. Choose c as
a coordinate on the transverse section Σ to the flow of X0.
Lastly, assume that there are 1-forms ωi such that:

ιX0ωi = dfi; i = 1, ..., n− 1. (4)

Depending of the type of regularity of the 1-form ωi, this condition may be
a consequence of the preceding assumptions. If the condition (4) is fulfilled,
we will say that the singularity of the Nambu dynamics (3) is controlled
(or alternatively that the Nambu dynamics itself is controlled).
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The appropriated extension of the (*)-property first discussed in [1] is
presented in the following.

Definition 1. Let f = (f1, ..., fn−1) : Rn → Rn−1 be a generic submer-
sion. Assume that f−1(c) contains a compact curve γc. The application
displays the (*)-property if for all polynomial 1-form ω such that

∫

γc

ω = 0, (5)

for all c; there exist polynomial gi, R such that:

ω = g1df1 + ... + gn−1dfn−1 + dR. (6)

It was proved in [1] that the function f1 : R2 → R1, f1 : (x1, x2) →
(x2

1 + x2
2) displays the (*)-property. Several generalizations were proposed

after but the core of the argument in the computation of the successive
derivatives is captured in this notion.

The generalization proposed in this article provides a new presentation
of the (*)-property which seems interesting as well for the 2-dimensional
case. Indeed, the definition of the vector field X0 given in the preceding
introduction yields the:

Proposition 2. Let ω be a 1-form such that ω(X0) = 0, then there are
functions g1, ..., gn−1 so that:

ω = g1df1 + ... + gn−1dfn−1. (7)

Note that the condition ω(X0) = 0, equivalent to ω∧df1∧...∧dfn−1 = 0,
yields ω = g1df1 + ... + gn−1dfn−1 where the coefficients gk are obtained as
ratio of minors of the Jacobian matrix of the fj .

This displays an alternative to the (*)-property now presented as follows:

Proposition 3. A generic submersion f : Rn → Rn−1 displays the
(*)-property if for any polynomial 1-form ω such that

∫

γc

ω = 0, (8)

for all c; then there exists a polynomial R such that:

ω(X0) = X0.R. (9)
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Such a function R can be (in principle) constructed with the following
pattern. Choose R arbitrarily on the transverse section Σ, then extends
R to the whole tubular neighborhood of γ0 saturated by the orbits γc by
integration of the 1-form ω along the orbits of X0.

3. THE SUCCESSIVE DERIVATIVES OF THE FIRST
RETURN MAPPING OF THE PERTURBED SYSTEM

Now perturb X0 into Xε = X0 + εX1. Let M be a point of Σ close to 0
and let γε be the trajectory of Xε passing by the point M . The next first
intersection point of γε with Σ defines the so-called first return mapping of
Xε relatively to the transverse section Σ: c 7−→ L(c, ε).
The mapping L is analytic and it displays a Taylor development (in ε):

L(c, ε) = c + εL1(c) + ... + εkLk(c) + O(ε)k+1. (10)

The expression of the first coefficient L1(c) is classical and belongs to the
lore of bifurcation theory. With the vector field Xε and the 1-forms ωi (cf.
[1]), introduce the 1-forms:

ιXεωi = ιX0ωi + ειX1ωi = dfi + ειX1ωi. (11)

Definition 4. The perturbation Xε of the controlled Nambu dynamics
is said to be admissible if for all the 2-forms ωi, the 1-forms ιX1ωi have
polynomial coefficients.

Recall that the parameter c chosen as coordinates on the transverse sec-
tion Σ is the restriction of the functions f = (f1, ..., fn−1) to the section.

Then the ith-component of L1(c) is equal to:

L1,i(c) =
∫

γ0

ιX1ωi. (12)

Assume now that the first derivative L1(c) vanishes identically and that
the submersion f displays the (*)-property then there exist gij and Ri

such that:

ιX1ωi =
∑

j

gijdfj + dRi. (13)
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Following the lines of the algorithm of the successive derivatives, the ex-
pression (13) yields:

L2,i(c) = −
∫

γ0

∑

j

gijιX1ωj . (14)

This is indeed the second step of a general recursive scheme which displays
as follows:

Assume that all the kth-first derivatives of the return mapping of the
perturbed vector field vanish identically. This yields:

Lk,i(c) =
∫

γ0

∑

j

gk−1
ij ιX1ωj = 0. (15)

The (*)-property yields new functions gk
ij , R

k such that:

∑

j

gk−1
ij ιX1ωj =

∑

j

gk
ijdfj + dRk. (16)

This yields the following expression of the (k+1)th-derivative of the return
mapping of the perturbation:

Lk+1,i(c) =
∫

γ0

∑

j

gk
ijιX1ωj . (17)

The algorithm implies of course the first

Theorem 5. Let X0 be a controlled Nambu dynamics which displays the
(*)-property and let X1 be an admissible perturbation. Then the perturbed
dynamics Xε has an analytic first return. The coefficients of the Taylor
expansion of this return mapping depend polynomially of the coefficients of
the perturbation.

From the general theory of projections of analytic sets (cf.[2],[3],[4]), it
now follows:

Theorem 6. There exists a uniform bound to the number of isolated
periodic orbits, which corresponds to fixed point of the first return mapping
of X0 + εX1 which intersects the transverse section Σ in the neighborhood
of 0.

The general framework presented here should of course be illustrated
with specific examples. Some have been worked out recently by Seok Hur
(Paris VI) and will be matter to further publications.
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