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For a cubic differential system ẋ = y(1 + x)(1 − x + cx + fy),
ẏ = −(x + gx2 + dxy + by2 + sx3 + qx2y + nxy2 + ly3) we find coefficient
conditions for the existence of three invariant straight lines. We resolve the
problem of the centre in each of these conditions.
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1. INTRODUCTION

In this paper we consider the polynomial system of differential equations

ẋ = y +
n∑

j=2

Pj(x, y) ≡ P (x, y), ẏ = −
(
x +

n∑

j=2

Qj(x, y)
)
≡ −Q(x, y),(1)
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where Pj , Qj , j = 2, n are homogeneous polynomials of degree j. Coeffi-
cients and variables are assumed to be real in (1). The origin O(0, 0) is a
singular point of a centre or focus type for (1) ([13, 12]).

The origin is a center for system (1) if and only if in a neighborhood of
(0, 0) system (1) has a Cω nonconstant strong first integral ([12, 3]). Also,
O(0, 0) is a centre iff (1) has in a neighborhood of O(0, 0) a holomorphic
integrating factor of the form µ = 1 +

∑
µj(x, y) ([1]).

There exists a formal power series F (x, y) =
∑

Fj(x, y) such that the
rate of change of F (x, y) along trajectories of (1) is a linear combination of

polynomials {(x2+y2)j}∞j=2 : dF/dt =
∞∑

j=2

Lj−1(x2+y2)j . The polynomials

{(x2 + y2)j , j = 2,∞} can be replaced with certain polynomials of even

degree {Ψ2j(x, y), j = 2,∞} by condition
2π∫
0

Ψ2j(cos φ, sin φ)dφ 6= 0, ∀j.
For these polynomials there exist a formal series Φ(x, y) =

∑
Φ2j(x, y) such

that dΦ/dt =
∞∑

j=2

Λj−1Ψ2j(x, y) ([22]). Quantities Λj(Lj), j = 1,∞ are

polynomials in the coefficients of system (1). The quantities Lj , j = 1,∞
are called the Liapunov quantities.

The origin is a centre for system (1) if and only if Λj = 0, j = 1,∞
(equivalent with Lj = 0, j = 1,∞). By the Hilbert’s basis theorem there
exists a natural number N such that the infinite system Λj = 0, j = 1,∞ is
equivalent with a finite system Λj = 0, j = 1, N. The number N is known
only for quadratic systems (n = 2) N = 3 ([7]). For cubic system (n = 3)
the problem of the centre was found to be rather difficult. It is solved only in
some particular cases. For example, if n = 3, P2(x, y) ≡ 0, Q2(x, y) ≡ 0,
then N = 5 ([17, 23]). In this paper the cubic systems with invariant
straight lines will be divided in five classes and the problem of the centre
will be solved in one of these classes. We shall assume that the number of
invariant straight lines is not less than three.

Various problems for polynomials systems of differential equations with
invariant straight lines were investigated in ([2], [4]–[6], [8]–[11], [14]–[16],
[18]–[20]).

2. INVARIANT ALGEBRAIC CURVES, LIAPUNOV
QUANTITIES, CENTRE

An algebraic curve f(x, y) = 0 (real or complex) is said to be an invariant
curve of system (1) if there exists a polynomial K(x, y) such that P ·∂f/∂x−
Q ·∂f/∂y = K · f. The polynomial K is called the cofactor of the invariant
algebraic curve f = 0. We shall consider only algebraic curves f = 0 with
f irreducible.
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We shall say that (fj , j = 1,M ; L = N) is ILC (I - invariant algebraic
curves, L - Liapunov quantities, C - centre) for (1), if the existence of M
algebraic curves fj(x, y) = 0 and the vanishing of the focal values Lν , ν =
1, N implies the origin O(0, 0) to be a centre for (1).

Denote by [a] the integer part of a number a.

Theorem 1 ([21]).
(
fj(x, y), fj(0, 0) 6= 0, j = 1,

[
n(n+1)

2

]
−

[
n+1

2

]
;

L =
[

n−1
2

])
is ILC for system (1) (n > 2).

Corollary 2. (fj(x, y), fj(0, 0) 6= 0, j = 1, 4; L = 1) is ILC for
cubic system (n = 3).

In the case of invariant straight lines

1 + Ax + By = 0, A, B ∈ lC, |A|+ |B| 6= 0 . (2)

Corollary 2 can be formulated in the following way

Corollary 3. (1 + Ajx + Bjy, j = 1, 4; L = 1) is ILC for cubic
system (n = 3).

As homogeneous invariant straight lines Ax+By = 0 the system (1) can
have only the lines x + iy = 0 and x− iy = 0, i2 = −1.

Theorem 4 ([6, 20]). (x ± iy, 1 + Ajx + Bjy, j = 1, 2; L = 2) and
(x± iy, 1 + Ax + By; L = 7) are ILC for cubic system (n = 3).

Remark 5. From Corollary 2 and Theorem 4 follows that if a cubic
system has four invariant straight lines (real, complex, real and complex)
then the order of a weak focus is at most 2.

In the case of the cubic system with three invariant straight lines of the
form (2) of which two are parallel, we have

Theorem 6. (lj = 1 + Ajx + Bjy, j = 1, 3, l1||l2; L = 5) is ILC for
cubic system (n = 3).

It should be noted that cubic system (n = 3) cannot have more than
two parallel invariant straight lines of the form (2), that is if l1||l2||l3, then
l3 ≡ l1 or l3 ≡ l2.

3. CLASSIFICATION OF CUBIC SYSTEMS WITH ONE
REAL INVARIANT STRAIGHT LINE

For n = 3, the system (1) can be written as follows

ẋ = y + ax2 + cxy + fy2 + kx3 + mx2y + pxy2 + ry3 ≡ P (x, y),
ẏ = −(x + gx2 + dxy + by2 + sx3 + qx2y + nxy2 + ly3) ≡ −Q(x, y)

(3)
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in which all variables and coefficients are assumed to be real.
The straight line (2) is an invariant straight line for (3) if and only if

there exist such numbers D, G, M, R, S, that

A · P (x, y)−B ·Q(x, y) ≡ (1 + Ax + By)(Dx + Gy + Mx2 + Rxy + Sy2).

By equating the coefficients of monomials in x and y we reduce this identity
to a system of nine equations for the unknowns A, B, D, G, M, R, S. We
find that D = −B, G = A, M = aA − gB + AB, R = cA − dB + B2 −
A2, S = fA− bB −AB, and A, B are the solutions of the system

F1(A,B) = A2B + aA2 − gAB − kA + sB = 0,

F2(A,B) = AB2 − fAB + bB2 + rA− lB = 0,

F3(A,B) = B3 − 2A2B + fA2 + (c− b)AB − dB2 − pA + nB = 0,

F4(A,B) = A3 − 2AB2 − cA2 + (d− a)AB + gB2 + mA− qB = 0.

(4)

Let us assume that system (3) has at least one real invariant straight
line. Via a rotation of axis about the origin we make this line parallel to
the axis Oy. To find the equation of this line, we put in (4) B = 0. In this
connection, taking account of A 6= 0, the system (4) becomes equivalent to
the following series of equalities:

aA− k = A2 − cA + m = fA− p = r = 0. (5)

It is easily seen from (5) that there are five classes of systems of type (3)
which have invariant straight lines parallel to the axis Oy:

I a = f = k = p = r = m = 0, c 6= 0.
The straight line is x = −c−1;

II a = f = k = p = r = 0, m = c2/4, c 6= 0.
The straight line is x = −2c−1;

III a = f = k = p = r = 0, m(c2 − 4m) 6= 0.
The straight lines are x1,2 = (−c±√c2 − 4m)/(2m);

IV a = k = r = 0, pf 6= 0, m = p(cf − p)f−2.
The straight line is x = −fp−1;

V r = 0, ak 6= 0, p = kfa−1, m = k(ac− k)a−2.
The straight line is x = −ak−1.

In the class I (x ± iy, 1 + cx; L = 1) and (1 + cx, 1 + Ajx + Bjy, j =
1, 2; L = 1) are ILC ([5]);

- in the class II (x± iy, 2 + cx; L = 1) and (2 + cx, 1 + Ajx + Bjy, j =
1, 2; L = 1) are ILC ([5]);

- in the class III (x± iy, 1 + 1
2 (c±√c2 − 4m)x; L = 1) and (1 + 1

2 (c±√
c2 − 4m)x, 1 + Ax + By; L = 5) are ILC ([6]);
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- in the class IV (x± iy, 1 + p
f x; L = 5) is ILC ([20]);

- in the class V (x± iy, 1 + k
ax; L = 7) is ILC ([20]).

In this paper we shall prove that (1+ p
f x, 1+Ajx+Bjy, j = 1, 2; L = 5)

is ILC in the class IV.
As appears from the above to solve completely the problem of the centre

for cubic systems with at least three invariant straight lines, it remains to
investigate the class V .

4. CONDITIONS FOR THE EXISTENCE OF THREE
INVARIANT STRAIGHT LINES IN THE CLASS IV

Without loss of generality we can assume that p = f . In the class IV,
the cubic system (3) is of the following form

ẋ = y(1 + x)(1− x + cx + fy), f 6= 0,

ẏ = −(x + gx2 + dxy + by2 + sx3 + qx2y + nxy2 + ly3),
(6)

and the algebraic system (4) with condition B 6= 0 is equivalent to the
following system

F1(A) = A2 − gA + s = 0,

F2(A,B) = (A + b)B − fA− l = 0,

F3(A,B) = B3 − dB2 − (2A2 + (b− c)A + n)B + fA(A− 1) = 0,

F4(A,B) = (g − 2A)B2 + (dA− q)B + A3 − cA2 + (c− 1)A = 0.

(7)

The first focal value for (6) looks

L1 = q + 3l − d(b + g) + f(c− 2b− 1). (8)

In order to simplify the formulas it is convenient to introduce the follow-
ing notation: ν = b + g, λ = g + 2b, β = s + bν, γ = f2s + fgl + l2, δ =
b + c− 1, τ = ν − 1.

4.1. Case s + bν = 0

Suppose first that s = −bν, then F1(A) = (A + b)(A − ν). For A = −b
and A = ν we obtain respectively from (7) that

l = bf, F31(B) = B3 − dB2 + (n− b2 − bc)B + bf(b + 1) = 0,

F41(B) = λB2 − (q + bd)B − bδ(b + 1) = 0.
(9)
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F22(B) = λB − fν − l = 0,

F32(B) = B3 − dB2 + (n + ν(c− b− 2ν))B + fντ = 0,

F42(B) = λB2 + (q − dν)B + ν(ν(c− ν) + 1− c) = 0.

(10)

If λ = 0, then systems (9) and (10) are equivalent. We have

F31(B) = B3 − dB2 + (n− b2 − bc)B + bf(b + 1) = 0,

F41(B) = (q + bd)B + bδ(b + 1) = 0.
(11)

Assume that F41(B) 6≡ 0, if F41(B) ≡ 0 the system (7) has at most two
invariant straight lines. In order that (6) have three invariant straight
lines, it is necessary and sufficient that a cubic equation F31(B) = 0 have
exactly two distinct roots. We shall distinguish here only the cubic systems
(6) with three invariant straight lines which are not the limit cases of the
systems (6) with four invariant straight lines. We have the following two
cases:

1)

b = g = l = q = s = 0, c = 1. (12)

The invariant straight lines are 1 + x = 0, 1 + 1
2 (d±√d2 − 4n)y = 0.

2)

b = −1, g = 2, l = −f, q = d, s = 1. (13)

The invariant straight lines are 1 + x = 0, 1 + x + 1
2 (d ±√

d2 + 4(1− c− n))y = 0.
From (9) and (10) it is seen that the necessary condition for system (6)

to have three invariant straight lines is l = bf.
Let λ 6= 0. The equation of the third degree with respect to B : F31(B) =

0 can be reduced to an equation of the first degree by equation F41(B) = 0

F ∗31(B) = [nλ2 − bcλτ + (q + bd)(q − dν)− bλ(1 + bν)]B+
b(b + 1)[fλ2 + δ(q − dν)]. (14)

If F ∗31(B) ≡ 0 we obtain the following five series of conditions on the
coefficient of system (6) to have three invariant straight lines:

3)

b = l = s = 0, c = g + 1. n = f(d− f), q = g(d− f). (15)
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The invariant straight lines are 1 + x = 0, 1 + (d − f)y = 0,
1 + gx + fy = 0.

4)

b = −1, c = g, l = −f, n = 1− g + fd− f2,
q = 2f − d + g(d− f), s = g − 1.

(16)

The invariant straight lines are 1 + x = 0, 1 + x + (d − f)y = 0,
1 + (g − 1)x + fy = 0.

5)

l = bf, s = −bν, q = dν − fλ2δ−1,
n = (bλδ3 − b2δ3 − bδ3 + bδ2λ + dfδλ2 − f2λ3)/(δ2λ). (17)

The invariant straight lines are 1+x = 0, 1−bx+Bjy = 0, where Bj , j =
1, 2 are found from the equation λB2 − (dλ− f2λ2δ−1)B − bδ(b + 1) = 0.

6)

l = bf, s = −bν,
d = f + τ(δ − ν)f−1 − f(b + 1)τ−1,
n = 2bν − fdτ−1 − f2(bν + 1)τ−2,
q = bντf−1 − bf − f(b + 1)ντ−1.

(18)

The invariant straight lines are 1+x = 0, 1+ νx+ fy = 0, 1− bx− f(b+
1)τ−1y = 0.

7)

d = f + (b + c− ν)νf−1 − bfν−1,
l = bf, s = −bν, n = (1 + 2b)ν − bf2ν−1,
q = (bν + c− 1)νf−1 − 2bf.

(19)

The invariant straight lines are 1 + x = 0, 1 + νx + fy = 0,
1− bx− bfν−1y = 0.

4.2. Case s + bν 6= 0
Let us solve the system (7) assuming that s + bν 6= 0. From F1(A) = 0

follows that A + b 6= 0 and from F2(A,B) = 0 we find B : B = (fA +
l)/(A+b). Increasing by F1(A) = 0 degrees of equations F3(A, (fA+l)/(A+
b)) and F4(A, (fA+ l)/(A+b)) we obtain respectively equations of the first
degree F ∗3 (A) = 0, F ∗4 (A) = 0. In order that cubic system (6) have three
invariant straight lines, it is necessary that F ∗3 (A) ≡ 0, F ∗4 (A) ≡ 0. The
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solution of these identities leads to the following three series of conditions
on the coefficients of system (6):

8)

d = f − bfν−1 + (c− g)νf−1, l = −fsν−1,
n = ν − 2s + f2sν−2, q = 2fsν−1 + (c− s− 1)νf−1.

(20)

The invariant straight lines are 1 + x = 0, 1 + Ajx + f(Aj − sν−1)(b +
Aj)−1y = 0, where Aj , j = 1, 2 obey the equation A2 − gA + s = 0.

9)

d = f(g − 2)τ−1 + (c− g − 1)τf−1,
l = −f(b + s)τ−1,
n = 1− c + g − 2s + f2(s− g + 1)τ−2,
q = f(2s− g)τ−1 − sτf−1.

(21)

The invariant straight lines are 1+x = 0, 1+Ajx+f(Aj−(b+s)τ−1)(Aj +
b)−1y = 0, where Aj , j = 1, 2 are the solution of the equation A2−gA+s =
0.

10)

c = ν + 1,
d = (fs + gl − l)βγ−1 + (bfg + 2bl + 2fs + gl)β−1,
q = (fsλ + glν − 2ls)β−1 + s(f + l)βγ−1,
n = γβ−1 + (bf2s− 2l2s + fls(λ− 2) + l2ν(g − 1))γ−1.

(22)

The invariant straight lines are 1+x = 0, 1+Ajx+(l+fAj)(b+Aj)−1y = 0,
where Aj , j = 1, 2 are the solution of the equation A2 − gA + s = 0.

We note here that system (6) and conditions (22) can be obtained re-
spectively from the system

ẋ = y(cfx + f2y + f − px)(f + px)/f2,

ẏ = −(x + gx2 + dxy + by2 + sx3 + qx2y + nxy2 + ly3).
(23)

and the conditions

p = f(c− ν),
d = (lλ + bfg + 2fs)β−1 + β(bl − cl + fs + 2gl)γ−1,
q = (fsλ + glν − 2ls)β−1 − sβ(fν − cf − l)γ−1,
n = γβ−1 + (s(bcf2 + bfl − 2cfl − 2l2)+

ν(2l2ν − bf2s− bl2 − cl2 + 3fls))γ−1,

(24)

if we assume that p = f. The system (23) has the invariant straight lines
1+(c−b−g)x = 0, 1+Ajx+(l+fAj)(b+Aj)−1y = 0, where Aj , j = 1, 2
are the solutions of the equation A2 − gA + s = 0.
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5. SUFFICIENT CONDITIONS FOR THE EXISTENCE OF A
CENTRE

Lemma 7. The following are sufficient conditions for the origin to be a
centre for system (6):

1) λ = δ = 0, l = bf, q = −bd, s = −bν;
2) l = bf, q = dν − fδ, s = −bν, n = fd− f2 + ν(1 + λ− c),

δ2 − λ2 = 0, (δ − λ)(f2 + ν(1− ν)) = 0,
λ(δ − λ)(ν(b + λ)− b + fd)) = 0.

3) c = 1− b, d = 3f, g = −2b,
l = −f(2b2 + b + 2f2)/(4f2 + (2b + 1)2),
n = (2b2 + 5b + 2f2 + 2)(2b2 + b + 2f2)/(4f2 + (2b + 1)2),
q = 3f(2b2 + b + 2f2)/(4f2 + (2b + 1)2),
s = (2b2 + b + 2f2)2/(4f2 + (2b + 1)2).

Proof. Suppose that for (6) conditions 1) hold, then L1 = 0 (see (8))
and F41(B) ≡ 0 (see (11)). The system (6) has the invariant straight
lines 1 + x = 0, 1 − bx + Bjy = 0, where Bj are solutions of the equation
F31(B) = 0 (see (11)). If b(b + 1) 6= 0 and the resultant R(F31(B), F ′31(B))
of the polynomial F31(B) and its derivative F ′31(B) is not equal to zero,
then equation F31(B) = 0 has three distinct roots (B 6= 0) and hence the
system (6) has four invariant straight lines. By Corollary 3 the origin (0, 0)
is a centre for system (6). Since the centre variety is closed in the space of
coefficients of the system (6), then (0, 0) will be a centre and in the case
when R(F31(B), F ′31(B)) = 0.

If b = 0, we obtain conditions (12) and the system (6) has a Darboux
integrating factor of the form

µ(x, y) = lα1
1 lα2

2 lα3
3 , (25)

where l1 = 1 + x, l2,3 = 1 + 1
2 (d±√d2 − 4n)y and α1 = α2 = α3 = −1.

If b = −1, we get conditions (13) (see (8)) and the system (6) has an
integrating factor of the form (25) with l1 = 1 + x, l2,3 = 1 + x + 1

2 (d ±√
d2 − 4(n + 1))y and α1 = −2, α2 = α3 = −1.
Under conditions 2) we have that L1 = 0 (see (8)), F32(f) = F42(f) = 0

(see (10)) and F ∗31(B) ≡ 0 (see (14)). If bλ(b + 1) 6= 0 and the resultant
R(F41(B), F ′41(B)) 6= 0 (see (9)) then system (6) has four invariant straight
lines 1 + x = 0, 1 + νx + fy = 0, 1 − bx + Bjy = 0, where Bj , j = 1, 2
are solution of the equation F41(B) = λB2 − (fδ − 2bd)B − bδ(b + 1) = 0.
By Corollary 3 the system (6) has a centre at (0, 0). The origin (0, 0) will
be a centre and in the cases when at least one of these two equalities
bλ(b + 1) = 0, R(F41(B), F ′41(B)) = 0 holds.

In the case 3) the system (6) has three invariant straight lines
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1 + x = 0,
1+A1,2x+ f(A1,2− (2b2 + b+2f2)((2b+1)2 +4f2)−1(b+A1,2)−1y = 0,

where

A1,2 = −b±
√

b2 − (2b2 + b + 2f2)2((2b + 1)2 + 4f2)−1

and a conic

1− 2bx + 2fy + ((2b + 1)2 + 4f2)−1((2b2 + b + 2f2)x + fy)2 = 0.

By Corollary 2 we obtain the desired result.

Lemma 8. The following three series of conditions are sufficient condi-
tions for the origin to be a centre for system (6):

1) c = 1− b− λ, d = g − 1, f = −λ, l = −bλ, s = −bν,
n = −5b2 − 3bg − g, q = ν(g − 1)− λ2.

2) c = 1− b− λ, d = 1− g, f = λ, l = bλ, s = −bν,
n = −5b2 − 3bg − g, q = λ2 − ν(g − 1).

3) b = −1/2, c = 3/2, d = (2f2 + s)/f, g = 1,
l = −f/2, n = f2, q = (2f2 + s)/(2f).

Proof. Assume that the conditions 1), 2), 3) of lemma hold, then (6)
is reversible ([24]). Indeed, in case the condition 1) of Lemma 8 holds the
transformation

x =
bX + 2bY − 1

b(bX − 1)
, y =

bX − 2bY + 1
b(bX − 1)

,

and in case the condition 2) of Lemma 8 holds the transformation

x =
bX + 2bY − 1

b(bX − 1)
, y =

bX − 2bY + 1
b(1− bX)

bring the system (6) to the form

Ẋ = (1 + b− 2b(b + 2)Y − b2(b− 2λ + 1)X2 + 4b2Y 2))(1− b2X2),
Ẏ = X(λ(b + 1)− b(b + b2 + 4λ + 2bλ)Y − b2λ(1 + b)X2+

4b2(λ + b + b2)Y 2 + b4(b− 2λ + 1)X2Y − 4b4Y 3).

In the cases 1) and 2) the singular point O(0, 0) is moved in O1(0, 1
2b ) and

X = 0 is an axis of symmetry for the obtained system. In the case 3) the
transformation

x =
2X

2−X
, y =

2Y

2−X
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bring the system (6) to the form

Ẋ = fY (X2 − 4)(fY + 1),
Ẏ = X(4f + f(4s− 1)X2 + 4(s + 2f2)Y + 2f(1 + 2f2)Y 2 + f2Y 3).

Lemma 9. The following four series of conditions are the sufficient con-
ditions for the origin to be a centre for system (6):

1) c = 2bν − b + 1, d = ν(2bν − 3b− 1)/f, l = bf, n = s = −bν,
q = −ν2(b + 1)/f, f2 − ντ = 0.

2) c = −2bν − ν − g + 3, d = −τ(2bν + 2ν + b)/f, l = bf,
s = −bν, n = bν + λ, q = −ντ(3b + 2)/f, f2 − ντ = 0.

3) b = (cf2 − cν2 − f2ν − 3f2 + ν3)/(f2 + ν2),
d = f(3cν2 − cf2 + 2f2ν + 3f2 − 2ν3 − 3ν2))/(ν(f2 + ν2)),
g = (cν2 − cf2 + 2f2ν + 3f2)/(f2 + ν2),
l = f(ν − cν − 2f2)/(f2 + ν2),
q = f(3cν + 4f2 − 2ν2 − 3ν)/(f2 + ν2),
s = ν(cν + 2f2 − ν)/(f2 + ν2),
n = (cf2ν − 2cν3 + 2f4 − 3f2ν2 − f2ν + ν4 + 2ν3)/(ν(f2 + ν2)).

(26)

4) b = (cf2 − cτ2 − f2τ − f2 + τ3 + 2τ2)/(f2 + τ2),
d = f(−cf2 + 3cτ2 + 2f2τ − 2τ3 − 6τ2)/(τ(f2 + τ2)),
g = (−cf2 + cτ2 + 2f2τ + 2f2 − τ2)/(f2 + τ2),
n = f2(−cτ − 2f2 + 2τ2 + 3τ)/(τ(f2 + τ2)),
l = f(cτ + f2 − τ2 − 2τ)/(f2 + τ2),
q = f3(−c− 2τ)/(τ(f2 + τ2)),
s = f2(−c + 1)/(f2 + τ2).

(27)

Proof. In each of these cases the system (6) has an integrating factor
of the form (25).

In the case 1): l1 = 1+x, l2 = 1+νx+fy, l3 = 1−bx−fδ−1(b+1)y, α1 =
(b− 1)/(b + 1), α2 = −2bν/λ and α3 = 2b2τλ−1(b + 1)−1 − 1.

In the case 2): l1 = 1 + x, l2 = 1 + νx + fy, l3 = 1− bx− bfν−1y, α1 =
−3, α2 = 2τ(b + 1)/λ and α3 = −(2b2ν + 3bλ + 2bg + 2ν)/(bλ).

In the case 3) the conditions (26) are contained in (20) and the invariant
straight lines are preserved for (6). The exponents α1, α2, α3 in (25) can
be found from the identity

α1K1(x, y) + α2K2(x, y) + α3K3(x, y) +
∂P

∂x
− ∂Q

∂y
≡ 0,
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where K1(x, y), K2(x, y) and K3(x, y) are cofactors of the invariant straight
lines. The expressions for α1, α2, α3 were found to be large and we do not
bring them here.

The conditions (27) are contained in (21). Next we proceed as in the
case 3).

6. THE PROBLEM OF THE CENTRE FOR CUBIC SYSTEM
(6) WITH THREE INVARIANT STRAIGHT LINES

By “=⇒” denote “implies”.

Theorem 10. (1 + Ajx + Bjy = 0, j = 1, 3; L = 5) is ILC for system
(6), i.e. if the cubic system (6) has three invariant straight lines (real, real
and complex) then the order of a weak focus is at most 5.

Proof. In order to solve the problem of the centre for cubic system (6)
with three invariant straight lines which are limit systems of those with four
invariant straight lines, it is enough that L1 = 0 (8). Therefore, to prove
theorem it is sufficient to show that in each series of conditions (12), (13),
(15)–(22) the Liapunov quantities Lj , j = 1,∞ vanish. For calculation
of the quantities Lj we shall use the algorithms described in [22]. In the
expressions for Lj we will neglect with denominators and non-zero factors.

In the case (12) =⇒ Lemma 7, 1) (b = 0).
In the case (13) the vanishing of the first Liapunov quantity gives c = 2

=⇒ Lemma 7, 1) (b = −1).
In the cases (15) and (16) =⇒ Lemma 7, 2).
In the case (17) the first Liapunov quantity is L1 = (c−b−g−1)(c+3b+

g−1). If c−b−g−1 = 0 then =⇒ Lemma 7, 2). Assume that c+3b+g−1 = 0,
and let c = 1− 3b− g. We have L2 = df + λ(λ + g− 1)− f2. From L2 = 0
we find d and substitute into the expression for L3. We conclude that
L3 = f1f2f3, where f1 = ν2 − ν − f2, f2 = 2b + f + g and f3 = 2b− f + g.
If f1 = 0 then =⇒ Lemma 7, 2), if f2 = 0 =⇒ Lemma 8, 1) and if f3 = 0
=⇒ Lemma 8, 2).

In the case (18) we have L1 = f1f2, where f1 = ν−c+1 and f2 = f2−ντ.
If f1 = 0 then =⇒ Lemma 7, 2). Assume that f1 6= 0 and let f2 = 0. The
second Liapunov quantity with f2 expressed from f2 = 0 and canceled by
non-zero factors looks as follows L2 = (λ + δ)(2bν − δ). If λ + δ = 0 then
=⇒ Lemma 7, 2) and if 2bν − δ = 0 =⇒ Lemma 9, 1).

In the case (19) the first Liapunov quantity looks L1 = (ν−c+1)(f2−ντ).
If ν − c + 1 = 0 then =⇒ Lemma 7, 2). Assume that (ν − c + 1) 6= 0. The
second Liapunov quantity is found to be L2 = f1f2, where f1 = λ + ν and
f2 = c + 2bν + ν + g − 3. If f1 = 0 =⇒ Lemma 7, 2) and if f2 = 0 =⇒
Lemma 9, 2).



SOLUTION OF THE PROBLEM OF THE CENTRE FOR A CUBIC... 141

In the case (20) the vanishing of the first Liapunov quantity gives s =
[ν(cν−ν−σ−f2)]/(ν2+f2), where σ = (ν2−f2)c+λf2−ν2g. The second
one looks L2 = f1f2f3, where f1 = δ− λ, f2 = σ + 3f2, f3 = c + 3b + g− 1
(i.e. f3 = δ + λ). If f1 = 0 then =⇒ Lemma 7, 2) and if f2 = 0 then =⇒
Lemma 9, 3). Assume that νf1f2 6= 0 and let f3 = 0. Then c = 1−3b−g and
L3 = f31f32, where f31 = f2 +ν(1−ν), f32 = bf2 +6ν3 +(3b−2)ν2 +4f2ν.
If f31 = 0 then =⇒ Lemma 7, 2). From f32 = 0 we express b and calculate
L4 and L5:

L4 = 5ν5 − (5f2 + 8)ν4 + 2f2(2− 5f2)ν2 − 5f4ν − 5f6,
L5 = 10(8037f2 + 29)ν13 − 2(40185f4 + 85656f2 + 232)ν12

+(266940f2 + 74921)f2ν11 − (385250f4 + 374583f2 + 10632)f2ν10

+5(57902f2 + 17299)f4ν9 − (742360f4 + 161425f2 + 1148)f4ν8

+2(30140f2 − 12459)f6ν7 − 2(361930f4 − 59063f2 − 3026)f6ν6

−2(45945f2 + 15512)f8ν5 − 2(182185f4 − 38265f2 + 1122)f8ν4

−(59060f2 − 6413)f10ν3 − (82570f4 + 55f2 − 244)f10ν2

−5(1966f2 + 61)f12ν − 5(916f2 + 61)f14.

The resultant of the polynomials L4 and L5 by ν is not equal to zero and
the obtained system of equations L4 = 0 and L5 = 0 has no real solutions,
i.e. in this case the origin O(0, 0) is a focus.

In the case (21) from L1 = 0 we find s: s = (−bf2ν − 2f2µτ + cf2τ +
ν2τ2 + gντ2 − cντ2 + f2τ2 − ντ3)(f2 + τ2) and substitute it into the
expressions for L2, L3, L4 and L5. The second one looks L2 = f1f2f3,
where f1 = δ − λ, f2 = (f2 + τ2)b− cf2 + cτ2 + f2τ + f2 − τ3 − 2τ2 and
f3 = c + 3b + g − 1.

If f1 = 0 then =⇒ Lemma 7, 2) and if f2 = 0 then =⇒ Lemma 9, 4).
Assume that νf1f2 6= 0 and let f3 = 0. Then c = 1−3b−g and L3 = f31f32,
where f31 = f2 − ντ, f32 = (f2 + 3τ2)b + 4f2τ + f2 + 6τ3 + 5τ2.

If f31 = 0 then =⇒ Lemma 7, 2). From f32 = 0 we express b and calculate
L4 and L5:

L4 = 5τ5 + 5f2τ4 + 8τ4 + 10f4τ2 − 4f2τ2 − 5f4τ + 5f6,
L5 = 10(8037f2 + 29)τ13 + 2(40185f4 + 138306f2 + 232)τ12

+(372240f2 + 308471)f2τ11 + (385250f4 + 664833f2 + 114744)f2τ10

+(725290f2 + 454433)f4τ9 + (742360f4 + 426295f2 + 96116)f4τ8

+2(382040f2 − 2289)f6τ7 + 2(361930f4 − 18833f2 − 16958)f6τ6

+10(45783f2 − 19450)f8τ5 + 2(182185f4 − 37005f2 − 8922)f8τ4

+25(5824f2 − 1789)f10τ3 + (82570f4 + 3745f2 − 1612)f10τ2

+5(3686f2 − 403)f12τ + 5(916f2 + 403)f14.

The resultant of the polynomials L4 and L5 by τ is not equal to zero,
therefore the origin O(0, 0) is a focus.
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Suppose now that conditions (22) for the system (6) are satisfied. First
we shall calculate and analyze the Liapunov quantities for the system (23)
under conditions (24), then we shall apply the obtained results on the
system (6). The first Liapunov quantity for (23), (24) looks as

L1 = −βσc + γ(bf − l) + β(2fsν + l(ν(ν + g)− s)),

where σ = bl + fs + gl. Now if γ 6= 0 and σ = 0 it follows that L1 6= 0.
Therefore we shall assume that σ 6= 0. From L1 = 0 we express c and
substitute into the next two Liapunov quantities. The second quantity
L2 with non-zero factors removed looks L2 = g + 2b. Let g = −2b. This
implies the third Liapunov quantity to be L3 = f1f2, where f1 = l − bf
and f2 = l2 + s2 + b2s + f2s. If f1 = 0, p = f, then =⇒ Lemma 8, 3) and
if f2 = 0, p = f =⇒ Lemma 7, 3).

Note that (1 + Ajx + Bjy, j = 1, 3; L = 5) is a minimal ILC, that is
(1 + Ajx + Bjy, j = 1, 3; L < 5) are not ILC for (6).
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