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Using Invariant Theory, we give a new classification of the planar homo-
geneous quadratic systems with respect to the general linear group. This
classification involves less canonical forms than those known before. It takes
into account some algebraic properties like the existence of the common factor
of the right hand. Thereby, it is more adapted to the phase portraits described
in [7]. The computations are made with Maple.
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1. INTRODUCTION AND FIRST NOTATIONS

Let A be the linear space of planar homogeneous quadratic systems

dx1

dt
= a1

11(x
1)2 + 2a1

12x
1x2 + a1

22y(x2)2 = P 1(x),

dx2

dt
= a2

11(x
1)2 + 2a2

12x
1x2 + a2

22y(x2)2 = P 2(x) (1)

and G, the group of invertible 2×2 matrices, p = (pi
α)i,α=1,2. Throughout

this work the coefficients ai
αβ and pi

α belong to the real field IR. Let GL(A)
be the group of the linear automorphisms of A. The group G acting over
IR2 ((p, x) 7→ p−1x) induces a linear rational representation

ρ : G → GL(A)
93
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where ρ(p)(a) = b is defined by

bi
αβ =

2∑

j=1

2∑
γ=1

2∑

δ=1

qi
jp

γ
αpδ

βaj
γδ, q = p−1, ∀ i, α, β = 1, 2. (2)

Considering the transformation laws (2), the IR-linear space A is nothing
that the tensorial product (IR2)∗

⊗S2 where (IR2)∗ is the dual of IR2 and
S2 the space of the quadratic forms . The tensorial interpretation of the
vectors a ∈ A (i.e. once contravariant and twice covariant) explains why
we have adopted the notation as in (1) .

The transformation laws (2) are the same as those of the two-dimensional
nonassociative algebras with the structure constants ai

αβ (see [5]) and the
homogeneous quadratic polynomial mappings from IR2 to IR2 (see [1]). So,
the present classification may be applied to these objects.

Two systems s and s′ of A are G- equivalent if there exists p ∈ G such
that ρ(p)s = s′. The equivalence classes are called the G-orbits. The
problem of the linear classification of the systems (1) consists in describing
the G-orbits with the help of a finite number of algebraic functions which
are constant over orbits.
Many works ([4, 5, 1, 6], . . . ) are devoted to this question. Some of them
are completed by other type of classification like the geometric and/or the
topological ones ([4, 5, 1, 6], . . . ).
The present paper is inspired by the monograph ([6]). We remark that the
linear and topological classifications given there do not reflect one another.
The aim of this paper is to present a new linear classification which is closer
to the topological one. The tool used is Invariant Theory.

This paper is composed of three sections. In the first one, we recall the
main results about the algebra of covariants of the systems (1). In the
second section we analyze geometric and algebraic properties of particular
covariants and in the third section we give the expected linear classification
of the systems (1) .

2. AROUND THE COVARIANTS OF PLANAR
HOMOGENEOUS QUADRATIC SYSTEMS

2.1. The algebra of covariants
Throughout this part, instead of the real field IR, we could take any field

of characteristic zero.
In this work the notion of a covariant is understood in the following sense :
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Definition 1. A polynomial function Q : A×IR2 → IR is a covariant of
A with respect to the group G ( or a G-covariant) if there exists a function
(group character) λ : G → IR such that

∀p ∈ G, ∀a ∈ A, Q(ρ(p)a, p−1x) = λ(p)Q(a, x).

If the polynomial function Q does not depend on x, it is called an in-
variant of A.
From [7, 2] the character group λ is a power of the determinant of p ∈ G :

λ(p) = det(p)−κ

where the integer κ is the weight of the covariant. The covariant Q is ab-
solute if κ = 0. Otherwise, it is relative.
The above definition works for any subgroup of G and in particular, for the
subgroup SL2 of matrices of determinant 1. It is obvious that the homo-
geneous G-covariants are SL2-covariants . The converse is also true. This
confers to the set of the SL2-covariants of A a structure of bi-gradate alge-
bra with respect to the pair (a, x) ∈ A × IR2. One knows (by the famous
Hilbert basis theorem) that this algebra has a finite system of generators.
Let us denote it K. It contains the subalgebra of invariants I.
In carrying out the study of these algebras, two classical problems arise :
construct concretely minimal systems of generators and find the ideal of
syzygies (polynomial identities between the covariants, including the in-
variants). Both problems are solved for K (and thereby, for I) [7]. Using
the Einstein notation (condensed form), we give here the expressions of the
13 generators of K :

A = aα
pra

β
αqa

γ
βsa

δ
γδε

pqεrs, B = aα
pra

β
αqa

γ
δsa

δ
βγε

pqεrs,

C = aα
pra

β
βqa

γ
γsa

δ
αδε

pqεrs, D = aα
pra

β
qka

γ
αsa

δ
δla

µ
βγa

ν
µνε

pqεrsεkl,

K = aα
αβxβ, L = ap

αβxαxβxqεpq, M = aα
αβaβ

γδx
γxδ,

N = aα
βγa

β
αδx

γxδ R1 = aα
αpa

β
γqa

γ
βδx

δεpq, R2 = aα
αpa

β
δqa

γ
βγx

δεpq,

R3 = aα
βνa

β
αγa

γ
δµx

δxµxν , R4 = aα
µpa

β
αqa

γ
βνa

δ
γδx

µxνεpq,

R5 = aα
pra

β
νqa

γ
αsa

δ
βγa

µ
δµx

νεpqεrs.

where ε12 = ε12 = −ε21 = −ε21 = 1 et ε11 = ε11 = −ε22 = −ε22 = 0.
In this work we need only the following invariants and covariants :

A := (a1
11)

3a1
22 − (a1

11)
2(a1

12)
2 + (a1

11)
2a1

12a
2
22 + (a1

11)
2a1

22a
2
12
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− 3a1
11(a

1
12)

2a2
12 + 2a1

11 a1
12a

1
22a

2
11 + 2a1

11a
1
12a

2
12a

2
22 + 2 a1

11a
1
22a

2
11a

2
22

− a1
11 a1

22 (a2
12)

2 + a1
11 a2

12 (a2
22)

2 − (a1
12)

3 a2
11 − (a1

12)
2 a2

11 a2
22

− 4 (a1
12)

2 (a2
12)

2 + 2 a1
12 a1

22 a2
11 a2

12 + a1
12 a2

11 (a2
22)

2 − 3 a1
12 (a2

12)
2 a2

22

+ 2 a1
22 a2

11 a2
12 a2

22 − a1
22 (a2

12)
3 + a2

11 (a2
22)

3 − (a2
12)

2 (a2
22)

2,

B := (a1
11)

3 a1
22 − (a1

11)
2 (a1

12)
2 + a1

12 a2
22 − (a1

11)
2 a1

22 a2
12

− a1
11 (a1

12)
2 a2

12 + 4 a1
11 a1

12 a1
22 a2

11 + 3 a1
11 a1

22 (a2
12)

2 + a1
11 a2

12 (a2
22)

2

− 3 (a1
12)

3 a2
11 + 3 (a1

12)
2 a2

11 a2
22 − 4 (a1

12)
2 a2

12
2 − 4 a1

12 a1
22 a2

11 a2
12

− a1
12 a2

11 (a2
22)

2 − a1
12 (a2

12)
2 a2

22 + 2 a1
22

2
(a2

11)
2 + 4 a1

22 a2
11 a2

12 a2
22

− 3 a1
22 (a2

12)
3 + a2

11 (a2
22)

3 − (a2
12)

2 (a2
22)

2,

C := (a1
11)

3 a1
22 − (a1

11)
2 (a1

12)
2 + (a1

11)
2 a1

12 a2
22 + 3 (a1

11)
2 a1

22 a2
12

+ 2(a1
11)

2(a2
22)

2 − 5a1
11(a

1
12)

2a2
12 − 4a1

11a
1
12a

2
12a

2
22 + 3a1

11a
1
22(a

2
12)

2

+ a1
11 a2

12 (a2
22)

2 + (a1
12)

3 a2
11 + 3 (a1

12)
2 a2

11 a2
22 − 4 (a1

12)
2 (a2

12)
2

+ 3 a1
12 a2

11 (a2
22)

2 − 5 a1
12 (a2

12)
2 a2

22 + a1
22 (a2

12)
3 + a2

11 a2
22

3

−(a2
12)

2 (a2
22)

2,

D := −4 (a1
12)

4a2
11a

2
12 − 3 (a1

11)
2 (a1

12)
2 a2

12 a2
22 + 3 (a1

11)
2a1

12a
1
22a

2
11a

2
22

− 3(a1
11)

2(a1
22)

2a2
11a

2
12 − (a1

11)
2a2

12(a
2
22)

3 − (a1
22)

2a2
11(a

2
12)

3

− 3a1
11(a

1
22)

2a2
11(a

2
12)

2 + a1
11a

1
22a

2
12

3
a2
22 − 6(a1

12)
3a2

11a
2
12a

2
22

+ 3(a1
12)

2a1
22a

2
11

2
a2
22 − 4(a1

12)
2(a2

12)
3a2

22 + 4a1
12a

1
22(a

2
12)

4

− 2a1
12(a

2
12)

3a2
22

2
+a1

22(a
2
11)

2(a2
22)

3+a1
22(2(a2

12)
4a2

22+(a1
12)

3(a2
11)

2)
+ (a1

11)
4a1

22a
2
22 − (a1

11)
3(a1

22)
2a2

11+2(a1
12)

3((a1
11)

2a2
12+2a1

11(a
2
12)

2)
+(a1

11)
3a1

12(a
2
22)

2+a1
11(a

2
12)

2(a2
22)

3+3a1
12a

1
22(a

2
11)

2(a2
22)

2

− 3 a1
12a

1
22a

2
11(a

2
12)

2a2
22 + 2a1

12a
2
11 a2

12(a
2
22)

3 − 3a1
22a

2
11(a

2
12)

2(a2
22)

2

+ 3a1
11(a

1
12)

2a2
11 (a2

22)
2 + 6a1

11a
1
12a

1
22(a

2
12)

3 + a1
11a

1
12a

2
11(a

2
22)

3

+ 3a1
11a

1
12(a

2
12)

2 (a2
22)

2 − a1
11a

2
11(a

2
22)

4 − (a1
11)

3(a1
12)

2a2
22

− 2(a1
11)

3a1
12a

1
22a

2
12 − (a1

11)
3a1

22a
2
12a

2
22 + 3(a1

11)
2(a1

12)
2a1

22a
2
11

− 2a1
11(a

1
12)

4a2
11 − 3(a1

11)
2a1

22(a
2
12)

2a2
22 − a1

11(a
1
12)

3a2
11a

2
22

+ 3a1
11(a

1
12)

2a1
22 a2

11a
2
12 − 3a1

11a
1
22a

2
11 a2

12(a
2
22)

2,
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K := (a1
11 + a2

12)x1 + (a1
12 + a2

22)x2,

L := −a2
11 (x1)3 + (a1

11 − 2 a2
12)x2 (x1)2 + (2 a1

12 − a2
22) (x2)2 x1 + a1

22 (x2)3,

M := ((a1
11)

2 + a1
12 a2

11 + a1
11 a2

12 + a2
11 a2

22) (x1)2

+ (2 a1
11 a1

12 + 4 a1
12 a2

12 + 2 a2
12 a2

22)x2 x1

+ (a1
11 a1

22 + a1
22 a2

12 + a1
12 a2

22 + (a2
22)

2) (x2)2,

N := (2 a1
12 a2

11 + a2
12

2
+ (a1

11)
2) (x1)2

+ (2 a1
12 a2

12 + 2 a2
12 a2

22 + 2 a1
11 a1

12 + 2 a1
22 a2

11)x2 x1

+ ((a2
22)

2 + (a1
12)

2 + 2 a1
22 a2

12) (x2)2.

Among them, we have four invariants A, B, C and D.

In [7], it was established that the ideal of syzygies of I is generated by the
polynomial :

C2B − A3 − 2D2 + A2C − AC2 (3)

and that one of K by (3) and the polynomials :

CL − MR2 + K2R1,

K2(A + C) − 2CM + 2R2
2,

C(K2 − M) + 2R1R2 + AM − CN,

CR1 + KD + (A − C)R2,

KM(C − B) + 2(KR2
1 + MR5) − 2CR3,

CK(R1 − R2) + AKR1 + DM − CR4,

A2K − 2DR2 + BCK − 2CR5.

Actually, the structure of the algebras K and I is more precise. Since the
group SL(2, IR) is reductive these algebras are Cohen-Macaulay [3]. This
means that they are finitely generated free modules over a submodule. For
example, using the syzygy (3) between the elements of I, we get :

I = IR[A,B, C]D ⊕ IR[A,B, C].

This decomposition is called the Hironaka decomposition of I. Theoreti-
cally one could get the analog decomposition for the algebra K. However,
the computations are very long and useless for the present subject.
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2.2. Algebraic and geometric properties of the covariants
K, N, L

In the following, all covariants will be regarded as elements of the ring
F [x1, x2] where F is the ring of polynomial functions over A. A covariant
is zero if and only if all its coefficients in x1, x2 vanish.

The jacobian of the vector field (1) is equal to U = 2(K2 − N) and its
divergence to 2K.

Remark 2. [and notation] The discriminant of the quadratic form U is
equal to 8α where α = B + C − 2A.

It is obvious that the study of the quadratic systems (1) of the form

(
P 1(x)
P 2(x)

)
=

(
ax1 + bx2

cx1 + dx2

)
(ux1 + vx2)

can be reduced to the study of the linear or constant systems which are
called “degenerated”.

Lemma 3 ([7],p.56). A planar homogeneous quadratic system (1) is
“degenerated“ if, and only if, α = 0.

Proof. Note that the resultant of the polynomials a1
11(x

1)2 + 2a1
12x

1x2 +
a1
22(x

2)2 and a2
11(x

1)2 + 2a2
12x

1x2 + a2
22(x

2)2 is equal to 1
2α.

If the polynomials P 1(x) and P 2(x) are colinear the quadratic systems
(1) are “degenerated“ and

U

8
=

∣∣∣∣
a1
11 a1

12

a2
11 a2

12

∣∣∣∣ (x1)2 +
∣∣∣∣
a1
11 a1

22

a2
11 a2

22

∣∣∣∣ x1x2 +
∣∣∣∣
a1
12 a1

22

a2
12 a2

22

∣∣∣∣ (x2)2 = 0 (4)

The converse is also true. Furthermore,

Lemma 4. The quadratic system (1) can be reduced (by a rotation) to
the form

dX1

dt
= 0,

dX2

dt
= b2

11(x
1)2 + 2b2

12x
1x2 + b2

22y(x2)2

if, and only if, U = 0.

Proof. The necessary condition is trivial. Suppose that U = 0. From
the relation (4) it follows that there exists two numbers k1, k2 ∈ k such
that k2

1 + k2
2 = 1 and k1a

1
αβxαxβ + k2a

2
αβxαxβ = 0.

The rotation X1 := k1x
1 + k2x

2, X2 := − k2x
1 + k1x

2 reduces the given
system to the expected form.
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Up to now (see [4, 5, 1, 6, 7]), the linear classifications of the systems (1)
with respect to the group G are based on the important property of the
covariant L :

Lemma 5 ([7],p.56). The straight line λ1x
1 + λ2x

2 = 0 is an integral
line of the system (1) if, and only if, L(−λ2, λ1) = 0.

Taking into account the degree of the covariant L, the system (1) has at
most three integral straight lines. Moreover, the x2 - axis (x2 = 0) is an
integral straight line if, and only if, a1

22 = 0.
We complete this lemma by putting :

discriminant (L) = −β = −(27B − C − 18A).

3. THE LINEAR CLASSIFICATION OF THE PLANAR
QUADRATIC HOMOGENEOUS SYSTEMS

In this section we substitute x1 by x and x2 by y.

3.1. The Sibirskii’s classification
The classifications proposed in [4, 5, 1, 6, 7] were based on the number

and the multiplicity of the integral straight lines of (1) which are defined,
by the Lemma 5, with the covariant L. An account of these papers can
be found in the monograph [7]. The first tableau (see Tab.1) we bring
back here from [7] contains the different canonical forms which provide the
parameterization of the G-orbits.
In the same monograph we also find topological phase portraits of the
planar homogeneous quadratic systems with the condition α 6= 0 (see
Tab. 2). The case α = 0 is analog (but not the same) to the linear or
constant systems.
Curiously, the invariant α that plays a main role in the second tableau
is absent in the first. The reason of this absence is that the covariant L
does not describe the character of “degeneracy” of the systems (1). The
different equations are, for β < 0 :

(c− b)3 +
4(C − 3A)

β
(c− b) +

16
√

2|D|√
|β|3 = 0;

3(b + c) = 2− 8C
√
|β|(c− b)

8
√

2D − [
√
|β|(c− b)]3

, (5)
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INVARIANT CANONICAL
CONDITIONS FORMS

L = 0, K = 0
dx

dt
= 0,

dy

dt
= 0;

L = 0, K 6= 0
dx

dt
= x2,

dy

dt
= xy

β < 0





dx

dt
= bx2 + (c− 1)xy

dy

dt
= (b− 1)xy + cy2;

equations (5)
D > 0

β = 0, D 6= 0





dx

dt
= bx2 + xy

dy

dt
= (b− 1)xy + y2;

(9b− 7) 3
√

D2

= 3
√

32A

B = K = 0, N 6= 0
dx

dt
= x2,

dy

dt
= −2xy;

A = B = C = 0
KL 6= 0, 3M 6= 2K2

dx

dt
= bx2,

dy

dt
= (b− 1)xy;

2b

3b− 1
=

M

K2

A = B = C = 0
KL 6= 0, 3M = 2K2

dx

dt
= x2,

dy

dt
= −x2 + xy; -

L 6= 0,K = N = 0
dx

dt
= x2,

dy

dt
= −x2; -

β = D = 0, C 6= 0





dx

dt
= xy

dy

dt
= sgn(C)x2 + y2;

-

β > 0





dx

dt
= bx2 + (c + 1)xy

dy

dt
= −x2 + bxy + cy2;

equations (6)
b ≥ 0

Tab. 1
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and for β > 0 :

4(A−B) = −(c + 1)[b2 + (c− 1)2];

b3 − 4(C − 3A)
β

b− 16
√

2|D|√
|β|3 = 0. (6)

HOMOGENEOUS
QUADRATIC

PLANAR

DIFFERENTIAL

WITH

SYSTEMS

α 6= 0

α < 0, β > 0
ou ouou

α > 0, β > 0 α < 0, β = 0 α > 0, β = 0

α < 0, β < 0 α < 0, β < 0
α > 0, β < 0

7A 6= 9B 7A 6= 9B

A > B A < B

21A = 27B = 7C < 0 21A = 27B = 7C > 0

TOPOLOGICAL
PORTRAITS OF

Tab. 2

3.2. The new classification
We achieve the new classification in two steps, from the rougher to the

finer. In the first step, we study the different reduced forms of the systems
(1) related to the canonical forms of the covariant U .

3.2.1. Reduced forms

The reduced forms of the algebraic quadratic form U (which is an abso-
lute covariant) are as follows :

α < 0 α > 0 α = 0 and U 6= 0 U = 0

2ε(x2 + y2) 2xy 2εx2 0

Tab. 3
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where ε ∈ {−1, 1} following the sign (when it is defined) of U .

Theorem 6. By a linear transformation, any system (1) can be reduced
to one of the following forms :

invariant reduced additive
conditions forms conditions

I α < 0





dx

dt
= 2mxy

dy

dt
=

−ε

m
x2 + 2exy +

ε

m
y2;

m 6= 0

II α > 0





dx

dt
= ax2 + by2

dy

dt
= cx2 + dy2;

ad − bc = 1

III
α = 0
U 6= 0;





dx

dt
= ax2 + 2bxy

dy

dt
= cx2 + 2dxy;

ad − bc = ε

IV U = 0





dx

dt
= 0

dy

dt
= ax2 + 2bxy + cy2;

Tab. 4

where ε is defined by the reduced form of the covariant U .

Proof. By the Lemma 3, if α = 0 the system (1) is equivalent to a
system of the form III or IV .
Assume that α > 0. By the transformation that reduced U to the form
II, the obtained system satisfies the relations

∣∣∣∣
b1
11 b1

12

b2
11 b2

12

∣∣∣∣ = 0,

∣∣∣∣
b1
11 b1

22

b2
11 b2

22

∣∣∣∣ = 1,

∣∣∣∣
b1
12 b1

22

b2
12 b2

22

∣∣∣∣ = 0.

Under the condition α 6= 0, there is no common factor between the poly-
nomials P 1 and P 2. Thus, the column vectors (b1

11, b
2
11)

T and (b1
22, b

2
22)

T do
not vanish. That implies that the column vector (b1

12, b
1
12)

T is zero because,
if not, the first and the third relations imply the colinearity of the right
hand polynomials or in other words, by the Lemma 4, U = 0.
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It remains the case α < 0. The canonical form 2ε(x2 + y2) of U is invari-
ant under the action of the group of the rotations. That corresponds to
the relations :

∣∣∣∣
b1
11 b1

12

b2
11 b2

12

∣∣∣∣ = ε,

∣∣∣∣
b1
11 b1

22

b2
11 b2

22

∣∣∣∣ = 0,

∣∣∣∣
b1
12 b1

22

b2
12 b2

22

∣∣∣∣ = ε. (7)

Taking into account the fact that any linear transformation p = (pi
j)i,j=1,2

transforms the coefficient a1
22 into det(p)−1L(p1

2, p
2
2), there exits a rotation

which makes L(p1
2, p

2
2) zero.

The Theorem 6 is proved.

The obtained canonical forms in Tab. 1 achieve a first partition of the
space of quadratic (homogeneous) differential systems A into G-invariant
regions. Each region contains entire G-orbits that we have to identify with
the help of absolute invariants. Except for the two first cases (α < 0 and
α > 0), that needs a finer partition.

3.3. Characterization of the G-orbits
3.3.1. Case : α < 0

For the reduced form (I), we have

A := −4 m6 e2 −m4 + m2 e2 + 1−m6 ε + 3 e2 εm4 + m2 ε

m4
,

B := −4 m6 e2 + 3 m4 + m2 e2 + 1− 3 m6 ε + e2 εm4 −m2 ε

m4
,

C := −m6 ε + 4 m6 e2 + 5 e2 εm4 + 3 m2 ε + 3 m4 + m2 e2 + 1
m4

,

α := −8, β = −8
(2m2 − ε)(1 + m2e2 − 2mε)

m4
,

L =
x(ε(x2 − 2emxy + (2m2 − ε)y2)

m
U := 2 ε ((y)2 + (x)2).

Combining the expressions of the relative invariants A, B et C we get a
system of two equations verified by the parameters m and e :

m2 e2 + 2 εm2 B − C

α
+ (m4 + 1) = 0 (8)

m6 + ε
3B − C − 2A

α
m4 +

3B −A

α
m2 + ε

B −A

α
= 0. (9)
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Note that the coefficients of equations (8) and (9) are rational absolute
invariants.
In view of their degrees, these equations may have twelve pairs of solutions
(e,m) and one might think that they correspond to different G-orbits.
However, this is is not the case : the systems I where the parameters e and
m satisfy the relations (8) and (9) are G-equivalent.
Firstly, the substitution x ↔ −x, y ↔ y transforms the pair (e,m) into
(−e,m). That explains the reason why the parameter e appears with the
degree 2 in the equation (8).
Secondly, by the Lemma 5, the x2-axis is an integral straight for the systems
having the canonical form I. Since there may exist three integral straight
lines, there are at most six possibilities (corresponding to six rotations) to
get the canonical form I. Three of these rotations may be obtained from
the other three by the symmetry x ↔ −x, y ↔ −y. That explains why we
have got the biquadratic equation (9) of degree 6 on m.
Let us compute the discriminant of the equation (9), with respect to m2 :

∆ = −1024 (−C + 27 B − 18 A) (−A3 + A2 C − C2 A + B C2).

Using the syzygy (3), we get :

∆ = 2048 β D2.

There are more integral straight lines than solutions in m2 of the equation
(9).
Accordingly, the solutions (e,m) of the equations (8) and (9) characterize
one and only one G-orbit of A.

3.3.2. Case : α > 0

For the reduced form (II) we have :

A := a3 b+2 a b c d+c d3, B := a3 b+2 b2 c2+c d3, C := a3 b+2 a2 d2+c d3,

U := 2x y (−b c + a d), L := −c (x)3 + a y (x)2 − d x2
2 x + b (y)3.

Thus,

α = 2 (−b c + a d)2

A − B := 2 b c (a d − b c), C − A := 2 a d (a d − b c)

If A − C 6= 0, then ad 6= 0 and by the transformation

x ↔ ax, y ↔ dy,
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the reduced form (II) becomes




dx

dt
= x2 + by2

dy

dt
= cx2 + y2

where b and c verify the equations

2A b2 c2 − 2 (C + B) b c + (2A− B − C ) (b + c) + 2A = 0

2(2A− C ) b2 c2 + − 4Bbc + (2A− C − B) (b + c) + 2B = 0

2C b2 c2 + (2A− C − B) (b + c)− 4C b c + 2 (2A − B) = 0,

or

2A b2 c2 − 2 (C + B) b c + (2A− B − C ) (b + c) + 2A = 0,

B −A + (−B + C ) b c + (−C + A) b2 c2 = 0. (10)

which are obtained from the expressions of
A

α
,

B

α
,

C

α
.

The second equation provides two solutions bc = 1 and bc =
A−B

C −A
. The

first one is incompatible with the condition α 6= 0.

If A − C = 0, then B − C 6= 0 and, eventually, by the transposition
x ↔ y, we get a = 0. With the help of the transformation

x ↔ 3
√

bc2x, y ↔ 3
√

b2cy,

the systems II can be rewritten in the form




dx

dt
= −y2

dy

dt
= −x2 + dy2;

where the parameter d satisfies the relation α d3 + 2A = 0.
Remark that when A − C = 0, the pair (b, c) = (−1,−1) is a particular
solution of the equations (10).
Consequently, when α > 0, the systems II can be represented by





dx

dt
= |sgn(A − C)|x2 + by2

dy

dt
= cx2 + dy2;
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where (b, c, d) is a solution of the following system of equations

2A b2 c2 − 2 (C + B) b c + (2A− B − C ) (b + c) + 2A = 0,

B −A + (−B + C ) b c + (−C + A) b2 c2. = 0,

(1 − |sgn(A − C)|)(α d3 + 2A) + (d − 1)|sgn(A − C)| = 0. (11)

The parameter d is uniquely determined.
Concerning the parameters b and c, they have symmetric positions in these
equations. Question : does a solution (v1, v2) correspond to (b, c) or (c, b)?
In other words, what value v1 or v2 are we allowed to attribute to b (and
another to c)? The answer to this question is given by the absolute invari-

ant
A

α
. Indeed, after substituting (b, c) by (v1, v2) and (v2, v1) we get the

expressions :
a3v1 + 2adv1v2 + d3v2

2(ad− v1v2)2
a3v2 + 2adv1v2 + d3v1

2(ad− v1v2)2
. Their differ-

ence
(a− d)(v1 − v2)(a2 − ad + d2)

2(ad− v1v2)2

is zero if, and only if, a = d or v1 = v2. In both cases, the transposition
x ↔ y makes the corresponding systems equivalent. Otherwise, the value

of the absolute invariant
A

α
identifies the appropriate pair.

3.3.3. Case : α = 0, U 6= 0

For the reduced form III we have :

A := −b2 (a2 2 + 4 a d + 4 d2 − ε),

B := −b2 (a2 2 + 4 a d + 4 d2 − 3ε),

C := −b2 (a2 2 + 4 a d + 4 d2 + ε),

D := 2 b3 ε (a + 2 d),

U := 2x2 ε.

Thus, A − B = 2εb2. It arises two possibilities : b 6= 0 and b = 0.

1. If b 6= 0, the mapping x ↔ x, y ↔ ax + 2by

2
transforms the reduced

form III into :




dx

dt
= 2xy

dy

dt
= cx2 + 2dxy.

(12)
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The previous transformation preserves the absolute covariant U . So, c =
−ε where ε is the sign of the definite quadratic form U . For the systems
(12), we have also : A − B = −2ε and D = 4εd. Thus, d is equal to the
positive or zero solution of the equation : εD2 + d2(A − B)3 = 0. We
can take the positive value because the substitution x ↔ −x transforms d

into −d.

2. If b = 0 (that is to say A − B = 0), from U 6= 0, we get ad 6= 0.
We can take a = 1. Then, by the transformation x ↔ x, y ↔ ux + y, the
coefficient c becomes u(a− 2d) + c. If 2M − 3U = 2(a− 2d)x2 6= 0, by an
appropriate choice of u, we obtain the following system :

dx

dt
= εx2 dy

dt
= 2dxy

where d =
U

2M − U
. Otherwise, it is equivalent to





dx

dt
= x2

dy

dt
= εx2 + 2xy;

Consequently, when α = A − B = 0, the initial system is equivalent to




dx

dt
= x2

dy

dt
= εx2 + 2dxy;

where d =
U

2M − U
, ε = 0, if 2M − 3U 6= 0 and ε = 1 if 2M − 3U =

0.

3.3.4. Case : U = 0

Following the Theorem 1, under the condition U = 0 the reduced form
of the initial system is :

dx

dt
= 0,

dy

dt
= ax2 + 2bxy + cy2

for which A = B = C = c2(ac−b2), K = bx+cy et M = c(ax2+2bxy+
cy2). It is easy to verify that with the help of a linear triangular transfor-
mation (which preserves the reduced form (III)), the covariant M 6= 0 can
be written in the form c(ac− b2)x2 + y2. Then, if U = 0 and M 6= 0, the
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initial system is equivalent to the system

dx

dt
= 0,

dy

dt
= sgn(A)x2 + y2

If M = 0 and K 6= 0, then c = 0 et b 6= 0 and the substitution
y ↔ a

2 + by allows us to get the form

dx

dt
= 0,

dy

dt
= 2xy.

If K 6= 0, the initial system is equivalent to

dx

dt
= 0,

dy

dt
= µx2

where µ is 1 if L 6= 0 and 0, otherwise.

Theorem 7. Any differential system (1) can be reduced to one of the
following where the parameters are uniquely determined by the indicated
algebraic equations.

Invariant Canonical Values of the
Conditions Forms parameters

α < 0





dx

dt
=2mxy

dy

dt
=
−ε

m
x2+2exy+

ε

m
y2

equations (8), (9)

ε = sgn(U)

α > 0





dx

dt
= |sgn(A−C)|x2+by2

dy

dt
=cx2+dy2;

equations (10)

α = 0
A 6= B





dx

dt
= 2xy

dy

dt
= εx2 + 2dxy;

d =

√
D2

(A − B)3

ε = sgn(U)
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Invariant Canonical Values of the
Conditions Forms parameters

α = 0,
A = B
U 6= 0

n





dx

dt
= x2

dy

dt
= cx2 + 2dxy;

d =
U

2M − U
,

c=
{

0 if 2M−3U 6=0,
1 if 2M−3U =0.

U = 0,
M 6= 0





dx

dt
= 0

dy

dt
= sgn (A)x2 + y2;

U = 0,
M = 0,
K 6= 0





dx

dt
= 0

dy

dt
= 2xy

U = 0,
K = 0





dx

dt
= 0

dy

dt
= µx2

µ =
{

0 if L=0,
1 if L 6=0.

Tab. 5
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