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We consider the Abel Equation ρ′ = p(θ)ρ2 + q(θ)ρ3 (*) with p(θ), q(θ)
- polynomials in sin θ, cos θ. The center problem for this equation (which is
closely related to the classical center problem for polynomial vector fields on
the plane) is to find conditions on p and q under which all the solutions ρ(θ)
of this equation are periodic, i.e. ρ(0) = ρ(2π) for all initial values ρ(0). We

consider the equation (*) as an equation on the complex plane dy
dz

= p(z)y2 +

q(z)y3 (**) with p, q – Laurent polynomials. Then the center condition is that
its solution y(z) is a univalued function along the circle |z| = 1. We study
the behavior of the equation (**) under mappings of the complex plane onto
Riemann Surfaces. This approach relates the center problem to the algebra of
rational functions under composition and to the geometry of rational curves.
We obtain the sufficient conditions for the center in the form

R
|z|=1 P iQjdP =

0 with P =
R

p, Q =
R

q.
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1. CENTER PROBLEM AND ABEL EQUATION

We consider the classical Center-Focus Problem for homogeneous poly-
nomial vector fields on the plane (see e.g [16]):

Let F (x, y), G(x, y) be polynomials in x, y of degree d. Consider the
system of differential equations

{
ẋ = −y + F (x, y)
ẏ = x + G(x, y) (1)

A solution x(t), y(t) of (1) is closed if it is defined in the interval [0, t0]
and x(0) = x(t0), y(0) = y(t0). The system has a center at the origin if all
the solutions around zero are closed.

It was shown in [8] that one can reduce the system (1) with homogeneous
F , G of degree d to the trigonometric Abel equation

dρ

dθ
= p(θ) ρ2 + q(θ) ρ3, θ ∈ [0, 2π], (2)

where p(θ), q(θ) are polynomials in sin θ, cos θ of degrees d + 1, 2d + 2
respectively. Then (1) has a center if and only if (2) has all the solutions
periodic on [0, 2π], i.e. the solutions ρ = ρ(θ) satisfying ρ(0) = ρ(2π). The
classical center problem is to find conditions on p and q such that (2) has
a center.

The following simple sufficient condition was introduced in [2]. Let
w(θ) ∈ C1[0, 2π] be a function such that w(0) = w(2π). Let

{
p(θ) = p̃(w(θ))w′(θ)
q(θ) = q̃(w(θ))w′(θ). (3)

Then all the solutions of (2) have the form ρ(θ) = ρ̃(w(θ)), hence they
satisfy the condition ρ(0) = ρ(2π). Indeed, in this case the equation (2)
takes the form

dρ

dθ
= p̃(w(θ))

dw

dθ
ρ2 + q̃(w(θ))

dw

dθ
ρ3, (4)

and after the change of variables w(θ) = u we obtain the equation in u:

dρ̃

du
= p̃(u) ρ̃2 + q̃(u) ρ̃3,

which for small initial values ρ̃(0) has an analytic solution ρ̃(u). By the
uniqueness theorem for the solutions of the first order ODE the solution of



CENTER CONDITIONS AND RATIONAL CURVES 113

(2) through the point ρ̃(0) is the same, i.e. ρ(θ) = ρ̃(u) = ρ̃(w(θ)).

We shall call the representation (3) Composition Condition on p, q (we
shall explain it later in all the details). In this fashion we can get the so
called Hamiltonian and symmetric components of center for the dynamical
system (1) (see [16], [2]). The composition condition is obviously sufficient,
but not necessary, as there are cases of center which are impossible to rep-
resent as a composition - see [1] for the detail.

Let us consider for a moment the polynomial Abel equation

y′ = p(x)y2 + q(x)y3 (5)

with p(x), q(x) – usual algebraic polynomials in x. Fix two points a, b ∈ lC.
The problem is to find conditions on p and q under which p(a) = p(b) for all
the solutions p(x). This problem does not correspond exactly to the center
problem on the plane, but is important by itself and was studied intensively
in [12], [13], [3], [4], [5], [6], [7]. Here we believe that the composition
condition {

p(x) = p̃(w(x))w′(x)
q(x) = q̃(w(x))w′(x),

for a polynomial w(x) s.t. w(a) = w(b) is not only sufficient, but also nec-
essary. In [7] we checked it for p(x), q(x) of small degrees. This fact was
verified also for some related problems in [4], [5].

In the present paper we study composition conditions for polynomial and
trigonometric Abel equation, and we relate them to

• composition of rational functions
• algebraic geometry of rational curves
• differential equations on Riemann Surfaces
• generalized moments

∫ 2π

0
P i(x)Qj(x)p(x)dx = 0.

The main result of the paper is the following simple sufficient condition
for Abel equation (2) to have a center:

∫ 2π

0
P i(x)Qj(x)p(x)dx = 0 for all

i, j ≥ 0, where P (x) =
∫ x

0
p(θ)dθ, Q(x) =

∫ x

0
q(θ)dθ.

The authors would like to thank J.-P. Françoise for pointing out the rel-
evance of Wermer’s theorem to the Center–Focus problem and C. Christo-
pher for indicating to us the role of Lüroth theorem in the composition
question.
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2. ABEL EQUATION ON RIEMANN SURFACES

We may rewrite the differential equation (2) in an invariant form

dρ = dP (θ) ρ2 + dQ(θ) ρ3, (6)

then expressing sin θ and cos θ through x = eiθ, i.e.





cos θ = x+x−1

2 ,

sin θ = x−x−1

2i ,
ρ = y,

we obtain P and Q in the form of Laurent polynomials in x, and the dif-
ferential equation is

dy = y2 dP + y3 dQ

considered on the circle x([0, 2π]) = S1.

In general let X be a domain on a connected Riemann Surface and let
P and Q be two analytic functions on X. This is the case above, where X
is a neighborhood of the unit circle S1 on lC, Laurent polynomials P and Q
are analytic on X. We consider the following Abel differential equation on
X:

dy = y2 dP + y3 dQ (A)

A (local) solution of (A) is an analytic function y on an open set Ω in
X, such that the differential forms dy and y2 dP + y3 dQ coincide in Ω.

If x is a local coordinate in Ω, (A) takes the usual form

dy

dx
= y2 p(x) + y3 q(x), (7)

where

p(x) =
d

dx
P (x), Q(x) =

d

dx
Q(x).

Let Y → X be the universal covering of X. The equation (A) can be
lifted onto Y . One can easily show, that for any a ∈ Y and for any c ∈ lC,
there is a unique solution yc of (A) on Y , satisfying yc(a) = c, whose
singularities tend to infinity as c tends to zero. In what follows we always
assume that c is sufficiently small, so yc is regular and univalued on any
compact part of Y , but in general is multivalued on X.
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Definition 1. Let γ be a closed curve in X. We say that the Abel
equation (A) has a center along the curve γ, if for any small c ∈ lC yc is
univalued along γ.

Notice that in this definition it is sufficient to assume that for any suf-
ficiently small c and some a ∈ γ, yc(a) = yc,γ(a), where yc,γ is a result of
an analytic continuation of yc along γ. Indeed, by uniqueness of a solution
of the first order differential equation (A), yc(a) = yc,γ(a) implies that yc

and yc,γ coincide in a neighborhood of a. Then by analytic continuation
yc coincide with yc,γ along the the whole γ, i.e. yc is univalued.

Definition 2. We say that (A) has a total center on X, if it has a
center along any closed curve in X.

In particular, this is always the case for X – simply-connected. Indeed,
in this case any closed curve is homotopic to a point, so after analytic
continuation along any closed curve we will obtain the initial value at this
point.

Definition 3. Let X̃ be a domain on another Riemann Surface, P̃
and Q̃ be analytic functions on X̃. Assume there is an analytic mapping
w : X → X̃, such that P (x) = P̃ (w(x)), Q(x) = Q̃(w(x)). We say that the
Abel equation (A) on X is induced from the Abel equation

dy = y2 dP̃ + y3 dQ̃ (Ã)

on X̃ by the mapping w. We also say that (A) is factorized through X̃.

Notice, that the words “factorized through w : X → X̃” are equiva-
lent to the words “composition representation P (x) = P̃ (w(x)), Q(x) =
Q̃(w(x)).”. When we deal with Abel differential equation, we shall use the
word “factorization”, and when we deal with P and Q, we shall use the
word “composition”.

Lemma 4. Let (A) be induced from (Ã) by w. Then any solution y of
(A) is induced from a corresponding solution ỹ of (Ã), i.e. y = ỹ ◦ w.

Proof. Let y = yc take a value c at some point a ∈ X. Consider the
solution ỹc of (3), taking the value c at w(a) ∈ X̃. By the “invariance of
the first differential”, ỹc◦w is a solution of (1), and it satisfies ỹc◦w(a) = c.
Hence locally, ỹc◦w ≡ yc, and analytic continuation completes the proof

Corollary 5. If (A) is induced from (Ã) by w, and if (Ã) has a center
along w(γ), then (A) has a center along γ.

Definition 6. Let a and b be two different points in X. We say that a
and b are conjugate with respect to the equation (A) and with respect to a
certain homotopy class of curves γ, joining a and b in X, if for any solution



116 M. BLINOV AND Y. YOMDIN

yc of (A) with sufficiently small c (yc(a) = c), its continuation yc,γ along γ
satisfies yc,γ(b) = c. In other words, any solution of (A) takes equal values
at a and b after analytic continuation along γ.

A priori it is not evident that these definitions are natural and that
conjugate points can appear at all. However, the following proposition
gives a basic reason for their appearance:

Proposition 7. Let X, X̃, P , Q, P̃ , Q̃, w be as above. Consider two
different points a, b ∈ X and a path γ joining them. If w(a) = w(b) and
(Ã) has a center along the closed curve w(γ), then a and b are conjugate
along γ for the Abel equation (A). In particular, if X̃ is simply connected,
any two points a, b with w(a) = w(b) are conjugate along any γ joining
them.

Proof. Follows immediately from Lemma 4

2.1. Example: Polynomial Composition Conjecture in the case
X = lC, P and Q – polynomials in x

Here X is simply-connected, P and Q are analytic on X and hence the
Abel equation

dy

dx
= p(x) y2 + q(x) y3, (8)

with p(x) =
d

dx
P (x), q(x) =

d

dx
Q(x), has a center along any closed curve

γ.
As far as a factorization of (8) is concerned, assume that there exist

polynomials w, P̃ , Q̃, such that P (x) = P̃ (w(x)), Q(x) = Q̃(w(x)). Then
for X̃ = lC (8) is induced by w from

dy

dw
= P̃ ′(w) y2 + Q̃′(w) y3. (9)

By proposition 7, any two points a and b such that w(a) = w(b) are
conjugate along any path γ.

In [3], [4], [5], [6] and [7] this example was investigated in some details.
In particular, for small degrees of P and Q it was shown, that conjugate
points can appear only in this way.

The following conjecture was proposed in [3]:

Polynomial Composition Conjecture: Two different points a and b
in lC are conjugate for the Abel equation (8) with P , Q - polynomials in
x, if and only if the following Polynomial Composition Condition is
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satisfied: there exists a factorization P (x) = P̃ (w(x)), Q(x) = Q̃(w(x))
with polynomial mapping w, such that w(a) = w(b).

Notice, that although the equation (8) is non-symmetric with respect to
p and q, this conjecture proposes the symmetric condition: if a and b are
conjugate for (8), then they are conjugate also for the equation

dy

dx
= q(x) y2 + p(x) y3. (10)

This situation is not unique in the center problem. In [9] it was shown that
the Lienard system

d2y

dx2
+ f(x)

dy

dx
+ g(x) = 0

has a center at the origin if and only if the functions F (x) =
∫ x

0
f(t)dt,

G(x) =
∫ x

0
g(t)dt can be represented as a composition F (x) = F̃ (z(x)),

G(x) = G̃(z(x)) for an analytic function z(x), with z′(0) < 0.

2.2. Example: Laurent Composition Condition in the case X –
a neighborhood of the unit circle S1 = {|x| = 1} ⊆ lC, P and Q –

Laurent series, convergent on X

We shall discuss this case in much more detail below, because it cor-
responds directly to the classical Center-Focus Problem for homogeneous
polynomial vector fields on the plane.

The one of possible factorizations in this case, which we shall call Laurent
Composition Condition, takes the form P = P̃ (w), Q = Q̃(w), where w is
a Laurent series, and P̃ , Q̃ are regular analytic functions on the disk D in
lC, containing the image w(S1).

Lemma 8. Laurent Composition Condition implies center along S1.

Proof. We have a factorization w : X → D, and since D is simply
connected, the Abel equation dy = y2dP̃ + y3dQ̃ on D has a total center,
then by Corollary 5 it implies center along S1

In this case the conjecture that this is the only reason for center is not
true: there are known cases of center along S1 for the equation (8), when
p and q can not be represented as a Laurent composition (the example was
considered by Alwash in [1]).

Nevertheless, for p(z), q(z) – Laurent polynomials of small degrees up to
(4,4), i.e. of the form z−2(a4z

4 + a3z
3 + a2z

2 + a1z + a0), the composition
representation is the only possible reason for center. These computations
will appear separately.
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3. FACTORIZATION (COMPOSITION) FOR THE CASE
X ⊆ lC, P AND Q – RATIONAL FUNCTIONS ON X

3.1. Composition and rational curves
It turns out that the assumption that P and Q are rational functions

puts the composition (factorization) question completely in the framework
of algebraic geometry of rational curves. We shall show that the above
examples of Polynomial composition and Laurent composition are in some
sense “generic”, and any analytic factorization of rational function can be
reduced to composition of rational functions.

The following facts are very basic in algebraic geometry. We restate them
for convenience of our presentation. For details we address the reader to
any classical algebraic geometry text (e.g. [15]).

Definition 9. Two rational functions P and Q define a curve
Y = {(P (t), Q(t)), t ∈ lC} in lC2.

Lemma 10. The curve Y for rational P and Q is an algebraic curve.

Proof. We need to prove that for sufficiently large d there exists a poly-
nomial F (x, y) of the degree d, such that F (P (t), Q(t)) ≡ 0. Without loss
of generality we may assume that P and Q have the same denominator R.
Consider all the products P (t)iQ(t)jRd, i+j ≤ d. These are polynomials of
t of the degrees less than or equal to i deg P +j deg Q+d deg R ≤ d(deg P +
deg Q + deg R). But there exist d(d−1)

2 such products P iQj , therefore for
d(d−1)

2 > d(deg P +deg Q+deg R), i.e. for d > 2(deg P +deg Q+deg R)+1
there exists a linear dependence over lC:

∑

i,j

βijP (t)iQ(t)jR(t)d ≡ 0,hence
∑

i,j

βijP (t)iQ(t)j ≡ 0.

This polynomial F (x, y) =
∑

βijx
iyj vanishes on Y . Such polynomial of

minimal degree defines an algebraic curve Y .

Lüroth theorem Any subfield of a field of rational functions is gener-
ated by a rational function.

Corollary 11. There exist rational functions r(t), P̄ , Q̄, s.t. P (t) =
P̄ (r(t)), Q(t) = Q̄(r(t)) and s.t. the map

γ̄ : lC → Y, z 7→ (P̄ (z), Q̄(z))

defines a birational isomorphism between lC and Y . In particular, Y is a
rational curve.

Proof. 1. Notice that K = lC(P (t), Q(t)) is is a subfield of the field of
rational functions lC(t). By Lüroth theorem K = lC(r(t)) for some rational
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function r(t). In particular, P and Q belong to K, hence there exist ratio-
nal functions P̄ (t), Q̄(t) such that P (t) = P̄ (r(t)), Q(t) = Q̄(r(t))
2. It is obvious that γ̄ is surjective and rational. Let’s prove that there
exists an inverse map γ̄−1 : Y → lC. Since r(t) ∈ lC(P (t), Q(t)), there exist a
rational function R(x, y) s.t. R(P (t), Q(t)) ≡ r(t), i.e. R(P̄ (r(t)), Q̄(r(t))) ≡
r(t). Obviously it is a rational function from Y to lC. Let us prove that
R = γ̄−1. Indeed, R ◦ γ̄ ≡ id : lC → lC: R(γ̄(z)) = R(P̄ (z), Q̄(z)) =
R(P (r(t)), Q(r(t))) = r(t) = z, since for any z there exists t: z = r(t).
Vice versa: γ̄ ◦ R ≡ id : Y → Y , since γ̄(R(P (t), Q(t))) = γ̄(r(t)) =
(P̄ (r(t)), Q̄(r(t))) = (P (t), Q(t))

Definition 12. The degree of a map γ = (P, Q) : lC → Y is the degree
of the algebraic extension [lC(t) : lC(P,Q)].

Definition 13. The parameterization of a rational curve Y , γ : lC → Y
z 7→ (P (z), Q(z)) is called minimal if deg γ = 1.

From corollary 11 it follows that a minimal parameterization defines a
birational isomorphism between lC and Y .

Definition 14. The mapping f : X → Y is called “not 1-1”, if there
exists an open set Ω ⊆ Y , s.t. each point of Ω has more than one preimage
under f .

Definition 15. A rational function r is called common divisor under
composition of rational functions P and Q, if P = P̃ (r), Q = Q̃(r). The
common divisor r is called nontrivial, if r is not 1-1.

Definition 16. A rational function r is called Composition Greatest
Common Divisor (CGCD) of rational functions P, Q, if r is a common
divisor under composition of P and Q, and if r̃ is another common divisor
of P and Q under composition, then r = R(r̃) for a rational function R.

Definition 17. The degree of a rational function is a maximum of de-
grees of numerator and denominator.

Let’s notice that among rational functions only linear functions (func-
tions of degree 1) are 1-1. Respectively, if we are looking for nontrivial
CGCD in the class of rational functions, it must have degree greater than
1. It is easy to show that CGCD exists and satisfies all the properties of
usual greatest common divisor. In particular,

Proposition 18. For any rational functions P (t), Q(t) their CGCD
r(t) exists and is given by corollary 11. CGCD is unique in the algebra
of rational functions under compositions up to composition with an invert-
ible rational function (i.e. a function of degree 1), i.e. two CGCD of a
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given function can be obtained each one from another by a (right or left)
composition with a linear function.

Proof. Obviously, r(t) from Corollary 11 defines rational common di-
visor under composition. If r̃ is another composition common divisor of
P and Q, then P = P̃ (r̃), Q = Q̃(r̃), so lC(r̃(t)) ⊇ lC[P (t), Q(t)] = lC(r(t)),
hence r(t) = R(r̃(t)) for some rational function R. Therefore r(t) is actu-
ally a CGCD.

If r and r̃ are two CGCD, then r(t) = R(r̃(t)), but r̃(t) = R̃(r(t)), so
R ◦ R̃ = id, hence R is a linear function.

The following facts are proved, for example, in [15]:

Lemma 19. 1) For a rational map γ = (P, Q) : lC → Y the number of
preimages of almost each point is equal to deg γ.
2) [lC(t) : lC(r(t))] = deg r(t).

Corollary 20. The degree of the map γ = [P,Q] is equal to the degree
of the rational CGCD of P and Q. If r is CGCD of P and Q, P = P̄ (r),
Q = Q̄(r), then γ̄ : lC → Y z 7→ (P̄ (z), Q̄(z)) is a minimal parameterization.

The following two results show that allowing an analytic (and not a priori
rational) composition does not add, in fact, anything new.

Lemma 21. deg γ > 1 if and only if there exists an analytic factorization
w : lC → X̃, where X̃ is a Riemann Surface, P̃ and Q̃ are analytic functions
on X̃, such that P (t) = P̃ (w(t)), Q(t) = Q̃(w(t)), and w is not 1-1.

Proof. Let deg γ > 1, then taking w = r : lC → lC we get the required an-
alytic factorization. Vice versa, let there exist an analytic factorization w :
lC → X̃, P (t) = P̃ (w(t)), Q(t) = Q̃(w(t)). Then lC(P, Q) = lC(P̃ (w), Q̃(w)),
which is a proper subset in lC(t), because w(t) glues some points in lC, but
in lC(t) there are functions which map these points into different points.
Hence [lC(t) : lC(P, Q)] > 1.

Corollary 22. If there exists an analytic factorization of rational func-
tions P = P̃ (w), Q = Q̃(w) with w – not 1-1, then there exists a nontrivial
CGCD of P and Q: P = P̄ (r), Q = Q̄(r) for r̄ of the degree greater than
1.

3.2. Structure of composition in the case X = lC, P and Q –
polynomials

We shall prove that the factorization in the form of Polynomial Com-
position Condition is essentially the only one natural factorization in the
polynomial case, namely:

Theorem 23. Assume there exists an analytic factorization P = P̃ (w),
Q = Q̃(w) with w – not 1-1. Then there exists a polynomial factorization
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P (t) = P̂ (ŵ(t)), Q(t) = Q̂(ŵ(t)), with P̂ , Q̂, ŵ being polynomials, the
degree of ŵ is greater than 1 and deg(P̂ , Q̂) = 1.

The proof will follow from the lemma:

Lemma 24. If we have a factorization P = P̄ ◦ r, Q = Q̄ ◦ r with P̄ (t),
Q̄(t), r(t) - rational functions: lC → lC, then there exists a linear rational
function λ : lC → lC, s.t. P̄ ◦ λ, Q̄ ◦ λ, λ−1 ◦ r are polynomials.

Proof. This proof is contained essentially in [14]. Let r(∞) = a. Let
the degrees of the rational functions r, P̄ be n, m respectively. The degree
of the polynomial P will be mn. Then:
r(∞) = a with multiplicity not more than n, P̄ (a) = ∞ with multiplicity
not more than m, but P̄ ◦r(∞) = ∞ with multiplicity exactly mn, because
P̄ ◦ r is a polynomial.

Hence we get that r(∞) = a with multiplicity n, P̄ (a) = ∞ with multi-
plicity m.

Now take λ(z) = 1
z−a , i.e. λ−1(a) = ∞. Then P̄ ◦λ(∞) = ∞ with multi-

plicity n, λ−1 ◦r(∞) = ∞ with multiplicity m, hence they are polynomials.
Similarly Q̄ ◦ λ is a polynomial

Proof. (theorem 23)
By corollary 22 there exists a factorization P (t) = P̄ (r(t), Q(t) = Q̄(r(t),
for some rational functions P̄ (t), Q̄(t) and rational function r(t) of degree
greater than 1, such that deg(P̄ , Q̄) = 1. Then taking P̂ = P̄ ◦ λ, Q̂ =
Q̄ ◦ λ, ŵ = λ−1 ◦ r we obtain the required polynomial factorization P (t) =
P̂ (ŵ(t)), Q(t) = Q̂(ŵ(t)) with ŵ of degree greater than 1 and deg(P̂ , Q̂) =
1.

The similar fact was proved by C. Christopher in [10], when he investi-
gated polynomial case of Lienard system.

Corollary 25. If deg[P, Q] = s > 1, then the two polynomials P and Q
have a nontrivial CGCD of the degree s in the algebra of polynomials under
composition: P (t) = P̂ (r(t)), Q(t) = Q̂(r(t)), with P̂ , Q̂, r – algebraic poly-
nomials and deg r = s. The map γ : z 7→ (P̂ (z), Q̂(z)) defines a minimal
polynomial parameterization of the algebraic curve Y = {(P (t), Q(t)), t ∈
lC}.

3.3. Structure of composition in the case X – a neighborhood
of the unit circle on lC, P and Q – Laurent polynomials

This case corresponds precisely to the classical Center problem for real
polynomial vector fields on the real plane. In this case Laurent composition
condition is not necessary for Abel equation to have a center (see subsection
2.2). Still an investigation of possible factorizations in the case of P , Q –
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Laurent polynomials leads to some interesting new results. They will be
used in the subsection 4.3

Definition 26. The composition representations P = P̄ (r̄) and P =
P̃ (r̃) are equivalent if there exists a linear rational function λ, s.t. P̄ =
P̃ (λ), r̄ = λ−1(r̃).

Theorem 27. Up to the equivalence relation of definition 26 there are
only two types of composition representations of a Laurent polynomial P :
(1) P = P̄ (r), where P̄ is a usual (algebraic) polynomial, and r is a Laurent
polynomial.
(2) P = P̄ (r), where P̄ is a Laurent polynomial, and r = zk for some
k ∈ IN, k ≥ 2.
Any two composition representations of types (1) and (2) for deg r > 1 and
k > 1 are not equivalent.

Proof. P is a Laurent polynomial, hence ∞ has exactly two preimages
– 0 and ∞. Assume we are given a composition in the class of rational
functions: P = P̃ (r̃) . We shall show that by choosing a suitable linear
rational function λ we obtain P = (P̃ ◦λ) ◦ (λ−1 ◦ r̃), where P̄ = P̃ ◦λ and
r = λ−1 ◦ r̃ are of the required form (1) or (2).

P̃ may have either two or one preimage of ∞.
1) Assume first that ∞ has two preimages a 6= b under the map P̃ :

P̃ (a) = P̃ (b) = ∞. Take a linear function λ(z), s.t. λ(0) = a, λ(∞) = b:

λ(z) =
1

z + 1
a−b

+ b. Then (P̃ ◦λ)(0) = ∞, (P̃ ◦λ)(∞) = ∞, so P̄ = P̃ (λ)

is a Laurent polynomial. Then necessary (λ−1 ◦ r̃)(0) = 0, (λ−1 ◦ r̃)(∞) =
∞, so r = λ−1(r̃) is an algebraic polynomial of the form zk for some natural
k.

2) If P̃ has only one preimage of ∞, then similarly to the lemma 19
there exists a linear rational function λ s.t. P̄ = P̃ (λ) is a polynomial.
Then necessary (λ−1 ◦ r̃)(0) = ∞, (λ−1 ◦ r̃)(∞) = ∞, and there are no
other points where λ−1(r̃) takes values 0 and ∞, so λ−1 ◦ r̃ is a Laurent
polynomial.

Since under composition with a linear function the number of preimages
of a given point can not change, (1) and (2) are not equivalent.

Corollary 28. If deg(P, Q) > 1, then P = P̄ (r), Q = Q̄(r) with either
(1) Laurent polynomial composition: P̄ , Q̄ – algebraic polynomials, r –
Laurent polynomial of degree greater than 1; or
(2) P̄ , Q̄ – Laurent polynomials, r = zk for k ≥ 2.

4. MOMENTS OF P , Q ON S1 AND CENTER CONDITIONS
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4.1. Sufficient center condition for Abel equation with analytic
p, q

We return to the case of Abel equation (A)

dy = y2dP + y3dQ (A)

considered in a neighborhood of a unit circle S1 = {|x| = 1} in the complex
plane lC, with P , Q – analytic functions in some neighborhood of S1 (not
necessary Laurent polynomials).

The following theorem is a summary of results due to J. Wermer ([17],
[18]). The applicability of Wermer’s results to Center problem was discov-
ered by J.-P.Françoise ([11]):

Theorem (Wermer, 1958) Let P , Q be a pair of functions on the
unit circle S1 ⊆ lC. Assume:
(1) P and Q are analytic in an annulus containing S1 and together separate
points on S1.
(2) P ′ 6= 0 on S1.
(3) P takes only finitely many values more than once on S1.

If
∫

s1 P iQjdP = 0 for all i, j ≥ 0, then there exists a Riemann Surface
X and a homeomorphism ϕ : S1 → X, such that ϕ(S1) is a simple closed
curve on X bounding a compact region D, such that functions P̃ , Q̃ defined
on ϕ(S1) by P = P̃ ◦ϕ, Q = Q̃ ◦ϕ can be extended inside D to be analytic
there and continuous in D ∪ ϕ(S1).

To use this theorem for our factorization, we need to replace “homeo-
morphism” by “analytic map of a certain neighborhood of S1 into X”.

Lemma 29. Let S1 ⊆ lC be a unit circle, P and Q be analytic functions
in a neighborhood U of S1, such that P ′ 6= 0 on S1. Let X be a Riemann
Surface, P̃ and Q̃ – regular functions on X, and let ϕ : S1 → X be a
homeomorphism such that P = P̃ ◦ ϕ, Q = Q̃ ◦ ϕ on S1. Then ϕ can be
extended as an analytic mapping of a certain neighborhood V ⊆ U of S1

into X, with the same property P = P̃ ◦ ϕ, Q = Q̃ ◦ ϕ in V .

Proof. P ′(s) 6= 0, hence P̃ ′(ϕ(s)) 6= 0, so P̃ ′(y) 6= 0 in a neighborhood of
ϕ(s) on X. We define ϕ(x) in this neighborhood as y = ϕ(x) = P̃−1(P (x)).
Locally ϕ exists and is well-defined. Since these local extensions agree
on S1, they in fact agree and define a required extension on a certain
neighborhood of S1.

Corollary 30. If in the Abel equation (A) on lC

dy = y2dP + y3dQ or dy = y2dQ + y3dP
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P and Q are functions, satisfying all the properties of Wermer’s theorem
and the domain D, provided by Wermer’s theorem, is simply-connected,
then the Abel equation (A) has a center.

Proof. If P ′ 6= 0 on S1, we may apply lemma 29. Then the Abel
equation (A) is induced by the analytic mapping ϕ from the Abel Equation
on X

dy = y2dP̃ + y3dQ̃. (Ã)

Since P̃ , Q̃ are analytic on a simply connected domain D bounded by
ϕ(S1), the equation (Ã) has a center along ϕ(S1), and hence the equation
(A) has a center along S1.

Notice, that this condition is a sufficient condition for center for Abel
equation with arbitrary analytic coefficients. But it is symmetric with re-
spect to P and Q, although some of the center conditions for Abel equation
are known to be non-symmetric. Below we shall explain it for the case of
P , Q – Laurent polynomials.

4.2. The degree of a rational mapping and an image of a circle
on a rational curve

Consider two rational functions P , Q. The map γ = [P, Q] : lC → lC2

defines the rational curve Y = {(P (t), Q(t)) : t ∈ lC}. Image of a circle S1

under the map γ is a closed curve on Y .

Theorem 31. Let P , Q be rational functions without poles on S1, s.t.
at least one of them has a pole inside S1 and at least one of them has a pole
outside S1 (for instance, Laurent polynomials). Let γ(S1) bound a compact
domain in Y . Then deg γ > 1.

Proof. Assume that deg γ = 1. Then consider a path χ in lC, joining
two poles of P and Q inside and outside of S1 ( for simplicity 0 and ∞),
and intersecting S1 only once at a regular point u ∈ γ. We can assume also
that χ does not contain preimages of double points in Y . So for any x ∈ χ
there are no y 6= x ∈ lC with γ(x) = γ(y).

γ(χ(z)) tends to ∞ as z tends to 0 and to ∞, so the image of χ(z) under
the map γ : lC → Y can not stay inside a compact domain bounded by
γ(S1). But it enters this domain, since u is a regular point of γ. Then it
must intersect γ(S1) at another point v 6= u, and we get contradiction to
the choice of the path γ.

Example 1. P (z) = z, Q(z) =
1
z
.

The rational curve Y is {xy = 1} ⊆ lC2, and the curve γ(S1) does not
bound a compact domain on it. The degree of the map [P, Q] is one, and it
is a general situation for a map of degree one: images of circles contracted
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to poles diverge on Y – see figure 1 with Sk = {|z| = k}, S−k = {|z| = 1
k}

(k ∈ IN), and Gk, G−k – their images on Y under γ = [P, Q].
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G

1

3 

G
G G−1
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S2

S1

Map of degree 1

Example 2. P (z) = z +
1
z
, Q(z) = z +

1
z
.

The rational curve Y is {x = y} ' lC, the degree of the map γ is 2, and the
curve γ(S1) bounds a compact domain on Y (in fact, S1 = γ(S1) = [−1, 1]).
See figure 2 for illustration: images of the circles Sk cover Y twice, because
they “have no space to diverge”. Arrows indicate directions of “motion” of
the curves Sk and Gk as k decreases from +∞ to −∞.
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4.3. Center conditions for the case of P , Q – Laurent
polynomials

Theorem 32. If P and Q are Laurent polynomials, satisfying the con-
dition ∫

|z|=1

P (z)kQ(z)ndP = 0

for all pairs (k,n) of nonnegative integers, then P and Q can be represented
in the form of Laurent Polynomial composition, and hence the equation (A)
has a center.

Proof. If both P and Q are algebraic polynomials in z, P and Q are
represented as a composition with z, so we have a center.

Similarly, if both P and Q are algebraic polynomials in 1
z , P and Q are

represented as a composition with 1
z , so we have a center. Otherwise P

and Q have one pole inside (origin z = 0) and one pole outside (infinity)
of S1.
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Obviously P , Q are analytic in a neighborhood of S1 and take only
finitely many values more than once on S1.

Next, we always can assume that P ′(z) 6= 0 for all |z| = 1. Indeed, (A)
after the change of variables z = λu became

dy

du
= dP̂ (u)y2 + dQ̂(u)y3, (Â)

where P̂ (u) = λP (λu), Q̂(u) = λQ(λu), both (A) and (Â) have center
simultaneously. But as P ′ has only finite number of zeroes on lC, by rescaling
z 7→ λz, which does not change a center for (A), we can assure that there
are no zeroes of P̂ ′ on the circle S1. For example, P (z) = z + 1

z has zeroes
of P ′ on S1, but P̂ (z) = 4z − 1

z has not. Under this change of variables
the circle |z| = 1 goes to |u| = λ, but by Cauchy theorem for Laurent
polynomials integrals along these circles coincide.

We believe that for the case of Laurent polynomials the Wermer’s theo-
rem remains valid without the assumption that P and Q together separate
points on S1. The proof together with a detailed investigation of Wermer’s
surface for the case of P , Q – Laurent polynomials will appear separately.

Hence by Wermer’s theorem there exists a surface X and a homeomor-
phism ϕ : S1 → X, such that ϕ(S1) bounds a compact domain D on X
and there exists functions P̃ , Q̃ analytic inside D..

Remind that we have a map γ = [P, Q] : lC → Y = {(P (t), Q(t)) : t ∈ lC}.
Lemma 33. If the curve ϕ(S1) bounds a compact domain on X, then

the curve γ(S1) bounds a compact domain on a rational curve Y .

Proof. By lemma 29 [P,Q] ◦ ϕ is an analytic mapping, defined in a
neighborhood of S1, which coincides there with γ = [P, Q]. But hence
[P̃ , Q̃] : X → lC2 maps a neighborhood of ϕ(S1) into Y ⊆ lC2. By analytic
continuation, [P̃ , Q̃] maps X into Y . Hence [P̃ , Q̃] maps a compact do-
main D inside ϕ(S1) onto Y , and the image of a compact domain under
continuous mapping is compact. Hence γ(S1) is contained in a compact
[P̃ , Q̃](D). Now one can easily show that in fact γ(S1) bounds a compact
domain in Y .

Proof of theorem 32 (continue):
By theorem 31 deg[P,Q] > 1, hence P and Q can be represented as a com-
position P = P̃ (w), Q = Q̃(w). If P̃ and Q̃ are usual algebraic polynomials,
we are done.

If not, then P (z) = P̃ (zk), Q(z) = Q̃(zk) for Laurent polynomials P̃ ,
Q̃. But then on the rational curve Y we get [P,Q](S1) = [P̃ , Q̃](S1), so
[P̃ , Q̃](S1) bounds a compact domain on Y = {(P (t), Q(t)) : t ∈ lC} =
{(P̃ (t), Q̃(t)) : t ∈ lC}. Therefore by theorem 31 deg[P̃ , Q̃] > 1, so they are
represented as a composition.
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If we again obtain their representation as a composition of Laurent poly-
nomials with zn, we repeat our considerations, and finally we are left with
the composition P̃ = ˜̃P (w̃), Q̃ = ˜̃Q(w̃) with w̃ – Laurent polynomial, ˜̃P
and ˜̃Q – algebraic polynomials. It gives us the composition P = ˜̃P (w̃(zN )),
Q = ˜̃Q(w̃(zN )), and we are done.
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