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We modify the definition of chaos in the sense of Devaney, by replacing the
condition of topological transitivity by topological exactness. We study basic
properties of exact Devaney chaos defined in such a way. We also investigate
the infimum of topological entropies of exactly Devaney chaotic maps of a
given space.
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1. INTRODUCTION

In recent years many attempts have been made to formulate a mathe-
matically rigorous definition of chaos in discrete dynamical systems. Each
of the proposed definitions has its advantages and deficiencies depending
on which concrete properties of the vague common notion of chaoticity
are chosen as characteristics. As a result, there are many, sometimes even
unrelated definitions of chaotic systems.

One of the most popular ones is Devaney chaos introduced in [10] (see
Section 2). Another widely recognized indicator of chaotic behavior of the
system is positivity of topological entropy (see, e.g., [12] or [19]).
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In general, these two notions are independent. The relations between
them depend strongly on the phase space in the consideration.

It is known, e.g., that for the graph maps (including the circle and inter-
val maps, see [14], [16] and [17]) positive topological entropy is equivalent
to the existence of a subsystem chaotic in the sense of Devaney.

Therefore it is important to understand for which spaces chaos in the
sense of Devaney forces the entropy to be large. It turns out (see [3]) that
while this is true for interval or tree maps, it is not the case for many phase
spaces.

The main question we investigate is whether strengthening the notion
of Devaney chaos will yield different results. Let us specify that for us
a dynamical system is a continuous map of a compact metric space into
itself and that we are interested mainly in noninvertible systems. Thus,
we strengthen the notion of Devaney chaos in a sense to the extreme, and
introduce exact Devaney chaos by replacing in the definition topological
transitivity by topological exactness (see Section 2). Then we investigate
the quantity IED(X), which is the infimum of topological entropies of ex-
actly Devaney chaotic maps f : X → X. It is analogous to the quantity
ID(X), introduced in [3], where the infimum is taken over all Devaney
chaotic maps.

We show that IED(X) = 0 when X is a circle or an n-dimensional torus
(see Section 4). Moreover, knowing that IED(X) = 0 for some space X
we are able to extend this result for the infinite collection of other spaces -
symmetric products of the space X (the Möbius band and the 3-dimensional
sphere are among them). The key tool is topological theory of hyperspaces
(see Section 5 and [13]). As a corollary we obtain an analogous result for
the projective plane. Our constructions of exactly Devaney chaotic maps
with small entropy are explicit. We also show that ID(X) = 0 if X is the
Klein bottle.

Those results provide affirmative partial answers to some questions from
[3]. Namely, the authors asked there whether ID(M) = 0 for every com-
pact manifold M of dimension 2 or larger, and whether there are Devaney
chaotic maps on n-dimensional sphere and other spaces with arbitrarily
small positive topological entropies.

2. DEFINITIONS AND NOTATION

From now on, unless otherwise stated, X stands for a compact metric
space and all maps are assumed to be continuous . Let f : X → X be a
map. We will write f×k for the Cartesian product of k copies of f , that is,
f×k : Xk → Xk is given by f×k(x1, . . . , xk) = (f(x1), . . . , f(xk)).

Let us recall several notions that measure how a map is mixing the
points of the space. A map f is transitive if for any pair of nonempty
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open sets U, V ⊂ X there exists m > 0 such that fm(U) ∩ V 6= ∅; it is
weakly mixing if f×2 is transitive; it is mixing if for any pair of nonempty
open sets U, V ∈ X there exists m0 > 0 such that fm(U) ∩ V 6= ∅ for all
m ≥ m0. Finally, f is locally eventually onto, or shortly leo, if for every
nonempty open set U ⊂ X there exists a nonnegative integer m such that
fm(U) = X. This property corresponds to exactness in ergodic theory, so
it is also called topological exactness.

The following implications are elementary to check:

leo =⇒ mixing =⇒ weak mixing =⇒ transitivity.

The reverse implications do not hold in general.
Note that if f is leo, mixing, weakly mixing, or has dense set of the pe-

riodic points, then the same property holds for any of its Cartesian powers
f×k. However, this is not true for transitive maps. An irrational rotation
on the circle S1 is an obvious counterexample.

According to a very general definition, f has an n-horseshoe if there
are pairwise disjoint compact sets A1, . . . , An, n ≥ 2 such that for any
1 ≤ i ≤ n we have f(Ai) ⊃

⋃n
j=1 Aj . If f has an n-horseshoe then there

exists an f -invariant compact set on which f is semiconjugate to a full shift
on n symbols (see, e.g., [6]). If X is a graph, then normally we assume that
the sets Ai are intervals (arcs), but it suffices to assume that they have
pairwise disjoint interiors, i.e., they may have common endpoints.

According to the Devaney’s definition of chaos [10], a map f : X → X
is chaotic if it is transitive, periodic points are dense, and it is sensitive
to initial conditions. However, if X is infinite, then the third condition is
redundant (see, e.g., [4]). Since we will restrict our attention to compact
metric spaces without isolated points we will say that f is Devaney chaotic
if it is transitive with periodic points dense.

One can consider stronger notions of chaos by replacing transitivity by
weak mixing, mixing or leo. In this paper we will go to the extreme and
consider the strongest of those notions. We will say that f is exactly De-
vaney chaotic if it is leo with periodic points dense. Note that every leo
map is necessarily a noninvertible surjection and if a space with more than
one point admits existence of a leo map then it has no isolated points.
Hence, exact Devaney chaos implies Devaney chaos, but not conversely,
as can be shown by simple examples of interval maps, or Devaney chaotic
homeomorphisms, e.g. hyperbolic toral automorphisms (see [10]).

3. BASIC PROPERTIES OF EXACTLY DEVANEY
CHAOTIC MAPS

First observe that the properties assumed in the definition of the exact
Devaney chaos are not redundant. Clearly, density of periodic points does
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not imply leo (look for instance at the identity on any space consisting
of more than one point). An example that leo does not imply density of
periodic points is more complicated and it is due to Tomasz Downarowicz.
Namely, let us take a countable product of exact Devaney chaotic maps fn,
such that fn

n does not have fixed points. It will be still leo, but will have no
periodic points. As fn we can take for instance a circle map from Theorem 4
with rotation interval not containing any fraction with the denominator n.

We want to investigate the connections between exact Devaney chaos
and topological entropy. It is known that a Devaney chaotic map can have
zero topological entropy (see [11]), but for an exactly chaotic map it is
impossible, since that every leo map has positive topological entropy.

Lemma 1. Let X be a compact metric space consisting of more than one
point. Assume that f : X 7→ X is a leo map. Then h(f) > 0.

Proof. We claim that there is N > 0 such that fN has a 2-horseshoe.
Since f is a leo map, for any disjoint closed sets A1, A2 with nonempty inte-
riors there are positive integers N1 and N2 such that fN1(A1) = fN2(A2) =
X. Now let N = max{N1, N2} and A1, A2 form a horseshoe for fN as
claimed. Therefore there is an fN -invariant compact set S such that fN |S
is semiconjugate to a full shift on 2 symbols. Hence, h(f) = (1/N)·h(fN ) ≥
(1/N) log 2 > 0.

For a specific topological space X not much is known about lower bounds
for the entropy of exact Devaney chaotic maps, the only exception being
a compact interval I. The following theorem is well known, see e.g. [20],
Proposition 4.3.9 and Example 4.4.5.

Lemma 2. Let f : I 7→ I be a mixing interval map. Then we have h(f) >
(1/2) log 2. Moreover, for every ε > 0 there exists an exactly Devaney
chaotic interval map with topological entropy smaller than (1/2) log 2 + ε.
Therefore IED(I) = (1/2) log 2.

The next lemma follows immediately from the relevant definitions, so we
leave its simple proof to the reader.

Lemma 3. The Cartesian product of finitely many exactly Devaney cha-
otic maps is exactly Devaney chaotic, and a factor of an exactly Devaney
chaotic map is exactly Devaney chaotic.

4. ENTROPY OF EXACT CHAOTIC MAPS ON THE
CIRCLE

Let us recall some facts from the theory of circle maps of degree 1 and
their rotation theory. The reader can find this theory with all details,
including proofs, for instance in [1].
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Let S1 be the circle. We may assume that it is the unit circle in the
complex plane and then we have the natural projection of the universal
covering space to the circle, p : R → S1, given by p(x) = e2πix. Every
continuous map f : S1 → S1 has a lifting F : R→ R, which is a continuous
map such that p ◦ F = f ◦ p. We will be interested in maps of the circle of
degree 1. A simple characterization of such a map is that for its lifting F
we have F (x + k) = F (x) + k for every integer k.

We will use for the circle maps the same terminology as for their liftings.
For instance, we will speak of intervals (which are really arcs of the circle),
monotonicity, local minima and maxima, derivatives, etc. A continuous
map f : S1 → S1 of degree 1 will be called bimodal if it has 2 local extrema.
Then one of them has to be a local maximum (we will denote it c) and
the other one a local minimum (we will denote it d). Such map will be
called piecewise expanding if there is a constant α > 1 such that for every
interval I containing no local extrema the length of f(I) is larger than or
equal to the length of I multiplied by α. Note that we really think about
those intervals as living in the universal covering, because the length of
f(I) may be larger than 1 (the length of the whole circle). If, as it happens
often, f is smooth on [c, d] and on [d, c], then this condition is equivalent
to f ′ ≤ −α on [c, d] and f ′ ≥ α on [d, c].

For the lifting F of f we can define its upper map Fu by Fu(x) =
sup{F (y) : y ≤ x} and its lower map Fl by Fl(x) = inf{F (y) : y ≥ x}.
Those maps are liftings of continuous circle maps of degree 1, fu and fl

respectively. We will call those maps the upper map and the lower map of
f respectively. Note that the maps fu and fl are nondecreasing. If f is
bimodal, then fu differs from f only on one interval, whose left endpoint is
c, and on which fu is constant. We will call this interval the plateau of fu.
Similarly, fl differs from f only on its plateau, whose right endpoint is d.

The maps fu and fl, as monotone circle maps of degree 1, have their
rotation numbers ρu and ρl respectively. They are defined as

ρu = lim
n→∞

Fn
u (x)− x

n

for any x ∈ R, and similarly for ρl. Note that if a monotone circle map
of degree 1 has an irrational rotation number, it has no periodic points.
Clearly, ρl ≤ ρu. The interval (perhaps degenerate) [ρl, ρu] is the rotation
interval of f .

Theorem 4. Assume that f : S1 → S1 is a bimodal piecewise expanding
map and that the endpoints of its rotation interval are irrational. Then f
is exactly Devaney chaotic.

Proof. We will use in the proof the notation (α, c, d, etc.) introduced
earlier.
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Observe first that ρl 6= ρu. Indeed, since f is piecewise monotone and
piecewise expanding, then the topological entropy of f is positive, so iter-
ates of f have horseshoes, so f has periodic points (see, e.g., [15] or [1]).
Therefore there are rational numbers in the rotation interval of f , so it
cannot consist of one irrational number.

Let now U be a nonempty open subset of S1. Suppose that fn(U) 6= S1

for any n. The same holds for any subset of U , so we may assume that U
is an open interval. Look at the consecutive images of U under the iterates
of f . They are all intervals, and their lengths grow exponentially if none
of them contains c or d. Since their lengths are at most 1, there must be
n1 such that fn1(U) contains c or d (we take the smallest n1 with this
property). We may assume that this is c; the proof for the other case is
similar. If fn1(U) = (a, b), we set V = (a, c]. All images of V under the
iterates of f are intervals of length smaller than 1. By the same reason as
above, there is n2 > 0 such that fn2(V ) contains c or d. Take the smallest
n2 with this property.

Since the rotation number of fu is irrational, the trajectories of c for
f and for fu coincide (otherwise there would be k > 0 such that fk

u (c)
belongs to the plateau of fu, and therefore fu(c) would be periodic for fu).
Therefore, f i(c) does not belong to the plateau of fu for any i.

We claim that fn2(V ) = (fn2(a), fn2(c)]. Otherwise, there is n3 such
that 0 < n3 < n2 and fn3(V ) ⊂ [c, d]. However, [c, d] is contained in
the plateau of fu, so fn3(c) belongs to this plateau, a contradiction. This
proves our claim.

Therefore, if fn2(V ) contains c, then it contains the plateau of fu, so in
particular, it contains d. This proves that always fn2(V ) contains d. Thus,
the images of U under the iterates of f contain c and d, and those points
have different rotation numbers. This proves that for a component W of
p−1(U), the lengths of Fn(W ) go to infinity as n → ∞, a contradiction.
Therefore f is leo.

By [9], periodic points of f are dense in S1. This completes the proof.

Theorem 5. For every ε > 0 there exists an exactly Devaney chaotic
circle map with topological entropy smaller than ε. Therefore IED(S1) = 0.

Proof. Let us recall some results of [2] (see also [1]). Define the functions
Rs,t(x) =

∑
as,t(n)x−n, where s < t and as,t(n) is the number of integers

k such that s < k/n < t. They are continuous and decreasing on (1,∞),
with limits ∞ at 1 and 0 at ∞, and therefore there exists a unique root
βs,t of the equation Rs,t(x) = 1/2. For each s, t there exists a bimodal map
gs,t with constant slope βs,t (and therefore piecewise expanding and with
entropy log βs,t) and rotation interval [s, t].
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If t < s+1 then as,t(n) ≤ n. If additionally in (s, t) there are no fractions
k/n with n < N , then for any x > 1 we have

Rs,t(x) ≤
∞∑

n=N

nx−n. (1)

Fix x > 1 such that log x < ε. The series
∑∞

n=0 nx−n is convergent, so
the right-hand side of (1) goes to 0 as N → ∞. In particular, if N is
large enough then Rs,t(x) < 1/2, so βs,t < x. This proves that there exist
irrational numbers s < t and a bimodal piecewise expanding circle map
gs,t with topological entropy smaller than ε and rotation interval [s, t]. By
Theorem 4, gs,t is exactly Devaney chaotic.

Since any finite Cartesian product of exactly Devaney chaotic maps is
exactly Devaney chaotic, we get the following corollary of Theorem 5 and
Lemma 3.

Corollary 6. Let Tk = (S1)k be the k-dimensional torus. Then we
have IED(Tk) = 0 for any k ≥ 1.

Let us analyze to what degree our proof gives explicit examples. We
understand the word “explicit” in the usual sense used in mathematics, and
we do not want to wander into the realm of Constructive Real Analysis.

Clearly, given x > 1 with log x < ε, we can explicitly find N such that∑∞
n=N nx−n < 1/2. Then we can find explicitly irrational s, t such that

there are no fractions k/n with n < N in [s, t] (provided we agree that
we can find any irrational number explicitly). Then βs,t is the root of the
equation Rs,t(x) = 1/2. This definition of βs,t looks already less explicit,
but in fact it is not much worse than the definition of

√
2 as the positive root

of the equation x2−2 = 0. Given βs,t and s, we have an explicit formula for
gs,t (which uses the sum of an infinite series; see [2] or [1]). Thus, we can
conclude that getting a desired map in Theorem 5 is reasonably explicit.

5. MAPS INDUCED ON SYMMETRIC PRODUCTS

Let (X, d) be a bounded metric space. A hyperspace of X is a space
whose points are (not necessarily all) subsets of X. For any nonempty sub-
set A of X define a function dist(x,A) = inf{d(x, y) : y ∈ A}. The number
dist(x,A) is called the distance from the point x to the set A. For any ε > 0
we define an ε-neighborhood of A as N(A, ε) = {x ∈ X : dist(x,A) < ε}.
Let 2X be the hyperspace of all nonempty compact subsets of X endowed
with the Hausdorff metric, defined by

dH(A,B) = inf{ε ≥ 0: A ⊂ N(B, ε) and B ⊂ N(A, ε)}.
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The metric space (2X , dH) is sometimes referred as “the space of fractals”,
i.e., it is the setting for iterated function systems (see [5]). It inherits
many properties possessed by X including compactness, completeness and
connectedness. Let X∗k ⊂ 2X be the hyperspace of all nonempty subsets of
X having at most k elements. The space X∗k is closed in 2X and is called
k-fold symmetric product of X. These spaces were defined for the first
time in 1931 by Borsuk and Ulam ([7]). There is an obvious identification
of X with X∗1, i.e, the set of all one-point subsets of X. Therefore we
can write X ⊂ X∗k. A map f : X → X induces in a natural way a map
f∗k : X∗k → X∗k, by letting f∗k(K) = f(K) for K ∈ X∗k. It is easy to
check that (f∗k)m(K) = fm(K). Moreover X is a closed, f∗k-invariant set
for every k. For proofs and more details on hyperspaces see [13].

Although the k-fold symmetric product of X and the Cartesian prod-
uct of k copies of X are usually quite different spaces, topology given by
Hausdorff metric on X∗k and the quotient topology induced by the natural
surjection

p : Xk 3 (x1, . . . , xk) 7→ {x1, . . . , xk} ∈ X∗k

coincide. Much of the subsequent material in this section is based on the
observation that p semiconjugates f×k with f∗k, i.e., p ◦ f×k = f∗k ◦ p.
Summarizing the above considerations we can now formulate the following
lemma.

Lemma 7. For every k ≥ 1 the natural projection p is a semiconjugacy
from f×k to f∗k.

We can now state the main result of this section.

Theorem 8. If IED(X) = 0 then IED(X∗k) = 0 for every k ≥ 1.

Proof. Assume that IED(X) = 0. By Lemma 3, IED(Xk) = 0, so by
Lemma 7 and again by Lemma 3, IED(X∗k) = 0.

By Theorems 8 and 5 we obtain the following corollary.

Corollary 9. For every k ≥ 1 we have IED((S1)∗k) = 0.

6. APPLICATIONS

To decide if Theorem 8 allows us to say anything about IED(Y ) for some
interesting space Y we have to know if there is k > 1 and a space X, for
which we know IED(X) and such that Y is homeomorphic to X∗k. Unfor-
tunately, given topological space X the characterizations of homeomorphic
type of the spaces X∗k are exceptional. We begin this section with a theo-
rem that collects a number of known results about topological type of X∗k
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for some non-trivial spaces. The proof of the following theorem can be
found in [18]. Case (2) was proven first by R. Bott [8].

Theorem 10.

1.(S1)∗2 is homeomorphic toM, whereM denote the Möbius band. More-
over, points on the boundary of the band correspond to one-point subsets.

2.(S1)∗3 is homeomorphic to S3, where S3 denote the three dimensional
sphere.

Using Theorem 10 we can identify some spaces mentioned in Corollary 9
and we get immediately the following result.

Theorem 11. Let P2 be the projective plane. We have IED(P2) =
IED(M) = IED(S3) = 0.

Proof. By Theorem 10 and Corollary 9 the last two equalities are true.
To prove that IED(P2) = 0, first observe that P2 is a quotient space of M
obtained by collapsing the boundary circle of the band to a single point.
Choose any ε > 0. By our previous considerations there is an exactly
Devaney chaotic map f : M 7→M with h(f) < ε which leaves the boundary
of M invariant. Therefore it induces a well defined map f̂ on the quotient
space. Moreover canonical projectionM 7→ P2 is a semiconjugacy from f to
f̂ . Therefore f̂ is an exact Devaney chaotic map with h(f̂) ≤ h(f) < ε.

Let us also remark that the homeomorphisms which existence is stated
in Theorem 10 can be constructed explicitly, i.e., it is possible to write
analytic formulas for them.

Let us look now at the Klein bottle K. Although we cannot prove an
analogue of Theorem 5 for K, we are able to show that ID(K) = 0. To do
this we need the following simple lemma.

Lemma 12. Let X be a compact topological space and let X = X1 ∪X2,
where X1 and X2 are closed sets with nonempty interiors in X. Assume
that there is a homeomorphism φ : X1 → X2 such that φ|X1∩X2 = idX1∩X2 .
If f : X1 → X1 is a continuous bitransitive map (i.e., its second iterate
f2 is transitive) for which the set X1 ∩ X2 is invariant then there exists
continuous transitive, but not bitransitive map F : X → X, such that

h(F ) = h(f).

Moreover, periodic points of f are dense in X1 if and only if periodic points
of F are dense in X.

Proof. Define a map F : X → X by

F (x) =

{
φ(f(x)) if x ∈ X1,

f(φ−1(x)) otherwise.
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It is easy to see that F is well defined and continuous.
We first observe that the sets Xi, i = 1, 2 are invariant for F 2 and (by

assumption) have nonempty interiors in X. Hence F 2 cannot be transitive.
Note that F 2|Xi

is conjugate to f2 for i = 1, 2 via the identity and φ
respectively.

For the proof of transitivity of F let us take two nonempty open subsets
U and V of X. There are two cases to consider:

Case I. There is i ∈ {1, 2} such that U, V ⊂ Xi. Since F 2|Xi is conjugate
to f2 and the latter is transitive, there is m > 0 such that F 2m(U)∩V 6= ∅,
as required.

Case II. Suppose that Case I does not hold. We can assume (by replacing
U and V by smaller sets if necessary) that U ⊂ X1 and V ⊂ X2. Then
V ′ = F−1(V ) is nonempty and open set contained in X1 and we can
proceed as in Case I. Hence, there is a point x ∈ U and m > 0 such that
F 2m(x) ∈ V ′, so F 2m+1(x) ∈ V and the proof of transitivity is complete.

If x is a periodic point of f with prime period m then x and φ(x) are
periodic points of F with prime periods at most 2m. The equivalence of
denseness of the sets of periodic points of f and F is now straightforward.

Since X1, X2 defined above are closed and invariant for F 2 and X =
X1 ∪X2 then by [12], Proposition 8.2.9, we conclude that

h(F 2) = max{h(F 2|X1), h(F 2|X2)}.

Since conjugacy preserves topological entropy, we see that

h(F 2) = h(F 2|X1) = h(F 2|X2) = h(f2).

It is now clear that h(F ) = h(f), which completes the proof.

Theorem 13. We have ID(K) = 0.

Proof. It is well known that the Klein bottle is homeomorphic to the
quotient space obtained by gluing two copies of Möbius bandM along their
common boundary, i.e., K = M ∪id∂M M. By Theorem 11 we can find an
exactly Devaney chaotic map f : M → M with arbitrary small positive
topological entropy. Moreover, by the construction of this map and prop-
erty of homeomorphism given by Theorem 10 (1) we may assume that the
boundary of the band is an f -invariant subset. Clearly f2 is also an exactly
Devaney chaotic and therefore transitive map. Applying Lemma 12 we ob-
tain a map F : K → K with arbitrary small positive topological entropy
which is also Devaney chaotic.
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2. Ll. Alsedà, J. Llibre, F. Mañosas and M. Misiurewicz, Lower bounds of the
topological entropy for continuous maps of the circle of degree one, Nonlinearity 1
(1988), 463-479.

3. F. Balibrea, L. Snoha, Topological entropy of Devaney chaotic maps, Topology
Appl. 133 (2003), 225-239.

4. J. Banks, J. Brooks, G. Cairns, G. Davis and P. Stacey, On Devaney’s definition
of chaos, Amer. Math. Monthly 99 (1992), 332–334.

5. M. Barnsley, Fractals everywhere, Academic Press, London, 1993.

6. A. Blokh and E. Teoh, How little is little enough?, Discrete Contin. Dynam.
Sys. 9 (2003), 969-978.

7. K. Borsuk and S. Ulam, On symmetric products of topological spaces, Bull. Amer.
Math. Soc. 32 (1931), 875-882.

8. R. Bott, On the third symmetric potency of S1, Fund. Math. 39 (1952), 264-268.

9. E. M. Coven and I. Mulvey, Transitivity and the center of the maps of the circle,
Ergod. Th. & Dynam. Sys. 6 (1986), 1-8.

10. R. Devaney, A First Course in Chaotic Dynamical Systems, Perseus Books, 1992.

11. E. Glasner and B. Weiss, Sensitive dependence on initial conditions, Nonlinearity
6 (1993), 1067-1075.

12. B. Hasselblatt and A. Katok, A First Course in Dynamics, Cambridge University
Press, Cambridge, 2003.

13. A. Illanes and S. B. Nadler,Hyperspaces: Fundamentals and Recent Advances,
Pure and Applied Mathematics, M. Dekker, New York and Basel, 1999.

14. S-H. Li, ω-chaos and topological entropy, Trans. Amer. Math. Soc. 339 (1993), 243-
249.

15. M. Misiurewicz and W. Szlenk, Entropy of piecewise monotone mappings, Studia
Math. 67 (1980), 45-63.

16. M. Miyazawa, Chaos and entropy for circle maps, Tokyo J. Math. 25 (2002), 453-
458.

17. M. Miyazawa, Chaos and entropy for graph maps, Tokyo J. Math. 27 (2004), 221-
225.

18. J. Mostovoy, Lattices in C and Finite Subsets of a Circle, Amer. Math.
Monthly 111 (2004), 357-360.

19. C. Robinson, Dynamical Systems: Stability, Symbolic Dynamics, and Chaos, Second
Edition, CRC Press, Boca Raton, FL, 1999.

20. S. Ruette, Chaos for continuous interval maps - a survey of relationship between the
various sorts of chaos, preprint, available at http://www.math.u-psud.fr/∼ruette/
articles/chaos-int.pdf


