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We study in this paper the qualitative classification of isolated singular
points of analytic differential equations in the plane. Two singular points
are said to be qualitatively equivalent if they are topologically equivalent and
furthermore, two orbits start or end in the same direction at one singular point
if and only if the equivalent two orbits start or end in the same direction at the
other singular point. The degree of the leading terms in the Taylor expansion
of a differential equation at a singular point will be called the degree of this
singular point. The qualitative equivalence divides the set of singular points
of degree m into equivalence classes. The main problems studied here are the
characterization of all qualitative equivalence classes and then, to determine
to which class a singular point will belong to. We remark that up to now these
problems have been solved only in the case m = 1 before.

The difficulty for this classification problem is that the number of blowing-
ups necessary for the analysis of a singular point is unbounded (although it is
finite) when this singular point varies in the set of singular points of degree
m. To overcome this difficulty, we associate an oriented tree to the blowing-up
process of any singular point such that each vertex represents some singular
point. Then we prove that: (i) the above unboundedness comes exactly from
the arbitrary length of an equidegree path; and (ii) the local phase portraits of
the starting and the ending singular points in such a path are closely related
by a simple rule which depends on the parity of the length of the path, but not
on the length itself. Thus we obtain a successful method for this classification
which can be applied in principle to the general m-degree case.

As application of our method, we get the precise list of qualitative equiv-
alence classes of singular points of degree 2 (Theorem D). Further, we prove
(Theorem F) that there are finitely many qualitative equivalence classes in the
set of singular points of degree m, and there are a finite set of quantities, which
are computed by a bounded number of operations, such that they determine
to which class a given singular point belongs.
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As a by-product we obtain the topological classification of singular points
of degree 2. A topological equivalence class is determined by the number of
elliptic, hyperbolic and parabolic sectors (denoted by e, h and p respectively) of
the local phase portraits and their arrangement. The precise conditions for the
tripe (e, h, p) have been given by Sagalovich. But this result is not sufficient
for the topological classification problem. In fact, according to Sagalovich’s
theorem, there are 15 possible topological equivalence classes in the set of
all singular points of degree 2; our result (Corollary E) shows that there are
exactly 14 classes.

Key Words: Singular points, blowing-up, local phase portrait

1. INTRODUCTION
1.1. The problem of classifying singular points

Let (P,Q) be a C1 mapping from R2 into itself. Instead of giving explicit
solutions of the differential system

dx

dt
= P (x, y),

dy

dt
= Q(x, y), (x, y) ∈ R2, (1)

the qualitative theory of ordinary differential equations in the plane tries to
provide a qualitative description of the behavior of each orbit (i.e., a planar
curve represented by a solution of system (1)). More exactly, if (x(t), y(t))
is an orbit of (1) with maximal interval of definition (α, ω), one of the main
objectives is to describe its behavior when t → α and t → ω; i.e., the α-
and ω-limit sets of this orbit. To this end, it suffices (see, for instance, [13]
or [11]): (i) to describe the local phase portraits of singular points; (ii) to
determine the number and the location of limit cycles; (iii) to determine
the α- and ω-limit sets of all separatrices of the differential system. This
paper deals with the first one. First we recall some concepts and basic facts
of the qualitative theory, for some details see, for example, [2, 18].

By definition a point p = (x0, y0) is called a singular point of system
(1) if P (x0, y0) = Q(x0, y0) = 0. Its local phase portrait is a picture which
describes the configuration of the orbits of system (1) in some neighborhood
of this point. As one can see from the pictures in Figure 1, the local phase
portrait of a singular point consists of this singular point and several orbits
around it. As usual the study of the local phase portraits of singular points
can be treated as a classification problem; i.e., we must classify some specific
set of singular points according to some equivalence relation which will be
defined below.

Two singular points p1 and p2 (possibly of different differential systems)
are called Cr-equivalent if and only if pi has a neighborhood Ui for i = 1, 2,
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and there is a homeomorphism Ψ : U1 → U2 mapping orbits to orbits, where
Ψ, Ψ−1 are Cr, and r ∈ {0, 1, 2, · · · ,∞, ω} (Cω means real analytic). The
C0-equivalence is also called the topological equivalence. We say p1 and p2

are qualitatively equivalent if (i) they are topologically equivalent through
a homeomorphism Ψ; and (ii) two orbits are tangent to the same straight
line at p1 if and only if the corresponding two orbits through Ψ are tangent
to the same straight line at p2. If two singular points are equivalent in some
of the sense defined above, we also say that their local phase portraits are
equivalent in the same sense.

Only the qualitative equivalence and the topological equivalence will be
considered in the rest of this paper. Evidently the qualitative equivalence
is strictly finer than the topological equivalence. On the other hand, as it
is shown in Lemma 25, it is strictly coarser than the C1-equivalence.

The qualitative equivalence tells us not only when the local phase por-
traits of two singular points are topologically the same, but the information
on the directions along which orbits enter the singular point. This kind of
information is important in the qualitative analysis of system (1). As an
example, one can find in [10] applications of our results to polynomial fo-
liations in the plane.

Now we specify the set of singular points which we will study. The sin-
gular point p = (x0, y0) of system (1) is called analytic and isolated if there
is a neighborhood of (x0, y0) in which P and Q are analytic and system (1)
has no other singular points. This kind of singular points have some good
properties as we will see later. In what follows a singular point means an
analytic and isolated singular point except in the Desingularization Theo-
rem.

To study an arbitrary singular point of system (1), we move it to the
origin. Then we consider the Taylor expansion of P and Q. Thus we
obtain a system of the form

ẋ = Pm(x, y) + Pm+1(x, y) + Pm+2(x, y) + · · · ,

ẏ = Qm(x, y) + Qm+1(x, y) + Qm+2(x, y) + · · · ,
(2)

where P 2
m(x, y) + Q2

m(x, y) 6≡ 0, Pi(x, y) and Qi(x, y) are homogeneous
polynomials of degree i. The integer m is called the degree of the singular
point O = (0, 0). This concept provides a natural partition to the set of all
singular points. We consider the set of all singular points of a fixed degree
m. The topological equivalence or qualitative equivalence divides this set
into equivalence classes. The classification problem for degree m is just a
solution to the following two questions:

(A) How to characterize each equivalence class?
(B) Given a singular point of degree m, how to determine its equivalence

class?
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To answer (A) we simply assign a local phase portrait to each equivalence
class. Thus, to obtain all equivalence classes, it suffices to give the precise
list of all topologically or qualitatively different local phase portraits. In
particular, we have two classes which exist if and only if m is odd (see
Lemma 26 for a proof): the class of all centers and the class of all foci.
Their union is just the set of all singular points without any characteristic
orbit. We recall that an orbit is a characteristic orbit of a singular point if
it is tangent to some straight line at this point (for more details see [3, 8]).
The problem of distinguishing between the center class and the focus class
is not easy. Since here we are not interested in this problem, as usual we
will not consider these two classes separately in the rest of this paper, and
take their union as a single class in the above classification problem. This
class is called the center-focus class.

By the Desingularization Theorem (§1.4), we know that the local phase
portrait of any given singular point can be determined by doing finitely
many blowing-ups (recall that we do not distinguish between centers and
foci). So question (B) can always be solved by using the blowing-up
method. From this point of view, no further consideration is needed for
(B). But, in fact, if we look into the case of degree 1, we find that a solution
to the following question is useful:

(B′) How to find a finite set of quantities which will effectively solve (B)
and can be easily computed?

In the 1-degree case, there are 9 quantities which satisfy the requirement
of (B′) (see Theorem A below). The computation of these quantities is
usually easier than doing repeated blowing-ups.

1.2. Background
Until now m = 1 is the only case in which the classification problem

stated above has been completely solved. This result will be summarized
in Theorem A.

Assume that O is a singular point of the following real analytic system

ẋ = ax + by + P2(x, y) + P3(x, y) + · · · ,

ẏ = cx + dy + Q2(x, y) + Q3(x, y) + · · · ,
(3)

where a, b, c and d are real numbers such that a2 +b2 +c2 +d2 6= 0, Pi(x, y)
and Qi(x, y) are homogeneous polynomials of degree i. For convenience,
we introduce two analytic functions F (x, y) and G(x, y) defined by

F (x, y) = P2(x, y) + P3(x, y) + · · · , G(x, y) = Q2(x, y) + Q3(x, y) + · · · .

Let λ1 and λ2 be the two roots of the equation

λ2 − (a + d)λ + (ad− bc) = 0.
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If exactly one of the roots λ1 and λ2 is non-zero, then it is easy to see that
with an affine change of coordinates and a rescaling of the time variable (if
necessary), we can write the linear part of system (3) in the form a = b =
c = 0 and d = 1. Similarly we can take a = c = d = 0, b = 1 in system (3)
if λ1 = λ2 = 0. In the case λ1 = λ2 6= 0, an affine change of coordinates
will reduce the linear part of system (3) into the Jordan canonical form,
i.e., c = 0, a = d = λ1 = λ2, b = γ, where γ = 0 or 1.

In the case that a = b = c = 0 and d = 1, we can find the solution
y = f1(x) of the equation y+G(x, y) = 0 by the Implicit Function Theorem.
Let

F (x, f1(x)) = amxm + · · · , am 6= 0.

If a = c = d = 0 and b = 1, we have an analytic function y = f2(x) such
that f2(x) + F (x, f2(x)) ≡ 0. Suppose that

G(x, f2(x)) = āxα+· · · , ā 6= 0; Φ(x) =
(

∂F

∂x
+

∂G

∂y

)
(x, f2(x)) = b̄xβ+· · · .

Theorem A states that the above quantities λ1, λ2, γ, m, am, ā, α, b̄, β can
successfully determine the qualitative class of the local phase portrait of
system (3) at the singular point x = y = 0.

Theorem A. The following statements provide a complete description of
the qualitative equivalence class of the local phase portrait of system (3) at
the origin.

(i) If λ1 · λ2 6= 0, the local phase portrait is determined by λ1, λ2 and γ.
More precisely, the local phase portrait is qualitatively equivalent to

(a) the saddle of Figure 1(1) if λ1λ2 < 0,

(b) the node of Figure 1(2) if λ1λ2 > 0 and λ1 6= λ2,

(c) the starlike node of Figure 1(3) if λ1 = λ2 6= 0, γ = 0,

(d) the node of Figure 1(4) if λ1 = λ2 6= 0, γ 6= 0,

(e) either the center (Figure 1(5)) or the focus (Figure 1(6)) if the
imaginary parts of λ1 and λ2 are non-zero.

(ii) If a = b = c = 0 and d = 1, then the local phase portrait is deter-
mined by m and am. More concretely, the local phase portrait is qualita-
tively equivalent to

(a) the node of Figure 1(2) if m is odd and am > 0,

(b) the saddle of Figure 1(1) if m is odd and am < 0,

(c) the saddle-node of Figure 1(7) if m is even.
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FIG. 1. The qualitatively different local phase portraits of singular points of

degree 1.

(iii) If a = c = d = 0 and b = 1, then the local phase portrait is deter-
mined by ā, α, b̄, β. More precisely, the local phase portrait is qualitatively
equivalent to

(a) the saddle-node of Figure 1(8) if α is even and α > 2β + 1,

(b) the cusp of Figure 1(9) if α is even and either α < 2β + 1 or
Φ(x) ≡ 0,

(c) the saddle of Figure 1(10) if α is odd and ā > 0,

(d) the node of Figure 1(4) if α is odd, β is even and ā < 0, and
further, either α > 2β + 1, or α = 2β + 1 and b̄2 + 4ā(β + 1) ≥ 0,

(e) Figure 1(11) if both α and β are odd and ā < 0, and, moreover,
either α > 2β + 1, or α = 2β + 1 and b̄2 + 4ā(β + 1) ≥ 0,

(e) the center (Figure 1(5)) or the focus (Figure 1(6)) if α is odd and
ā < 0, and either α = 2β + 1 and b̄2 + 4ā(β + 1) < 0, or α < 2β + 1, or
Φ(x) ≡ 0.



QUALITATIVE CLASSIFICATION OF SINGULAR POINTS 93

Theorem A is due to several authors. Part (i) was known to Poincaré;
part (ii) was shown by Bendixson [5]; and part (iii) was proved by Andreev
[1]. For a proof of Theorem A see, for instance, [1, 2, 18].

When the degree m > 1 there are no works devoted to the qualitative
classification problem, but some results are available for the topological
classification. We account for this below.

It is well-known that the local phase portrait of a singular point that is
different from a center or a focus, can be decomposed into a finite union
of elliptic, hyperbolic and parabolic sectors (for precise definition and a
proof see, for example, [2]). And the topological equivalence classes are
characterized by the number of elliptic, hyperbolic and parabolic sectors
(denoted by e, h, p respectively) and the arrangement of these sectors. Thus
in order to give the precise list of topological equivalence classes of degree
m, it suffices to determine which triple of non-negative integers can be
taken as the triple (e, h, p) and which arrangement can be realized for each
of these triples. Although there are no results available for the second part
of this question, the first part has been completely solved.

Theorem B. Assume that (e, h, p) is a triple of non-negative integers such
that e + h + p > 0. Then, there is a singular point of degree m such that
its local phase portrait has e elliptic sectors, h hyperbolic sectors and p
parabolic sectors if and only if

(i) e + h ≡ 0 (mod 2);
(ii) e ≤ 2m− 1 and e + h ≤ 2m + 2;
(iii) if e 6= 0, then e + h ≤ 2m;
(iv) if h = 2m + 2, then p = 0;
(v) if h = 2m, then p ≤ 1;
(vi) if e = 1 and h = 2m− 1, then p is even;
(vii) e + sgn(e · h) ≤ p ≤ e + h + 1− sgn(e + h).

The “only if” part of this theorem is due to several authors. Condition
(i) was obtained by Bendixson [5]; (ii) and (iii) were proved by Berlinskii
[6, 7]; (iv), (v) and (vi) are Sagalovich’s results [14, 15]; whereas (vii) is
obvious and can be seen from the definition of the number p. The “if” part
was proved in [15].

We remark that Theorem B does not give any information about centers
or foci, i.e., the case e + h + p = 0. But we have the well-known fact that
the center-focus class is non-empty if and only if m is odd (see Lemma 26
for a proof).

By using Theorem B, we can easily get a finite list of pictures for any
given m such that the local phase portrait of a singular point of degree m
is topologically equivalent to one of them. To do this, it suffices to draw all
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FIG. 2. The topologically different local phase portraits of singular points of

degree 2.

possible topologically different local phase portraits for any triple (e, h, p)
satisfying Theorem B. Notice that this list may contain some pictures which
cannot be realized. As an example, we consider the case m = 2.

Corollary C. The local phase portrait of a singular point of degree 2 is
topologically equivalent to one of the pictures in Figure 2.

In Figure 2, all pictures except B(7) and B(8) bijectively correspond to
the triples (e, h, p). Whereas B(7) and B(8) correspond to the same triple
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(e, h, p) = (2, 2, 4). As we have pointed out, in order to solve the topological
classification problem, we should determine which arrangements can be
realized for any given triple (e, h, p). In our particular case, we know from
Theorem B that at most one picture in Figure 2 cannot be realized, and
that if one picture of Figure 2 cannot be realized, it must be B(7) or B(8).
If we check the proof of Theorem B in [15], then it is easy to find that
B(8) can be realized. So in order to complete the topological classification
of the singular points of degree 2, it is necessary to answer the following
question: Can Figure 2(7) be realised? As far as we know, there were no
results which can answer this question.

1.3. Our Results
Since the qualitative classification is finer than the topological classi-

fication, we will only study the qualitative classification problem in the
following. As it is explained in §1.1, this problem is divided into two parts,
i.e., the questions (A) and (B′). The answer to the first part is the following
theorem.

Theorem D. The set of all singular points of degree 2 has 65 qualitative
equivalence classes given in Figure 3.

As an easy corollary we get the topological classification of singular points
of degree 2.

Corollary E. The set of singular points of degree 2 has 14 topological
equivalence classes given in Figure 2 except Figure 2(7).

To prove Corollary E it is sufficient to check the pictures in Figure 3.
On the other hand, it is interesting to note that Corollary E strictly shows
that Theorem B is not sufficient for solving the topological classification
problem even in the 2-degree case.

In order to prove Theorem D we develop a method in §3 which can be
applied to obtain the qualitative classification of singular points of any
given degree m. Here only the case m = 2 is treated, because there are too
many computations involved when m increases.

The following theorem answers the second question of the qualitative
classification problem (question (B′) of §1.1). As a motivation we consider
the 1-degree case (Theorem A). There the question is solved by giving 9
quantities (λ1, λ2, γ, m, am, ā, α, b̄, β), which are obtained by applying to
system (3) a bounded number of operations of the following types: (A)
linear change of variables; (B1) solving a polynomial equation of degree 2;
(C) finding the leading term of the function G(x, f(x)) in which y = f(x)
is the solution of the equation y +F (x, y) = 0, where F and G are analytic
functions without linear part; (D) computing ∂F

∂x + ∂G
∂y for analytic functions

F (x, y) and G(x, y). On the other hand, these 9 quantities are also the
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FIG. 3. The qualitative classification of singular points of degree 2. Each

picture here represents a qualitative equivalence class such that the local phase

portraits of singular points in this class are qualitatively equivalent to this picture.

results of a series of additions and multiplications of real numbers. For any
given singular point of degree 1, the number of such elementary operations
is finite since any analytic singular point is finitely determined [8], i.e., it is
determined by a finite jet of the vector field at the singular point. However
this number is unbounded.

The situation for the m-degree case is similar. But more types of opera-
tions are needed: (Bm) solving a polynomial equation of degree not higher
than m + 1; (E) moving a singular point to the origin; (F) the blowing-up
transformation (see §2); (G) a special kind of change of variables which is
defined below.
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FIG. 4. Continuation of Figure 3.
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FIG. 5. Continuation of Figure 3.
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Definition 1. Assume that in system (2), Pm(x, y) = x[aym−1 + · · · ],
Qm(0, y) = bym, a2 + b2 6= 0. Let

P (x, y) = Pm(x, y) + Pm+1(x, y) + · · · ,

Q(x, y) = Qm(x, y) + Qm+1(x, y) + · · · ;
P j(x; δ0, δ1, · · · , δj−1) = P (x, δ0x + δ1x

2 + · · ·+ δj−1x
j),

Ej(x; δ0, δ1, · · · , δj−1; δ) = Q(x, δ0x + δ1x
2 + · · ·+ δj−1x

j + δxj+1)−
[δ0 + 2δ1x + · · ·+ jδj−1x

j−1 + jδxj ] ·
P (x, δ0x + δ1x

2 + · · ·+ δj−1x
j + δxj+1),

where j is a positive integer; δ0, δ1, · · · , δj−1, δ are real parameters. Then
the operation of type (G) is applied to system (2) if and only if there exists
a real number d0 such that x1−2m · P 2(x; d0, δ) and x−2mE1(x; d0; δ) are
analytic at x = 0 for any δ. If this condition is satisfied, then the operation
of type (G) is an operation with the following two steps: (i) we inductively
find the longest sequence d0, d1, · · · , dr−1; and (ii) we apply the change of
variables (x, y, t) → (x, u, τ) defined by

y = xru + d0x + d1x
2 + · · ·+ dr−1x

r, dτ = xr(m−1)dt

to system (2), where t is the time variable of system (2), and τ is the new
time variable. The induction is described as follows. Assume that we have
found d0, d1, · · · , dj−1, then dj is a real number such that

x(j+2)(1−m)−1P j+2(x; d0, d1, · · · , dj , δ), x−m(j+2)Ej+1(x; d0, d1, · · · , dj ; δ)

are both analytic at x = 0 for all δ. If such a number dj does not exist,
then r = j.

Lemma 13 will explain how the operation of type (G) appears. Now we
can state the following result.

Theorem F. For any positive integer m the set of singular points of degree
m is divided into finitely many qualitative equivalence classes. Moreover,
there is a finite set of quantities, which can be computed by applying to sys-
tem (2) a bounded number of operations of types (A),(Bm),(C),(D),(E),(F)
and (G), such that they determine the class to which a given singular point
belongs.

No explicit list of the quantities in Theorem F will be given in this paper
in order that this paper is not too long. We remark that there are no
essential difficulties for doing this. The method developed in §3 is sufficient.

As in the 1-degree case there are finitely many additions and multiplica-
tions among real numbers involved in the computation of those quantities
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in Theorem F for a fixed singular point of degree m, since any analytic sin-
gular point is determined by a finite jet of the vector field at this singular
point. Also the number of such elementary operations is unbounded.

1.4. Various Remarks
We first summarize briefly the contents of the following sections.
In §2, we review the concept “blowing-up”. This classical construction

is one of the most powerful tools in the local study of singular points since
according to the following Desingularization Theorem, any fixed isolated
analytic singular point can be successfully analyzed if we ignore the problem
of distinguishing between centers and foci.

Desingularization Theorem. Assume that x = y = 0 is a singular point
of the system

ẋ = X1(x, y), ẏ = X2(x, y).

Then in the following three cases, after applying finitely many blowing-ups
to the above system, we get only singular points with at least one non-zero
eigenvalue. The cases are

(i) (X1, X2) is analytic at x = y = 0, (x, y) ∈ R2;
(ii) (X1, X2) is C∞, (x, y) ∈ R2, and satisfies a ÃLojasiewicz inequality,

i.e., there exist k, c, δ > 0 such that X2
1 +X2

2 ≥ c(x2 +y2)k for x2 +y2 < δ;
(iii) (X1, X2) is a formal power series in x and y with coefficients in

some field, e.g., the field C.

The case (i) was due to Bendixson [5]; (ii) was shown by Dumortier [8];
(iii) was proved by Seidenberg [17].

Due to its importance, the blowing-up concept has several treatments in
the literature (see, for instance, [4, 8, 12]), but there are some differences
among them. In fact, sometimes the same thing receives several different
names. In order to fix terminology and make the material of the following
sections readable, it seems necessary to treat it here since it is also the
technical basis of our method.

As we note in §3 the number of blowing-ups necessary for the analy-
sis of singular points of fixed degree m is unbounded. To overcome this
unboundedness, we investigate carefully the blowing-up process of a singu-
lar point in §3. Our analysis shows that the above unboundedness comes
from the arbitrary length of an equidegree path (Lemma 10), whereas this
length is not important since there is a simple relation between the local
phase portrait of the beginning singular point and the local phase portrait
of the ending singular point. Thus we get the right method for solving the
qualitative classification problem. In the end of §3, there is also a proof of
Theorem F.
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In the rest of the sections we prove Theorem D which gives the qualitative
classification of the 2-degree singular points. In §4 we divide our analysis
into seven cases according to the blowing-up process. The following sections
(§§5–9) are devoted to the case-by-case analysis.

At the end of the paper there is an appendix (§10) which contains the
proof of three facts used in the main body of this paper.

Finally there are some remarks about the notations. We denote by Pi

and Qi (possibly with some superscript) homogeneous polynomials of de-
gree i in many places. In different places the same symbol may denote
things without any relation. This remark is also applied to lower-case let-
ters (possibly with some subscript or superscript) which denote some real
constants or parameters.

We always use ζ̇ to denote the derivation of ζ with respect to a time
variable in a differential equation, where ζ stands for a lower-case letter.
But when we apply a change of variables to a system of differential equa-
tions, we often want to change the time variable. In this case, the time
variables need to be mentioned explicitly. In order to simplify the notions
in this case, we make the convention that if we do not say any other thing
explicitly, we always use dτ = ∗dt to denote the change of the time vari-
ables, where dt is the differential of the original time variable t, whereas dτ
denote the differential of the new time variable τ , and ∗ is some expression.

Usually we use “+ · · · ” to denote all the higher order terms in a formula.

2. THE BLOWING UP OF A SINGULAR POINT

The concept blowing-up of a singular point is classical. Several treat-
ments (with some differences) of this concept are available in the literature
(e.g. [8, 12]). We review it here since it is the basis of our method developed
in §3.

2.1. Blowing up a disc at its center
Blowing up a manifold at a point is a well-known geometric construction

(see, for example, [9]). Shortly speaking, blowing up an n-dimensional
manifold at a point p is just replacing p by the (n−1)-dimensional projective
space. For our later use, we look carefully at the following special case, that
is, blowing up an open disc at the center. Let

U = {(x, y) ∈ R2| x2 + y2 < r2
0}, Ũ = {(x, y) ∈ R2| 0 < x2 + y2 < r2

0},

with r0 > 0. Then the blowing-up of U at O = (0, 0) is just the pair
(UO, π), where UO is an analytic manifold, π : UO −→ U is an analytic
map. Both of them are defined as follows.
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Let

U1 = {(x, y) ∈ U | x 6= 0} ∪ {[x, y] ∈ PR1| x 6= 0},
U2 = {(x, y) ∈ U | y 6= 0} ∪ {[x, y] ∈ PR1| y 6= 0},

where [x, y] denotes the homogeneous coordinate in the projective line
PR1. The maps πi : Ui −→ R2, i = 1, 2, are defined as

π1|Ũ∩U1
: (x, y) 7−→ (x, u), u = y

x ; π1|PR1∩U1 : [1, u] 7−→ (0, u);
π2|Ũ∩U2

: (x, y) 7−→ (v, y), v = x
y ; π2|PR1∩U2 : [v, 1] 7−→ (v, 0);

These two pairs (Ui, πi), i = 1, 2, generate an analytic manifold structure
on the set Ũ ∪ PR1. This manifold is just UO. The map π : UO −→ U is
defined as

π|Ũ = id, π(PR1) = {(0, 0)}.
Via π, Ũ will be taken as an open subset of UO.

The manifold UO can be thought of in a more intuitive way. Consider the
annulus T = {(x, y) ∈ R2| 1 ≤ x2 + y2 < (1 + r0)2}. We identify antipodal
points on the unit circle {(x, y) ∈ R2| x2 + y2 = 1} of T , and denote the
corresponding quotient space by T̃ . There is a bijection φ̃ : T̃ −→ UO which
is defined by the map φ : T −→ UO:

φ(x, y) =
{

((x2 + y2 − 1)x, (x2 + y2 − 1)y) if x2 + y2 > 1;
[x,y] if x2 + y2 = 1.

Evidently φ and φ̃ are continuous maps. Thus we have a unique analytic
structure on T̃ such that φ̃ is an analytic diffeomorphism. That is, we can
say UO is just T̃ . With this identification, we investigate πi more carefully.

The y-axis cuts T into two parts: {(x, y) ∈ T | x > 0}, {(x, y) ∈ T | x <
0}. We call them as the right part and the left part respectively. Simi-
larly, we use the x-axis to cut T into the upper part and the lower part.
The composition π1 ◦ φ maps the right (left) part of T onto the right (re-
spectively, left) part of π1(U1), i.e., the set π1(U1) ∩ {(x, u) ∈ R2| x ≥ 0}
(respectively, π1(U1) ∩ {(x, u) ∈ R2| x ≤ 0}); the points of T on a line of
slope u0 through O are mapped to the points of π1(U1) on the line u = u0.
Similarly, The map π2 ◦φ maps the upper (lower) part of T onto the upper
(respectively, lower) part of π2(U2), i.e., the set π2(U2) ∩ {(v, y) ∈ R2| y ≥
0 (respectively, y ≤ 0)}; the points of T on a line of slope 1

v0
through O

are mapped to the points of π2(U2) on the line v = v0. Notice that if
restricted to one of these four parts, π1 ◦ φ or π2 ◦ φ is a homeomorphism.
We also identify the open annulus {(x, y)| 1 < x2 + y2 < (1 + r0)2} with Ũ
which has been looked as an common open subset of U and UO. We remark
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that the above correspondence and identification will be important in the
following discussion. Special attention shall be paid to the behavior of the
map π1 ◦φ on the left part of T and the map π2 ◦φ on the lower part of T .

2.2. The foliation induced by a blowing-up
Now assume that the analytic system (2) is defined on U with O being

its unique singular point in U (and we will keep this assumption till the
end of this section). Since Ũ is the common open subset of U and UO, the
system (4) has defined a flow on an open subset of UO (here we mean by the
word “flow” just a foliation (with singularity) by oriented curves, but we
can make it a flow in the usual sense by rescaling the time variable). The
problem is how to extend it to the whole manifold UO. Certainly, we can
define a vector field on UO by taking its value on PR1 to be zero. But for
our purpose, this way is not useful since all points on PR1 would be singular
points. In the following, we will show that there is a natural foliation (in
the usual sense, but with singularity) on UO, which is generated by the two
vector fields on the charts (Ui, πi), i = 1, 2, and coincides with system (2)
if we restrict it to Ũ . To do this, we distinguish two cases: the dicritical
case (D(x, y) = xQm(x, y) − yPm(x, y) ≡ 0) and the non-dicritical case
(D(x, y) 6≡ 0).

In the dicritical case, we apply the following two changes of variables

y = xu, dτ = xmdt; x = vy, dτ = ymdt

to system (2). We obtain the following two systems respectively:

ẋ = Pm(1, u) + xPm+1(1, u) + x2Pm+2(1, u) + · · · ,

u̇ = Qm+1(1, u)− uPm+1(1, u) + x[Qm+2(1, u)− uPm+2(1, u)] + · · · ;
(4)

and

ẏ = Qm(v, 1) + yQm+1(v, 1) + y2Qm+2(v, 1) + · · · ,

v̇ = Pm+1(v, 1)− vQm+1(v, 1) + y[Pm+2(v, 1)− vQm+2(v, 1)] + · · · .
(5)

These two systems induce two foliations on U1 and U2 respectively. If we
restrict them to Ũ , then they coincide with the one induced by system (2).
Thus we get a foliation globally defined on UO.

In the non-dicritical case, we apply the following two changes of variables

y = xu, dτ = xm−1dt; x = vy, dτ = ym−1dt

to system (2). The resulting systems are

ẋ = xPm(1, u) + x2Pm+1(1, u) + · · · ,

u̇ = D(1, u) + x[Qm+1(1, u)− uPm+1(1, u)] + · · · ;
(6)
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and

ẏ = yQm(v, 1) + y2Qm+1(v, 1) + · · · ,

v̇ = −D(v, 1) + y[Pm+1(v, 1)− vQm+1(v, 1)] + · · · .
(7)

By the same reason as in the dicritical case, these two systems determine
a global foliation on UO.

2.3. The flow induced by a blowing-up
Generally speaking, the foliation on UO which we have constructed above

need not be a flow. But there is a flow naturally defined on T . We show
this below.

To start, we consider the dicritical case. Firstly, since π1 ◦ φ is a home-
omorphism on the right part and the left part of T , so we get two flows
on these two parts of T from system (4) through the map π1 ◦ φ. Similarly
we can obtain two flows on the upper part and the lower part of T from
system (5) through the map π2 ◦ φ. Our next step is a modification of
the orientations of these flows. This is done according to the time rescal-
ing dτ = xmdt or dτ = ymdt which we have made when system (2) is
changed into system (4) or (5). For the flows on the right and upper part
of T, the orientations keeps unchanged. For the flows on the left and lower
part of T, the orientations depend on the parity of m : keeping unchanged
if m is even; being reversed if m is odd. Now these four flows will pro-
duce a global flow on T because, if we restrict them to the open annulus
{(x, y)| 1 < x2 +y2 < (1+r0)2}, each of them coincides with the flow given
by (2) (recall that this open annulus is identified with Ũ).

In the non-dicritical case, the flow on T can be constructed similarly.
Firstly, in each of the four parts of T there is a flow on it which is determined
by systems (6) and (7). Secondly, we modify the orientation for each of
these four flows. The rule is similar: for the flows on the right and the
upper parts, the orientation keeps unchanged; for the flows on the left
and the lower parts, the orientation is reversed if m− 1 is odd, and keeps
unchanged if m− 1 is even. Finally, by the same reason as in the dicritical
case, we get a global flow on T from these four flows.

Now we can determine when the foliation on UO (= T̃ ) is a flow, that
is, finding conditions under which we still get a flow from the flow on T
after identifying the antipodal points on the unit circle of T . To do this,
it suffices to check the orbits on the unit circle (which is invariant) in the
non-dicritical case and the orbits passing through the unit circle in the
dicritical case. We can see easily that if m is odd in the non-dicritical case
and m is even in the dicritical case, we get a flow on T̃ from the flow on T ;
if “even” is interchanged with “odd”, we get only a foliation on T̃ which is
not a flow.
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2.4. Definitions
The construction from the flow on U to the foliation on UO described in

§2.2 is called a blowing-up. The foliation on UO is called the blowing-up
of the flow on U defined by system (2) at O, or simply the blowing-up of
the singular point O. But when we blow up a singular point in practice, we
just write down the systems (4) and (5) in the dicritical case, or (6) and
(7) in the non-dicritical case, since these systems determine the foliation
on UO. The corresponding changes of variables are called as the blowing-up
transformations. But for simplicity, we shall call a blowing-up transforma-
tion as a blowing-up. (Here there is an abuse of terminology: a blowing-up
may stand for a particular kind of changes of variables; it may also denote
the construction in §2.2. The authors apologize for this and hope that no
confusion will appear.) The phase portrait of the flow on T is called the
phase portrait of O on the unit circle, from which we get the local phase
portrait of system (2) in a neighborhood of O just by contracting the unit
circle to O. The polynomial D(x, y) will be called the characteristic poly-
nomial of the singular point O of system (2). A characteristic direction of
the singular point O of system (2) is just a ray starting at O and satisfying
D(x, y) = 0.

The blowing-up defined here is called σ-process in Russian literature (e.g.
[3, 4]), and directional blowing-up by Dumortier [8].

2.5. Singular points after a blowing-up
Notice that if D(x, y) ≡ 0, there is a homogeneous polynomial f(x, y) of

degree m− 1 such that

Pm(x, y) = xf(x, y), Qm(x, y) = yf(x, y). (8)

Let S be the set of singular points of the foliation on UO obtained by
applying a blowing-up to system (2). Recall that O is the unique singular
point of system (2) in U . We have the following lemma.

Lemma 1. The following statements hold.

(i)Assume D(x, y) 6≡ 0. Then S = {[x, y] ∈ PR1| D(x, y) = 0}. Further-
more for any point p0 = [x0, y0] ∈ S, the degree of p0 is not larger than the
multiplicity of the linear factor y0x− x0y in the factorization of D(x, y).

(ii)Assume D(x, y) ≡ 0, and the polynomial f(x, y) is defined by (8).
Then

S = {[x, y] ∈ PR1| f(x, y) = 0 and xQm+1(x, y)− yPm+1(x, y) = 0}.

Moreover the degree of the point p0 = [x0, y0] ∈ S is not larger than the
multiplicity of y0x − x0y in the greatest common factor of f(x, y) and
xQm+1(x, y)− yPm+1(x, y).



106 Q. JIANG AND J. LLIBRE

Proof. It is clear that S ⊂ PR1 because we have assumed that O is
the unique singular point of system (2) in U . Therefore the points in S
correspond to the singular points of system (4) or (6) on the u-axis, and to
the singular points of system (5) or (7) on the v-axis. Thus the statements
of Lemma 1 are obtained by directly checking these four systems.

Since O is the unique singular point of system (2) in U , all the singular
points of the flow on T are on the unit circle. We know that each singular
point [x0, y0] of the foliation on UO corresponds to a pair of antipodal
singular points (i.e., (x0, y0) and (−x0,−y0) with x2

0 + y2
0 = 1) of the flow

on T . Furthermore, if x0 > 0 and x2
0 +y2

0 = 1, then the local phase portrait
of (x0, y0) is the same as the right part of the local phase portrait of the
singular point x = u − y0

x0
= 0 divided by the u-axis (more exactly, these

two phase portraits are analytically equivalent via the map π1 ◦φ); and the
local phase portrait of (−x0,−y0) is obtained by the map π1 ◦ φ from the
left part of the local phase portrait of the singular point x = u − y0

x0
= 0

and a suitable choice of orientation of orbits (i.e., reversing when m− 1 is
odd in the non-dicritical case and m is odd in the dicritical case; keeping
unchanged in all other cases). In the case y0 > 0 and x2

0 +y2
0 = 1, the local

phase portraits of (x0, y0) and (−x0,−y0) are obtained similarly from the
local phase portrait of the singular point y = v − x0

y0
= 0 via π2 ◦ φ.

The local phase portrait of a singular point of the flow on T is different
from the usual one. It is just one half of the local phase portrait of a
usual singular point. In the following sense, we say a singular point of
the flow on T is a saddle, or a node, or a saddle-node if its local phase
portrait is composed by two hyperbolic sectors, or one parabolic sector, or
one hyperbolic sector and one parabolic sector respectively.

2.6. The blowing-up technique
Since we are interested only in the local phase portrait at the singular

point x = y = 0 of system (2), the positive number r0 can be chosen so
small that the foliation on UO and the flow on T are all determined by
the local phase portrait of its singular points. In the above description, we
have shown that if we know the local phase portraits of the singular points
of system (4) or (6) on u-axis and those of the singular points of system
(5) or (7) on v-axis, then the phase portrait of the flow on T can also be
obtained according to the rule described above. By contracting the unit
circle to the point x = y = 0, we obtain the local phase portrait of system
(2) at x = y = 0. Hence instead of studying the singular point O, we study
the singular points of system (4) or (6) on u-axis and the singular points
of system (5) or (7) on v-axis, or equivalently, we study the singular points
obtained by applying a blowing-up to O. Generally speaking, the later
ones are simpler than the original singular point. Thus it is reasonable to
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use repeated blowing-ups for the qualitative analysis of a singular point.
Actually this is a successful way. We explain this in the rest of this section.

We first divide the set of all singular points (recall that they are assumed
to be analytic and isolated) into two classes according to certain conditions
which will be specified below. One of these two classes contains all simple
singular points to which we shall not apply blowing-ups. Singular points
in the other class will be the complex ones, and blowing-ups will be needed
in order to analyze them.

Now consider the singular point O of system (2). After applying a
blowing-up to it, we get a foliation on UO. The manifold UO is more
complex than U . But the foliation is simpler in the sense that the singular
points on UO will be simpler than the original one. Assume that these
singular points are p1

1, p
2
1, · · · , ps1

1 . Among these singular points, some are
simple singular points, the others are complex. Assume that pj

1, 1 < j ≤ t1,
are all the complex ones. Now we apply a blowing-up to each singular point
pj
1, 1 < j ≤ t1. After this, the manifold UO is changed to be a more com-

plicated manifold (it is obtained from UO by replacing t1 distinct points
with t1 projective lines). The original foliation is changed into a foliation
on this manifold. The singular points pj

1, 1 < j ≤ t1, do not exist. They
are changed into a new set of singular points, say, p1

2, p
2
2, · · · , ps2

2 . Among
them, some are simple, and the others, say, p1

2, p
2
2, · · · , pt2

2 , are complex.
We apply a blowing-up to each of these t2 singular points p1

2, p
2
2, · · · , ps2

2 .
Repeating this process, the manifold is changed to be more and more com-
plicated; the foliation on it will be simpler and simpler. At last, when the
foliation contains only simple singular points, this process is stopped. We
call the whole process described above as the blowing-up process associated
to the singular point O.

In order that the blowing-up process is useful, we must make a proper
choice of the class of simple singular points such that they are really sim-
ple and, furthermore, the blowing-up process is finite, i.e. containing only
finitely many blowing-ups. This is provided by the Desingularization The-
orem, which says the blowing-up process associated to any given singular
point is finite if we choose the class of simple singular points as singular
points with at least one non-zero eigenvalue. By Theorem A, we know any
singular point with at least one non-zero eigenvalue can be successfully an-
alyzed. As a corollary, any given singular point can be analyzed by a finite
blowing-up process (if we do not distinguish between a center and a focus).

In our following discussion the class of simple singular points is taken as
the set of all singular points of degree one plus those singular points from
which we will get no singular points when we apply a single blowing-up
to them. Once again the blowing-up process for a given singular point is
finite. The simple singular points in a blowing-up process are called the
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terminals of the blowing-up process since the blowing-up process will stop
at them.

3. THE BLOWING-UP PROCESS OF A SINGULAR POINT

We have seen in the last section that it suffices to apply repeated blowing-
ups in order to get the local phase portrait of a given isolated analytic
singular point. But if one wants to classify topologically or qualitatively all
singular points of degree m, it is not sufficient to apply repeated blowing-
ups to the general system (2) of singular points of degree m since the
number of blowing-ups necessary for the analysis of an m-degree singular
point is unbounded (although finite). This can be seen in the following
example.

Example 2. The system ẋ = ym, ẏ = xkm+k−1 needs k blowing-ups for
any k > 1, m > 1. These blowing-ups are y = xu0, dτ0 = xm−1dt and
ui = xui−1, dτi = xmdτi−1 for 1 ≤ i ≤ k− 1, where τj , 0 ≤ j ≤ k− 1, are
time variables, and t is the time variable of the original system.

In spite of this example the blowing-up method is still the successful way
to obtain the qualitative classification of all m-degree singular points. But
we must go further and study the blowing-up process associated to each
singular point, as we will do in this section.

We first show that the blowing-up process of a given singular point cor-
responds naturally to an oriented tree as was observed in [16]. This tree
grows at the given singular point (the initial vertex) where our blowing-up
process starts. We often call it the starting singular point. All other vertices
of this tree are just all the singular points obtained during the blowing-up
process. The edges of this oriented tree are some arrows. Assume that A
and B are two vertices. Then there is an arrow from A to B if and only if
B is one of the singular points obtained by applying just one blowing-up
to A. In this case, B is called a successor of A; whereas A is called the
predecessor of B. As in the last section, we take the set of terminals as
the set of all singular points of degree one plus those singular points from
which we will get no singular points when we apply blowing-ups to them.
In this way, we have defined an oriented tree, which, in the following, will
be called the blowing-up tree of our starting singular point. We know that
this tree is finite by the Desingularization Theorem in §1.4.

Since our tree is oriented, there is a natural partial ordering on the set of
vertices. The terminologies “predecessor” and “successor” just come from
this ordering. We are also interested in some oriented subgraphs of this
tree, which are formed by a subset of vertices and a subset of edges such
that (i) this subgraph is connected; (ii) any two vertices joined by an edge
from the edge set of this subgraph must belong to the set of vertices of this
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subgraph. A subgraph is called a path if the set of vertices of this subgraph
is a totally-ordered subset. A path is called complete if it is maximal,
i.e., it cannot be extended. The length of a path is just the number of
vertices in this path. An oriented subgraph is called an oriented subtree
if any nonterminal vertex in this subgraph is followed by the same set of
successors as in the original tree. Notice that the terminals of an oriented
subgraph need not be the terminals of the original blowing-up tree. Since
all our trees, subtrees, subgraphs are oriented, sometimes we will omit the
word “oriented” for simplicity.

In the following we shall show some properties of a blowing-up tree.

Lemma 3. The following statements hold.

(i)If B1, B2, · · · , Bs are successors of a vertex A, then∑s
i=1 deg(Bi) ≤ deg(A)+1. Here deg(C) denotes the degree of the singular

point C.
(ii)For any path B1 −→ B2 −→ B3, if deg(B2) < deg(B3), then deg(B1) >

deg(B2).
(iii)If the starting singular point is of degree m, then all the singular

points in its blowing-up tree are of degrees smaller than m + 2.

Proof. (i) This follows immediately from Lemma 1.
(ii) Without loss of generality, we assume that B1 is the singular point

x = y = 0 of system (2). If the statement (ii) is not true, then deg(B2) ≥
deg(B1) = m. Hence, by Lemma 1 there is a linear factor which is of degree
at least m in the factorization of D(x, y) = xQm(x, y)− yPm(x, y), i.e., we
have the following factorization

D(x, y) = xQm(x, y)− yPm(x, y) = (c1y + d1x)m(c2y + d2x),

where (c2
1 + d2

1) · (c2
2 + d2

2) 6= 0. Again without loss of generality, we can
assume c1 = 1, d1 = 0. Now apply the change of variables y = xu, dτ =
xm−1dt to system (2). Then B2 is just the singular point x = u = 0 of the
following system

ẋ = xPm(1, u) + x2Pm+1(1, u) + · · · ,

u̇ = um(c2u + d2) + x[Qm+1(1, u)− uPm+1(1, u)] + · · · .
(9)

If deg(B2) = m + 1, then d2 = 0, c2 6= 0, Pm(1, u) = −c2u
m, and the

characteristic polynomial of B2 is x[2c2u
m+1 + · · · ], where “ · · · ” denotes

the terms containing the factor x. So, by Lemma 1, we cannot get a
singular point whose degree is larger than m+1 = deg(B2) when we apply
a blowing-up to B2. This contradicts the assumption of (ii).
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If deg(B2) = m and deg(B3) ≥ m+1, then the characteristic polynomial
of B2 must be not identically zero and of degree m + 1. In fact, it is clear
from system (9) that x is its factor; since deg(B3) ≥ m+1, this polynomial
can be written as c3x

m+1 according to Lemma 1. But when we apply the
change of variables x = uv, dτ = um−1dt to system (9), we get only one
singular point whose degree is at most 2 because the term um(c2u + d2)
in system (9) will be changed into a non-zero 2-degree polynomial in the
new system. Since deg(B2) < deg(B3) by assumption, we get deg(B2) < 2.
But B2 is not a terminal. Thus we get a contradiction, and the statement
(ii) is proved.

(iii) Let A1 be the starting singular point. Suppose A1 −→ A2 −→
· · · −→ Ak is an arbitrary path. By assumption, deg(A1) = m. To prove
(iii), it is sufficient to show that deg(Ai) ≤ m + 1 for any i ≤ k. This is
proved in the following by induction on the degree m of the starting singular
point and the length k of the path. Notice that if k = 2, this statement
follows easily from (i). Thus it suffices to prove the case m = m0 and
k = k0 > 2 under the hypothesis that this statement is true if m < m0, or
m = m0 but k < k0.

From (i), we know deg(A2) ≤ m0 + 1. If deg(A2) ≤ m0, then take
A2 as the starting singular point, our assertion follows from the inductive
hypothesis. Hence we need only to consider the case deg(A2) = m0 +1. By
(ii), we know deg(A3) ≤ deg(A2) = m0+1. Repeating the above argument,
it suffices to consider the case deg(A3) = m0 +1. Repeating this reasoning,
we know our assertion is true since k0 is a fixed integer.

Now we consider a fixed complete path A1 −→ A2 −→ · · · −→ Ak. By
definition, A1 is the starting singular point, Ak is a terminal. In this path,
a subpath

Ai −→ Ai+1 −→ · · · −→ Ai+r (10)

such that

deg(Ai) = deg(Ai+1) = · · · = deg(Ai+r) (11)

is important as we will show in the rest of this section.

Lemma 4. Consider the path (10) which satisfies (11). Assume Ai−1 is
the predecessor of Ai, and deg(Ai) > deg(Ai−1). Then there exist r saddles
Bj , 1 ≤ j ≤ r, such that

Ai−1 −→ Ai
↗B1−→ Ai+1

↗B2−→ · · · −→ Ai+r−1
↗Br−→ Ai+r

is a subtree. Moreover, the local phase portrait of Ai−1 is determined by
the local phase portrait of Ai+r and the parity of r.
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Proof. Assume that Ai−1 is the singular point x = y = 0 of system
(2). From the hypothesis and Lemma 3, we have deg(Ai) = m + 1 =
deg(Ai−1) + 1. By Lemma 1, it follows that

D(x, y) = xQm(x, y)− yPm(x, y) = c0(cy + dx)m+1

for some real constants c0, c and d such that c0 6= 0, c2 + d2 6= 0. Without
loss of generality, we can assume d = 0, c0 · cm+1 = −1, that is, D(x, y) =
−ym+1. This implies Pm(0, y) = ym. Now we apply the following change of
variables y = xu1, dτ1 = xm−1dt to system (2). Then we get

ẋ = xP (1)
m (x, u1) + xP

(1)
m+1(x, u1) + xP

(1)
m+2(x, u1) + · · · ,

u̇1 = −um+1
1 + xQ(1)

m (x, u1) + xQ
(1)
m+1(x, u1) + xQ

(1)
m+2(x, u1) + · · · ,

(12)

where P
(1)
l (x, u1) and Q

(1)
l (x, u1) are homogeneous polynomials of degree

l, and P
(1)
m (0, u1) = um

1 . The singular point x = u1 = 0 is Ai, which is the
unique successor of Ai−1. Since Ai+1 is a singular point of degree m + 1,
the characteristic polynomial of Ai must be

−u1xP (1)
m (x, u1) + x[−um+1

1 + xQ(1)
m (x, u1)] = −2x(u1 − c1x)m+1

according to Lemma 1, where c1 is some real constant. Hence Ai has two
successors which are obtained by applying the following two changes of
variables

u1 = xu2 + c1x, dτ2 = xmdτ1; x = vu1, dτ ′2 = um
1 dτ1

to system (12). The resulting systems are

ẋ = xP (2)
m (x, u2) + xP

(2)
m+1(x, u2) + xP

(2)
m+2(x, u2) + · · · ,

u̇2 = −2um+1
2 + xQ(2)

m (x, u2) + xQ
(2)
m+1(x, u2) + xQ

(2)
m+2(x, u2) + · · · ,

and

u̇1 = −u1 + · · · , v̇ = 2v + · · · ,

where, as before, P
(2)
l (x, u2) and Q

(2)
l (x, u2) are homogeneous polynomial

of degree l. From these two systems, we know that Ai+1 is the singular
point x = u2 = 0, the singular point v = u1 = 0 (denoted by B1) is a
saddle. Repeating this process, we will find by induction on j that, for any
j ≤ r, Ai+j is the singular point x = uj+1 = 0 of the system

ẋ = xP (j+1)
m (x, uj+1) + xP

(j+1)
m+1 (x, uj+1) + xP

(j+1)
m+2 (x, uj+1) + · · · ,

u̇j+1 = −(j + 1)um+1
j+1 + xQ(j+1)

m (x, uj+1) + xQ
(j+1)
m+1 (x, uj+1) + · · · ;
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and Bj is the singular point v = uj = 0 of the system

u̇j = −juj + · · · , v̇ = (j + 1)v + · · · .

Moreover the singular points Ai+j and Bj are obtained from Ai+j−1 by
applying the following two changes of variables

uj = xuj+1 + cjx, dτj+1 = xmdτj ; x = vuj , dτ ′j+1 = um
j dτj

to the system for Ai+j−1 respectively. Here τj+1 and τ ′j+1 are the time
variables of the systems for Ai+j and Bj , cj is some real constant such
that the characteristic polynomial of Ai+j−1 is

−uj · xP (j)
m (x, uj) + x[−jum+1

j + xQ(j)
m (x, uj)] = −(j + 1)x(uj − cjx)m+1.

This factorization follows from Lemma 1 and the fact deg(Ai+j) = m + 1,
as we have seen in the case j = 1.

Obviously Bj is a saddle. Since deg(Ai+j−1)+1 = deg(Ai+j)+deg(Bj),
Ai+j and Bj are the only two successors of Ai+j−1 by Lemma 3(i). Hence,
by definition, the subgraph in Lemma 4 is a subtree.

To prove the second part, we first see how to get the local portrait of
Ai+r−1 from that of Ai+r. Let us draw the local phase portrait of Ai+r−1

on the unit circle (see §2.4). We know that there are four singular points
on the unit circle; that is, the top and the bottom (i.e., (x, ur) = (0, 1) and
(x, ur) = (0,−1) respectively), plus (x, ur) = 1√

1+c2
r

(1, cr) and (x, ur) =
−1√
1+c2

r

(1, cr). The first two correspond to the saddle Br. The last two cor-

respond to Ai+r. According to the rule of §2.3, the local phase portrait of
the top is the same as the upper part of the local phase portrait of Br (i.e.,
the part in the region ur+1 ≥ 0). The local phase portrait of the point
( 1√

1+c2
r

, cr√
1+c2

r

) is just the right part of the local phase portrait of Ai+r

(i.e., the part in the region x ≥ 0). The local phase portraits at the bottom
and at (− 1√

1+c2
r

,− cr√
1+c2

r

) come from the lower part of Br and the left

part of Ai+r respectively. The rule is described in §2.3. Now we contract
the unit circle to the point x = ur = 0. Since the top and the bottom
are two saddles, we find that the right part of Ai+r−1 and the right part
of Ai+r are the same; if we reflect the left part of the local phase portrait
of Ai+r across the x-axis, then the resulting picture is just the left part of
the local phase portrait of Ai+r−1 if m is even; if, furthermore, we reverse
the orientation of orbits, then the resulting picture is just the left part of
Ai+r−1 in the case that m is odd. Now our conclusion is easily obtained
by repeating this process. More explicitly, we have the following rule:

(i) The local phase portrait of Ai−1 on the unit circle has only two
singular points, one is on the right semi-circle, the other is on the left
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semi-circle. The right one has the same phase portrait as the right part of
Ai+r.

(ii) If (r + 1)m− 1 is even, then the local phase portrait of the singular
point on the left semi-circle is obtained from the left part of the local phase
portrait of Ai+r by r + 1 reflections across the x-axis.

(iii) If (r + 1)m− 1 is odd, then the local phase portrait of the singular
point on the left semi-circle is obtained from the left part of the local phase
portrait of Ai+r by r+1 reflections across the x-axis and a reversing of the
orientation of orbits.

Obviously this rule implies the second part of Lemma 4. The proof is
finished.

Lemma 5. In the path (10) we assume that Ai is the singular point
x = y = 0 of system (2) with Pm(x, y) = x[aym−1 + · · · ], Qm(0, y) =
bym, a2 + b2 6= 0, and deg(Aj) = m for i ≤ j ≤ i + r, where “ · · · ” denotes
the terms containing the factor x. Then there exist B1, B2, · · · , Br such
that deg(Bj) = 1 for all 1 ≤ j ≤ r, and among them, there is at most one
anti-saddle, the others are saddles. Furthermore the following subgraph

Ai
↗B1−→ Ai+1

↗B2−→ · · · −→ Ai+r−1
↗Br−→ Ai+r

is a subtree. Moreover, the local phase portrait of Ai is determined by the
local phase portrait of Ai+r, the parity of r and the values of a and b.

Remark 6. If a = 1, b = −1, Lemma 5 is just the case considered in
Lemma 4.

Proof. The proof is similar to the one of Lemma 4. Firstly we can in-
ductively find all the systems for Ai+j and Bj . For any 0 < j ≤ r, Ai+j is
just the singular point x = uj = 0 of the system

ẋ = xP̄
(j)
m−1(x, uj) + xP̄ (j)

m (x, uj) + xP̄
(j)
m+1(x, uj) + · · · ,

u̇j = (b− ja)um
j + xQ̄

(j)
m−1(x, uj) + xQ̄(j)

m (x, uj) + xQ̄
(j)
m+1(x, uj) + · · · ,

(13)
where P̄

(j)
l and Q̄

(j)
l are homogeneous polynomials of degree l, P̄

(j)
m−1(0, uj) =

aum−1
j ; and Bj is the singular point v = uj−1 = 0 of the system

u̇j−1 = [b− (j − 1)a]uj−1 + · · · , v̇ = (ja− b)v + · · · , (14)

where we identify u0 = y. We obtain Ai+j and Bj by applying the following
two changes of variables

uj−1 = xuj + dj−1x, dτj = xm−1dτj−1; x = vuj−1, dτ ′j = um−1
j−1 dτj−1
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to the system for Ai+j−1 respectively, where τj is the time variable of
system (13), τ ′j is the time variable of system (14), and dj−1 is a real
constant such that the characteristic polynomial of Ai+j−1 is

−uj−1 · xP̄
(j−1)
m−1 (x, uj−1) + x[(b− (j − 1)a)um

j−1 + xQ̄
(j−1)
m−1 (x, uj−1)]

= x(b− ja)(uj−1 − dj−1x)m

when j > 1; if j = 1, then d0 is the real constant such that

xQm(x, y)− yPm(x, y) = bx(y − d0x)m = bx(u0 − d0x)m.

The claims in the last paragraph are proved by induction. Since all Ai+j

have the same form, it suffices to look at Ai and see what will happen after
applying a blowing-up to it.

Since deg(Ai+1) = m, by Lemma 1, the characteristic polynomial

D(x, y) = xQm(x, y)− yPm(x, y) = x[(b− a)ym + · · · ]

has a factor (αx + βy)m with α2 + β2 6= 0 if r ≥ 1 in the path (10). There
are two possibilities: (i) b − a 6= 0 and D(x, y) = (b − a)x(y − d0x)m; (ii)
b − a = 0, and consequently D(x, y) = xm(δx − γy). In the first case, we
get Ai+1 and B1 by the above-mentioned two changes of variables. In the
second case, b = a 6= 0, and one can show by easy calculation that all the
successors of Ai are singular points of degree 1. This is a contradiction.
Therefore in the case j = 1, the singular points Ai+j and Bj are described
by systems (13) and (14) respectively. Consequently this is true for general
j by induction on j.

As proved in the last paragraph for the case j = 1, we have b−ja 6= 0 for
j = 1, 2, . . . , r. Now the following conclusion for Bj follows directly from
system (14):

(i) If b = 0, then a 6= 0, B2, · · · , Br are all saddles, and B1 is a singular
point of degree 1. It can be a saddle, a node, or a saddle-node.

(ii) If b > 0, then Bj is a node if a ∈ ( b
j , b

j−1 ) for j > 1, and a ∈ (b,+∞)
for j = 1. Otherwise Bj is a saddle. So if b > 0, then Bj is the unique node
if and only if a > b

r and a 6= b
l for l = 1, · · · , r. If a < b

r , then all Bj are
saddles.

(iii) If b < 0, then Bj is a node if a ∈ ( b
j−1 , b

j ) for j > 1, and a ∈ (−∞, b)
for j = 1. Otherwise Bj is a saddle. So if b < 0, then Bj is the unique node
if and only if a < b

r and a 6= b
l for l = 1, · · · , r. If a > b

r , then all Bj are
saddles.

From these facts, we know that the subgraph in Lemma 5 is a subtree.
And the first part is proved.
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Using the proof of Lemma 4, we know that the second part of Lemma
5 is true in the cases that b = 0, or that all Bj are saddles. So we need
only to consider the case that there is a unique node Bj . We know that
the others are saddles.

Assume that Bj0 is a node. The local phase portrait of Ai+j0 can be
obtained as follows. The right part (in the region x ≥ 0) is the same as the
right part of the local phase portrait of Ai+r (in the region x ≥ 0); the left
part is obtained from the same part of the local phase portrait of Ai+r by
making r − j0 changes of the following type: reflection across the x-axis if
m − 1 is even; the above reflection and reversing the orientation of orbits
if m − 1 is odd. Now we consider the local phase portrait of Ai+j0−1 on
the unit circle. The top and the bottom are two nodes. On the right semi-
circle, there is a unique singular point whose phase portrait is the same
as the right part of Ai+j0 . On the left semi-circle, there is still a unique
singular point whose phase portrait is obtained from the left part of the
phase portrait of Ai+j0 by the above change (i.e. the reflection across the
x-axis and the modification of the orientation of orbits). Now we make a
modification of this local phase portrait like the following. The singular
points on the left and right semi-circles keep unchanged, but the top and
the bottom are changed to be two saddles, and on each side of them we add
a node. The orientation of orbits near these saddles and nodes is chosen
so that we still get a flow. Note that after and before this modification,
the local phase portraits which we get by contracting the unit circle to a
point are topologically the same. So in the following, we use this modified
phase portrait on the unit circle to obtain the local phase portraits of
Ai+j0−2, · · · , Ai+1 and Ai. According to the rule described in §2, we know
that the local phase portrait of Ai+j0−2 on the unit circle is obtained from
that of Ai+j0−1 by a certain change. Since Bj0−1 is a saddle, the saddles
and nodes will keep unchanged, the other two singular points are changed
in the same way as in the case that all Bj are saddles. Repeating this
process, we can obtain the local phase portrait of Ai directly from that of
Ai+r. The rule is described as follows:

(i) If b = 0, the local phase portrait of Ai on the unit circle has four
singular points. The top and the bottom correspond to B1 which can be
a saddle, a node or a saddle-node. On the right semi-circle, there is a
unique singular point whose phase portrait is the same as the right part of
Ai+r. On the left semi-circle, the local phase portrait of the unique singular
point is obtained from the left part of Ai+r by r reflections across x-axis if
r(m− 1) is even, and by the above reflections and reversing orientation of
orbits if r(m− 1) is odd.

(ii) If all Bj are saddles, then the local phase portrait of Ai on the unit
circle is the same as the case that b = 0 and B1 is saddle.
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(iii) If b 6= 0, and a unique Bj0 is a node, then the local phase portrait of
Ai comes from the following flow on T . On the unit circle of T there are 8
singular points. The top and the bottom are two saddles. On each side of
them, there is a node. The remaining two singular points which are on the
right and left semi-circles are obtained from Ai+r in the same way as in (i).
If j0 = 1, we accumulate the saddle at the top and the two nodes around it
into one singular point located at the top, and do the same at the bottom.
Then we get a node at the top as well as at the bottom. The phase portrait
of the resulting flow is just the local phase portrait of Ai on the unit circle.
If j0 > 1, we accumulate all singular points on the right (or left) semi-circle
at the point ( 1√

1+d2
1

, d1√
1+d2

1

) (respectively, (− 1√
1+d2

1

,− d1√
1+d2

1

)). Then the

phase portrait of the resulting flow is just the local phase portrait of Ai on
the unit circle.

Certainly this rule implies the second part of Lemma 5. The proof is
finished.

Definition 7. A path Ai −→ Ai+1 −→ · · · −→ Ai+r is called an equide-
gree path if deg(Ai) = deg(Ai+1) = · · · = deg(Ai+r). It is called maximal if
the degrees of all the predecessors of Ai and all the successors of Ai+r are
different from deg(Ai+r).

Assume that Ai −→ Ai+1 −→ · · · −→ Ai+r is a maximal equidegree
path such that deg(Ai) = m and Ai is described by system (2) with

Pm(x, y) = a0y
m + a1xym−1 + · · ·+ amxm,

Qm(x, y) = b0y
m + b1xym−1 + · · ·+ bmxm.

We suppose r ≥ 1 in the following. Since deg(Ai+1) = deg(Ai), so, by
Lemma 1, the characteristic polynomial D(x, y) = xQm(x, y) − yPm(x, y)
has the following factorization

D(x, y) = (c1x + d1y)m(αx + βy),

where (c2
1+d2

1) ·(α2+β2) 6= 0. In the following we discuss when this occurs.
We have the following 3 cases:

(i) a0 = 0, a2
1 + b2

0 6= 0. This is the case studied in Lemma 5.
(ii) a0 = a1 = b0 = 0. Then d1 = 0. Without loss of generality, we

can take c1 = 1. Applying the change of variables x = yv, dτ = ym−1dt to
system (2), we have

ẏ = yQm(v, 1) + y2Qm+1(v, 1) + · · · ,

v̇ = −D(v, 1) + y[Pm+1(v, 1)− vQm+1(v, 1)] + · · · .
(15)
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Since deg(Ai+1) = m, Ai+1 must be the singular point y = v = 0. In order
that this singular point is of degree m, we must have

b0 = b1 = · · · = bm−2 = 0, a0 = a1 = · · · = am−1 = 0.

Hence

D(v, 1) = bmvm+1 + (bm−1 − am)vm, Qm(v, 1) = bmvm + bm−1v
m−1.

Since D(x, y) 6≡ 0, there are 2 cases which allow that deg(Ai+1) = m :
(1) b2

m−1 + a2
m 6= 0; (2) am = bm−1 = 0 but bm 6= 0. In the first case,

the path Ai+1 −→ · · · −→ Ai+r is the one considered in Lemma 5. In
the second case, it follows from system (15) that y2 is a factor of the
characteristic polynomial of the singular point y = v = 0. So, by Lemma
1, if one of the successors of the singular point y = v = 0 is of degree larger
than m− 1, this polynomial must have the following factorization

ym(δv + γy).

To see what happens to this factorization, we apply the change of variables:
y = vy1, dτ = vm−1dt to system (15). The system we obtain has the
following form

v̇ = vy1P̄m−1(1, y1) + v2[−bm + · · · ],
ẏ1 = ym

1 (δ + γy1) + vy1[2bm + · · · ], (16)

where yP̄m−1(v, y) is the m-degree part of v̇ in system (15). By Lemma
1, we know v = y1 = 0 in system (16) is the singular point corresponding
to the factor ym of the characteristic polynomial of y = v = 0. But, since
bm 6= 0, this singular point is of degree at most 2. Consequently either all
the successors of Ai+1 are of degree smaller than m, or m = 2 (m = 1 is
impossible since 1-degree singular points are the terminals of blowing-up
trees). In the first case, the length of our path is 2 (i.e., there are only
2 vertices in this path). In the second case we consider the characteristic
polynomial of v = y1 = 0:

v[2bmvy1+δy2
1 ]−y1[−bmv2+P̄m−1(1, 0)vy1] = 3bmv2y1+[δ−P̄m−1(1, 0)]vy2

1 .

Since bm 6= 0, it must be the product of 3 different linear factors if δ −
P̄m−1(1, 0) 6= 0. In this case, the length of our path is 3 since we obtain only
3 different singular points of degree 1 after applying a blowing-up to Ai+2

(i.e., the singular point v = y1 = 0 of system (16)). If δ − P̄m−1(1, 0) = 0,
then the singular point Ai+2, which is the point v = y1 = 0 of system (16),
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is just the point Ai considered in Lemma 5. One can see this by taking
(y1, v) in system (16) as (x, y) in Lemma 5.

(iii) a0 6= 0. In this case, d1 · β 6= 0 since D(0, 1) = a0 6= 0. Thus Ai+1

is just the singular point x = u = 0 of system (6). We can easily check
that the path Ai+1 −→ · · · −→ Ai+r is the one considered in the above two
cases. Thus we have proved:

Lemma 8. For any equidegree path Ai −→ Ai+1 −→ · · · −→ Ai+r, there
exists an integer j0 with 0 ≤ j0 ≤ 3 such that the path Ai+j0 −→ · · · −→
Ai+r satisfies the assumptions of the path considered in Lemma 5.

Remark 9. Lemma 5 says that the length is not important for the paths
studied there. Now Lemma 8 generalizes this fact to arbitrary equidegree
paths.

We note that the above results provide a successful method for the qual-
itative classification of singular points of any given degree. We argue this
below.

First of all we note that the unboundedness of the number of blowing-ups
necessary for the analysis of a singular point of a fixed degree comes just
from the arbitrary length of equidegree paths. To see this, we need the
following definition: two blowing-up trees are said to be the same if there
are a bijection between their vertex sets and a bijection between their edge
sets such that (a) any edge connecting two vertices corresponds to the edge
connecting the corresponding pair of vertices; (b) the corresponding two
vertices have the same property, i.e., the same degrees, and the same local
phase portraits if their degrees are equal to 1. Now the above statement is
exactly shown in the following lemma.

Lemma 10. There is a function Λ : N −→ N, N is the set of natural
numbers, such that there are at most Λ(m) different trees satisfying

(i)each represents the blowing-up process of a singular point of degree m;
(ii)the lengths of the maximal equidegree paths are not larger than 4.

Proof. We use induction on m. That is, we assume that we have proved
that the number Λ(k) exists for k = 2, 3, · · · , m− 1.

Assume that A1 is our starting singular point which is the singular point
x = y = 0 of system (2). In the following we divide our discussion into 3
cases according to the successors of A1.

In the first case all the successors of A1 are of degree smaller than m. By
the inductive hypothesis, it is clear that there are finitely many different
trees satisfying the conditions of this lemma in this case.

In the second case there is one successor of A1 which has degree m. By
Lemma 3(i), we know that A1 has at most 2 successors. The other, if exists,
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must be of degree 1. Let A2 denote the one of degree m. By Lemma 1,
we know that A1 must be non-dicritical, i.e., its characteristic polynomial
D(x, y) 6≡ 0. Therefore A2 is one of the singular points of system (6) on the
u-axis (here, without loss of generality, we assume D(0, y) 6= 0). Without
loss of generality, we assume that A2 is just x = u = 0. Now it is easy to
find that A2 can be taken as the singular point Ai studied in the case (i) or
(ii) of the proof of Lemma 8. In the case (i), we get the following subtree

A2
↗B2−→ · · · −→ Ak1−1

↗Bk1−1−→ Ak1

such that Bj is of degree 1 for any 2 ≤ j ≤ k1 − 1, deg(A2) = · · · =
deg(Ak1−1) = deg(Ak1) = m, but all the successors of Ak1 are of degree
smaller than m (see the proof of Lemma 5). We know k1 ≤ 4 from the
condition (ii) of this lemma. So, for trees in this lemma, the part before
Ak1 has finitely many possibilities. According to the inductive hypothesis,
the part after Ak1 has also finitely possibilities. Therefore in this case there
are finitely many different trees satisfying the conditions of our lemma. In
the case (ii), we know from the arguments of the proof of Lemma 8, that
this statement is still true.

In the third case A1 has only one successor A2 which is of degree m + 1.
We know from system (6) that either all the successors of A2 are of degree
smaller than m + 1, or they are a saddle and a singular point of degree
m + 1, which is denoted by A3. The same situation happens to A3. So we
get generally a subtree like the following

A1 −→ A2
↗B2−→ A3

↗B3−→ · · · −→ Ak2−1
↗Bk2−1−→ Ak2 ,

where k2 ≤ 4, deg(A2) = · · · = deg(Ak2−1) = deg(Ak2) = m + 1 and
B2, · · · , Bk2−1 are all saddles. Furthermore we require that all the suc-
cessors of Ak2 are of degree smaller than m + 1. Two cases may happen.
The first case is that all the successors of Ak2 are of degree smaller than
m. Again by the inductive hypothesis, we know in this case that there
are finitely many trees satisfying the conditions of this lemma. The second
case is that there is one successor of degree m which is denoted by Ak2+1.
There are at most two other successors which must be of degree 1 (see the
system for the singular point Ar in Lemma 4). The singular point Ak2+1

can be taken as the singular point Ai studied in the case (i) of (ii) of the
proof of Lemma 8. As in the last paragraph we know by induction that
there are still finitely many such trees. The proof is finished.

Remark 11. Lemma 10 is still true if the number 4 in the assumption
(ii) is replaced by any other fixed positive integer.



120 Q. JIANG AND J. LLIBRE

In the following, any path satisfying Lemma 5 will be assumed to be
maximal in the sense that any extension will not be a path studied in
Lemma 5. The following corollary is a consequence of Lemma 10.

Corollary 12. The following statements hold.

(i)The number of essential terminals in a blowing-up tree of a singular
point of degree m is bounded by an integer which depends only on m. Here
a terminal is called essential if it is not a saddle which appears in a path
studied in Lemma 5.

(ii)The number of maximal paths in a blowing-up tree of a singular point
of degree m is bounded by an integer depending only on m.

(iii)If we ignore the length of the paths studied in Lemma 5, then there
are finitely many blowing-up trees of singular points of degree m.

(iv)There are finitely many qualitative equivalence classes in the set of
all singular points of degree m.

Proof. The statements (i), (ii) and (iii) are immediate consequences of
Lemma 10. To prove (iv), we note that the local phase portrait of the
starting point of a blowing-up tree is determined by local phase portraits
of essential terminals and the parities of the lengths of the paths studied
in Lemma 5. They all have bounded number of possibilities. Therefore the
local phase portrait of the starting singular point has also finitely many
possibilities. That is, there are finitely many qualitatively different local
phase portraits for the set of singular points of degree m.

The rest of this section is the proof of Theorem F, and is also a description
of our method for the qualitative classification problem. As a preparation,
we have the following lemma which can be directly verified.

Lemma 13. Suppose that Ai −→ Ai+1 −→ · · · −→ Ai+r is an equidegree
path such that Ai satisfies the conditions in Lemma 5, and the degrees of the
successors of Ai+r are smaller than deg(Ai+r). Then we apply the operation
of type (G) to the singular point A1 if and only if r ≥ 1; and if r ≥ 1, the
system for Ai+r is obtained from the system for Ai by applying the operation
of type (G) in Definition 1. Furthermore, the constants d0, d1, · · · , dr−1

which appear in the operation of type (G) are just those given in the proof
of Lemma 5.

In fact, if we have found the sequence d0, d1, . . . , dj−1, then the existence
of the number dj is equivalent to that r ≥ j + 1. The condition for dj in
Definition 1 is equivalent to the fact that deg(Ai+j+1) = m where Ai+j+1 is
the singular point x = u = 0 of the system obtained by applying the change
of variables y = uxj+1 + d0x + d1x

2 + · · ·+ djx
j+1, dτ = x(j+1)(1−m)dt to

system (2).
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Proof. (Theorem F) Consider system (2) which is the general system
for singular points of degree m. Our aim is to determine the local phase
portrait of the singular point x = y = 0 of system (2), which is denoted by
A1. Let us proceed the first step, i.e. applying a single blowing-up or one
operation of type G to system (2).

If there is an equidegree path A1 −→ A2 −→ · · · −→ Ar studied in
Lemma 5 with r ≥ 1, then we apply the operation of type (G) to A1. We
know that the local phase portrait of A1 is determined by the local phase
portrait of Ar and the quantities r, a, b (see the rules described in the proof
of Lemma 5).

In all other cases, we apply a blowing-up to A1. Then the number of
successors, their ordering in the unit circle of the annulus T , the degree of
each one and the local phase portraits of those terminals all have finitely
many possibilities. Consequently there are only finitely many possibilities
happening to the successors. In order to distinguish these possibilities, a
finite set of quantities are employed. These quantities can be computed
from system (2) by finitely many operations of type (A)–(F). And the local
phase portrait of A1 is determined by this set of quantities and the local
phase portraits of the non-terminal successors of A1. But we have finitely
many cases in all to be considered separately.

Therefore after we finished the first step, we have finitely many cases
which are divided by a finite set of quantities. In some cases, there will be no
non-terminals and no further analysis is needed. In each of all other cases,
there are some non-terminals, and we should proceed further analysis. Let
us consider the collection of these cases and proceed the second step, i.e.,
for each case in this collection, applying the first step to each of those
non-terminals.

Similarly, after we finished the second step, we still get finitely many
cases which are distinguished by a finite set of quantities. In each case, the
local phase portrait of A1 is still determined by the local phase portraits
of a finite set of non-terminals and a finite set of quantities. Moreover all
these quantities can be computed by applying a finite set of operations of
types (A)–(G) to system (2).

As we continue this process, by Corollary 12, we will eventually arrive
at the situation in which there are no non-terminals in each case after
finitely many steps. Our analysis is stopped here. At this endpoint, we
get finitely many cases which are distinguished by a finite set of quantities.
In each case, the local phase portrait of A1 is determined by a finite set
of quantities. All these quantities can be computed by applying a finite
number of operations of types (A)–(G) to system (2). Since system (2) is
the general system for singular points of degree m, the above finiteness of
the amount of operations implies the boundedness in Theorem F. We have
finished the proof of Theorem F.
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4. THE BLOWING-UP PROCESS OF SINGULAR POINTS
OF DEGREE 2

From this section onwards, we proceed the analysis of the singular points
of degree 2, which will provide a proof of Theorem D. By definition, a
singular point of degree 2 can be taken as the singular point O = (0, 0) of
the system

ẋ = P2(x, y) + P3(x, y) + P4(x, y) + · · · ,

ẏ = Q2(x, y) + Q3(x, y) + Q4(x, y) + · · · ,
(17)

where P 2
2 (x, y) + Q2

2(x, y) 6≡ 0, Pi and Qi are homogeneous polynomials of
degree i. Of course, O is assumed to be an isolated singular point.

Two possibilities should be distinguished when we apply a blowing-up to
system (17), namely,

xQ2(x, y)− yP2(x, y) ≡ 0 or xQ2(x, y)− yP2(x, y) 6≡ 0.

In the second case, we can assume (after an affine change of the coordinate
system) that ∆(u) = Q2(1, u) − uP2(1, u) is a polynomial of degree 3.
According to the zeros of ∆(u), we have the following cases: (i) ∆(u) = 0
has no multiple roots; (ii) ∆(u) = 0 has a double root; (iii) ∆(u) = 0 has
a triple root.

Evidently the dicritical case (i.e., xQ2(x, y)−yP2(x, y) ≡ 0) and the case
(i) are very simple: their associated blowing-up process contains at most
one blowing-up.

Let us consider the case (iii). Evidently O has only one successor, say
A1, which corresponds to the unique triple root of ∆(u) = 0. By Lemma 1,
deg(A1) ≤ 3. If deg(A1) = 3, we apply a blowing-up to A1, then either all
successors of A1 are of degree less than 3, or they are one saddle B1 and a
singular point of degree 3, say, A2. If we apply a blowing-up to A2, we still
have the above possibilities. As we continue this argument, we eventually
arrive at the following subtree

O −→ A1
↗B1−→ · · · −→ Al−1

↗Bl−1−→ Al,

where deg(A1) = · · · = deg(Al−1) = 3, B1, . . . , Bl−1 are all saddles, and
the integer l is uniquely determined by the requirement that either (a)
Al is a singular point of degree less than 3 which corresponds to a triple
zero of the characteristic polynomial of Al−1; or (b) deg(Al) = 3, and the
characteristic polynomial of Al has no triple zero (so, by Lemma 1, each
successor of Al is of degree less than 3). The existence of l is an immediate
consequence of the Desingularization Theorem in §1.4. Notice that l ≥ 1.

More explicitly, let us apply Lemma 4 to this case. We first assume l > 1.
Then we know that Al−1 can be taken as the singular point x = y = 0 of
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the system

ẋ = xP̄2(x, y) + xP̄3(x, y) + xP̄4(x, y) + · · · ,

ẏ = Q̄3(x, y) + Q̄4(x, y) + Q̄5(x, y) + · · · ,
(18)

where Q̄3(0, 1) = −(l − 1)P̄2(0, 1) = −a(l − 1), a = P2(0, 1) 6= 0. The
characteristic polynomial of Al−1 is just

xQ̄3(x, y)− y · xP̄2(x, y) = x[Q̄3(x, y)− yP̄2(x, y)],

where the factor x corresponds to the singular point Bl−1, the part [. . . ]
must be the third power of some linear factor, which corresponds to the
singular point Al. Without loss of generality, we assume that this linear
factor is y (i.e., xQ̄3(x, y)−y ·xP̄2(x, y) = −laxy3). Now apply the blowing-
up y = xu, dτ = x2dt to system (18), and we obtain

ẋ = xP̄2(1, u) + x2P̄3(1, u) + x3P̄4(1, u) + · · · ,

u̇ = −lau3 + x[Q̄4(1, u)− uP̄3(1, u)] + x2[Q̄5(1, u)− uP̄4(1, u)] + · · · .
(19)

The singular point x = u = 0 is just Al. By the requirement for l, either
deg(Al) ≤ 2 or deg(Al) = 3. In the second case, we rewrite (19) as

ẋ = xP̃2(x, u) + xP̃3(x, u) + xP̃4(x, u) + · · · ,

u̇ = Q̃3(x, u) + Q̃4(x, u) + Q̃5(x, u)) + · · · .
(20)

Let ∆̄(u) = Q̃3(1, u)− uP̃2(1, u) = −(l + 1)au3 + · · · , where “ · · · ” is some
2-degree polynomial in u. Then by the requirement on l, we know that
∆̄(u) = 0 either has only simple roots or has a unique double root.

In the case l = 1, we apply a blowing-up to system (17). Then we find
that the resulting system is still described by system (19) if we set in (19)
P̄i = Pi, Q̄i+1 = Qi for any i ≥ 2 (here we keep the requirement that
the singular point x = u = 0 of system (19) is just Al = A1). Thus the
discussion on Al in the last paragraph is still valid in the case l = 1.

To sum up, we have the following classification. The notations here are
the same as those defined above, and will be used in the following sections
(§§5–9).

Proposition 14. The singular point O of system (17) must satisfy one
of the following conditions:

(i)xQ2(x, y)− yP2(x, y) ≡ 0;
(ii)∆(u) = 0 has no multiple roots;
(iii)∆(u) = 0 has a double root;
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(iv)∆(u) = 0 has a triple root, deg(Al) = 1;
(v)∆(u) = 0 has a triple root, deg(Al) = 2;
(vi)∆(u) = 0 has a triple root, deg(Al) = 3; ∆̄(u) = 0 has only simple

roots;
(vii)∆(u) = 0 has a triple root, deg(Al) = 3; ∆̄(u) = 0 has a double

root.

Based on this classification, our analysis of the singular point O of system
(17) in the following sections is divided into 7 cases, among which the cases
(i),(ii),(iii) are studied in §5,§6,§7 respectively; the cases (vi) and (vii) are
studied in §8, whereas §9 devotes to the cases (iv) and (v). Since the
constant a in systems (18) and (19) is different from zero, we can assume,
without loss of generality, that a = 1 in the following sections.

5. THE CASE XQ2(X, Y ) − Y P2(X, Y ) ≡ 0

In this case after a linear coordinate change and a rescaling of the time
variable if necessary, we can assume

P2(x, y) = xy, Q2(x, y) = y2.

Applying the blowing-up y = xu, dτ = x2dt to system (17), we get

ẋ = u + xP3(1, u) + x2P4(1, u) + · · · ,

u̇ = Q3(1, u)− uP3(1, u) + x[Q4(1, u)− uP4(1, u)] + · · · .
(21)

For convenience we rewrite system (21) as

ẋ = a1x + u + a3x
2 + a2xu + · · · ,

u̇ = b0 + b2x + b1u + · · · .
(22)

The local phase portrait of system (17) at O is determined by the local
phase portrait of system (22) on the u-axis, where there is only one singular
point x = u = 0 if b0 = 0, and no singular point if b0 6= 0. The details of
our analysis are given below according to the values of the parameters ai

and bi.
In system (22), if b0 6= 0, then the local phase portrait of system (17)

at x = y = 0 is given in Figure 3(1). If b0 = 0 and x = u = 0 is a
saddle, then it is Figure 3(2). If x = u = 0 is a node, then we get Figure
3(4). If x = u = 0 is a center or a focus, then we have Figure 3(3). If
x = u = 0 is a saddle-node, we obtain Figure 3(5). If x = u = 0 is a
singular point with one hyperbolic sector and one elliptic sector, then the
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local phase portrait of system (17) at O is Figure 3(6). If x = u = 0 is a
union of two hyperbolic sectors, we still get Figure 3(1). From Theorem
A we know that we have considered all possibilities. The following two
examples realize these 6 pictures.

Example 15. If we apply the change of variables y = xu, dτ = x2dt to
the system

ẋ = xy + a1x
3, ẏ = y2 + b0x

3 + (a1 + b1)x2y + b2x
4 + b3x

3y,

we obtain

ẋ = a1x + u, u̇ = b0 + b2x + b1u + b3xu.

If b0 = 1 and a1 = b1 = b2 = b3 = 0, then the local phase portrait of
x = y = 0 is Figure 3(1). Similarly, we obtain Figure 3(2) if b0 = a1 =
b1 = b3 = 0 and b2 = 1; Figure 3(3) if b1 = a1 = b0 = b3 = 0 and b2 = −1;
Figure 3(4) if b0 = b2 = b3 = 0 and a1 = b1 = 1; and Figure 3(5) if
b0 = b1 = b2 = 0, a1 = b3 = −1.

Example 16. The local phase portait of the system ẋ = xy, ẏ = y2 +
x3y − x8 at x = y = 0 is Figure 3(6). In fact, if we apply the change of
variables y = xu, dτ = x2dt to this system, we obtain ẋ = u, u̇ = xu− x5.
According to Theorem A, the local phase portrait of the singular point x =
u = 0 is the union of one hyperbolic sector and one elliptic sector. Now
the assertion follows from the above analysis.

6. THE CASE ∆(U) = 0 HAS NO MULTIPLE ROOTS

Making a linear change of variables if necessary, we can assume

P2(1, u) = u2 + a1u + a2

in system (17). So, when applying the blowing-up y = ux, dτ = xdt to it,
we obtain

ẋ = x(u2 + a1u + a2) + x2P3(1, u) + x3P4(1, u) + · · · ,

u̇ = ∆(u) + x[Q3(1, u)− uP3(1, u)] + x2[Q4(1, u)− uP4(1, u)] + · · · ,
(23)

where ∆(u) = Q2(1, u)− uP2(1, u) = −u3 + · · · with “ · · · ” being some 2-
degree polynomial in u. By the theory of blowing-ups (§2), the local phase
portrait of system (17) at x = y = 0 is obtained from the phase portrait of
system (23) on the u-axis. But, instead of studying system (23), we prefer
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to discuss the following more general system which will be used in §8:

ẋ = x(u2 + a1u + a2) + x2P3(1, u) + x3P4(1, u) + · · · ,

u̇ = B(u) + x[Q3(1, u)− uP3(1, u)] + x2[Q4(1, u)− uP4(1, u)] · · · ,
(24)

where Pi(x, y) and Qi(x, y) are homogeneous polynomials of degree i, the
function B(u) = −(l+1)u3 + · · · is a polynomial of degree 3, and the “ · · · ”
here is some 2-degree polynomial in u. We are interested in two cases for
system (24). The first is that l = 0, B(u) = ∆(u), Pi and Qi are those
in system (23). The second is that l > 0, B(u) = ∆̄(u), Pi and Qi are
correspondingly the polynomials P̃i−1 and Q̃i in system (20). We study
in §6 and §7 the phase portrait of system (24) on the u-axis. Then the
results in the first case are used in the same sections to obtain the local
phase portrait of system (17) at x = y = 0 in the cases (ii) and (iii) of
Proposition 14. The results in the second case are used in §8 to analyze
the cases (vi) and (vii) in Proposition 14 by using the method developed
in §3.

In the rest of this section we will study the phase portrait of system (24)
near the u-axis in the case that B(u) = 0 has no multiple roots. We divide
our discussion into two cases, see §6.1 and §6.2. We first give all pictures
for the phase portrait of system (24) near the u-axis. And then we give
the corresponding pictures for the local phase portrait of system (17) at
x = y = 0 in the case l = 0 by using the theory of blowing-ups (§2). For
the case l > 0, see §8.2.

6.1. B(u) = 0 has only one real root
In this situation we can write B(u) as

B(u) = −(l + 1)(u− b1)[(u− b2)2 + b2
3], b3 6= 0.

Here b1, b2, b3 and a1, a2 in system (24) are all real constants, which have
nothing to do with those of the previous section. We know that on the
u-axis, system (24) has a unique singular point x = u − b1 = 0, which
has at least one non-zero eigenvalue. Thus, by Theorem A, its local phase
portrait is either a saddle, or a node, or a saddle-node as is shown in Figure
6. These four pictures are realized in Example 17.

Example 17. The phase portrait of the system

ẋ = x(u2 + a1u + a2), u̇ = −(l + 1)u(u2 + 1) + a3x
3

on the u-axis is given in Figure 6(a) if we take a2 = 1, a1 = a3 = 0.
We obtain Figure 6(b) if a2 = −1, a1 = a3 = 0; we have Figure 6(c) if
a2 = 0, a1 = a3 = 1. Finally, to obtain Figure 6.d), we take a2 = 0, a1 =
1, a3 = −1.



QUALITATIVE CLASSIFICATION OF SINGULAR POINTS 127

FIG. 6. The phase portrait of system (24) on the u-axis in the case that

B(u) = 0 has only one real root.

In the case l = 0, by using the theory of blowing-ups (§2), we obtain 3
pictures (Figures 3(7), 3(8), 3(9)) for the local phase portrait of system (17)
at x = y = 0 from Figure 6. More accurately, from Figure 6(a) we obtain
Figure 3(7); from Figure 6(b) we get Figure 3(8); from Figures 6(c) and
6(d), we get Figure 3(9). These 3 pictures can be realized since the system
in Example 17 is obtained by applying the blowing-up y = ux, dτ = xdt
to the system

ẋ = y2 + a1xy + a2x
2, ẏ = a1y

2 + (a2 − 1)xy + a3x
5

if l = 0. The values for the parameters a1, a2, a3 are: a2 = 1, a1 = a3 = 0
for Figure (7); a2 = −1, a1 = a3 = 0 for Figure (8); a2 = 0, a1 = a3 = 1 for
Figure (9).

6.2. B(u) = 0 has 3 different real roots
In this case we can assume that

B(u) = −(l + 1)(u− b01)(u− b02)(u− b03), b01 < b02 < b03.

Then ci = P2(1, b0i) is the eigenvalue in the x-direction for the singular
point (0, b0i). So the phase portrait of system (24) on the u-axis is deter-
mined by the signs of ci. The following pictures are drawn according to
the location of the two zeros of the polynomial P2(1, u) on the u-axis. If
no ci is zero for i = 1, 2, 3, then both eigenvalues at (0, b0i) are different
from zero. Consequently there are 7 possible pictures for the local phase
portrait of system (24) on the u-axis shown in Figure 7. They are realized
in Example 18.

Example 18. In the system

ẋ = x(u− a)(u− b), u̇ = −(l + 1)u(u− 1)(u + 1),



128 Q. JIANG AND J. LLIBRE

FIG. 7. The phase portrait of system (24) on the u-axis where there are 3

hyperbolic singular points.

let a and b belong to some of the intervals (∞, 1), (1, 0), (0,−1), (−1,−∞).
All the combinations will give the 7 pictures of Figure 7, for example, if
a = b = 2, we have Figure 7(a); if a = 1

2 , b = − 1
2 , we have Figure 7(b); if

a = 1
2 , b = −2, we get Figure 7(c); if a = − 1

2 , b = −2, we obtain Figure
7(d); if a = 2, b = 1

2 , we get Figure 7(e); if a = 2, b = − 1
2 , we obtain Figure

7(f); and if a = 2, b = −2, we have Figure 7(g).

Now let l = 0. We get 3 pictures (Figures 3(10), 3(11), 3(12)) for the local
phase portrait of system (17) at x = y = 0 from Figure 7. Figure 3(10)
corresponds to Figures 7(a),(c),(f); Figure 3(11) corresponds to Figures
7(d),(e),(g); and Figure 3(12) corresponds to Figure 7(b). The following
system realize these 3 pictures

ẋ = (y − ax)(y − bx), ẏ = −(a + b)y2 + (1 + ab)xy,

since the system in Example 18 is obtained by applying the blowing-up
y = ux, dτ = xdt to it if l = 0.

Now assume that one ci is zero. The only interesting case is when the
corresponding singular point (0, b0i) is a saddle-node of system (24). By the
symmetry with respect to the u-axis, we can fix the direction of the orbits
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FIG. 8. The phase portrait of system (24) on the u-axis where there are two

hyperbolic singular points and one saddle-node.

FIG. 9. The phase portrait of system (24) on the u-axis where there are one

hyperbolic singular points and two saddle-node.

entering at this saddle-node along the characteristic direction which is not
the u-axis. As in Figure 7, we can get all possible pictures according to the
location of the two zeros of P2(1, u). This is Figure 8, which is realized by
Example 19 below. We keep in mind that Figure 8 contains all possibilities
modulo the symmetry with respect to the u-axis. Similarly Figures 9, 12,
17 below contain also all possibilities modulo this symmetry.

Example 19. In the system

ẋ = x(u− a)(u− b) + x2, u̇ = −(l + 1)u(u− 1)(u + 1),

if we choose a = 1, and b belongs to one of the intervals (0,∞), (−1, 0),
(−∞,−1), then we get Figures 8(a),(c),(b) respectively. Similarly if a = 0,



130 Q. JIANG AND J. LLIBRE

FIG. 10. The phase portrait of system (25) on the u-axis in the case that

a2 = 0 and Q3(1, 0) 6= 0.

and b belongs to one of the intervals (−1, 1), (1,∞), (−∞,−1), we will get
Figures 8(d),(f),(e) respectively; if a = −1, and b belongs to one of the
intervals (−∞, 0), (0, 1), (1,∞), then we obtain Figures 8(g),(h),(i) corre-
spondingly.

In the case l = 0, there are 2 pictures (Figures 3(13), 3(14)) for the local
phase portrait of system (17) at x = y = 0. From Figures 8(a), (b), (e), (f),
(g), (i), we obtain Figure 3(13); the other 3 pictures correspond to Figure
(14). By the same reason, Figures 3(13) and 3(14) can be realized by the
following system

ẋ = (y − ax)(y − bx) + x3, ẏ = −(a + b)y2 + (ab + 1)xy + x2y.

For example, we can choose a = 1, b = 1
2 for Figure 3(13), a = 1, b = − 1

2
for Figure 3(14).

Now assume two ci are zero. As in the above cases, Figure 9 shows all
the possibilities for the phase portrait of system (24) near the u-axis. They
can be realized by the following system

ẋ = x(u− a)(u− b) + (u− c)x2, u̇ = −(l + 1)u(u− 1)(u + 1).
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The values of the parameters a, b and c can be taken as: a = 1, b = 0, c =
−1; a = 1, b = 0, c = 1

2 ; a = 1, b = −1, c = −2; a = 1, b = −1, c = 0; a =
0, b = −1, c = −2; a = 0, b = −1, c = − 1

2 for Figures 9(a),(b),(c),(d),(e),(f)
respectively.

In the case l = 0, we get Figure 3(15) from Figures 9(a),(c),(e); and
Figure 3(16) from Figures 9(b),(d),(f). By the same reason as in the above
cases, these two pictures are realized by the system

ẋ = (y−ax)(y−bx)+(y−cx)x2, ẏ = −(a+b)y2+(ab+1)xy+(y−cx)xy,

from which we obtain Figure 3(15) if we take a = 1, b = 0, c = −1; and
Figure 3(16) if a = 1, b = 0, c = 1

2 .
We remark that at most two ci can be zero because P2 is a polynomial

of degree 2. Thus we have considered all possibilities.

7. THE CASE ∆(U) = 0 HAS A DOUBLE ROOT

In this case, we can assume

∆(u) = −u2(u− 1).

To obtain all possible pictures for the local phase portrait of system (17)
at x = y = 0, we need to analyze the system (23) on the u-axis. As we
explained at the beginning of §6, we study the more general system (24),
which can be written as

ẋ = x(u2 + a1u + a2) + x2P3(1, u) + · · · ,

u̇ = −(l + 1)u3 + u2 + x[Q3(1, u)− uP3(1, u)] + · · · ,
(25)

after a rescaling of the variables x, u and t, since B(u) = 0 has a double
root. We divide the analysis of system (25) into several cases.

7.1. The case a2 6= 0
In this case there are two singular points on the u-axis, namely, (0, 0) and

(0, 1
l+1 ). Each of them has at least one non-zero eigenvalue. Thus Figure

10 contains all the possible pictures for the phase portrait of system (25)
on the u-axis. They can be realized by the system

ẋ = x(u− a)(u− b) + αx2, u̇ = u2 − (l + 1)u3.

The values of the parameters α, a and b can be taken as: a = b = 2, α = 0
for Figure 10(a); a = 2, b = 1

l+2 , α = 0 for Figure 10(b); a = b = 1
l+1 , α = 1

for Figure 10(c); a = b = 1
l+1 , α = −1 for Figure 10(d); a = 1

l+2 , b =
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−1, α = 0 for Figure 10(e); a = 2, b = −1, α = 0 for Figure 10(f); a =
1

l+1 , b = −1, α = −1 for Figure 10(g); a = 1
l+1 , b = −1, α = 1 for Figure

10(h).
In the case l = 0 we obtain 3 pictures (Figures 3(17), 3(18), 3(19)) for

the phase portrait of system (17) at x = y = 0. We get Figure 3(17) from
Figures 10(b),(f). Figure 3(18) is obtained from Figures 10(c),(d),(g),(h).
Whereas Figure 3(19) corresponds to Figures 10(a),(e). These 3 pictures
can also be realized since the above system is obtained by applying the
blowing-up y = ux, dτ = xdt to the system

ẋ = (y − ax)(y − bx) + αx3, ẏ = (1− a− b)y2 + abxy + αx2y

if l = 0. The values of the parameters a, b and α can be taken as: a =
2, b = 1

l+2 , α = 0 for Figure 3(17); a = b = 1
l+1 , α = 1 for Figure 3(18);

a = b = 2, α = 0 for Figure 3(19).

7.2. The case a2 = 0, Q3(1, 0) 6= 0
In this case we can always take Q3(1, 0) > 0 in system (25) by using

the rescaling: (x, u, t) → (−x, u, t). There are two singular points on the
u-axis for system (25). The singular point x = u− 1

l+1 = 0 has at least one
non-zero eigenvalue. So it is either a saddle, or a node, or a saddle-node.
The singular point x = u = 0 is just the one studied in §10.2 because, if the
variables x and u in system (25) are changed to y and x respectively, we
then get system (50) in §10.2. So Figure 32 has shown all possible pictures
for the local phase portrait of system (25) at x = u = 0. Furthermore,
we must have in system (25) that a1 ≥ 0 if x = u = 0 is not a saddle.
Correspondingly, x = u− 1

l+1 = 0 must be a saddle. So Figure 11 contains
all possible pictures for the phase portrait of system (25) on the u-axis.

We use the following system to realize the pictures in Figure 11:

ẋ = x(u2 + a1u) + αx2, u̇ = u2 − (l + 1)u3 + x.

To choose the values of the parameters α and a1 for each picture in Figure
11, we can use the analysis in §10.2. For example, we can choose a1 =
3, α = 0 for Figure 11(a); a1 = 1, α = 0 for Figure 11(b); a1 = 0, α = 2 for
Figure 11(c); a1 = α = 0 for Figure 11(d); α = 0, a1 = − 1

l+2 for Figure
11(e); α = 0, a1 = −2 for Figure 11(f); α = 0, a1 = − 1

l+1 for Figure 11(g);
and α = −2, a1 = − 1

l+1 for Figure 11(h).
In the case l = 0 we get 6 pictures (Figures 3(20),(21),(22), (23), (24),(27))

for the local phase portrait of system (17) at x = y = 0, among which Fig-
ure 3(27) comes from Figure 11(a); Figure 3(24) corresponds to Figure
11(b); Figure 3(20) comes from Figures 11(c) and (d); Figure 3(21) comes
from Figure 11(e); Figure 3(22) corresponds to Figure 11(f); Figure 3(23)
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FIG. 11. Figure The phase portrait of system (25) on the u-axis in the case

a2 6= 0.

corresponds to Figures 11(g) and (h). Since the above system is obtained
in the case l = 0 by applying the blowing-up y = ux, dτ = xdt to the
system

ẋ = y2 + a1xy + αx3, ẏ = (1 + a1)y2 + αx2y + x3,

these 6 pictures can be realized by this system. The corresponding values
for the parameters can be chosen as those for the realization of Figure 11
according to the above correspondence between these 6 pictures and those
in Figure 11.

7.3. The case a2 = Q3(1, 0) = 0
Consider the following system

ẋ = a1xu + a3x
2 + xP ∗2 (x, u) + xP ∗3 (x, u) + · · · ,

u̇ = u2 + b1xu + b2x
2 + Q∗

3(x, u) + Q∗
4(x, u) + · · · ,

(26)

where P ∗i and Q∗i are homogeneous polynomials of degree i, P ∗2 (0, u) = u2,
Q∗

3(0, u) = −(l + 1)u3; P ∗i (0, u) = Q∗i+1(0, u) = 0 when i > 2. Notice that
system (26) is a rewritten form of system (25). We will use it to study
the singular point x = u = 0 of system (25). The other singular point of
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FIG. 12. The phase portrait of system (25) on the u-axis in the case studied

in §7.3.1.

system (25) on u-axis is x = u − 1
l+1 = 0. Its local phase portrait has 4

possibilities: it is a saddle if (l+1)a1+1 > 0; it is a node if (l+1)a1+1 < 0; if
(l+1)a1+1 = 0, it is a saddle-node, but this time there are two possibilities
which are distinguished by the orientation of the characteristic orbits that
are not on the u-axis.

Let

D∗(x, u) = x[(1− a1)u2 + (b1 − a3)xu + b2x
2].

The singular point x = u = 0 will be studied in the rest of this section
according to the values of the parameters ai and bi.

7.3.1 The case 1− a1 = b1 − a3 = b2 = 0
In this case D∗(x, u) ≡ 0. The singular point x = u− 1

l+1 = 0 is a saddle.
According to §5, there are 3 topologically different pictures for the local
phase portrait of system (26) at x = u = 0. So there are 3 pictures for the
phase portrait of system (25) on the u-axis, which are shown in Figure 12,
and realized by Example 20.

Example 20. Consider the system

ẋ = ux+ a1x
3 +xu2, u̇ = u2− (l +1)u3 +(a1 + b1)x2u+ b3x

3u+ b2x
4.

Applying the blowing-up u = xu1, dτ = x2dt to it, we obtain

ẋ = u1 + a1x + xu2
1, u̇1 = −(l + 2)u3

1 + b1u1 + b2x + b3xu1.

The point x = u1 = 0 is a saddle if we choose b2 = b3 = 0, a1 = 1, b1 = −1;
a focus if a1 = b1 = 1, b2 = −1, b3 = 0; a saddle-node if a1 = b3 = −1, b1 =
b2 = 0. The corresponding pictures for the phase portrait of system (25)
on the u-axis are Figures 12(a),(b) and (c) respectively.

In the case l = 0 we get 3 pictures (Figures 3(25),(26),(27)) for the phase
portrait of system (17) at x = y = 0. From Figure 12(a) we get Figure
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3(25); Figure 3(26) comes from Figure 12(b), and Figure 12(c) corresponds
to Figure 3(27). These 3 pictures can be realized by the system

ẋ = y2 + xy + a1x
4, ẏ = 2y2 + (2a1 + b1)x3y + b2x

6 + b3x
4y,

since the system in Example 20 is obtained by applying the blowing-up
y = xu, dτ = xdt to it when l = 0. And the values of the parameters can
be chosen as those for the corresponding picture in Figure 12.

7.3.2 The case a1 = 1, D∗(x, u) 6≡ 0
Apply the following two changes of variables

x = us, dτ = udt; u = xv, dτ = xdt,

to system (26), we obtain the following two systems

u̇ = (1 + · · · )u, ṡ = (a3 − b1)s2 − b2s
3 + u[· · · ], (27)

and

ẋ = (v + a3)x + x2[· · · ], v̇ = (b1 − a3)v + b2 + x[· · · ], (28)

where [· · · ] is some analytic function. Now we use these two systems to
obtain all possible pictures for the phase portrait of system (25) at x =
u = 0 modulo the symmetry with respect to the u-axis. We note that we
can assume a3 − b1 ≥ 0. To see this, we know that the above symmetry
is generated by the change (x, u, t) → (−x, u, t) in system (25). This is
equivalent to the transformation (u, s, τ) → (u,−s, τ) in system (27) and
(x, v, τ) → (−x,−v,−τ) in system (28). After these changes a3 − b1 is
changed to b1 − a3. This implies that it is sufficient to consider the case
a3 − b1 ≥ 0.

Now we can show that the 6 pictures of Figure 13 are all the possibilities
for the phase portrait of system (25) at x = u = 0. First we assume a3 −
b1 = 0. Then system (28) has no singular points on the v-axis. Moreover
u = s = 0 is a saddle if b2 > 0; a node if b2 < 0. Correspondingly the
phase portrait of system (25) at x = u = 0 is Figure 13(a) or (b). Now we
assume a3 − b1 > 0. Then u = s = 0 is a saddle-node. System (28) has
a unique singular point x = v − b2

a3−b1
= 0 on the v-axis. It is a saddle if

b2 + a2
3− a3b1 > 0; a node if b2 + a2

3− a3b1 < 0; a saddle-node, or a saddle,
or a node if b2 + a2

3 − a3b1 = 0. The first two cases correspond to Figures
13(c) and (d). In the third case, only the saddle-node is interesting since
we have considered the saddle and the node. This case has two possibilities
which are Figures 13(e) and (f).

Since the singular point x = u− 1
l+1 = 0 is always a saddle in this case,

the corresponding pictures for the phase portrait of system (25) on the
u-axis are those in Figure 14.
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FIG. 13. The local phase portrait of system (25) at x = u = 0 in the case

studied in §7.3.2.

FIG. 14. The phase portrait of system (25) on the u-axis in the case studied

in §7.3.2.
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Example 21. Consider the following system

ẋ = xu + a3x
2 + a4x

3 + xu2, u̇ = u2 + b1xu− (l + 1)u3 + a4x
2u + b2x

2.

If we apply a blowing-up to it, then the system corresponding to (28) is the
following

ẋ = x(v + a3) + a4x
2 + x2v2, v̇ = (b1 − a3)v + b2 − (l + 2)xv3.

From this system, we can easily find the values of the parameters ai and bi to
realize all the pictures in Figure 14. Thus we can choose b1 = a3 = a4 = 0
and b2 = 1 for Figure 14(a); b1 = a3 = a4 = 0, b2 = −1 for Figure 14(b);
b1 = a4 = 0, a3 = b2 = 1 for Figure 14(c); b1 = a4 = 0, a3 = 1, b2 = −2 for
Figure 15(d); b1 = 0, a3 = 1, b2 = −1, a4 = −l − 4 for Figure 14(e); and
b1 = a4 = 0, a3 = 1, b2 = −1 for Figure 14(f).

In the case l = 0 we get four pictures for the phase portrait of system
(17) at x = y = 0. That is, we obtain Figure 3(7) from Figure 14(a); Figure
3(26) from Figures 14(b) and (d); Figure 3(28) from Figure 14(c); Figure
3(29) from Figures 14(e) and (f). To realize these pictures, we can use the
system

ẋ = xy + y2 + a3x
3 + a4x

4, ẏ = 2y2 + (a3 + b1)x2y + 2a4x
3y + b2x

4,

since when applying the blowing-up y = xu, dτ = xdt to it, we obtain the
system of Example 21 if l = 0. The values of the parameters can be chosen
those for the corresponding pictures in Figure 14.

7.3.3 The case 1− a1 6= 0, D∗(1, u) has no real roots
Apply the following changes of variables

u = xv, dτ = xdt; x = us, dτ = udt,

to system (26), we obtain two systems

ẋ = x(a1v + a3) + x2P ∗2 (1, v) + · · · , v̇ = D∗(1, v) + x[· · · ] (29)

and

u̇ = u + · · · , ṡ = (a1 − 1)s + · · · , (30)

where [· · · ] denotes some analytic function. In the present case D∗(1, v)
has no real zeros, so there are no singular points on the v-axis. When
a1 > 1, the point u = s = 0 is a node and, correspondingly, the point
x = u − 1

l+1 = 0 in system (25) is a saddle. If a1 < 1, then u = s = 0
is a saddle. Correspondingly, the point x = u − 1

l+1 = 0 can be a node,
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FIG. 15. The phase portrait of system (25) on the u-axis in the case studied

in §7.3.3.

a saddle or a saddle-node. So Figure 15 contains all possible pictures for
the phase portrait of system (25) on the u-axis, which are realized by the
following example.

Example 22. For the system

ẋ = a1xu + a3x
2 + xu2, u̇ = u2 + a3xu + (1− a1)x2 − (l + 1)u3,

we have D∗(1, u) = (1 − a1)(u2 + 1). We can choose a1 = 2 and a3 = 0
for Figure 15(a); a1 = a3 = 0 for Figure 15(b); a1 = − 1

l+1 , a3 = 1 for
Figure 15(c); a1 = − 1

l+1 , a3 = −1 for Figure 15(d); and a1 = −2, a3 = 0
for Figure 15(e).

In the case l = 0 there are no new pictures for the phase portrait of
system (17) at x = y = 0. We get Figure 3(26) from Figure 15(a); Figure
3(7) from Figure 15(b); Figure 3(9) from Figures 15(c) and (d); and Figure
3(8) from Figure 15(e).

7.3.4 The case that 1 − a1 6= 0 and D∗(1, u) = 0 has two different
roots

Let v∗2 > v∗1 be the two roots of the equation D∗(1, v) = 0. Then we have

D∗(1, v) = (1− a1)(v − v∗1)(v − v∗2).

Now we can completely analyze this case by using the systems (29) and
(30). The discussion is divided into 4 cases.
The case a1 > 1. In this case the phase portrait of system (29) on the
v-axis has 7 possibilities which are shown in Figure 16. Correspondingly
Figure 17 contains all the possibilities for the phase portrait of system (25)
on the u-axis which are realized by the following example.

Example 23. Applying the blowing-up u = xv, dτ = xdt to the system

ẋ = a1xu+a3x
2+xu2+a4x

3, u̇ = u2−(l+1)u3+(a3+a1−1)xu+a4x
2u,
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FIG. 16. The phase portrait of system (29) on the v-axis in the case studied

in §7.3.4.

FIG. 17. The phase portrait of system (25) on the u-axis in the case studied

in §7.3.4 with a1 > 0.
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FIG. 18. The phase portrait of system (29) on the v-axis in the case studied

in §7.3.4 with − 1
l+1

< a1 < 1.

we get

ẋ = x(a1v + a3) + x2(v2 + a4), v̇ = (1− a1)v(v − 1)− (l + 2)xv3.

Let a1 = 2. Then if a3 = −4, we obtain Figure 17(a); if a3 = 1, we have
Figure 17(b); if a3 = −1, we get Figure 17(c); if a3 = −2, a4 = 2l + 4,
we have Figure 17(d); if a3 = −2, a4 = 2l, we obtain Figure 17(e); if
a3 = 0, a4 = 1, we get Figure 17(f); and if a3 = 0, a4 = −1, we have Figure
17(g).

In the case l = 0 we get Figures 3(25),(26) and (27) from Figure 17 for
the phase portrait of system (17) at x = y = 0. More precisely, we get
Figure 3(26) from Figures 17(a) and (b); we get Figure 3(25) from Figure
17(c); and we get Figure 3(27) from Figures 17(d),(e),(f) and (g).

The case − 1
l+1 < a1 < 1. In this case u = s = 0 in system (30) is a saddle,

and x = u − 1
l+1 = 0 in system (25) is also a saddle. The phase portrait

of system (29) on the v-axis has 16 possibilities which are shown in Figure
18 among which (a)–(g) appear in the case a1 ≥ 0; whereas (a),(b),(h)–(l)
appear in the case a1 < 0; (m)–(p) only appear in the case a1 = a3 = 0.
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FIG. 19. The phase portrait of system (25) on the u-axis in the case studied

in §7.3.4 with − 1
l+1

< a1 < 1.

Correspondingly we have 16 pictures for the phase portrait of system (25)
on the u-axis which are shown in Figure 19.

All the pictures in Figure 19 are realized by Example 23. We can choose
a1 = 0, a3 = −1, a4 = 0 for Figure 19(a); a1 = 0, a3 = 1, a4 = 0 for Figure
19(b); a1 = 1

2 , a3 = − 1
4 , a4 = 0 for Figure 19(c), a1 = 1

2 , a3 = − 1
2 , a4 = 0

for Figure 19(d); a1 = 1
2 , a3 = − 1

2 , a4 = −l − 4 for Figure 19(e); a1 =
1
2 , a3 = 0, a4 = 1 for Figure 19(f); a1 = 1

2 , a3 = 0, a4 = −1 for Figure 19(g);
a1 = − 1

l+2 , a3 = 1
2l+4 , a4 = 0 for Figure 19(h); a1 = − 1

l+2 , a3 = 1
l+2 , a4 = 0

for Figure 19(i); a1 = − 1
l+2 , a3 = 1

l+2 , a4 = − 2
l+3 for Figure 19(j); a1 =

− 1
l+2 , a3 = 0, a4 = 1 for Figure 19(k); a1 = − 1

l+2 , a3 = 0, a4 = −1 for
Figure 19(l); a1 = a3 = 0, a4 = 1 for Figure 19(m); a1 = a3 = 0, a4 = −2
for Figure 19(n); a1 = a3 = 0, a4 = − 1

2 for Figure 19(o). Figure 19(p) is
realized by the system

ẋ = xu2 + a4x
3 + a5x

2u, u̇ = u2 − (l + 1)u3 − xu + a4x
2u + a5xu2,

if we choose a4 = 1 and a5 = −3.
In the case l = 0 there are 7 pictures for the phase portrait of system

(17) at x = y = 0 corresponding to Figure 19, among which we have
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Figure 3(28) from Figures 19(a) and (b); Figure 3(26) comes from Figure
19(c); Figure 3(29) corresponds to Figures 19(d),(e),(f),(g); we get Figure
3(30) from Figure 19(h), and Figure 3(31) from Figures 19(i)–(l); we obtain
Figure 3(19) from Figures 19(m) and (n), and Figure 3(65) from Figures
19(o) and (p). There are 3 new among these 7 pictures, and all of them
can be realized by the system

ẋ = a1xy + y2 + a3x
3 + a4x

4 + a5x
2y,

ẏ = (1 + a1)y2 + (2a3 + a1 − 1)x2y + 2a4x
3y + 2a5xy2,

Since the systems which realize Figure 19 are obtained by applying the
blowing-up y = xu, dτ = xdt to it if l = 0. So we have Figure 3(30) if
a1 = − 1

2 , a3 = 1
4 , a4 = a5 = 0; Figure 3(31) if a1 = − 1

2 , a3 = 1
2 , a4 = a5 =

0; and Figure 3(65) if a1 = a3 = 0, a4 = 1, a5 = −3.

The case a1 = − 1
l+1 . In this case the point x = u − 1

l+1 = 0 of system
(25) can be a saddle, a node or a saddle-node; and the pictures for the
phase portrait of system (29) on the v-axis are just Figures 18(a),(b),(h)–
(l). Thus the phase portrait of system (25) on the u-axis has been shown
in Figure 19 if the point x = u− 1

l+1 = 0 is a saddle. If this point is a node,
then the corresponding pictures will appear in Figure 21 below. In the case
that x = u− 1

l+1 = 0 is a saddle-node, modulo the symmetry with respect
to the u-axis, Figure 20 contains all the possibilities for the phase portrait
of system (25) on the u-axis. They are realized by the next example.

Example 24. Applying the change of variables u = xv, dτ = xdt to the
system

ẋ = − 1
l + 1

xu + a3x
2 + xu2 + a4x

3 + a5x
2u,

u̇ = u2 − (l + 1)u3 + (a3 − l + 2
l + 1

)xu + a4x
2u + a5xu2,

we obtain

ẋ = − 1
l + 1

xv +a3x+x2[v2 +a4 +a5v], v̇ =
l + 2
l + 1

v(v−1)− (l+2)xv3.

To realize the pictures of Figure 20, the values of the parameters should
be chosen such that the point x = u − 1

l+1 = 0 is a saddle-node, and the
phase portrait of the last system on the v-axis is the corresponding picture
in Figure 18. Thus we can choose a3 = −1, a4 = 0, a5 = l + 3 for Figure
20(a); a3 = 2

l+1 , a4 = a5 = 0 for Figure 20(b); a3 = 1
2l+2 , a4 = 0, a5 = 1

for Figure 20(c); a3 = 1
l+1 , a4 = 0, a5 = 1 for Figure 20(d); a3 = 1

l+1 , a4 =
−2, a5 = 1 for Figure 20(e); a3 = 0, a5 = 2, a4 = 1 for Figure 20(f); and
a3 = a5 = 0, a4 = −1 for Figure 20(g).



QUALITATIVE CLASSIFICATION OF SINGULAR POINTS 143

FIG. 20. The phase portrait of system (25) on the u-axis in the case studied

in §7.3.4 with a1 = − 1
l+1

.

In the case l = 0 there are 5 pictures for the phase portrait of system
(17) at x = y = 0. We obtain Figures 3(32), 3(32) and 3(34) from Figures
20(a),(b) and (c) respectively; we get Figure 3(35) from Figures 20(d) and
(e), and Figure 3(36) from Figures 20(f) and (g). These 5 pictures can all
be realized by the system

ẋ = − 1
l + 1

xy+y2+a3x
3+a4x

4+a5x
2y, ẏ = (2a3−2)x2y+2a4x

3y+2a5xy2,

because we can obtain the system of Example 14 by applying the blowing-
up y = xu, dτ = xdt to it. The values of the parameters can be chosen as
those for the corresponding pictures in Figure 20.

The case a1 < − 1
l+1 . In this case the point x = u − 1

l+1 = 0 of system
(25) is a node. The pictures for the phase portrait of system (29) on the
v-axis are Figures 18(a),(b),(h)–(l). Correspondingly we obtain 7 pictures
for the phase portrait of system (25) on the u-axis, which are shown in
Figure 21 and realized by Example 23. Let a1 = −2. Then the values of
the other parameters in Example 23 can be chosen as a3 = −1, a4 = 0 for
Figure 21(a); a3 = 4, a4 = 0 for Figure 21(b); a3 = 1, a4 = 0 for Figure
21(c); a3 = 2, a4 = 2l+2

3 for Figure 21(d); a3 = 2, a4 = 0 for Figure 21(e);
a3 = 0, a4 = 1 for Figure 21(f); and a3 = 0, a4 = −1 for Figure 21(g).
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FIG. 21. The phase portrait of system (25) on the u-axis in the case studied

in §7.3.4 with a1 < − 1
l+1

.

In the case l = 0 there are 3 pictures for the phase portrait of system
(17) at x = y = 0 corresponding to Figure 21. We get Figure 3(37) from
Figures 21(a) and (b); Figure 3(39) from Figure 21(c); Figure 3(38) from
Figures 21(d)–(g). By a reason similar to the above cases, we know that
all of them can be realized.

7.4. 1 − a1 6= 0 and D∗(1, u) has a double root
This case is similar to the one that we have seen in §4. We have in

general the following blowing-up tree

A∗1
↗B∗1−→ · · · −→ A∗k−1

↗B∗k−1−→ A∗k,

where A∗1 is the singular point x = u = 0 of system (26), deg(A∗1) = · · · =
deg(A∗k−1) = 2, and B∗

1 , · · · , B∗
k−1 are singular points of degree 1. This

tree is uniquely determined by the requirement on the singular point A∗k.
Roughly speaking, A∗k is a singular point that can be identified with the
singular point x = u = 0 of system (25) analyzed in §§7.1–7.3.4. To make
this requirement precise, we apply Lemma 5 to the present case. As in
the proof of Lemma 5, we can inductively find the systems governing the
singular points in this tree. Let u = u1. We get the system for A∗1 by
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replacing u with u1. For 2 ≤ i ≤ k− 1, we can inductively show that A∗i is
the singular point x = ui = 0 of the system

ẋ = a1xui + x2[· · · ], u̇i = [1− (i− 1)a1]u2
i + x[· · · ],

where [· · · ] denotes some analytic function at x = ui = 0. For any 1 ≤ i ≤
k − 2, B∗

i is the singular point v = ui = 0 of the system

u̇i = [1− (i− 1)a1]ui + · · · , v̇ = (ia1 − 1)v + · · · . (31)

The points A∗i+1 and B∗
i are obtained by applying the following changes of

variables to A∗i

ui = (ui+1 + di)x, dτ = xdt; x = vui, dτ = uidt,

where di is a real constant such that for any 1 ≤ i ≤ k−2, the characteristic
polynomial of the singular point A∗i can be written as (1− ia1)x(ui−dix)2

with 1− ia1 6= 0. Up to now all the statements follow directly from Lemma
5. Now we begin to formulate our requirement. We first need that the
characteristic polynomial of A∗k−1 can be written as [1− (k−1)a1]x(uk−1−
dk−1x)2 such that 1 − (k − 1)a1 6= 0. Thus if we apply the above two
changes of variables (with i = k − 1) to A∗k−1, then B∗

k−1 is still described
by system (31) with i = k − 1, and A∗k is the singular point x = uk = 0 of
the system

ẋ = a1xuk+ā2x+x2P (x, uk), u̇k = [1−(k−1)a1]u2
k+xQ(x, uk). (32)

The difference between (31) and (32) is that ā2 and Q(0, 0) need not be
zero. If ā2 = Q(0, 0) = 0, then deg(A∗k) = 2. In this case, we require that
the degrees of the successors are smaller than 2.

Now we begin the investigation of the local phase portrait of A∗1, which
is the unique 2-degree singular point of system (25) on the u-axis. For
this system, the u-axis is an invariant line on which the regular orbits can
be easily determined from system (26). But for convenience we prefer to
consider the following local phase portrait instead of studying A∗1 directly:
the orbits on the u-axis are the same as those of A∗1; the left and right
parts are topologically (i.e., need not be qualitatively) the same as the
corresponding parts of the local phase portrait of A∗1. It is easy to check
that both local phase portraits will produce the same local phase portrait
of system (17) at x = y = 0 in the case l = 0 (the same is true for the case
l > 0 in system (25) which will be used in §8). Due to this fact we identify
these two local phase portraits below. And both of them are called as the
local phase portrait of A∗1.
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Now we apply Lemma 5 to the present case. Then we can easily conclude
that the local phase portrait of A∗1 can be obtained from that of A∗k, and
the rule is just the following (see the proof of Lemma 5):

(i) Since the present case is just the case m = 2 and b = 1 in Lemma
5, we conclude that some B∗

i is a node if and only if a1 belongs to one
of the following intervals: (1, +∞), (1

2 , 1), (1
3 , 1

2 ), . . . , ( 1
k−1 , 1

k−2 ). We know
also from Lemma 5 that if one B∗

i is an anti-saddle, then it must be a node
and all other B∗

j , 1 ≤ j ≤ k − 1, j 6= i, are saddles.
(ii) From system (32), we know that the local phase portrait of A∗k is

represented by the pictures obtained in §7.3.1 and §7.3.2 if and only if
a1 = 1

k and ā2 = Q(0, 0) = 0 in system (32).
(iii) If all the B∗

i , 1 ≤ i ≤ k − 1, are saddles, the rule to get the local
phase portrait of A∗1 from that of A∗k is: (1) the invariant u-axis cuts the
local phase portrait of A∗1 into two parts, i.e., the right part and the left
part; (2) the right part is the same as that of A∗k; (3) the left part has 2
possibilities, namely, it is the same as the left part of A∗k if k is odd; if k is
even, it is obtained by a reflection across the x-axis of the left part of A∗k
and then reversing the orientation of the orbits.

(iv) If one B∗
i is a node, we draw the local phase portrait of A∗1 on the

unit circle (see §2.4). The top and the bottom are two nodes, the stability
is determined by the two regular orbits of system (26) on the u-axis. The
other 2 singular points on the unit circle are the intersection points of the
x-axis with this circle. The local phase portrait of the point on the right
semi-circle is the same as the right part of A∗k. The left one is either the
same as the left part of A∗k (in the case that k is odd), or obtained by a
reflection of the left part of A∗k across the x-axis and then reversing the
directions of the orbits (in the case that k is even).

By our assumption that 1 − (k − 1)a1 6= 0, we apply the time rescaling
dτ = [1− (k − 1)a1]dt to system (32). Then we obtain

ẋ =
a1

1− (k − 1)a1
xuk +

ā2

1− (k − 1)a1
x +

1
1− (k − 1)a1

x2P (x, uk),

u̇k = u2
k +

1
1− (k − 1)a1

xQ(x, uk).

This system has the same form as system (25) at (0, 0). Thus we conclude
that the local phase portrait of A∗k is qualitatively equivalent to the local
phase portrait of system (25) at x = u = 0 discussed in §§7.1–7.3.4. By the
above rule, it follows that the phase portrait of system (25) on the u-axis
in the present case can be obtained from those pictures in the previous
parts of this section (§§7.1–7.3.4) with a slight change. Therefore all we
need to do is to check these pictures, then to list by using the above rule all
pictures for the phase portrait of system (25) on the u-axis, and finally to
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realize them by examples. To do this, we first assume that A∗k is a singular
point of degree 2 (i.e., Q(0, 0) = ā2 = 0 in system (32)). We should check
the pictures in §§7.3.1–7.3.4.

If a1 = 1
k , then all B∗

i are saddles, and A∗k is the same as the singular
point x = u = 0 of system (25) analyzed in §7.3.1 and §7.3.2. The point
x = u − 1

l+1 = 0 is also a saddle. If k is odd, then all pictures in Figures
12 and 14 keep unchanged. If k is even, Figure 14(c) is changed to Figure
7.1(a); modulo the symmetry with respect to the u-axis, Figures 14(e) and
(f) are interchanged; all other pictures in Figures 12 and 14 keep unchanged.

Corresponding to the situation considered in §7.3.3, the local phase por-
trait of A∗k is topologically either a union of 2 elliptic sectors or a union of
two hyperbolic sectors. The former appears exactly when a1 ∈ ( 1

k , 1
k−1 ) (see

system (32)). In this case all B∗
i and the point x = u− 1

l+1 = 0 are saddles.
So the phase portrait of system (25) on the u-axis is given by Figure 30(a).
When a1 > 1

k−1 , then some B∗
i is a node, but x = u− 1

l+1 = 0 is a saddle,
so we still get Figure 15(a). If a1 < 1

k , then the phase portraits of A∗1 and
A∗k are the same since all B∗

i are saddles. The point x = u− 1
l+1 = 0 can be

a saddle, a node or a saddle-node. Respectively we get Figures 15(b)–(e)
as the phase portrait of system (25) on the u-axis.

Now we consider the situation corresponding to §7.3.4. If a1 ∈ ( 1
k , 1

k−1 ),
then the pictures for the local phase portrait of A∗k are just the same as the
pictures for the singular point x = u = 0 in Figure 17; if a1 ∈ ( 1

k ,− 1
l+1 ),

a1 = − 1
l+1 , or a1 < − 1

l+1 , then the phase portrait of A∗k is represented by
the pictures of Figures 19, 20 or 21 respectively (at x = u = 0). In these
cases, all B∗

i are saddles, x = u− 1
l+1 = 0 in system (25) is the same as in

the corresponding figures. So, to obtain the phase portrait of system (25)
on the u-axis in each case, it suffices to check the corresponding changes by
applying the point (iii) of our rule to the above pictures. More precisely, in
Figure 17, all pictures keep unchanged. In Figure 19, if k is even, (j) and
(k) are interchanged; modulo the symmetry with respect to the u-axis, (d)
and (g) will be changed to (e) and (f); (a) and (b) are interchanged with
(n) and (m) respectively; all other pictures keep unchanged. In Figure 20,
if k is even, (a) and (b) are changed to Figure 7.1(h) and (c); (e) and (f)
are interchanged; all other pictures keep unchanged. In Figure 21, if k is
even, (a) and (b) are changed to Figures 7.1 (f) and (b); (e) and (f) are
interchanged; all other pictures keep unchanged. In the case that a1 > 1

k−1 ,
we take u as uk in the changes of variables in §7.3.3, and apply these changes
of variables to system (32). Then we get two systems corresponding to
systems (29) and (30). The phase portrait of the first system on the v-axis
has the same possibilities as in Figure 16; corresponding to system (30),
we get a saddle. However there is a unique node B∗

i . Thus the pictures we
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FIG. 22. The local phase portrait of A∗1 when ā2 6= 0 in system (32).

get for the phase portrait of system (25) on the u-axis in this case are the
same as those in Figure 17.

Now we assume A∗k is of degree 1.
If ā2 6= 0 in system (32), the local phase portrait of A∗1 has 5 possibilities

which are shown in Figure 22. Among these 5 pictures, we get Figures
22(a)–(d) if all B∗

i are saddles (i.e., a1 < 1
k−1 ); we always obtain Figures

22(e) if one B∗
i is a node (namely, a1 > 1

k−1 ). In the former case the
point x = u − 1

l+1 can be a saddle, a node or a saddle-node; in the later
case, this point must be a saddle. So, corresponding to Figure 22(a), the
pictures for the phase portrait of system (25) on the u-axis are Figures
7.1(a)–(d); corresponding to Figure 22(b), the pictures are Figures 7.1(e)–
(h); corresponding to Figure 22(c), the pictures are Figures 19(a), 20(a)
and 21(a); corresponding to Figure 22(d), the pictures are Figures 19(b),
20(b) and 21(b); corresponding to Figure 22(e), it is Figure 19(c).

Now we assume that ā2 = 0 but Q(0, 0) 6= 0. If we compare systems
(32) and (50), and take x and uk in system (32) as y and x in system
(50) respectively, we find that (32) is equivalent to (50) with the condition
a2 = b3 = 0. We can assume that Q(0, 0) > 0 in system (32). By the
remark on system (50), we can assume 1 − (k − 1)a1 > 0. So all B∗

i

are saddles. According to the analysis in §10.2, we know that the phase
portrait of A∗k has 5 possibilities which are shown in Figure 32. But Figures
32(a),(b),(d) and (e) apppear only when a1 ≥ 0. So in this situation the
singular point x = u − 1

l+1 = 0 in system (25) is a saddle. The phase
portrait of A∗1 is one of the 5 pictures in Figure 32. Actually, if the phase
portrait of A∗k is Figures 32(a),(b),(c),(d) and (e), then the phase portrait
of A∗1 is Figures 32(a),(b),(c),(e) and (d) respectively if k is even; if k is
odd, these two phase portraits are the same. So in the case that ā2 = 0 and
Q(0, 0) 6= 0, we still have Figure 11 as the pictures for the phase portrait
of system (25) on the u-axis.

To sum up, we have no new pictures for the phase portrait of system
(25) on the u-axis in this subsection in the sense that any picture obtained
in the present case corresponds to a picture obtained in the previous part
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such that the local phase portraits of the point x = u− 1
l+1 are the same;

whereas the local phase portraits of the point x = u = 0 are topologically
equivalent. As a corollary, it follows that no new pictures for the phase
portrait of the point x = y = 0 of system (17) will be produced in this
case.

8. THE CASE ∆(U) = 0 HAS A TRIPLE ROOT AND
deg(AL) = 3

In this case we have the following tree (see §4)

O(0, 0) −→ A1
↗B1−→ · · · −→ Al−1

↗Bl−1−→ Al,

where deg(A1) = · · · = deg(Al) = 3, B1, B2, · · · , Bl−1 are all saddles, and
Al is described by system (20). Recall that in system (20), Q̃3(0, y) =
−ly3, P̃2(0, y) = y2, ∆̄(u) = Q̃3(1, u)− uP̃2(1, u) is a polynomial of degree
3. Now we apply the following two changes of variables

y = xu, dτ = x2dt; x = vy, dτ = y2dt,

to system (20), we obtain

ẋ = xP̃2(1, u) + x2P̃3(1, u) + · · · ,

u̇ = ∆̄(u) + x(Q̃4(1, u)− uP̃3(1, u)) + · · · ,
(33)

and

ẏ = −ly + · · · , v̇ = (l + 1)v + · · · .

By our requirement on Al, ∆̄(u) = 0 has either a simple real root and 2
complex roots, or 3 different real roots, or a double real root and a simple
real root. In the first 2 cases, system (33) is in fact system (24) with l > 0.
In the third case, it is just system (25) with l > 0 (see §8.1 below). So
the pictures for the phase portrait of system (33) on the u-axis have been
shown in §6 and §7 in all these cases. All we need to do is to get the
pictures for the local phase portrait of system (17) at x = y = 0 from the
pictures in §6 and §7. We do this below.

8.1. The case ∆̄(u) = 0 has a double root
The unique double root can be assumed to be u = 0. So ∆̄(u) = u2(−(l+

1)u + c) for some real constant c 6= 0. Without loss of generality, we
can take c = 1 since c is changed to be 1 after applying the change of
variables: (x, u, t) 7→ (cx, cu, c−2t) to system (33) (notice that such a kind
of rescaling is obtained by a rescaling of (x, y, t) in system (17) of the form
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(x, y, t) 7→ (d1x, d2y, d3t), where d1, d2 and d3 are non-zero real constants).
Now (33) is system (25) with l > 0, which has been studied in §7.

Applying Lemma 4 to the present case, we can easily conclude that the
local phase portrait of system (17) at x = y = 0 can be obtained from that
of system (33) on the u-axis, and the rule is the following:

(i) The phase portrait of system (33) on the u-axis contains two singular
points: x = u = 0 and x = u− 1

l+1 = 0. The singular point x = u− 1
l+1 = 0

moves along the u-axis in such a way that these 2 singular points meet at
x = u = 0, and collapse into one singular point which is denoted by Al+1.
The invariant u-axis cuts the phase portrait into 2 parts, namely, the left
part and the right part.

(ii) The local phase portrait at x = y = 0 (of system (17)) on the unit
circle (see §2.4) has a pair of singular points which correspond to the unique
triple root of ∆(u) = 0.

(iii) The phase portrait at the singular point on the right semi-circle is
the same as the right part of Al+1.

(iv) If l is odd, the phase portrait at the singular point on the left semi-
circle is the left part of the local phase portrait of Al+1 but with an inverse
orientation. If l is even, it is obtained from the left part of the local phase
portrait of Al+1 by reversing the orientation and a reflection across the
x-axis.

To prove this rule, we first note that the local phase portrait of Al+1 is
closely related to the phase portrait of Al. This relation is described by
the theory of blowing-ups in §2. Then this rule follows easily from the rule
described in the proof of Lemma 4.

Now all we need to do is to draw new pictures from the phase portrait
of system (33) on the u-axis according to the above rule, and then to find
examples to realize them. To this end, it is sufficient to consider the figures
in §7, since we have listed all possible pictures modulo the symmetry with
respect to the u-axis, but this symmetry is precisely the change of variables
(x, u, t) → (−x, u, t) in system (33), which is obtained by a rescaling of the
variables x, y and t in system (17). For the realization problem, we note
that system (33) is obtained from system (17) by applying a change of
variables of the following form

y = uxl+1 + d1x + d2x
2 + · · ·+ dl+1x

l+1, dτ = x2l+1dt.

Conversely, this change of variables can also be used to obtain system (17)
from system (33). For example, we can take d1 = d2 = · · · = dl+1 = 0. We
see from the above change of variables that

dy

dt
= xl+1 du

dt
+xl ·(l+1)u

dx

dt
= x3l+2 du

dτ
+(l+1)ux3l+1 dx

dτ
,

dx

dt
= x2l+1 dx

dτ
.
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The functions dx
dτ and du

dτ are given in system (33). Thus system (17) is
obtained. Since we have realized all pictures in §7, there are only trivial
calculations left for the present realization problem. We omit the details,
just point out all the pictures can be realized. This remark is still true for
the realization problem in §8.2, and we will not touch it there.

Now we start to check the pictures in §7. First we assume that l is even.
By the above rule, we obtain 22 new pictures (Figures 3(40)–3(61)). The
details are given in the rest of this paragraph: we get Figures 3(40), (41),
(42), (42), (43), (8), (44), (44) from Figures 10(a)–(h) respectively; from the
pictures in Figure 11, we get Figures 3(51), (48), (45), (49), (46), (44), (45),
(47); we obtain Figures 3(50), (41), (51) from Figure 12; corresponding to
the pictures in Figure 14, we obtain Figures 3(7), (41), (52), (41), (53), (42);
from Figure 15, we obtain Figures 3(41), (7), (9), (9), (8); from Figure 17,
we get Figures 3(41), (41), (50), (51), (51), (51), (51); from Figure 19, we
have Figures 3(52), (52), (41), (42), (53), (42), (53), (54), (55), (56), (55),
(56), (40), (43), (59), (59); from Figure 20, we obtain Figures 3(58), (57),
(56), (52), (47), (59), (60); and from Figure 21, we get Figures 3(61), (61),
(43), (53), (44), (53), (44).

Now assume that l is odd. We get three new pictures (Figures 3(62),
(63), (64)). The details are the following. From Figure 10, we get Figures
3(40), (62), (42), (42), (60), (8), (44), (44); from Figure 11, we get Figures
3(64), (48), (45), (49), (46), (44), (45), (47); from Figure 12, we have
Figures 3(63), (62), (64); from Figure 14, we get Figures 3(7), (62), (52),
(62), (58), (42); from Figure 15, we obtain Figures 3(62), (7), (9), (9), (8);
from Figure 17, we have Figures 3(62), (62), (63), (64) ,(64), (64), (64);
from Figure 19, we get Figures 3(52), (52), (62), (42), (58), (42), (58),
(54), (55), (56), (55), (56), (40), (60), (59), (59); from Figure 20, we obtain
Figures 3(53), (57), (56), (52), (47), (59), (43); from Figure 21, we have
Figures 3(61), (61), (60), (58), (44), (58), (44).

8.2. The case ∆̄(u) = 0 has only simple roots
In this case we have a similar rule to obtain the phase portrait of system

(17) at x = y = 0 from the phase portrait of system (33) on the u-axis.
The only change is the point (i). Here all singular points on the u-axis
accumulate at one point, and form a new singular point Al+1. By using
this rule and the results in §6, we can get all pictures for the phase portrait
of system (17) at x = y = 0. The details are given below.

If l is even, we get Figures 3(7), (8), (9), (9) from Figure 6; Figures
3(40), (54), (43), (41), (41), (43), (8) from Figure 7; Figures 3(42), (44),
(56), (55), (53), (53), (42), (56), (44) from Figure 8; and Figures 3(52),
(59), (47), (60), (52), (59) from Figure 9.

Assume l is odd. We obtain Figures 3(7), (8), (9), (9) from Figure 6;
Figures 3(40), (54), (60), (62), (62), (60), (8) from Figure 7; Figures 3(42),
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(44), (56), (55), (58), (58), (42), (56), (44) from Figure 8; Figures 3(52),
(59), (47), (43), (52), (59) from Figure 9.

To sum up, no new pictures for the local phase portrait of system (17)
at x = y = 0 appear in this subsection.

9. THE CASE ∆(U) HAS A TRIPLE ROOT AND deg(AL) ≤ 2

Let us go back to §4. We know that Al−1 is described by system (18), and
Al is just the singular point x = u = 0 of system (19). Since deg(Al) ≤ 2,
system (19) can be rewritten as

ẋ = x[u2 + ã1u + ã2] + x2[ã3 + · · · ],
u̇ = −lu3 + x[b̃0 + b̃1u + b̃2x + · · · ]. (34)

As in §8 we can obtain the local phase portrait of system (17) at x = y = 0
directly from the local phase portrait of Al. To do this, we draw the phase
portrait of system (17) at x = y = 0 on the unit circle. The rule is the
following, which follows immediately from Lemma 4 and its proof.

(i) The phase portrait of system (17) at x = y = 0 on the unit circle
has a pair of singular points which correspond to the unique triple root of
∆(u) = 0 (see Lemma 1).

(ii) The local phase portrait at the singular point on the right semi-circle
is the same as the right part of Al.

(iii) If l is even, the local phase portrait at the singular point on the
left semi-circle is the left part of the local phase portrait of Al but with
inverse orientation. If l is odd, it is obtained from the left part of the local
phase portrait of Al by a reflection across the x-axis and then reversing the
orientation of orbits.

In the following we will analyze the local phase portrait of system (34)
at x = u = 0, and then find the corresponding pictures for the local phase
portrait of system (17) at x = y = 0 by using the above rule, and finally
find examples to realize those new local phase portraits.

9.1. The case deg(Al) = 1
By assumption, ã2

2 + b̃2
0 6= 0. If ã2 6= 0, then x = u = 0 is either a

saddle or a node (Figure 6(a) or (b) respectively). Correspondingly, the
local phase portrait of system (17) at x = y = 0 is Figure 3(7) or 3(8).
Now we assume ã2 = 0. Then b̃0 6= 0. With the help of the transformation
(x, u, t) → (−x, u, t), we can even assume b̃0 > 0 in system (34). Now it is
easy to check that x = u = 0 is a saddle-node if ã1 6= 0; and a saddle if
ã1 = 0. The corresponding pictures for the local phase portrait of system
(17) at x = y = 0 are Figures 3(9) and 3(7).
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9.2. The case deg(Al) = 2
In this case ã2 = b̃0 = 0. We rewrite system (34) as

ẋ = ã1xu + ã3x
2 + xP ′2(x, u) + xP ′3(x, u) + · · · ,

u̇ = b̃1xu + b̃2x
2 + Q′3(x, u) + Q′4(x, u) + · · · .

(35)

Where, as before, P ′i (x, u) and Q′i(x, u) are homogeneous of degree i, more-
over, P ′2(0, u) = u2, Q′

3(0, u) = −lu3, and P ′i (0, u) = Q′
i+1(0, u) = 0 for

any i > 2. Let

∆′(x, u) = x[b̃1xu + b̃2x
2]− u[ã1xu + ã3x

2] = x[b̃2x
2 + (b̃1 − ã3)xu− ã1u

2].

Applying the following changes of variables

x = us, dτ = udt; u = xv, dτ = xdt,

to system (35), we obtain

u̇ = b̃1us + b̃2us2 + u2(−l + · · · ),
ṡ = ã1s + (ã3 − b̃1)s2 − b̃2s

3 + us[(l + 1) + · · · ]
(36)

and

ẋ = x(ã1v + ã3) + x2(· · · ), v̇ = −ã1v
2 + (b̃1− ã3)v + b̃2 + x(· · · ), (37)

where (· · · ) denotes some analytic function. The local phase portrait of
system (35) at x = u = 0 is obtained by studying systems (36) and (37).
We divide our discussion into 4 cases according to the form of ∆′.
9.2.1 The case ã1 6= 0

Without loss of generality we can assume ã1 > 0 (see the remark on the
constant c in the first paragraph of §8.1). From system (36), we know that
u = s = 0 is a saddle-node. The phase portrait of system (37) on the v-axis
is discussed according to the roots of ∆′(1, v) = −ã1v

2+(b̃1− ã3)v+ b̃2 = 0.
If ∆′(1, v) = 0 has no real roots, then x = u = 0 of system (35) is a node.

Correspondingly the phase portrait of system (17) at x = y = 0 is Figure
3(8).

If ∆′(1, v) = 0 has two different real roots, the possibilities for the phase
portrait of system (37) on the v-axis are shown in Figure 23. Correspond-
ingly, we have the pictures in Figure 24 as the local phase portrait of system
(35) at x = u = 0.

By using the above rule, we can obtain the corresponding pictures for
the local phase portrait of system (17) at x = y = 0 from Figure 24. If l is
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FIG. 23. The phase portrait of system (37) on the v-axis in §9.2.1.

even, we get Figures 3(61), (61), (60), (58), (44), (58), (44) respectively. If
l is odd, we obtain Figures 3(61), (61), (43), (53), (44), (53), (44).

If ∆′(1, v) = 0 has a double root which is not equal to − ã3
ã1

, then system
(37) has a unique singular point on the v-axis, where the eigenvalue of the
linear part of system (37) in the x-direction is non-zero. So the local phase
portrait of system (35) at x = u = 0 is topologically either Figure 24(a) or
24(b). Consequently the local phase portrait of system (17) at x = y = 0
is Figure 3(61).

Now we assume that the double root of ∆′(1, v) = 0 is equal to − ã3
ã1

.
Moving this double root to v = 0, then we can assume b̃1 = b̃2 = ã3 = 0.
If the degree of the singular point x = v = 0 is 1, it is easy to check that
it is a saddle. Correspondingly, the local phase portrait of system (17) at
x = y = 0 is Figure 3(44). If the singular point x = v = 0 of system (37) is
of degree 2, then it can be studied in a way similar to §7.3.5. Denote this
singular point by A′l+1. We have in general the following subtree

A′l+1
↗Bl+1−→ A′l+2

↗Bl+2−→ · · · −→ A′l+l0

↗Bl+l0−→ A′l+l0+1.
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FIG. 24. The phase portrait of system (35) at x = u = 0 in §9.2.1.

Here deg(A′l+i) = 2 and Bl+i is a saddle for 1 ≤ i ≤ l0. The singular point
A′l+l0+1 can be taken as the singular point x = y = 0 of the system

ẋ = (ã1y + â2)x + x2(â3 + · · · ),
ẏ = −(l0 + 1)ã1y

2 + x(b̂1 + b̂2x + b̂3y + · · · ).
(38)

If â2
2 + b̂2

1 6= 0, then A′l+l0+1 is a singular point of degree 1. If â2 = b̂1 = 0,
then A′l+l0+1 is a singular point of degree 2. In the second case we apply
the following changes of variables

y = xu, dτ = xdt; x = yv, dτ = ydt,

to system (38), we have

ẋ = (ã1u + â3)x + x2(· · · ),
u̇ = −(l0 + 2)ã1u

2 + (b̂3 − â3)u + b̂2 + x[· · · ],
(39)

and

ẏ = −(l0 + 1)ã1y + . . . , v̇ = (l0 + 2)ã1v + · · · . (40)

The requirement for the above subtree is that −(l0 +2)ã1u
2 +(b̂3− â3)u+

b̂2 = 0 has two different (real or complex) roots. Using an argument sim-
ilar to that in §4, we can easily show that the above cases cover all the
possibilities for the singular point A′l+1.
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FIG. 25. The phase portrait of Al in §9.2.1.

The local phase portrait of A′l+l0+1 can always be determined by systems
(38), (39) and (40). To obtain the local phase portraits of Al and the point
x = y = 0 of system (17), we use Lemma 5 as in some previous cases. We
draw the local phase portrait of Al on the unit circle. Then the rule is as
follows.

(i) The top is a saddle, the bottom is a node. The orientation of orbits
at them is determined by system (36).

(ii) The other two singular points are the intersection points of the circle
with the x-axis. Their local phase portraits are obtained from the right
and the left parts of the local phase portrait of A′l+l0+1 which are obtained
by cutting this phase portrait along the invariant y-axis.

(iii) The local phase portrait of the singular point on the right semi-circle
is just the right part of the the local phase portrait of A′l+l0+1.

(iv) If l0 is odd, then the one on the left semi-circle is the same as the left
part of the local phase portrait of A′l+l0+1. If l0 is even, it is obtained from
the left part of the local phase portrait at A′l+l0+1 by a reflection across
the x-axis and then reversing the orientation of orbits.

In the case that â2 = 0 but b̂1 6= 0, the singular point x = y = 0 of
system (38) is a saddle. So A′l+1 is also a saddle, and Figure 3(44) is
the local phase portrait of system (17) at x = y = 0. In the case that
â2 = b̂1 = 0 and −(l0 + 2)ã1u

2 + (b̂3 − â3)u + b̂2 = 0 has no real roots,
there are no singular points on the u-axis in system (39). So Al is a node.
Correspondingly the local phase portrait of system (17) at x = y = 0 is
Figure 3(8). The case â2 6= 0 is equivalent to (i.e., it will produce the same
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FIG. 26. The local phase portrait of system (37) at x = v + b̃2
b̃1−ã3

= 0 in

§9.2.2.

pictures for the local phase portrait of Al as) the case in which â2 = b̂1 = 0
and −(l0 + 2)ã1u

2 + (b̂3 − â3)u + b̂2 = 0 has 2 different real roots, and
the eigenvalues in the characteristic direction different from the u-axis at
the 2 singular points of system (39) on the u-axis have the same sign.
Therefore in the following it suffices to consider the case that â2 = b̂1 = 0
and −(l0 + 2)ã1u

2 + (b̂3 − â3)u + b̂2 = 0 has 2 different real roots.
The phase portrait of system (39) on the u-axis has the same possibilities

as the phase portrait of system (37) on the v-axis, which have been shown in
Figure 23. If l0 is odd, then the corresponding pictures for the local phase
portrait of Al are shown in Figure 24. If l0 is even, the corresponding
pictures are those of Figure 25.

Corresponding to Figure 25, we obtain Figures 3(8), (62), (60), (44),
(44), (58), (58) for the local phase portrait of system (17) at x = y = 0 if l
is even; if l is odd, then the corresponding pictures are Figures 3(8), (41),
(43), (44), (44), (53), (53).

To sum up, we have shown that if ã1 6= 0, there are no new pictures for
the local phase portrait of system (17) at x = y = 0.

9.2.2 The case that ã1 = 0 and b̃1 6= ã3

In this case and the following two subsections (§§9.2.2–9.2.4), we can
assume ã3 ≥ 0 in system (35) with the help of the transformation (x, u, t) →
(−x, u, t). The singular point x = v − b̃2

b̃1−ã3
= 0 in system (37) is of

degree 1. Its phase portrait has 8 possibilities as shown in Figure 26. The
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condition on the parameters b̃1 and ã3 for each picture of Figure 26 is as
follows: b̃1 < ã3 and ã3 ≥ 0 for Figure 26(a); b̃1 > ã3 ≥ 0 for Figure 26(b);
b̃1 > ã3 = 0 for Figures 26(c), (d) and (e); b̃1 < ã3 = 0 for Figures 26(f),
(g) and (h).

To study the singular point u = s = 0, we apply the following two
changes of variables

u = su1, dτ = sdt, s = us1, dτ = udt,

to system (36), we have

ṡ = (ã3 − b̃1)s + (l + 1)su1 + s2(−b̃2 + · · · ),
u̇1 = (2b̃1 − ã3)u1 − (2l + 1)u2

1 + u1s(2b̃2 + · · · ),
(41)

and

u̇ = b̃1us1 − lu + u2[· · · ], ṡ1 = (2l + 1)s1 + (ã3 − 2b̃1)s2
1 + u[· · · ], (42)

where [· · · ] is some analytic function. The singular point u = s1 = 0 is a
saddle. The phase portrait of system (41) on the u1-axis is determined by
the values of the parameters. It is easy to know that there are two singular
points on the u1-axis, namely, u1 = s = 0 and u1 − 2b̃1−ã3

2l+1 = s = 0. At

u1 = s = 0, the two eigenvalues are ã3− b̃1 and 2b̃1− ã3. At u1− 2b̃1−ã3
2l+1 =

s = 0, the eigenvalue in the direction of the u1-axis is ã3 − 2b̃1, the other
eigenvalue is lã3+b̃1

2l+1 . So the pictures of Figure 27 cover all the possibilities
for the local phase portrait of system (36) at u = s = 0. The corresponding
condition on the parameters is listed below: ã3 > 2b̃1 and b̃1 + lã3 ≥ 0 for
Figure 27(a); ã3 > 2b̃1 and b̃1 + lã3 ≤ 0 for Figure 27(b); ã3 > 2b̃1 and
b̃1 + lã3 = 0 for Figure 27(c) and (d); ã3 < b̃1 < 2b̃1 for Figure 27(e);
b̃1 < ã3 < 2b̃1 for Figure 27(f); ã3 = 2b̃1 for Figure 27(g). In Figures 27(g)
and (a)–(d), we have ã3 > b̃1 because ã3 ≥ 2b̃1 and ã3 ≥ 0.

Corresponding to the pictures in Figure 27, we obtain 12 pictures (Figure
28) for the local phase portrait of system (35) at x = u = 0. Among these
pictures, if ã3 > 2b̃1 and b̃1 + lã3 > 0, we get Figure 28(a); if ã3 > 0 > b̃1

and b̃1 + lã3 < 0, then we get Figure 28(b); if ã3 = 0 > b̃1, we have Figures
28(b),(c),(d),(e); if ã3 = − b̃1

l > 0, then we have Figures 28(f),(g),(a),(b); if
b̃1 > ã3 = 0, we have Figures 28(i),(j),(k),(l); if 0 < ã3 < b̃1, we get Figure
28(j); if 0 < b̃1 < ã3 < 2b̃1, we have Figure 28(h); and if ã3 = 2b̃1 > 0,
we get Figure 28(a). The above analysis shows all the possibilities since
ã3 ≥ 0.

Corresponding to Figure 28, we still have no new pictures for the phase
portrait of system (17) at x = y = 0. Actually, if l is even, we get Figures
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FIG. 27. The local phase portrait of system (36) at u = s = 0 in §9.2.2.

FIG. 28. The local phase portrait of system (35) at x = u = 0 in §9.2.2.
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3(9), (46), (49), (47), (57), (45), (45), (57), (46), (57), (49), (47). If l is
odd, we get the same.

9.2.3 The case ã1 = b̃1 − ã3 = 0, b̃2 6= 0
In this case there are no singular points on the v-axis in system (37).

So, in order to analyze the singular point x = u = 0 of system (35), it is
sufficient to analyze u = s = 0 in system (36). We first assume 2b̃1− ã3 6= 0
(this is equivalent to ã3 = b̃1 6= 0). Since ã3 ≥ 0 (see §9.2.2), it is easy
to see from systems (41) and (42) that the local phase portrait of system
(36) at u = s = 0 is Figure 29(a) or (b) according as b̃2 < 0 or b̃2 > 0. If
ã3 = b̃1 = 0, we apply the following changes of variables

u1 = su2, dτ = sdt; s = u1s2, dτ = u1dt,

to system (41) and obtain

ṡ = s[(l + 1)u2 − b̃2] + s2[· · · ], u̇2 = 3b̃2u2 − (3l + 2)u2
2 + su2[· · · ],

and

u̇1 = u1[2b̃2s2 − (2l + 1)] + u2
1[· · · ], ṡ2 = (3l + 2)s2 − 3b̃2s

2
2 + u1[· · · ],

where [· · · ] denotes some analytic function. From these two system, we get
Figures 29(c) (if b̃1 > 0) and 29(d) (if b̃2 < 0) as the local phase portrait of
system (41) at u1 = s = 0. Correspondingly, we get Figures 29(e) and (f)
for the local phase portrait of system (35) at x = u = 0. By using our rule,
we get Figure 3(57) for the phase portrait of system (17) at x = y = 0 from
Figures 29(a) and (b). From Figures 29(e) and (f), we get Figure 3(7) for
the local phase portrait of system (17) at x = y = 0.

9.2.4 The case ã1 = b̃1 − ã3 = b̃2 = 0
We must have ã3 = b̃1 6= 0. As before, we can assume ã3 > 0. Applying

the transformation x = us, dτ = u2dt to system (35), we have

u̇ = b̃1s + uQ′3(s, 1) + u2Q′
4(s, 1) + · · · = b̃1s− lu + · · · ,

ṡ = s[P ′2(s, 1)−Q′
3(s, 1)] + su[P ′4(s, 1))−Q′4(s, 1)] + · · · = (l + 1)s + · · · .

Evidently u = s = 0 is a saddle. Hence the local phase portrait of system
(35) at x = u = 0 is topologically Figure 28(h). Consequently the local
phase portrait of system (17) at x = y = 0 is Figure 3(57).

To sum up, we know from the above analysis that there are no new
pictures for the local phase portrait of system (17) at x = y = 0 in this
section.

Now the analysis of the singular point x = y = 0 of system (17) is
finished. The pictures for its local phase portrait are exactly those in
Figure 3. Thus the proof of Theorem D is finished.
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FIG. 29. The local phase portraits obtained in §9.2.3.

10. APPENDIX: THREE FACTS USED IN THE MAIN TEXT

This section contains three facts used in the main body of this paper.
In §10.1, we prove two lemmas which are used in §1. In §10.2, we study a
special kind of 1-degree singular points. The material here is used in §7.2
and in the discussion of the case that ā2 = 0 and Q(0, 0) 6= 0 in §7.3.5.

10.1. Two lemmas used in §1

Lemma 25. C1-equivalence is strictly finer than qualitative equivalence.

Proof. It suffices to find two singular points which are qualitatively equiv-
alent, but not C1-equivalent. To do this, we consider the following two
systems

ẋ = −dx3 + ex2y + (c− 1)xy2, ẏ = cy3 + exy2 − dx2y, (43)

and

˙̄x = x̄, ˙̄y = −ȳ, (44)

where d > 0, c > 0 and e are real constants. Let p1 and p2 denote the
singular points x = y = 0 and x̄ = ȳ = 0 respectively. It is easy to check
that these two singular points are saddles. Their separatrices coincide with
the coordinate axes. So they are qualitatively equivalent, and this lemma is
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proved by showing that they are not C1-equivalent for some suitable values
of the parameters d, c and e.

We first observe that if p1 and p2 are C1-equivalent through the diffeo-
morphism Ψ : (x, y) 7→ (x̄, ȳ), and Γ is any smooth closed curve around
p1, then the number of contact points of system (43) with Γ is equal to
the number of contact points of system (44) with Ψ(Γ). Actually Ψ maps
contact points to contact points.

Consider the circle Γr : x2 + y2 = r2. The contact points of system (43)
with Γr are just the intersection points of Γr with the curve

x · [−dx3 + ex2y + (c− 1)xy2] + y · [cy3 + exy2 − dx2y] = 0. (45)

Let y = xu, then (45) is changed to

cu4 + eu3 + (c− d− 1)u2 + eu− d = 0. (46)

Evidently the number of contact points of system (43) with Γr is not less
than twice the number of different real solutions of equation (46).

Let

e =
1
2

+ d− c. (47)

Then u = 1 is a root of (46). Inserting (47) to (46), we have

cu(u2 + 1)(u− 1) + d(u2 + 1)(u− 1) +
1
2
u(u− 1)2 = 0. (48)

From (48), we know that for some values of c > 0 and d > 0, (46) has
a root u = u0 such that 0 < u0 < 1

2 (e.g., one can choose d > 0, c > 0
sufficiently small such that the values of the polynomial in (48) at u = 0 and
u = 1

2 have different signs). Since c · d > 0, (46) has at least one negative
root. Therefore we have shown that for some values of the parameters
c > 0, d > 0 and e, system (43) has at least six contact points with Γr.
In the following, we prove that p1 and p2 cannot be C1-equivalent in this
case.

Assume this is not the case, the map Ψ : (x, y) 7→ (x̄, ȳ) = Ψ(x, y)
realizes the C1-equivalence between p1 and p2. Without loss of generality,
we assume that Ψ keeps orientation of orbits. Since Ψ sends orbits of
system (43) to orbits of system (44), and separatrices to separatrices, Ψ
must have the following form:

Ψ(x, y) = (αx + o(r)), βy + o(r)) as r =
√

x2 + y2 → 0,

where α · β 6= 0. Hence Ψ(Γr) is described by

(
x̄ + o(r̄)

α
)2+(

ȳ + o(r̄)
β

)2 = r2 as r̄ =
√

x̄2 + ȳ2 → 0 (or equivalently, r → 0).
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The contact points (x̄, ȳ) of system (44) with Ψ(Γr) must satisfy

x̄ · (2x̄ + o(r̄)
α2

)− ȳ · (2ȳ + o(r̄)
β2

) = 0 as r̄ → 0. (49)

Let x̄ = r̄ cos θ̄, ȳ = r̄ sin θ̄. Applying the Implicit Function Theorem to
(49) at r̄ = 0, we obtain exactly four functions

θi(r̄) = θ0i + o(r̄) as r̄ → 0,

where i = 1, 2, 3, 4, 0 < θ0i < 2π satisfies

cos2 θ0i

α2
− sin2 θ0i

β2
= 0.

Thus we have proved that there are exactly 4 contact points of system (44)
with Ψ(Γr). This contradicts the fact that the number of contact points
of system (43) with Γr must be equal to the number of contact points of
system (44) with Ψ(Γr). So p1 and p2 cannot be C1-equivalent. The proof
is finished.

Lemma 26. The center-focus class is non-empty in the set of singular
points of degree m if and only if m is odd.

Proof. Consider the singular point x = y = 0 of system (2). We first show
that it cannot be a center or a focus if m is even. To do this, let us consider
its local phase portrait on the unit circle (see §2.4). If x = y = 0 is a center
or a focus, the unit circle should be invariant, and all its regular orbits
(i.e., those which are not singular points) must have the same orientation
(i.e., either clockwise or counter-clockwise). Now consider the characteristic
polynomial D(x, y) of this singular point. It is either identically zero, or
homogeneous of odd degree. In the first case, the unit circle is not invariant.
In the second case, there is a real linear homogeneous polynomial αx + βy
whose multiplicity is odd in the factorization of D(x, y). This linear factor
corresponds to a singular point on the unit circle around which the two
regular orbits have different orientations, namely, one is clockwise, and the
other is counter-clockwise. So in both cases, x = y = 0 cannot be a center
or a focus.

If m is odd, we show that there are singular points which are centers or
foci. To do this, we consider the following system

ẋ = Pm(x, y), ẏ = Qm(x, y).

Here, as before, Pm(x, y), Qm(x, y) are homogeneous of degree m. The
polynomial D(x, y) = xQm(x, y)− yPm(x, y) is of even degree. So one can
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find Pm and Qm such that D(x, y) has no real linear factors. In this case,
x = y = 0 is a center or a focus.

10.2. Local phase portraits of a special kind of singular points
of degree 1

In this subsection, we will study the local phase portrait of the system

ẋ = a1y + a3x
2 + a2x

3 + y[P1(x, y) + P2(x, y) + · · · ],
ẏ = b1xy + b3x

2y + y2 [b2 + Q1(x, y) + Q2(x, y) + · · · ] (50)

at x = y = 0, where Pi and Qi are homogeneous polynomials of degree
i, a1, a2, a3, b1, b2, b3 are real constants. We assume a1 is positive, a3 6= 0
in the following analysis. In this case we can take a3 > 0 by using the
rescaling (x, y) 7→ (−x,−y) in system (50) which keeps a1 unchanged and
changes a3 to −a3.

To start, we apply the blowing-up y = xu to system (50). Then we have

ẋ =a1xu + a3x
2 + a2x

3 + x2u[P1(1, u) + xP2(1, u) + · · · ],
u̇ =− a1u

2 + (b1 − a3)xu + (b3 − a2)x2u

+ xu2 [b2 − P1(1, u) + x[Q1(1, u)− P2(1, u)] + · · · ] .
(51)

Now we apply the following two changes of variables

u = xu1, dτ = xdt; x = uv, dτ = udt

to (51), and we obtain the following two systems

ẋ = a1xu1 + a3x + a2x
2 + x2u1 [P1(1, xu1) + xP2(1, xu1) + · · · ] ,

u̇1 = −2a1u
2
1 + (b1 − 2a3)u1 + (b3 − 2a2)xu1 + xu2

1[· · · ],
(52)

and

u̇ = −a1u + · · · , v̇ = 2a1v + · · · ,

where [· · · ] is some analytic function. The singular point u = v = 0 is
a saddle. On the u1-axis system (52) has only singular points with at
least one non-zero eigenvalue. Thus, by Theorem A, it is easy to get all
possible pictures for the phase portrait of system (52) on the u1-axis. They
are shown in Figure 30. According to the theory of blowing-ups (§2), we
obtain Figure 31 as the corresponding pictures for the phase portrait of
system (51) on the u-axis, where x = u = 0 is the unique singular point.
Finally Figure 32 shows all the possibilities of the local phase portrait of
system (50) at x = y = 0. The details are given in the following analysis.
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FIG. 30. The phase portrait of system (52) on the u1-axis.

FIG. 31. The phase portrait of system (51) on the u-axis.

If b1 = 2a3, system (52) has only one singular point on the u1-axis. We
have Figure 30(a) for the phase portrait of system (52) on the u1-axis.
Correspondingly, we obtain Figure 31(a) for the local phase portrait of
system (51) at x = u = 0, and Figure 32(a) for the local phase portrait of
system (50) at x = y = 0.

If b1 > 2a3, system (52) has two singular points on the u1-axis: (0, 0) and
(0, b1−2a3

2a1
), where the matrix of the linear part is

(
a3 0
0 b1−2a3

)
,

(
1
2 b1 0

∗ 2a3−b1

)

respectively. Figure 30(b) is the phase portrait of system (52) on the u1-
axis. We obtain Figures 31(b) and 32(b) for the local phase portraits of
x = u = 0 and x = y = 0 respectively.

Now assume b1 < 2a3. There are 2 singular points on the u1-axis: x =
u1 = 0 and x = u1 − b1−2a3

2a1
= 0. The point x = u1 = 0 is a saddle. The

point x = u1− b1−2a3
2a1

= 0 has four possibilities. If b1 > 0 we obtain Figures
30(c), 31(c) and 32(a). If b1 < 0, we obtain Figures 30(d), 31(d) and 32(c).
If b1 = 0, the point x = u1− b1−2a3

2a1
can be a saddle, a node or a saddle-node.

But new pictures are produced only when it is a saddle-node, and the new
pictures which we will obtain are Figures 30(e) and 30(f). Correspondingly
we obtain Figures 31(e) and 31(f) for the local phase portrait of system
(51) at x = u = 0; and Figures 32(d) and 32(e) for the local phase portrait
of system (50) at x = y = 0.
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FIG. 32. The local phase portrait of system (50) at x = y = 0.
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