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1. INTRODUCTION

Lyapunov graphs carry dynamical information of gradient-like flows as
well as topological information of its phase space, which is taken to be a
closed orientable n-manifold. This information is coded on the vertices of
the Lyapunov graph using dynamical data (h0, . . . , hn, κ), representing the
ranks of the Conley homology index, and on the edges by Betti numbers of
level sets of the flow which are closed co-dimension one sub-manifolds of M .
An abstract Lyapunov graph L(h0, . . . , hn, κ) is labelled with abstract data
(h0, . . . , hn, κ) on the vertices and Betti number vectors 1 on the edges.

One can ask in general terms when an abstract Lyapunov graph is re-
alizable as a gradient-like flow on a closed manifold Mn. What manifolds
admit a flow with this data?

The Poincaré-Hopf inequalities (1)–(5), presented in [3], in essence fil-
ter out unrealizable dynamical data and consequently unrealizable Lya-
punov graphs, i.e., if the dynamical data (h0, . . . , hn, κ) does not satisfy
the Poincaré-Hopf inequalities, then there is no choice of Betti numbers
that will satisfy the (generalized) Morse-Conley inequalities (33). How-
ever, satisfying these inequalities is not sufficient to guarantee that the
Lyapunov graph is realizable. In order to tackle the question of realiz-
ability, Lyapunov graph continuation was introduced in [2], where it was
proved that the Poincaré-Hopf inequalities for isolating blocks were nec-
essary and sufficient conditions for a general abstract Lyapunov graph to
be continued to an abstract Lyapunov graph of Morse type. Graphs that
admit continuation are called admissible.

Are all admissible graphs realizable? If so, on what manifolds can these
graphs be realized? A simpler question would be to ask what are all pos-
sible Betti numbers of manifolds on which these graphs may be realized.
The latter question was answered in [3] and [4] where the Morse polytope
Pκ(h0, . . . , hn) is presented as the convex hull of the collection of all Betti
number vectors which satisfy the Morse inequalities for pre-assigned dy-
namical data (h0, . . . , hn, κ). In [3] it is shown that for pre-assigned dynam-
ical data (h0, . . . , hn, κ) the Morse inequalities hold for some Betti number
vector (γ0, . . . , γn) if and only if (h0, . . . , hn, κ) satisfies the Poincaré-Hopf
inequalities for closed manifolds.

Our main result in this article, combinatorial in nature, will answer the
first two questions in the previous paragraph, by showing that a Morse
polytope is realizable, under certain conditions, by Morse flows on closed
manifolds. In other words, given an integral point γ of Pr

κ(h0, . . . , hn), a

1A Betti number vector in dimension n is a list of nonnegative integers
(γ0, γ1, . . . , γn−1, γn) that satisfy Poincaré duality (γn−k = γk, for all k) and the con-
nectivity, or boundary, conditions γ0 = γn = 1. Furthermore, if n = 2i 6≡ 0 mod 4, we
have the additional condition that γi be even.
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Morse flow with dynamical data equal to (h0, . . . , hn, κ) is constructed on
a manifold Mn with the same Betti numbers as γ.

This is done by working with admissible data (h0, . . . , hn, κ), that is,
data which satisfies the Poincaré-Hopf inequalities and by considering the
solutions of the hcd-system for this data. Each solution of the hcd-system,
an hcd vector, is mapped to a point of the Morse polytope, γ = (γ0, . . . , γn).
Also, each hcd vector is mapped to an abstract linear Lyapunov graph of
Morse type, LM (h0, . . . , hn, κ), which is unique except for the order of the
hi’s. We show in Theorem 1 that each hcd vector admits ntd-labellings
and in Theorem 3 and Theorem 6, we prove that there is a unique one
which can be realized topologically, i.e., as a flow on a manifold with Betti
numbers equal to γ = (γ0, . . . , γn). This is done by using an ntd-labelling2

on LM (h0, . . . , hn, κ) and constructing a flow on a generalized tori possibly
connected sum with a projective space which has LM as its Lyapunov
graph.

2. PRELIMINARIES

2.1. Lyapunov Graphs
Define an abstract Lyapunov graph in dimension n as a finite, connected,

oriented graph, that has no oriented cycles. Also, each vertex is labelled
with a chain recurrent flow Rk on a compact n-dimensional space which
we assume to be an isolated invariant set and each edge is labelled with
topological invariants of a closed (n− 1)-dimensional manifold.

This definition is far too general for our purposes. We will label the vertex
vk of an abstract Lyapunov graph with the dimensions of the Conley homol-
ogy indices, dim CHj(Rk) = hj(vk), with j = 0, . . . n. Hence, each vertex
is labelled with a list of nonnegative integers (h0(vk), . . . , hn(vk), κ(vj)).3

We choose to label the edges with the Betti numbers of a closed (n − 1)-
dimensional manifold, a Betti number vector. This abstract Lyapunov
graph is denoted by L(h0, . . . , hn, κ), where hλ =

∑card V
j=1 hλ(vj) and V is

the vertex set and κ =
∑card V

j=1 κ(vj).
Therefore, our dynamical data is encoded in these abstract Lyapunov

graphs, which respect certain incidence rules and weight conditions on the
edges. These conditions, that are imposed on abstract Lyapunov graphs,

2An hcd vector determines several Lyapunov graphs of Morse type. Suppose an ntd-
labelling is fixed for any two such graphs, then the difference in the realization of L1 and
L2 is in the order of the attachment of the handles. Since we are not interested in the
order of the attachment of handles, we will make no further reference to the Lyapunov
graph.

3An alternative notation is to label the vertex with hj(vk) = nj whenever nj 6= 0.
The latter notation is convenient whenever (h0(vk), . . . , hn(vk), κ(vk)) has many zero
entries.
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are necessary conditions. Hence, a Lyapunov graph coming from a flow φt

on a closed manifold must satisfy the above conditions, obtained from the
analysis of the long exact sequences of index pairs of isolated invariant sets
of φt.

In [9], this type of homological analysis was done for singularities and
periodic orbits of Morse-Smale flows. The results therein classify singular-
ities with h` = 1 (for Morse flows these correspond to the non-degenerate
singularities of Morse index `) by distinguishing the effect it causes on the
level sets N− and N+.

A singularity, respectively a vertex, labelled with h` = 1 is `-d (`-
disconnecting), if it has the algebraic effect of increasing the `-th Betti
number of N+ or respectively, the corresponding β` label on the incoming
edge. A singularity, respectively a vertex, labelled with h` = 1 is (`− 1)-c,
((`− 1)-connecting), if it has the algebraic effect of decreasing the (`− 1)-
th Betti number of N+ or respectively, the corresponding β`−1 label on
the incoming edge. The increase or decrease is always by one except in
the case ` = i and ` = i + 1 when n = 2i + 1, and in this case it varies
by two (i-d) and minus two (i-c) respectively. In the case n = 2i with
2i ≡ 0 mod 4, a singularity, respectively a vertex, labelled with hi = 1 is
β-i (beta-invariant), if all Betti numbers are kept constant. See Figure 1
for ` 6= i(i-d) and for ` 6= i + 1(i-c) when n = 2i + 1.

β`−1(N+) = β − 1

β`−1(N−) = β

h` = 1h` = 1

β-i(`− 1)-c`-d

h` = 1

β`(N+) = β + 1

β`(N−) = β

u uu

?

?

?

?

?

?

FIG. 1. The three possible algebraic effects.

In [2], this type of homological analysis was done in full generality and
lead to the Poincaré-Hopf inequalities for isolating blocks (N,N−, N+). In
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fact, the above results can easily be obtained from the inequalities below.
If n is odd, then (1)–(4) need to be satisfied, if n ≡ 0 mod 4, only (1)–(3),
and if n ≡ 2 mod 4, inequalities (1)–(3) and (5).

−hj ≤
j−1∑

k=1

(−1)k+j+1(B+
k −B−

k )

+
j−1∑

k=0

(−1)k+j+1(hn−k − hk) ≤ hn−j , j = 2, . . . ,
⌊n

2

⌋
(1)

h1 ≥ h0 − 1 + κ (2)

hn−1 ≥ hn − 1 + κ (3)

n = 2i + 1





i−1∑

k=1

(−1)k(B+
k −B−

k )

+ (−1)i B
+
i −B−

i

2
−

n∑

k=0

(−1)khk = 0

(4)





n = 2i, i odd





hi −
i−1∑

k=1

(−1)k(B+
k −B−

k )

−
i−1∑

k=0

(−1)k(hn−k − hk) ≡ 0 mod 2,

(5)

where B+
k (resp., B−

k ) is the sum of the Betti numbers of the incoming
boundary components of N , denoted by N+ (resp., the outgoing boundary
components of N , denoted by N−).

Letting B+
k = B−

k = 0 for all k, we obtain the Poincaré-Hopf inequalities
(6)–(10) for flows on a closed manifold, which is our focus in this article.

−hj ≤
j−1∑

k=0

(−1)k+j+1(hn−k − hk) ≤ hn−j , j = 2, . . . ,
⌊n

2

⌋
(6)

h1 ≥ h0 − 1 + κ (7)

hn−1 ≥ hn − 1 + κ (8)

n = 2i + 1

{
n∑

k=0

(−1)khk = 0 (9)



 n = 2i, i odd

{
hi −

i−1∑

k=0

(−1)k(hn−k − hk) ≡ 0 mod 2. (10)
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2.2. Poincaré-Hopf Inequalities and the hcd
κ -System

Bertolim et al. [4] developed a continuation algorithm whose input is an
abstract Lyapunov graph L(h0, . . . , hn, κ) and output is its continuation to
an abstract Lyapunov graph of Morse type. This continuation is possible if
and only if the following hcd

κ -system admits a nonnegative integral solution:

hc
1 = −1 + h0 + κ, (11)

{
hc

j + hd
j = hj , j = 1, . . . , n− 1, j 6=

⌊n

2

⌋
(12)

n = 2i + 1

{
hc

j + hd
j = hj , j =

⌊n

2

⌋
(13)

n = 2i





hc
j + hd

j + β = hj ,

β ≡ 0 mod 2,

j =
⌊n

2

⌋

n 6≡ 0 mod 4
(14)

hd
n−1 = −1 + hn + κ, (15)

{
hd

j − hc
j+1 − hc

n−j + hd
n−(j+1) = 0, j = 1, . . . ,

⌊n

2

⌋
− 1 (16)





n = 2i + 1
{

hd
i − hc

i+1 = 0. (17)

On the other hand, suppose (h0, . . . , hn, κ) is a fixed nonnegative integral
vector. Then the hcd

κ -system (11)–(17) has a nonnegative integral solution if
and only if (h0, . . . , hn, κ) satisfies the Poincaré-Hopf inequalities for closed
manifolds (6)–(10), see [4]. The meaning of the variables in the hcd

κ -system
are as follows: hc

j = card{hj = 1 of type (j − 1)-c} and hd
j = card{hj =

1 of type j-d}, for j = 1, . . . , n− 1. The free variable β appears in the case
n = 2i. 4 We will continue to consider singularities of index i of type β-i
only in the case n = 2i ≡ 0 mod 4, and will allow pairs of singularities of
index i to form a dual pair (hc

i , h
d
i ) of type (i−1)-c, i-d respectively, in any

even dimension. Thus, when n = 2i ≡ 2 mod 4, only the latter is allowed
which implies β must assume an even value.

Hence, the hcd
κ -system has a nice dynamical interpretation related to

graph continuation. On the other hand, the hcd = (hc
1, h

d
1 , . . . , hc

n−1, h
d
n−1)

vectors which are nonnegative integral solutions of the hcd
κ -system can be

4In [2], [3] and [4] a β label on an index i singularity, hi, was always considered as
being a β-i singularity which only occurs when n = 2i ≡ 0 mod 4. This explains why we
considered β = 0 when n 6≡ 0 mod 4 therein. However, in this article we will work with
a broader class of labellings for β which will simplify the development of what follows.
In this case it will suffice to require that β be even.
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used to generate the Betti number vectors which in turn determine the
Morse polytope, see [3, 4] for more details. We represent these equivalence
results in the diagram of Figure 2.

-¾
²
±

¯
°

²
±

¯
°hcd

κ -system Morse Polytope

²
±

¯
°Poincaré-Hopf

¡
¡¡ª¡

¡¡µ @
@@R@

@@I

FIG. 2. Equivalence Results.

2.3. Admissible and Canonical Lyapunov Graphs
We say that a Lyapunov graph (resp., a Lyapunov semi-graph)

L(h0, . . . ,hn, κ) satisfies the Poincaré-Hopf inequalities if the data (h0,. . . ,
hn, κ) satisfies the Poincaré-Hopf inequalities (6)–(10) (resp., (1)–(5)).

We define admissible graphs as abstract Lyapunov graphs that satisfy
the Poincaré-Hopf inequalities (1)–(5) at each vertex. These graphs have
the property that they can be continued to abstract Lyapunov graphs of
Morse type, see [2].

Admissible graphs were treated in [9] for abstract Lyapunov graphs of
Morse-Smale type. The question of admissibility was completely general-
ized in [2], [3] and [4] for general abstract Lyapunov graphs.

The first natural question is to consider whether admissible graphs are
realizable in closed manifolds. The answer to this question depends on the
dynamical data and the ambient dimension of the manifold. For instance,
for abstract Lyapunov graphs in dimension n ≡ 0 mod 4 where β-i ver-
tices are present there are examples that are non-realizable, see Figure 3.
Secondly, if the graph is realizable, we would like to know in how many
different ways can this realizability be achieved. Since an admissible Lya-
punov graph can be continued to many Lyapunov graphs of Morse type,
see [2] and [4], it is natural to start our study of realizability with the latter
class, since it constitutes the most elementary admissible graphs.

As in [9], we need to enrich the labelling of an abstract Lyapunov graph
of Morse type L(h0, . . . , hn, κ) by a null-trivial-dual-labelling, in short, an
ntd-labelling. An ntd-labelling is the pairing up of all vertices (except two,
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s

s

s

h0 = 1

h6 = 1

h12 = 1

FIG. 3. Admissible non-realizable abstract Lyapunov graph in dimension n = 12.

one h0 and one hn vertex) in an admissible graph by using the types:
κ-dual: {hn−1 = 1 of type (n− 1)-d, h1 = 1 of type 0-c}.
dual: {hj = 1 of type j-d, hn−j = 1 of type (n − j − 1)-c},
for j = 1, . . . , n− 2.
null: {hj = 1 of type j-d, hj+1 = 1 of type j-c}, for j =
1, . . . , n− 2.
trivial: {h1 = 1 of type 0-c, h0} (first type) and {hn−1 =
1 of type (n− 1)-d, hn}

(second type).
We will see below that all hj ’s can be paired up in this way when n

is odd. However, when n is even, say n = 2i, recall that hi may be of
type (i − 1)-c, i-d or β. The third set of hi’s, which is not accounted for
in the types of pairings established above, receives a free label beta. The
hi’s labelled with beta may be considered as a β-i singularity or two hi’s
labelled with beta may form a dual pair. In order to simplify notation, we
will still talk about the ntd-labellings when n is even, although in this case
there will be an additional element.

We define admissible Lyapunov graphs which possess an ntd-labelling as
canonical Lyapunov graphs. Do all admissible graphs of Morse type admit
an ntd-labelling? Are all canonical Lyapunov graphs realizable? Both
questions are answered in the next section.

3. MAIN RESULTS

3.1. Relationship between hcd and ntd-labellings
In this section we establish the existence of an ntd-labelling for a given

abstract Lyapunov graph L(h0, . . . , hn, κ) of Morse type associated with
an hcd vector satisfying (11)–(17). Note that all ntd-labels refer to pairs of
singularities, except possibly the beta label, which may assume the specific
labelling of β-i type. In the sequence we will deal with the number and
types of pairings associated with the ntd-labellings.
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Henceforth we consider fixed (h0, . . . , hn, κ) and hcd that satisfy (6)–(10)
and (11)–(17). Let

dκ = number of κ-dual pairings,
dj = number of dual pairings, for j = 1, . . . , n− 2,

ηj = number of null pairings, for j = 1, . . . , n− 2,

t1 = number of trivial pairings of first type,
t2 = number of trivial pairings of second type,
b = number of labels of type beta.

Theorem 1. All admissible graphs of Morse type can be made canonical,
i.e., admit an ntd-labelling. The number of distinct labellings that can be
assigned to a fixed abstract Lyapunov graph of Morse type described by an
hcd vector is given by

i−1∏

j=1

(min{hc
j+1, h

d
n−j−1} − [hc

j+1 − hd
j ]

+ + 1) · (hd
i + 1), if n = 2i + 1,

(18)

and

i−1∏

j=1

(min{hc
j+1, h

d
n−j−1} − [hc

j+1 − hd
j ]

+ + 1), if n = 2i. (19)

Proof. Consider a fixed abstract Lyapunov graph of Morse type associ-
ated with a nonnegative integral hcd vector, corresponding to an abstract
Lyapunov graph L(h0, h1, . . . , hn, κ) of Morse type.

By construction, there are h0 − 1 trivial pairings of the first type and
hn − 1 trivial pairings of the second type, implying t1 = h0 − 1 and t2 =
hn − 1. Furthermore, the total number of h1 = 1 of type 0-c is equal
to hc

1 and these can be paired with h0 (forming a trivial pairing) or with
hn−1 = 1 of type (n−1)-d (forming a κ-dual pairing). In order to have each
of them paired exactly once, dκ and t1 must be integral, nonnegative, and
satisfy dκ+t1 = hc

1. Similarly, we conclude that dκ and t2 must be integral,
nonnegative and satisfy dκ + t2 = hd

n−1. Substituting the values for t1, t2
and using the equations for hc

1 and hd
n−1 in (11) and (15), respectively, we

conclude that

dκ = κ. (20)
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Then each remaining hj = 1 of type j-d and hj = 1 of type (j − 1)-c,
for j = 1, . . . , n− 2, is paired exactly once if and only if the vector (η, d) =
(η1, . . . , ηn−2, d1, . . . , dn−2) satisfies:

dj + ηj = hd
j , j = 1, . . . , n− 2 (21)

dn−j−1 + ηj = hc
j+1, j = 1, . . . , n− 2. (22)

If n = 2i + 1, we multiply the equations in (22) by −1 and partition the
linear system (21)–(22) into i independent problems:





dj + ηj = hd
j ,

−dn−j−1 − ηj = −hc
j+1,

dn−j−1 + ηn−j−1 = hd
n−j−1,

−dj − ηn−j−1 = −hc
n−j ,

for j = 1, . . . , i− 1, (23)

and
{

di + ηi = hd
i ,

−di − ηi = −hc
i+1,

for j = i. (24)

If n = 2i, the same operation produces only the i− 1 linear systems (23).
Remember that, if n 6= 2i and hcd satisfies the hcd

κ -system, then all hj ’s
have been accounted for, since hj = hc

j + hd
j for j = 1, . . . , n− 1. However,

when n = 2i, we have hi = hcd
i + hd

i + β. Therefore, in this case, β of the
hi = 1 are not paired, and receive instead a label of type beta, implying

b = β. (25)

Systems (23) and (24) correspond to network-flow problems. The net-
works corresponding to n = 7 are depicted in Figure 4. The existence of
nonnegative solutions implies the existence of nonnegative integral solu-
tions, since the matrices of coefficients of these linear systems are totally
unimodular. For fixed hcd satisfying the hcd

κ -system, necessary and suffi-
cient conditions for the existence of solutions of (23)–(24) is that the sum
of the right-hand-side of these systems be equal zero, and this is granted
by equations (16) and (17) of the hcd

κ -system. Nonnegativity is equivalent
to the following inequalities, obtained via the Fourier-Motzkin elimination
process:

hc
j+1 ≥ 0, (26)

hc
j+1 ≥ hc

j+1 − hd
j , (27)

hd
n−j−1 ≥ 0, (28)

hd
n−j−1 ≥ hc

j+1 − hd
j , (29)
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for j = 1, . . . , i, if n = 2i+1, and for j = 1, . . . , i−1, if n = 2i. Conditions
(26)–(28) follow from the nonnegativity of hcd. Condition (29) follows from
the nonnegativity of hcd and equation (16) of the hcd

κ -system.
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FIG. 4. Network problems for n = 7.

Thus, if n = 2i + 1, the general solution of (23)–(24) has the form

(ηj , ηn−j−1, dj , dn−j−1) = (hc
j+1, h

d
n−j−1, h

d
j − hc

j+1, 0)
+αj(−1,−1, 1, 1), for j = 1, . . . , i− 1, (30)

(ηi, di) = (0, hd
i ) + αi(1,−1), for j = i, (31)

where [hc
j+1 − hd

j ]+ ≤ αj ≤ min{hc
j+1, h

d
n−j−1}, for j = 1, . . . , i − 1, and

0 ≤ αi ≤ hd
i . On the other hand, if n = 2i, then (30) defines all the

elements in vector (η, d) satisfying (23).
Summarizing, the number of distinct ntd-labellings or pairings that can

be assigned to a fixed abstract Lyapunov graph of Morse type described by
an hcd vector is simply the number of distinct integral values the various
αj may assume. Given the range of values for α determined in the last
paragraph, we easily arrive at formulas (18) and (19) for the number of
distinct ntd-labellings if n = 2i + 1 and if n = 2i, respectively.

In [3] and [4] the solution h∗cd to the hcd
κ -system that satisfies the com-

plementarity condition

hc
jh

d
n−j = 0, for j = 2, . . . ,

⌊n

2

⌋
. (32)

played a special role in the development of the results. Notice that, if n
is even, then an abstract Lyapunov graph described by a complementary
hcd vector has a unique labelling, since min{h∗cj+1, h

∗d
n−j−1} = 0, for j =

1, . . . , i− 1. If n is odd, the graph will have h∗di + 1 distinct labellings.
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3.2. Relationship between Betti number vectors and
ntd-labellings

In [4] it was shown that, for fixed data (h0, . . . , hn, κ), the hcd
κ -system

11)–(17) admits nonnegative integral solutions if and only if there exist
Betti number vectors that satisfy the generalized Morse-Conley inequali-
ties:

n∑

k=0

(−1)k+nγk =
n∑

k=0

(−1)k+nhk,

j∑

k=0

(−1)k+jγk ≤
j∑

k=0

(−1)k+jhk, for j = 0, . . . , n− 1,

γ1 ≥ κ.

(33)

This result and the previously established equivalence between the Poincaré-
Hopf inequalitites and the hcd

κ -system lead to an equivalence between the
two sets of inequalities: Poincaré-Hopf and Morse-Conley. The hcd

κ -system
was the bridge that enabled the establishment of a link between the first set
of inequalities, containing only dynamical data, and the second set, includ-
ing topological data as well. This link was constructive, that is, mappings
were defined to-and-fro the two sets of solutions, the hcd vectors and the
Betti number vectors. These mappings will play an important role in the
following sections, where we determine which ntd-labellings for a given
nonnegative integral hcd solving (11)–(17) correspond to a topological re-
alization of a Morse flow on a closed manifold.

Henceforth we assume that the fixed data (h0, . . . , hn, κ) satisfies the
Poincaré-Hopf inequalities for closed manifolds (6)–(10).

3.2.1. Case n odd

Let n = 2i + 1. Then duality conditions render the first equation in (33)
redundant for Betti number vectors. The linear inequalities, nonnegativity
constraints, duality and boundary conditions imposed on γ define the Morse
polytope Pκ(h0, . . . , hn). Instead of analyzing Pκ(h0, . . . , hn) directly, it
is advantageous to eliminate the fixed (γ0, γn) and duplicate (γn−j , for
j = 1, . . . , i) variables using the boundary and duality conditions, and deal
instead with the reduced polytope Pr

κ(h0, . . . , hn) ⊂ Ri. There is thus a
1-to-1 relationship between γ ∈ Pκ(h0, . . . , hn) and γr = (γ1, . . . , γi) ∈
Pr

κ(h0, . . . , hn). Since the data (h0, . . . , hn, κ) is considered fixed, we will
henceforth drop explicit reference thereto in the polytope’s notation. The
following facts concerning Pr

κ were established in [3, 4].
The integral polytope Pr

κ is the convex hull of two of its faces: the top
face Ft and F0 (the projection of Ft onto the hyperplane γi = 0). Given
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γr ∈ Ft (and, consequently, γ ∈ Pκ), the mapping Hcd defined in (34)–(43)
below produces a solution hcd to the hcd

κ -system (11)–(17).

Hd
2i(γ) = −

2i∑

j=0

(−1)j+1(hj − γj) + κ, (34)

Hd
2i+1−`(γ) = (−1)`

2i+1−`∑

j=0

(−1)j+1(hj − γj), for 2 ≤ ` ≤ i (35)

Hc
2i+2−`(γ) = (−1)`

2i+1−`∑

j=0

(−1)j+1(hj − γj), for i + 2 ≤ ` ≤ 2i (36)

Hc
1(γ) = h0 − γ0 + κ (37)

Hd
1 (γ) = γ1 + Hc

2(γ)− κ (38)

Hd
` (γ) = γ` + Hc

`+1(γ), for 2 ≤ ` ≤ i− 1 (39)

Hc
` (γ) = γ` + Hd

`−1(γ), for i + 2 ≤ ` ≤ 2i− 1 (40)

Hc
2i(γ) = γ2i + Hd

2i−1(γ)− κ (41)

Hd
i (γ) = γi (42)

Hc
i+1(γ) = γi+1. (43)

If γr ∈ Pr
κ does not belong to Ft, we can still associate to it an hcd vector,

albeit indirectly, by first projecting γr onto the top face and then applying
the above mapping to this projection.

Conversely, the mapping Γ(·) given by (44) returns a Betti number vector
γ satisfying the Morse-Conley inequalities, given a nonnegative integral
solution hcd of (11)–(17).

Γ0(hcd) = Γ2i+1(hcd) = 1,

Γj(hcd) =





hd
1 − hc

2 + κ, if j = 1,
hd

j − hc
j+1, if 2 ≤ j < i,

hd
i , if j = i,

hc
i+1, if j = i + 1,
−hd

j−1 + hc
j , if i + 2 ≤ j ≤ 2i− 1,

−hd
2i−1 + hc

2i + κ, if j = 2i.

(44)

The corresponding γr belongs to the hyperplane supporting Ft but is not
necessarily confined to the top face, in the sense that it is not guaranteed
to be nonnegative and satisfy γ1 ≥ κ. The convex hull of these γr’s may be
considered an extended top face. For an illustration thereof see Figure 5.
The dots in the rectangle containing the top face are the reduced versions
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of the images under Γ of the nonnegative integral hcd vectors that solve
the hcd

κ -system.

γ1
γ2

γ3

FIG. 5. Morse polytope and extended top face.

Incidentally, it can be shown, see the Appendix of [8], that Hcd(Γ(hcd)) =
hcd for solutions hcd to the hcd

κ -system (11)–(17). Summarizing, these
mappings establish a 1-to-1 relationship between the solution set of the
hcd

κ -system (11)–(17) and the extended top face. Consequently, their re-
strictions also constitute 1-to-1 relationships between the vectors in the
top face and a subset of solutions of the hcd

κ -system (11)–(17). Finally, it
was shown in [4] that γ∗r = Γ(h∗cd), the image under Γ of the solution
of the hcd

κ -system that satisfies the complementary conditions (32), is the
maximum element of Pr

κ.
The definitions of Γi(hcd) and Γi+1(hcd) were arbitrary. Whereas with

the choice in (44) the reduced vector Γr(hcd) belongs to the affine hull of
the top face of Pr

κ, if we were to let Γi(hcd) = hd
i −hc

i+1 = 0 = −hd
i +hc

i+1 =
Γi+1(hcd), the reduced vector would belong to the hyperplane supporting
F0. Of course, being Pr

κ convex, if γr ∈ Ft then the whole segment between
γr and its projection onto F0 is in Pr

κ. Thus, in a way, we’ve associated the
whole segment between one vector in Ft and its projection onto F0 with an
hcd solution of (11)–(17). The establishment of pairings will allow one to
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associate each integral γr on such a segment with a specific set of pairings
in a natural way.

Given a fixed abstract Lyapunov graph of Morse type associated with a
solution hcd of the hcd

κ -system, the vectors η, d and t give the null, dual
and trivial number of pairs in a ntd-labelling assigned thereto. Assume
γ = Γ(hcd) belongs to Pκ. We are interested in determining which ntd-
labellings for hcd correspond to a topological realization of a Morse flow
on a closed (2i + 1)-manifold with Betti number vector equal to γ. As
mentioned, γr ∈ Ft, but the same question is posed for the Betti number
vectors corresponding to integral γr’s below the top face of the reduced
polytope.

Recall that all the integral vectors in the segment between γr = Γr(hcd)
and its projection on F0 are associated to hcd. Now the (fixed) hcd vector
will, in general, have several ntd-labellings that may be assigned thereto.
Below we construct G(d) that maps an ntd-labelling of a nonnegative inte-
gral hcd, such that Γ(hcd) ∈ Pκ, to a Betti number vector satisfying (33),
see Theorem 2. This mapping spreads out evenly the ntd-labellings of hcd

amongst the integral vectors in the segment from Γr(hcd) and its projection
on F0. So, if there are k ntd-labellings associated to hcd and m integral
vectors in the segment joining Γr(hcd) ∈ Pr

κ to its projection on F0, then
there will be k/m ntd-labellings associated to each of the integral vectors in
the segment. Furthermore, we show in Theorem 3 that, for each γr in this
segment, exactly one of the k/m labellings can be realized topologically.

Theorem 2. Let hcd be a nonnegative integral solution of (11)–(17),
such that γ = Γ(hcd) belongs to the Morse polytope Pκ. Let (η, d, t) be the
null, dual and trivial pairs of an ntd-labelling of hcd. Define the mapping
G(d) as follows

G0(d) = Gn(d) = 1, (45)

G1(d) = Gn−1(d) = d1 − dn−2 + dκ, (46)

Gj(d) = Gn−j(d) = dj − dn−j−1, for j = 2, . . . , i− 1, (47)

Gi(d) = Gi+1(d) = di. (48)

Then G(d) is a Betti number vector and its associated reduced vector lies
in the segment between γr and its projection onto F0.

Finally, the total number of pairings of hcd is evenly split amongst the
integral vectors in this segment.
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Proof. The expression for d in (30)–(31) implies:

dj − dn−j−1 = hd
j − hc

j+1, for j = 1, . . . , i− 1 (49)

di = hd
i − αi, (50)

where 0 ≤ αi ≤ hd
i . Substituting (49)–(50) in (46)–(48), and using (20),

we have:

G1(d) = Gn−1(d) = hd
1 − hc

2 + κ, (51)

Gj(d) = Gn−j(d) = hd
j − hc

j+1, for j = 2, . . . , i− 1, (52)

Gi(d) = Gi+1(d) = hd
i − αi. (53)

Comparing (45), (51), (52) and (53) with (44) it is easy to conclude that, if
αi = 0, then G(d) = γ = Γ(hcd), and therefore Gr(d) belongs to Ft. As αi

varies from zero to hd
i , only the middle components of G(d) change, going

from hd
i to zero. Thus the reduced vector Gr(d) is a Betti number vector.

The number of ntd-labellings associated with hcd is the product of the
numbers of values the various αj in (30)–(31) may assume, for j = 1, . . . , i.
For each fixed value of αi we will have a set of pairings associated with a
reduced Betti number vector Gr(d) whose cardinality is the product of the
number of values αj may assume, for j = 1, . . . , i−1. So each reduced Betti
number vector on the segment between γr and its projection will have the
same number of ntd-labellings associated therewith, since the ranges of the
various αj are independent of each other. Therefore the ntd-labellings are
evenly spread out amongst the G(d)’s.

Theorem 3. Let hcd be a nonnegative integral solution of (11)–(17),
such that γ = Γ(hcd) belongs to the Morse polytope Pκ. Let γ̃r be an
integral vector in the segment between γr and its projection onto F0. Then
there is a unique ntd-labelling of hcd that can be realized topologically, that
is, that satisfies

γ̃1 = γ̃n−1 = d̃1 + d̃κ, (54)

γ̃j = γ̃n−j = d̃j + d̃n−j , for j = 2, . . . , i− 1, (55)

γ̃i = γ̃i+1 = d̃i, (56)

where d̃ is the vector of dual pairings of this unique ntd-labelling.
Furthermore, this is realizable on a generalized tori with γk factors of the

type Sk × Sn−k, for k = 1, . . . , i.

Proof. We’ve seen in the proof of Theorem 2 that G(d) = γ̃ for all
vectors d in ntd-labellings associated with hcd such that di = γ̃i, or, equiv-
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alently, αi = γ̃i − hd
i . The number of such ntd-labellings is precisely the

product of the number of values αj may assume, for j = 1, . . . , i−1. Using
(30)–(31) we obtain, for ntd-labellings associated with hcd,

d1 + dκ = hd
1 − hc

2 + α1 + κ, (57)

dj + dn−j = hd
j − hc

j+1 + αj + αj−1, for j = 2, . . . , i− 1, (58)

di = hd
i − αi, (59)

where [hc
j+1 − hd

j ]+ ≤ αj ≤ min{hc
j+1, h

d
n−j−1}, for j = 1, . . . , i − 1 and

0 ≤ αi ≤ hd
i . Notice that the lower bound for αj , 1 ≤ j ≤ i, is always

zero since, in this case, hc
2 − hd

1 = −γ1 + κ ≤ 0 and hc
j+1 − hd

j = −γj ≤ 0,
for j = 2, . . . , i − 1. Thus the unique ntd-labelling obtained by choosing
α̃j = 0, for j = 1, . . . , i − 1 and α̃i = γi − hd

i is such that d̃n−j−1 = 0, for
j = 1, . . . , i − 1, and thus such that G(d̃) = γ̃. In other words, for this
unique ntd-labelling, the Betti number vector obtained through (45)–(48)
coincides with γ̃, and satisfies (54)–(56).

Each dual pair {hk, hn−k} is responsible for a factor of the type Sk×Sn−k

in the resulting manifold M . In [5] the dual gluing is explained in more
detail and we proceed to describe it briefly.

The dual gluing of two handles of complementary indices q and (n− q),
consists first in gluing a q-handle hq trivially to some manifold M0 with
boundary N0. We hence create a q-handlebody Hq and the global result of
the gluing is that

{
M1 = M0 \ Hq

N1 = N0 ] ∂Hq = N0 ] (Sq × Sn−q−1)

Note that the attachment of this handle corresponds to a singularity of
index q of the disconnecting type, an hd

q , since the q-th Betti number of
the boundary N1 increased by one because of the summand Sq × Sn−q−1.

Next an (n−q)-handle hn−q is attached by identifying its attaching region
Sn−q−1 ×Dq to the belt region of hq:

∂hq ∩N1 = ∂hq \ (Sq−1 × int(Dn−q)) = Dq × Sn−q−1 = Sn−q−1 ×Dq

The resulting manifold is

M2 = M0 ] Sq × Sn−q,

and its boundary is

N2 = N0.
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This second handle corresponds to a singularity of index n− q of the con-
necting type, an hc

n−q, since the (n−q−1)-th Betti number of the boundary
N2 decreased by one because the summand Sq×Sn−q−1 vanishes after the
gluing and N2 = N0.

Under the correspondence defined in Theorem 2, the maximum element
of Pr

κ, γ∗r = Γ(h∗cd), corresponds to the ntd-labelling with (η∗, d∗) given
by

d∗κ = κ,

(η∗j , η∗n−j−1, d
∗
j , d

∗
n−j−1) = (h∗cj+1, h

∗d
n−j−1, h

∗d
j − h∗cj+1, 0),

for j = 1, . . . , i− 1,

(η∗i , d∗i ) = (0, h∗di ).

Thus this ntd-labelling satisfies η∗j η∗n−j−1 = 0 = d∗n−j−1, for j = 1, . . . , i−
1.

Example 4. hcd
κ -system and polytope for n = 7.

Let n = 2i + 1 = 7 and (h0, . . . , h7) = (1, 5, 11, 10, 5, 3, 4, 3). Thus
κ ∈ {0, 1, 2}. There are 24 distinct integral nonnegative hcd’s that solve
the hcd

κ -system, for each value of κ:

(hc
1, h

d
1 , hc

2, h
d
2 , hc

3, h
d
3 , hc

4, h
d
4 , hc

5, h
d
5 , hc

6, h
d
6) =

(κ, 5− κ, 3, 8, 5, 5, 5, 0, 3, 0, 2− κ, 2 + κ)

+c1(0, 0, 1,−1, 0, 0, 0, 0,−1, 1, 0, 0)

+c2(0, 0, 0, 0, 1,−1,−1, 1, 0, 0, 0, 0),

where c1 ∈ {0, 1, 2, 3} and c2 ∈ {0, . . . , 5}. The corresponding γr’s belong
to the affine hull of the top face of the Morse polytope. Of these, 9 belong
to Ft, see Figure 5.
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The numbers of dual and null pairs associated with a given hcd are given
by

(η1, η5, d1, d5) = (hc
2, h

d
5 , hd

1 − hc
2, 0) + α1(−1,−1, 1, 1)

= (3 + c1 − α1, c1 − α1, 2− κ + c1 + α1, α1),

where [κ− 2− c1]+ ≤ α1 ≤ c1, (60)

(η2, η4, d2, d4) = (hc
3, h

d
4 , hd

2 − hc
3, 0) + α2(−1,−1, 1, 1)

= (5 + c2 − α2, c2 − α2, 3− c1 − c2 + α2, α2),

where [c1 + c2 − 3]+ ≤ α2 ≤ c2, (61)

(η3, d3) = (hc
4, 0) + α3(−1, 1)

= (5− c2 − α3, α3) for 0 ≤ α3 ≤ 5− c2. (62)

The reduced gamma vector associated with an ntd-labelling is

γ1 = d1 − d5 + κ = 2 + c1

γ2 = d2 − d4 = 3− c1 − c2

γ3 = d3 = α3.

Letting κ = 1, c1 = 1 = c2, we have h̄cd = (1, 4, 4, 7, 6, 4, 4, 1, 2, 1, 1, 3).
Then dκ = 1 and (η, d) = (4 − α1, 6 − α2, 4 − α3, 1 − α2, 1 − α1, 2 + α1,

1 + α2, α3, α2, α1), where 0 ≤ α1 ≤ 1, 0 ≤ α2 ≤ 1 and 0 ≤ α3 ≤ 4, so this
hcd admits 20 distinct ntd-labellings. On the other hand, the reduced Betti
number vectors associated to the 20 ntd-labellings are not necessarily dis-
tinct. Applying the formulas in Theorem 2 we have that the reduced vector
associated to an ntd-labelling from this set is given by γ̃ = (γ̃0, γ̃1, . . . , γ̃7) =
(1, 1, 1, α3, α3, 1, 1, 1) and γ̃r = (γ̃1, γ̃2, γ̃2) = (1, 1, α3). Thus, if α3 = 4,
we obtain γ̃r = (1, 1, 4) ∈ Ft and if α3 = 0 we obtain γ̃r = (1, 1, 0) ∈ F0.
Notice that γ̃ does not depend on α1 nor α2. Thus there are 4 = 20/5 pair-
ings (the number of possible values for α1 and α2) associated with each of
the five integral γr’s in the segment between (1, 1, 0) and (1, 1, 4) in Pr

1 .
Furthermore, all five γr’s are associated with h̄cd.

The complementary solution is h∗cd = (κ, 5 − κ, 3, 8, 5, 5, 5, 0, 3, 0,

2− κ, 2 + κ) and the ntd-labelling that corresponds to the maximum Betti
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Range Range Range

#ntd-labellings

assoc. with

γ̄r h̄cd c1, c2 of α1 of α2 of α3 γ̄r h̄cd

(2, 3, 5)
(0, 5, 3, 8, 5, 5,

5, 0, 3, 0, 2, 2)
0, 0 {0} {0} {0, . . . , 5} 1 6

(2, 2, 4)
(0, 5, 3, 8, 6, 4,

4, 1, 3, 0, 2, 2)
0, 1 {0} {0, 1} {0, . . . , 4} 2 10

(2, 1, 3)
(0, 5, 3, 8, 7, 3,

3, 2, 3, 0, 2, 2)
0, 2 {0} {0, 1, 2} {0, 1, 2, 3} 3 12

(2, 0, 2)
(0, 5, 3, 8, 8, 2,

2, 3, 3, 0, 2, 2)
0, 3 {0} {0, 1, 2, 3} {0, 1, 2} 4 12

(1, 2, 5)
(0, 5, 4, 7, 5, 5,

5, 0, 2, 1, 2, 2)
1, 0 {0, 1} {0} {0, . . . , 5} 2 12

(1, 1, 4)
(0, 5, 4, 7, 6, 4,

4, 1, 2, 1, 2, 2)
1, 1 {0, 1} {0, 1} {0, . . . , 4} 4 20

(1, 0, 3)
(0, 5, 4, 7, 7, 3,

3, 2, 2, 1, 2, 2)
1, 2 {0, 1} {0, 1, 2} {0, 1, 2, 3} 6 24

(0, 1, 5)
(0, 5, 5, 6, 5, 5,

5, 0, 1, 2, 2, 2)
2, 0 {0, 1, 2} {0} {0, . . . , 5} 3 18

(0, 0, 4)
(0, 5, 5, 6, 6, 4,

4, 1, 1, 2, 2, 2)
2, 1 {0, 1, 2} {0, 1} {0, . . . , 4} 6 30

TABLE 1.

Reduced Betti number vectors on Ft, associated h̄cd and with (η, d)

such that di = h̄d
i , values of c1, c2, ranges of α1, α2, α3, and

number of distinct ntd-labellings, supposing κ = 0.

number vector has the following numbers of null and dual pairs:

d∗κ = κ,

(η∗1 , η∗5 , d∗1, d
∗
5) = (3, 0, 2− κ, 0),

(η∗2 , η∗4 , d∗2, d
∗
4) = (5, 0, 3, 0),

(η∗3 , d∗3) = (0, 5).

The top face Ft contains 9 of the 24 γr’s of the extended top face.
Table 1 illustrates the correspondence between γr, hcd and ntd-labellings
established in Theorems 1, 2 and 3.

3.2.2. Case n even

Let n = 2i. Recall that the fixed data (h0, . . . , hn, κ) is assumed to
satisfy the Poincaré-Hopf inequalities (6)–(10). In particular, this means
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we assume that the alternate sum
∑

j=0(−1)jhj is even if i is odd. Again
we utilize boundary and duality constraints to eliminate variables γ0, γi+1,
. . . , γn from constraints in (33). But this time the first equation in (33) is
not redundant, and we may use it to eliminate γi, expressing it in terms of
γ1, . . . , γi−1. The convex hull of the nonnegative vectors that satisfy the
remaining constraints form the reduced polytope Pr

κ ⊂ Ri−1 and bear a
1-to-1 relationship with the vectors in the polytope Pκ ⊂ Rn+1, the convex
hull of the Betti number vectors satisfying (33). Notice that exactly one
representative of each pair of duplicate variables is present in Pr

κ, but the
variable γi is not explicitly present.

This time there is a 1-to-1 relationship between the integral vectors in
Pκ and a subset of the nonnegative integral solutions (hc

1, h
d
1 , . . . , hc

i , β, hd
i ,

. . . , hc
2i−1, h

d
2i−1) to the hcd

κ -system, established in the Appendix of [8],
given by the following mappings:

Γ0(hcd) = Γ2i(hcd) = 1,

Γj(hcd) =





hd
1 − hc

2 + κ, if j = 1,
hd

j − hc
j+1, if 2 ≤ j ≤ i− 1,

β, if j = i,
−hd

j−1 + hc
j , if i + 1 ≤ j ≤ 2i− 2,

−hd
2i−2 + hc

2i−1 + κ, if j = 2i− 1.

(63)

Hd
2i−1(γ) =

2i−1∑

j=0

(−1)j+1(hj − γj) + κ, (64)

Hd
2i−`(γ) = (−1)`

2i−∑̀

j=0

(−1)j(hj − γj), for 2 ≤ ` ≤ i, (65)

Hc
2i+1−`(γ) = (−1)`

2i−∑̀

j=0

(−1)j(hj − γj), for i + 1 ≤ ` ≤ 2i− 1, (66)

Hc
1(γ) = h0 − γ0 + κ, (67)

Hd
1 (γ) = γ1 + Hc

2(γ)− κ, (68)

Hd
` (γ) = γ` + Hc

`+1(γ), for 2 ≤ ` ≤ i− 1, (69)

Hc
` (γ) = γ` + Hd

`−1(γ), for i + 1 ≤ ` ≤ 2i− 2, (70)

Hc
2i−1(γ) = γ2i−1 + Hd

2i−2(γ)− κ, (71)

B(γ) = γi. (72)
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The inequalities defining polytope Pr
κ may be rewritten as (see [4]):

(−1)k+1
k∑

j=1

(−1)j+1γj ≤

(−1)k+1
k∑

j=1

(−1)j+1γ∗j , for k = 1, . . . , i− 1 (73)

(−1)i
i−1∑

j=1

(−1)j+1γj ≥



(−1)i


1 +

1
2

i−1∑

j=0

(−1)j+1hj







(74)

γj ≥ 0, for j = 2, . . . , i− 1 (75)

γ1 ≥ κ. (76)

The reduced polytope is thus delimited by the two parallel hyperplanes
containing the top face

Ft = Pr
κ ∩



γr |

i−1∑

j=1

(−1)j+1γj = 1 +
i∑

j=1

−1(−1)j+1γ∗j





and the bottom face

Fb = Pr
κ ∩



γr |

i−1∑

j=1

(−1)j+1γj = 1 +
1
2

2i∑

j=0

(−1)j+1hj



 .

The integral vectors in Pr
κ may be grouped in layers with respect to the slack

of the inequality (74). Twice this slack is precisely the value of γi (resp.,
γi − 1) if

∑2i
j=0(−1)jhj is even (resp., odd). This inequality replaces the

nonnegativity constraint 0 ≤ γi = (−1)i(
∑2i

j=0(−1)jhj −2
∑i−1

j=0(−1)jγj)).
The bottom face contains the reduced Betti number vectors associated
with γi = 0, or 1, depending on the parity of the alternate sum of the hj ’s,
and the top face contains the Betti number vectors with γi = γ∗i = β∗

(recall that γ∗ = Γ(h∗cd), where h∗cd is the complementary solution, is the
maximum vector of Pr

κ). Thus the top face is always nonempty, whereas
the bottom one maybe empty, see example with n = 6 in [8].

Figure 6 depicts an example of Pr
κ for n = 8 and κ = 0, with three layers

of integral elements, two of which are highlighted. The top face corresponds
to γ4 = β = 2, while the bottom one corresponds to γ4 = β = 0. All images
of hcd’s under the mapping Γ are shown, but some of them lie outside the
polytope. There are 20 distinct hcd’s for each of the three possible values of
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β, but only 10 γr’s in the top and middle layers, but only 9 in the bottom
one. The data for this polytope will be given in Example 7.

γ1
γ2

γ3

FIG. 6. Top and bottom layers of reduced Morse polytope for n = 8.

Theorem 5. Let hcd be a nonnegative integral solution of (11)–(17),
such that γ = Γ(hcd) belongs to the Morse polytope Pκ. Let (η, d, t) be
the null, dual and trivial pairs and b be the number of beta labels of an
ntd-labelling of hcd. Define the mapping G(d, b) as follows

G0(d, b) = Gn(d, b) = 1, (77)

G1(d, b) = Gn−1(d, b) = d1 − dn−2 + dκ, (78)

Gj(d, b) = Gn−j(d, b) = dj − dn−j−1, for j = 2, . . . , i− 1, (79)

Gi(d, b) = b. (80)

Then G(d, b) = Γ(hcd) is a Betti number vector.
Furthermore, the whole set of labellings associated with hcd is mapped to

the Betti number vector G(d, b).

Proof. Equations (20), (25) and (30) imply

G1(d, b) = Gn−1(d, b) = hd
1 − hc

2 + κ (81)

Gj(d, b) = Gn−j(d, b) = hd
j − hc

j+1, for j = 2, . . . , i− 1 (82)

Gi(d, b) = b = β. (83)

Since the αj ’s were cancelled out, the whole set of ntd-labellings associated
with hcd is mapped to the vector G(d, b). Finally observe that expressions
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(77), (81)–(83) coincide with the definition of Γj(hcd) given in (63), for
j = 1, . . . , i. Given that Γ(hcd) satisfies duality conditions we conclude
that G(d, b) = Γ(hcd).

Theorem 6. Let hcd be a nonnegative integral solution of (11)–(17),
such that γ = Γ(hcd) belongs to the Morse polytope Pκ.

Then there is a unique ntd-labelling of hcd that can be realized topologi-
cally, that is, that satisfies

γ1 = γn−1 = d̃1 + d̃κ, (84)

γj = γn−j = d̃j + d̃n−j , for j = 2, . . . , i− 1, (85)

γi = 2d̃i + b̃, (86)

where d̃ is the vector of dual pairings and b̃ is the number of beta labels of
this unique ntd-labelling.

Furthermore,

1.if b̃ is even, this is realizable on a generalized tori of dimension 2i, with
γk factors of the type Sk × Sn−k, for k = 1, . . . , i.

2.if b̃ is odd, this is realizable on a n = 2i, i even, dimensional manifold
obtained as:

(i)a complex projective space CP2k, connected sum with a generalized
tori of dimension n = 4k, k odd, with γj factors for j odd, γj − 1 factors
for j even, of the type Sj × Sn−j for j = 1, . . . , 2k, provided γj ≥ 1, for j

even.

(ii)a generalized tori of dimension n = 4k, k even, connected sum with
a quaternionic projective space HPk, with γj factors for j 6≡ 0 mod 4,
γj − 1 factors for j ≡ 0 mod 4, of the type Sj × Sn−j for j = 1, . . . , 2k,
provided γj ≥ 1, for j ≡ 0 mod 4 5.

Proof. Applying equations (20), (25) and (30) we obtain the following

γ1 = γn−1 = hd
1 − hc

2 + α1 + κ, (87)

γj = γn−j = hd
j − hc

j+1 + αj + αj−1, for j = 2, . . . , i− 1, (88)

γi = 2αi−1 + β, (89)

where [hc
j+1 − hd

j ]+ ≤ αj ≤ min{hc
j+1, h

d
n−j−1}, for j = 1, . . . , i − 1. The

lower bound for αj , 1 ≤ j ≤ i, is always zero since hc
2 − hd

1 = −γ1 + κ ≤ 0

5there is one exception, when k = 4 one can also use OP2 in the connected sum with
no need to subtract one from γ4.
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and hc
j+1 − hd

j = −γj ≤ 0, for j = 2, . . . , i− 1. Recalling (63) we conclude
that (87)–(89) are satisfied if and only if αj = 0, for j = 1, . . . , i− 1. This
choice gives the unique ntd-labelling such that (84)–(86) hold.

We now proceed to realize the Morse polytope of dimension 2i. We first
consider the case where i is odd. There is a topological restriction that the
alternating sum,

∑2i
j=1(−1)jhj , of the number hj of index j singularities

be even, which is equivalent to γi being even. Once this is assumed, this
implies that the number of beta labels, b̃, of the unique ntd-labelling, is
even. These algebraic beta labels on hi’s can be paired up conveniently as
dual i-pairs. Hence, we realize the points on the polytope as the connected
sum of a generalized tori with γk factors of the type Sk × Sn−k for k =
1, . . . , i−1, and γi = 2d̃i+b̃ factors of the type Si×Si. The latter statement
is proved as in Theorem 3.

We now realize the Morse polytope of dimension 2i, with i even. We
represent this dimension as 2i = 4k. If the alternating sum

∑4k
j=0(−1)jhj

is even, everything follows as in the prior case. If the alternating sum is
odd, then the hcd vector has β odd.

Hence, the number of beta labels, b̃, of the unique ntd-labelling is odd.
These algebraic beta labels on h2k’s can all be paired up conveniently as
dual 2k-pairs except one which will be labelled as a β-i singularity.

Hence, we realize the points in the Morse polytope as a 4k-manifold,
which will be a connected sum of a projective space and a generalized tori.
We consider the two cases where k is even and odd separately below.

Due to topological restrictions, a β-i singularity h2k can only be realized
in the presence of other singularities, which we refer to as β-i chain. This
β-i chain of singularities are realized in projective spaces, for more details
see [1] and [17].

If k is even it suffices that there exists a β-i chain of type:

(h4k, h4k−4, . . . , h4k+4, h2k(β-i), h2k−4, . . . , h4, h0),

where each entry of the β-i chain is equal to one. This β-i chain can be
realized topologically by HP k.

Otherwise, if k is odd, there must exist a β-i chain of type:

(h4k, h4k−2, . . . , h2k+2, h2k(β-i), h2k−2, . . . , h2, h0),

where each entry of the β-i chain is equal to one. In this case, the β-i chain
can be realized topologically by CP 2k.

Hence, the realization of a point on a Morse polytope is obtained in the
case k even by a connected sum of HP k and a generalized tori T . The tori
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T is obtained with γj factors for j 6≡ 0 mod 4 and γj−1 factors otherwise,
of the type Sj × S4k−j , for j = 1, . . . , 2k.

In the case k odd, the realization of a point on a Morse polytope is
obtained by a connected sum of CP 2k and a generalized tori T . The tori
T is obtained with γj factors for j odd and γj − 1 factors for j even, of the
type Sj × S4k−j , for j = 1, . . . , 2k.

The last two statements follow because of the handle decomposition of
the aforementioned projective spaces. The remaining dual pairs form the
generalized tori T as was proved in Theorem 3.

Example 7. hcd
κ -system and polytope for n = 8.

Let h = (2, 5, 5, 6, 5, 4, 3, 4, 2). The solutions to the hcd
κ -system are

hcd = (1 + κ, 4− κ, 1, 4, 1, 5, 1, 4, 0, 4, 0, 3, 0, 3− κ, 1 + κ)

+ c1(0, 0, 1,−1, 0, 0, 0, 0, 0, 0, 0,−1, 1, 0, 0)

+ c2(0, 0, 0, 0, 1,−1, 0, 0, 0,−1, 1, 0, 0, 0, 0)

+ c3(0, 0, 0, 0, 0, 0, 1,−2, 1, 0, 0, 0, 0, 0, 0),

where κ ∈ {0, 1, 2, 3}, 0 ≤ c1 ≤ 3, 0 ≤ c2 ≤ 4 and 0 ≤ c3 ≤ 2. The
inequalities that define the reduced Morse polytope are

γ1 ≤ 3
γ1 − γ2 ≥ 0
γ1 − γ2 + γ3 ≤ 4
γ1 − γ2 + γ3 ≥ 2
γ1 ≥ κ

γ1, γ2, γ3 ≥ 0.

(90)

Three views of the polytope for the case κ = 0 are shown in Figure 7. The
top and bottom faces thereof are highlighted in the drawing of Figure 6.

The 10 integral vectors belonging to the top face of Pr
κ, the respective

hcd, values of the circulations (c3 = 0 for all of them), ranges of αj ’s and
number of ntd-labellings associated therewith are shown Table 2.

Consider now h̃ = (2, 5, 5, 6, 6, 4, 3, 4, 2), that is, only the i-th entry of
h changed, going from 5 to 6. This entry appears only in inequality (74).
Since the argument inside the ceiling operator goes from 2 to 3/2, the
ceiling doesn’t change. This means that the reduced polytope associated
with h̃ and κ = 0 is the same as before. Nevertheless, the whole polytope
would be different, since γi assumes odd values instead of even ones. Thus,
although Pr

κ(h̃) = Pr
κ(h), the first layer of Pr

κ(h̃) is associated with γ4 = 1,
the middle layer with γ4 = 3 and the top layer with γ4 = 5.



REALIZABILITY OF THE MORSE POLYTOPE 85

γ1

γ2

γ3

γ1

γ2

γ3

γ1

γ3

FIG. 7. Three views of polytope defined in Example 7.

Range Range Range #ntd-labellings

γ̄r h̄cd c1, c2 of α1 of α2 of α3 assoc. w. γ̄r, h̄cd

(3, 3, 4)
(1, 4, 1, 4, 1, 5, 1, 4,

0, 4, 0, 3, 0, 3, 1)
0, 0 {0} {0} {0} 1

(3, 2, 3)
(1, 4, 1, 4, 2, 4, 1, 4,

0, 3, 1, 3, 0, 3, 1)
0, 1 {0} {0, 1} {0} 2

(3, 1, 2)
(1, 4, 1, 4, 3, 3, 1, 4,

0, 2, 2, 3, 0, 3, 1)
0, 2 {0} {0, 1, 2} {0} 3

(3, 0, 1)
(1, 4, 1, 4, 4, 2, 1, 4,

0, 1, 3, 3, 0, 3, 1)
0, 3 {0} {0, 1, 2, 3} {0} 4

(2, 2, 4)
(1, 4, 2, 3, 1, 5, 1, 4,

0, 4, 0, 2, 1, 3, 1)
1, 0 {0, 1} {0} {0} 2

(2, 1, 3)
(1, 4, 2, 3, 2, 4, 1, 4,

0, 3, 1, 2, 1, 3, 1)
1, 1 {0, 1} {0, 1} {0} 4

(2, 0, 2)
(1, 4, 2, 3, 3, 3, 1, 4,

0, 2, 2, 2, 1, 3, 1)
1, 2 {0, 1} {0, 1, 2} {0} 6

(1, 1, 4)
(1, 4, 3, 2, 1, 5, 1, 4,

0, 4, 0, 1, 2, 3, 1)
2, 0 {0, 1, 2} {0} {0} 3

(1, 0, 3)
(1, 4, 3, 2, 2, 4, 1, 4,

0, 3, 1, 1, 2, 3, 1)
2, 1 {0, 1, 2} {0, 1} {0} 6

(0, 0, 4)
(1, 4, 4, 1, 1, 5, 1, 4,

0, 4, 0, 0, 3, 3, 1)
3, 0 {0, 1, 2, 3} {0} {0} 4

TABLE 2.

Reduced Betti number vectors on Ft, respective h̄cd, values of c1, c2, ranges
of α1, α2, α3, and number of distinct ntd-labellings, supposing κ = 0.
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