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1. INTRODUCTION

Consider the real autonomous system of differential equations with poly-
nomial right–hand sides of degree three

ẋ = P (x, y), ẏ = Q(x, y), (1)

i.e. P = P0 + P1 + P2 + P3, Q = Q0 + Q1 + Q2 + Q3, where Pj , Qj , j =
0, 3 are homogeneous polynomials of degree j with real coefficients and
variables. We shall assume that (1) has a singular point (x0, y0) with pure
imaginary eigenvalues (a weak focus). This point is a centre or a focus.
The problem arises of distinguishing between a centre and a focus, i.e. of
finding the coefficient conditions under which (x0, y0) is, for example, a
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centre for (1). These conditions are called the conditions for the existence
of a centre or the centre conditions and the problem – the problem of the
centre.

By an affine change of coordinates and a time rescaling we bring (1) to
a cubic system with P0 = Q0 = 0 and P1 = y, Q1 = −x. In this case,
x0 = y0 = 0 and there exists a function F (x, y) defined in a neighborhood
of the origin such that its rate of change along orbits of system (1) is of
the form

dF

dt
=

∞∑

j=1

Vj(x2 + y2)j+1,

where Vj are polynomials in the coefficients of (1), called the Liapunov
quantities.

It is known that (0, 0) is a centre for (1) if and only if Vj = 0, j = 1, ∞,
that is when (1) has a first integral of the form F (x, y) = const [11]. Also,
it is known that (0, 0) is a centre if and only if (1) has in some neighborhood
of the origin an independent of t holomorphic integrating factor µ(x, y) [1].
The order of the weak focus (0, 0) is r if V1 = V2 = . . . = Vr−1 = 0 but
Vr 6= 0.

The problem of the centre was completely solved for quadratic system
(P3 ≡ 0, Q3 ≡ 0) by Dulac [8] (in this case the order of a weak focus
is at most three) and for cubic symmetric system (P2 ≡ 0, Q2 ≡ 0) by
K.S.Sibirski [14] (in this case the order of a weak focus is at most five).
If the cubic system (1) contains both quadratic and cubic nonlinearities
the problem of the centre is solved only in some particular cases (see, for
example, [2], [3], [5], [6], [15], [12], [13]).

An algebraic curve f(x, y) = 0 is said to be an invariant curve of (1) if
there exists a polynomial K(x, y) such that

∂f

∂x
P (x, y) +

∂f

∂y
Q(x, y) ≡ f(x, y) ·K(x, y).

The polynomial K(x, y) is called the cofactor of the invariant algebraic
curve f(x, y) = 0.

The quadratic systems and cubic symmetric systems with a singular
point of a centre type are Darboux integrable, i.e. these systems have a
first integral (an integrating factor) composed of invariant algebraic curves.
Hence, the interest arises to study the problem of the centre for polyno-
mial differential systems with invariant algebraic curves. The problem of
integrability for polynomial systems with invariant algebraic curves, in par-
ticular, with invariant straight lines was considered in the works [1], [4],
[10] and other.
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To investigation of the problem of the centre for cubic differential systems
(1) with invariant straight lines (real or complex) are dedicated the works
[5], [6], [7], [15], [16], [18]. In these papers, the problem of the centre was
completely solved for cubic systems with at least four invariant straight
lines and for some cubic systems with three invariant straight lines. The
principal results of these works are gathered in the following two theorems:

Theorem 1. Let the cubic system (1) with a weak focus at (x0, y0) have
at least four invariant straight lines. Then

a) the order of (x0, y0) is at most one (i.e. (x0, y0) is a centre if and
only if V1 = 0), if (x0, y0) does not belong to the invariant straight lines,
and

b) the order of (x0, y0) is at most two (i.e. (x0, y0) is a centre if and
only if V1 = V2 = 0), if (x0, y0) belongs to the invariant straight lines.

Theorem 2. Let the cubic system (1) with a weak focus at (x0, y0) have
three invariant straight lines. Then the order of a weak focus (x0, y0) is at
most seven, if (x0, y0) belongs to the union of these invariant straight lines.

By Theorems 1 and 2 to solve completely the problem of the centre
for cubic differential systems with at least three invariant straight lines, it
remains to investigate the case of a cubic system (1) with three invariant
straight lines in generic position assuming that a singular point with pure
imaginary eigenvalues does not belong to these invariant straight lines.
This case is considered in the present paper.

2. THE FORM OF A DIFFERENTIAL SYSTEM WITH
INVARIANT CURVES

A curve Γ defined by equation ω(x, y) = 0 is called an invariant curve
for differential system (1), if

(
ωx · P (x, y) + ωy ·Q(x, y)

) ∣∣∣
Γ
= 0,

where ωx = ∂ω/∂x, ωy = ∂ω/∂y.
For differential systems with invariant curves the following problems

arise: a) (direct problem) for a given differential system determine its in-
variant curves and b) (inverse problem) being given the curves ω1(x, y) =
0, . . . , ωk(x, y) = 0, find all differential systems for which these curves are
invariant. As to inverse problem, the first work concerning this problem
is Erugin [9]. In this paper, it is stated that differential systems having
invariant the curve ω(x, y) = 0 can be written into the form

ẋ = F1(ω, x, y)− ωy ·A(x, y), ẏ = F2(ω, x, y)− ωx ·A(x, y),
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where F1, F2, A are some functions and F1(0, x, y) = F2(0, x, y) = 0.
The inverse problem was considered by Amel’kin [1], in the case, when

P, Q and ωj are polynomials. It is shown that differential systems having
two invariant algebraic curves ω1,2(x, y) = 0, ω1xω2y − ω1yω2x 6≡ 0 can be
written into the form

ẋ = A1ω1ω2y −A2ω2ω1y, ẏ = A2ω2ω1x −A1ω1ω2x,

where A1, A2 are polynomials.
Christopher and other (see, for example, [4], [10]) examined the inverse

problem for polynomial systems in the case of more invariant algebraic
curves. Thus, under some generic conditions on curves ωj(x, y) = 0, j =
1, k, we obtain the following form of a system (1):

ẋ =
( k∑

j=1

Aj
ωjy

ωj
+ B

) k∏

j=1

ωj , ẏ = −
( k∑

j=1

Aj
ωjx

ωj
+ D

) k∏

j=1

ωj , (2)

where Aj , B, D are polynomials. We shall use the form (2) in the next
investigations.

Farther, in this paper, we shall consider the cubic system (1) with real
polynomials P (x, y) and Q(x, y), and deg(P 2 + Q2) = 6.

It should be mentioned that a straight line L ≡ ax + by + c = 0 is said
to be invariant for (1) if and only if there exists a polynomial K(x, y) such
that the following identity holds

a · P (x, y) + b ·Q(x, y) ≡ (ax + by + c) ·K(x, y).

The polynomial K(x, y) is called the cofactor of the invariant straight line L
and deg(K) ≤max{deg(P ),deg(Q)}−1. If the cubic system (1) has complex
invariant straight lines then, obviously they occur in complex conjugated
pairs L and L. We shall assume that the differential system (1) has exactly
three invariant straight lines

Lj ≡ ajx + bjy + cj = 0, j = 1, 2, 3; aj , bj , cj ∈ C (3)

such that not one pair of the lines is parallel and no more than two lines
pass through the same point (in generic position), i.e.

∆jl =
∣∣∣∣
aj bj

al bl

∣∣∣∣ 6= 0, j 6= l, j, l = 1, 2, 3; ∆123 =

∣∣∣∣∣∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣
6= 0. (4)

The invariant straight line L3 can be considered real.
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Conditions (4) allow to write the cubic system (1) into the form (2):

dx
dt

=
( 3∑

j=1

AjLjy

Lj
+ p1

) 3∏
j=1

Lj ≡ P (x, y),

dy
dt

= −
( 3∑

j=1

AjLjx

Lj
+ q1

) 3∏
j=1

Lj ≡ Q(x, y),
(5)

where Ljx = ∂Lj/∂x, Ljy = ∂Lj/∂y; p1, q1 ∈ R and Aj , j = 1, 2, 3 are
linear in x and y. Let Aj = mjx + njy + sj , j = 1, 2, 3.

The straight lines L1, L2, L3 have respectively the cofactors

K1(x, y) = ∆12L3A2 + ∆13L2A3 + (p1a1 − q1b1)L2L3,

K2(x, y) = ∆23L1A3 + ∆21L3A1 + (p1a2 − q1b2)L1L3,

K3(x, y) = ∆31L2A1 + ∆32L1A2 + (p1a3 − q1b3)L1L2.

(6)

By affine transformations of coordinates and a time rescaling

x → α1x + β1y + γ1, y → α2x + β2y + γ2, t → αt (7)

the system (5) does not change the form.
Let (x∗, y∗) be a singular point of (5) with pure imaginary eigenvalues.

By transformations of the form (7), first we translate (x∗, y∗) at the origin,
i.e.

P (0, 0) = Q(0, 0) = 0 (8)

and then transform the linear part of P (x, y) to be equal with y, and of
Q(x, y) to be equal with −x, i.e.

P ′x(0, 0) = Q′y(0, 0) = 0, P ′y(0, 0) = −Q′x(0, 0) = 1. (9)

The intersection point of straight lines L1 and L2 is a singular point for
(5) and has real coordinates. In particular, this point can be (0, 0). In this
case, L1,2 = x ± iy, i2 = −1 and the problem of the centre was solved in
[15] (see Theorem 2 of this paper).

By rotating the system of coordinates (x → x cos ϕ−y sin ϕ, y → x sin ϕ+
y cos ϕ) and rescaling the axes of coordinates (x → αx, y → αy), we obtain

L1 ∩ L2 = (0, 1). (10)

In this case the invariant straight lines (3) can be written as

Lj = ajx− y + 1, L3 = a3x + b3y + 1,

aj ∈ C, j = 1, 2; a3, b3 ∈ R,
(11)
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and (4):

∆12 = a2 − a1 6= 0, ∆j3 = ajb3 + a3 6= 0, j = 1, 2,

∆123 = b3 + 1 6= 0.
(12)

The relations (8), (9) and P (0, 1) = Q(0, 1) = 0 put the following conditions
on the coefficients of system (5):

p1 = s1 + s2 − b3s3,

q1 = −a1s1 − a2s2 − a3s3,

m1 = (a2
1s1 − a1a2s1 + a2a3b3s3 − a2b3m3 + a2

3s3 − a3m3 + 1)/
(a1 − a2),

n1 = (a2b
2
3s3 − a1s1 − a2b3n3 + a2s1 + a2 + a3b3s3 − a3n3)/

(a1 − a2),
m2 = (a1a2s2 − a1a3b3s3 + a1b3m3 − a2

2s2 − a2
3s3 + a3m3 − 1)/

(a1 − a2),
n2 = (a1b3n3 − a1b

2
3s3 − a1s2 − a1 + a2s2 − a3b3s3 + a3n3)/

(a1 − a2).

(13)

3. SUFFICIENT CONDITIONS FOR THE EXISTENCE OF A
CENTRE

Denote

f1 = a3(b3 + 1)(n3 − b3s3)2 − (b3 + 1)(n3 − b3s3)(m3 − a3s3)·
· (b3 + a1a2) + (n3 − b3s3)(m3 − a3s3)(a1a2 − a1a3−
− a2a3 + a2

3) + (b3 + 1)(m3 − a3s3)(1− a3m3 + a2
3s3)−

− a3(n3 − b3s3) + a1a2(m3 − a3s3).

(14)

Lemma 3. The cubic differential system (5) with conditions (13) and
f1 = 0 has a centre at the origin.

Proof. The system (5) with invariant straight lines L1, L2, L3 and
cofactors K1, K2, K3 has a Darboux integrating factor

µ = Lα1
1 Lα2

2 Lα3
3 , α1, α2, α3 ∈ C,

if and only if the following identity holds

α1K1(x, y) + α2K2(x, y) + α3K3(x, y) +
∂P

∂x
+

∂Q

∂y
≡ 0. (15)
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Let

∆ ≡ a1∆23 + a2a3 − a2
3 + b2

3 + b3 6= 0. (16)

From (15) by taking into account (6) and (11)–(14), we obtain

α1 = (n3 − b3s3)(a1∆23 + a2a3 − a2
3) + a3(b3 + 1)(m3 − a3s3)+

+b3 − a1a2 − 3− α2 + b3α3;

α2 = −[(n3 − b3s3)(a2
1∆23 + a1a2a3 − a1a

2
3 + a3b3 + a3)+

+(m3 − a3s3)(b3 + 1)(a1a3 − b3)− a2
1a2 + a1b3 − 2a1+

+a2 + a3 + ∆13α3]/∆12;

α3 = [−(b3 + 1)2(n3 − b3s3)2(a2
3 + a2

1a
2
2) + 2a1a2(b3 + 1)(n3 − b3s3)2·

· (a1 − a3)(a2 − a3)− (n3 − b3s3)2(a1 − a3)2(a2 − a3)2 + (b3 + 1)·
·(n3 − b3s3)(a2

1a
2
2 + a1a2 − a1a3 − a2a3 + 2a2

3)− (a1 − a3)(a2 − a3)·
·(1 + a1a2)(n3 − b3s3) + (b3 + 1)2(a2

3 + b2
3)(m3 − a3s3)2 − (b3 + 1)·

· (m3 − a3s3)(a1a2a3 − a1b3 − a2b3 + 2a3b3 + a3)−∆]/∆.

Because in the space of coefficients of (5) the centre variety is closed, the
system (5) will have a centre at the origin, even if, the inequality (16) is
not satisfied.

Let us consider the cubic systems

ẋ = (1− 2bx)(y + ax2 − bxy − y2),
ẏ = −[x− 2bx2 + dxy + by2 + (1− a)(a− d− 2)x3+

b(a− d)x2y + (1− a)xy2 − by3]
(17)

and

ẋ = (1 + gx)(2y + x2 + 2(b + g)xy − 2y2)/2,

ẏ = (y − 1)(2x− xy + 2gx2 + 2by2)/2.
(18)

It should be mentioned that the system (17) has the invariant straight lines

1− 2bx = 0, 1− (b±
√

b2 − a + d + 2 )x− y = 0

and the system (18) has the invariant straight lines

1 + gx = 0, 1− y = 0, 1 + gx− y = 0.

Lemma 4. For both systems (17) and (18) the origin is a centre.
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Proof. It is easy to check that systems (17) and (18) are reversible (see
[19]). Indeed by transformation

X = − x

1− bx
, Y =

y

1− bx

the system (17) is reduced to

Ẋ = (1− b2X2)(Y + aX2 − Y 2),

Ẏ = X[−1− dY + ((a− 1)(a− d− 2) + b2)X2 + (a− 2b2 − 1)Y 2−
− ab2X2Y + b2Y 3]

for which OY is an axes of symmetry and by transformation

X =
x

y − 2
, Y =

y

y − 2

the system (18) can be reduced to

Ẋ = Y [1− 2(b + 2g)X + 2(1 + 2bg + 2g2)X2 − Y 2 − 2gX3 − 2bXY 2],

Ẏ = (Y 2 − 1)(X − 2gX2 − 2bY 2)

for which OX is an axes of symmetry.

Let us consider for (5) the following coefficient conditions:

a1 = (∆1 − a2a3 + b3)/∆23; (19)

m3 = a3s3, n3 = (b2
3s3 + 1)/b3; (20)

m3 = a3s3 −∆23/∆2, n3 = b3s3 − (∆1 + b3 − a2a3)/∆2; (21)

m3 = a3s3 + ∆23/(∆3∆123), n3 = b3s3 + a2∆23/(∆3∆123); (22)

m3 = a3s3 − a3(a2
2a3 − a2b3 − a2∆1 −∆23)/(2∆3∆23∆123),

n3 = b3s3 − [a2b3(a2a3 − b3)− (b3 + ∆1)∆23 − a2b3∆1]/
(2∆1∆23∆123),

(23)

where

∆1 = a2
3 + b2

3, ∆2 = ∆3 − (b3 + 2)∆1, ∆3 = a2
2b3 + 2a2a3 − b3.
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Lemma 5. The following four series of conditions: 1) (13), (19), (20);
2) (13), (19), (21); 3) (13), (19), (22); 4) (13), (19), (23) are sufficient
conditions for the origin to be a centre for system (5).

Proof. In each of the cases 1), 2) and 3) the system (5) has four
invariant straight lines. Thus, in conditions 1) besides the invariant straight
lines (11), the system (5) has one more invariant straight line

b3 − a3x− b3y = 0;

in conditions 2):

∆2 − (∆1 − a2a3 + b3)∆23x + ∆2
23y = 0

and in conditions 3):

∆3 + ∆1(a2x− y) = 0.

In 1), 2) and 3) the first two Liapunov quantities vanish. Hence, in each
of these cases, the existence of a centre at (0, 0) follows from Theorem 1.

In conditions 4) the system (5) has a Darboux integrating factor

µ(x, y) =
1

L1L2L3

√
f

,

where

f = 1 + a3x + γ1

∆23
y + (γ2x + γ3y)2

4∆2
23∆1

,

γ1 = a2
2a3 − a2a

2
3 − 2a2b3 + a3b3 − a3,

γ2 = a3(γ1 − b3∆23), γ3 = b3γ1 + a2
3∆23.

4. SOLUTION OF THE PROBLEM OF THE CENTRE

Denote

f2 = a1∆23 −∆1 − b3 + a2a3. (24)

Remark 6. Let ∆2 = 0 or ∆3 = 0. Then the invariant straight lines (11)
of system (5) with conditions (13) are real.

Indeed, the straight line L3 = a3x + b3y + 1 is real by hypothesis and if
L1 = a1x − y + 1 and L2 = a2x − y + 1 are complex, then L1 = L2, i.e.
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a1 = a2 (see section 2). The case b3 = 0, a3 ∈ R \ {0} is elementary. Let
b3 6= 0. From ∆2 = 0 we have

a2 =
(
−a3 ± (b3 + 1)

√
a2
3 + b2

3

)
/b3 ∈ R

and from ∆3 = 0 it follows that

a2 =
(
−a3 ±

√
a2
3 + b2

3

)
/b3 ∈ R.

Lemma 7. Let for cubic system (5) the following three series of condi-
tions: 1) (13), f2 = 0, b3 = 0; 2) (13), f2 = 0, ∆3 = 0 and 3) (13),
f2 = 0, ∆2 = 0 hold. The order of a weak focus (0, 0) in each of these cases
is at most three.

Proof. We compute the first three Liapunov quantities V1, V2, V3 using
the algorithm, described in [17].

1). Let b3 = 0. Express a1 from f2 = 0: a1 = a3 − a2 and substitute in
V1, V2, V3. We obtain V1 = 0 and V2 after cancellation by non–zero terms,
looks

V2 = (2n3 − 1)(2a2
3s3 − 2a3m3 + 1).

Assume that 2n3 − 1 = 0 and rename the coefficients of system (5), then
it is the same as (17) and by Lemma 4 we have a centre at (0, 0). Let
2n3− 1 6= 0. From 2a2

3s3− 2a3m3 + 1 = 0 we express m3 and substitute in
V3:

V3 = a2(a2 − a3).

In each of the cases a2 = 0 and a2 − a3 = 0, the system (5) can be written
into the form (18) and we can make use of Lemma 4.

Assume next that b3 6= 0 and we show that the cases 2) and 3) can be
reduced to 1).

Indeed, from f2 = 0 express a1:

a1 = (∆1 + b3 − a2a3)/∆23.

Denote

x13 = −∆23/∆1, y13 = (a2a3 − b3)/∆1,

x23 = −(b3 + 1)/∆23, y23 = (a3 − a2)/∆23.

Observe that (xj3, yj3) ∈ Lj ∩ L3, j = 1, 2.
By transformation of coordinates

x = y13X + x13Y, y = −x13X + y13Y
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the invariant straight lines L1, L2, L3 of the system (5) are transformed
for the new differential system into the invariant straight lines

L1 =
a2a3 − a2

2 − b3 − 1
∆23

X − Y + 1, L3 = a2X − Y + 1,

L2 =
a2
2a3 − 2a2b3 − a3

∆1
X − ∆3

∆1
Y + 1.

In the case of transformation

x = y23X + x23Y, y = −x23X + y23Y

we have

L1 =
a3(a2 − a3)2 + a3∆2

123 − 2∆23∆123

∆2
23

X +
∆2

∆2
23

Y + 1,

L2 =
a2a3 − a2

2 − b3 − 1
∆23

X − Y + 1, L3 =
∆1 + b3 − a2a3

∆23
X − Y + 1.

Theorem 8. Let the cubic system have three invariant straight lines
such that not one pair of the lines is parallel and no more then two lines
pass through the same point. Then the order of any weak focus not lying
on these lines is at most three.

Proof. Without loss of generality we can consider that the cubic system
is of the form (5) and the conditions (13) hold. In this case, a singular point
(0, 0) is a weak focus for (5) and the invariant straight lines L1, L2, L3 are
given by formulas (11). Obviously (0, 0) 6∈ L1∪L2∪L3. As L1∩L2∩L3 = ∅
and not one pair of the lines is parallel we are in conditions (12).

For (0, 0) we compute the first three Liapunov quantities V1, V2, V3. The
first Liapunov quantity looks: V1 = f1f2 (see (14), (24)). If f1 = 0 , then
the assertion of Theorem 8 follows from Lemma 3. Let f2 = 0. Each of
the following cases b3 = 0, ∆2 = 0 or ∆3 = 0 was examined in Lemma 7.
Therefore, next we shall assume that

b3f1∆2∆3 6= 0. (25)

From f2 = 0 express a1 (see (19) and substitute in V2, V3. The quantity V2

cancelled by non–zero terms, looks

V2 = 2b3∆23∆123m
2
3 + m3(3a3∆23 −∆1 − a2

2b3 − b3)−
− 2∆23∆123[s3∆1(b3s3 − 2n3) + n3(b3n3 + 2a3m3)] + ∆23(3b3n3+
+ 2n3 − 1) + s3[b3(a2

2a3 − 2a2b3 − a3)−∆1(3a2b3 + 2a3)].
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The quantity V3 is too cumbersome and will be not given here. The coef-
ficient of m2

3 is non-zero in V2. Taking into account V2 = 0 we transform
V3 to be linear in m3. Reduce V3 by the non-zero factors and calculate the
resultant of the polynomials V2 and V3 in m3:

Res(V2, V3, m3) = 4∆2∆3∆2
23∆123j1j2j3j4,

where

j1 = b3n3 − b2
3s3 − 1, j2 = (n3 − b3s3)∆2 + ∆1 + b3 − a2a3,

j3 = 2∆1∆23∆123(n3 − b3s3) + a2b3(a2a3 − b3)− (b3 + ∆1)∆23 − a2b3∆1,

j4 = ∆3∆123(n3 − b3s3)− a2∆23.

We shall examine separately each of the following cases:
a) j1 = 0; b) j2 = 0, j1 6= 0; c) j3 = 0, j1j2 6= 0; d) j4 = 0, j1j2j3 6= 0.

a) From j1 = 0 express n3 and substitute in V2 and V3:

V2 = (m3 − a3s3)f3, V3 = (m3 − a3s3)h1h2h3,

where

f3 = 2b2
3∆23∆123(m3 − a3s3)− a3∆23(b3 + 2)− h3,

h1 = ∆3 −∆1 − a3∆23,

h2 = ∆3 + b3(a2a3 − b3),
h3 = b3∆1 + 2a3∆23 + b2

3(a
2
2 + 1).

In assumption (25) we have the equality {j1 = 0, m3 − a3s3 = 0} =
{conditions (20)} and inclusions

{j1 = f3 = h1 = 0} ⊂ {(21)}, {j1 = f3 = h2 = 0} ⊂ {(22)},
{j1 = f3 = h3 = 0} ⊂ {(23)}.

Hence, in this case, the assertion of Theorem 8 follows from Lemma 5.
b) j2 = 0, j1 6= 0. From j2 = 0 express n3 and substitute in V2 and V3:

V2 = b3g1f4/∆2
2, V3 = b3j1∆12∆23g1h5,

where

g1 = ∆2(m3 − a3s3) + ∆23,

f4 = 2∆2∆23∆123(m3 − a3s3)− h1((a2 − a3)2 + ∆2
123),

h4 = a2
2 − a2a3 + b3 + 1.
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Taking into account (25), j1 6= 0, the equality {j2 = g1 = 0} = {(21)}
and inclusion {j2 = f4 = h4 = 0} ⊂ {(22)} we come to Lemma 5.

c) j3 = 0, j1j2 6= 0. Express n3 from j3 = 0 and substitute in V2, V3

and j1:

V2 = b3g2f5/(2∆2
1∆23∆123), V3 = b3∆2

12∆23g2h5/(2∆2
1∆123),

j1 = a3h5/(2∆1∆23∆123),

where

g2 = 2∆1∆23∆123(m3 − a3s3) + a3(a2
2a3 − a2b3 − a2∆1 −∆23),

f5 = 2∆1∆23∆123(m3 − a3s3)− h3, h5 = b2
3(a

2
2 + 1) + 2a3∆23 + b3∆1.

Evidently h5 6= 0. Since b3∆12∆23 6= 0 (see (25), (12)), then V2 and V3

vanish simultaneously if and only if g2 = 0. It remains to observe that
{j3 = 0, g2 = 0} = {(23)} and to apply Lemma 5.

d) j4 = 0, j1j2j3 6= 0. Find n3 from j4 = 0 and substitute in V2 and V3:

V2 = −b3f6g3/(∆2
3∆123), V3 = ∆3∆123j1j2g3,

where

f6 = 2∆3∆23∆123(m3−a3s3)−h2(a2
2+1), g3 = ∆3∆123(a3s3−m3)+∆23.

Hence V2 = V3 = 0 ⇐⇒ g3 = 0. The equalities j4 = g3 = 0 yields to
conditions (22) examined in Lemma 5.

From Theorems 1, 2 and 8 stated above follow the complete solution of
the problem of the centre for cubic differential systems with at least three
invariant straight lines. Thus we have

Theorem 9. Any singular point (x0, y0) with pure imaginary eigenval-
ues of a real cubic differential system with at least three invariant straight
lines (real, complex, real or complex) is a centre if and only if the first
seven Liapunov quantities (focus quantities) vanish at this point.

REFERENCES
1. V. V. Amel’kin, N. A. Lukashevich and A. P. Sadovskii, Nonlinear oscillations

in second-order systems. Beloruss. Gos. Univ., Minsk, (1982) (in Russian).
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