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1. INTRODUCTION

In this paper we consider the problem of determine the number of limit
cycles, i.e. isolated closed trajectories, for planar vector fields. This is
a classical problem, included as part of the XVI Hilbert’s problem. The
literature is huge and still growing, for a review see [3] and the more re-
cent [6, 5].

An important subproblem is to study systems with a unique limit cycle,
in fact in this case the dynamics of the cycle can “dominate” the global
dynamics of the whole system. Let us consider planar vector fields of the
form:

ẋ = β(x) [φ(y)− F (x, y)] , ẏ = −α(y)g(x) , (1)

under the regularity assumptions (to ensure the existence and uniqueness of
the Cauchy initial problem) for which there exists: −∞ ≤ a < 0 < b ≤ +∞,
such that:

A1) β ∈ Lip (a, b) and α ∈ Lip (R);
A2) φ ∈ Lip (R), g ∈ Lip (a, b) and F ∈ C1 ((a, b)×R).

Without loss of generality we can assume α and β to be positive in
their respective domains of definition, in fact the existence of x0 such that

31



32 TIMOTEO CARLETTI

β(x0) = 0 (or y0 s.t. α(y0) = 0), gives rise to invariant lines, which cannot
intersect a limit cycle. Hence we can reparametrize time, by dividing the
vector field by: α(y)β(x). The transformed system is:

ẋ = φ̃(y)− F̃ (x, y), ẏ = −g̃(x) , (2)

where φ̃(y) = φ(y)/α(y), F̃ (x, y) = F (x, y)/α(y) and g̃(x) = g(x)/β(x). In
the following we will drop out the –̃mark and consider the general system
of previous type.

These systems can be though as “non–Hamiltonian perturbations” of
Hamiltonian ones, with Hamilton function: H(x, y) = Φ(y) + G(x), where
Φ(y) =

∫ y

0
φ(s) ds and G(x) =

∫ x

0
g(s) ds, being F (x, y) the “perturbation”.

One can also consider (2) as “generalized” Liénard equations:

ẍ + f(x)ẋ + g(x) = 0 ,

which in the Liénard plane can be rewritten as:

ẋ = y − F (x), ẏ = −g(x) , (3)

where F ′(x) = f(x), hence our systems generalize (3) by allowing a depen-
dence of F also on y.

Let λ > 0 and let us consider the energy level Hλ = {(x, y) ∈ R2 : Φ(y)+
G(x) = λ}, the knowledge of the flow through Hλ can give informations
about the existence of limit cycles. Because

< ∇Hλ, X(x, y) >
∣∣∣
Hλ

= −F (x, y)g(x) ,

where X(x, y) = (φ(y)−F (x, y),−g(x)), no limit cycles can be completely
contained in a region where gF doesn’t change sign. We will see in a while
that the set of zeros of F will play a fundamental role in our construction.

For Liénard systems the set of zeros of F is given by vertical lines x = xk

s.t. F (xk) = 0. In a recent paper [2] authors, using ideas taken from
Liénard systems [1], proved a uniqueness result for systems (2) assuming
that F (x, y) vanishes only at three vertical lines x = x− < 0, x = 0 and
x = x+ > 0. We generalize this condition by assuming that zeros of F (x, y)
lie on (quite) general curves. More precisely let us assume:

B0) F (0, y) = 0 for all real y;

and moreover there exist C1 functions ψj : R → R, j ∈ {1, 2}, such that 1:

1We remark that our main result still holds, even if one assume there exist αj < 0 <
βj , j ∈ {1, 2}, and the functions ψj to be defined in [αj , βj ] and verify hypotheses B)
on their new domain of definition.



UNIQUENESS OF LIMIT CYCLES 33

B1) y 7→ ψ1(y), is positive for all y ∈ R, yψ′1(y) < 0 for all y 6= 0,
ψ1(0) < b;

B2) y 7→ ψ2(y), is negative for all y ∈ R, yψ′2(y) > 0 for all y 6= 0,
ψ2(0) > a;

B3) for all y ∈ R, j ∈ {1, 2}, we have:

F (ψj(y), y) ≡ 0 ,

these curves will be called “non–trivial zeros” of F (x, y) (in opposition with
the trivial zeros given by x = 0).

Let us divide the strip (a, b)×R into four distinct domains:

• D>
1 := {(x, y) ∈ (a, b)×R : x > ψ1(y)};

• D<
1 := {(x, y) ∈ (a, b)×R : 0 < x < ψ1(y)};

• D>
2 := {(x, y) ∈ (a, b)×R : ψ2(y) < x < 0};

• D<
2 := {(x, y) ∈ (a, b)×R : x < ψ2(y)}.

The following assumptions generalize “standard sign ones”:

C1) yφ(y) > 0 for all y 6= 0 and xg(x) > 0 for all x ∈ (a, b) \ {0};
C2) g(x)F (x, y) < 0 for all (x, y) ∈ D<

1 ∪D>
2 .

We remark that hypothesis C2) can be weakened into:

C2’) g(x)F (x, y) ≤ 0 for all (x, y) ∈ D<
1 ∪ D>

2 except at some (x0, y0)
where strictly inequality holds.

With these hypotheses we ensure that (0, 0) is the only singular point in
the strip (a, b)×R of system (2). We are now able to state our main result

Theorem 1. Let us consider system (2) and let us assume Hypothe-
ses A), B) and C) to hold. Then there is at most one limit cycle which
intersects both curves x = ψ1(y) and x = ψ2(y) contained in (a, b) × R,
provided:

D1) the function y 7→ F (x, y)/φ(y) is strictly increasing for (x, y) ∈ D<
1

and y 6= 0;
D2) the function y 7→ F (x, y)/φ(y) is strictly decreasing for (x, y) ∈ D>

2

and y 6= 0;
E) the function x 7→ F (x, y) is positive in D>

1 , negative in D<
2 and

increasing in D>
1 ∪D<

2 ;

F) let Aj(y) = [φ(y)∂xF (x, y)− g(x)∂yF (x, y)]
∣∣∣
x=ψj(y)

, then Aj(y) y > 0

for y 6= 0, j ∈ {1, 2}.
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G) there exists a function ζ : [ψ2(0), ψ1(0)] → R such that

φ(ζ(x)) − F (x, ζ(x)) = 0 .

Hypotheses D) and E) naturally generalize hypotheses used in the Liénard
case [1] or in the more general situation studied in [2]. Also hypothesis F)
is very natural: each closed trajectory intersects the non–trivial zeros of
F (x, y) at most once in any quadrant. We remark that this condition is
trivially verified if the functions ψj are indentically constant, namely in the
case considered in [2].

The proof of Theorem 1 will be given in the next section. In the last
section (§ 3) we will provide a family of systems with exactly one limit
cycle. This family is a “natural generalization”of the classical cubic Van
der Pol case, thus our result can be considered as a natural extension of
this classical existence and uniqueness result.

Acknowledgment I would like to thank the anonymous referee for some
useful remarks allowing me to improve a first version of this paper.

2. PROOF OF THEOREM 1

The aim of this section is to prove our main result Theorem 1. The proof
is based on the following remark,

Remark 2. Along any closed curve γ : [0, T ] → (a, b)×R one has:

∫ T

0

d

dt
H

∣∣∣
flow

◦ γ(s) ds = H ◦ γ(T )−H ◦ γ(0) = 0 ,

moreover if γ is an integral curve of system (2) we can evaluate the inte-
grand function to obtain:

Iγ :=
∫ T

0

g(xγ(s))F (xγ(s), yγ(s)) ds = 0 , (4)

where γ(s) = (xγ(s), yγ(s)).

The uniqueness result will be proved by showing that the existence of
two limit cycles, γ1 contained 2 in γ2, both intersecting x = ψ1(y) and
x = ψ2(y), will imply: Iγ1 < Iγ2 , which contradicts (4).

¿From now on we will assume the existence of two limit cycles, γ1 con-
tained in γ2, which intersect both non–trivial zeros of F .

2By this we mean γ1 is properly contained in the compact set whose boundary is γ2.
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Let us now consider the set of zeros of the equation: φ(y)− F (x, y) = 0
inside D<

1 ∪ D>
2 . By hypothesis G) this is the graph of some function

x 7→ ζ(x), moreover this function vanishes for x ∈ {ψ2(0), 0, ψ1(0)}, it is
positive for x ∈ (ψ2(0), 0) and negative for x ∈ (0, ψ1(0)).

The sign properties of ζ can be proved as follows. Let ψ2(0) < x < 0,
then by C2) 0 < F (x, ζ(x)) = φ(ζ(x)), using now C1) we conclude that
ζ(x) > 0. The case 0 < x < ψ1(0) can be handle similarly and we omit.
By continuity we get the result about the zeros of ζ(x).

Hypothesis F) guarantees that a closed trajectory can intersect the non–
trivial zeros of F (x, y) only once in each quadrant, in fact Aj(y) gives a
measure of the angle between the vector field and the normal to F0 =
{(x, y) : x = ψ1(y)} ∪ {(x, y) : x = ψ2(y)} at (ψj(y), y):

< ∇F0, X(x, y) >
∣∣∣
F0

= [φ(y)∂xF (x, y)− g(x)∂yF (x, y)]
∣∣∣
F0

= Aj(y) j ∈ {1, 2} .

For instance, because the angle between the vector field and {(x, y) : x =
ψ1(y)}∩{y > 0} is in absolute value smaller than π/2, a trajectory starting
at (0, ȳ), for some ȳ > 0, which will intersect {(x, y) : x = ψ1(y)}∩{y > 0},
could not meet anew {(x, y) : x = ψ1(y)} ∩ {y > 0}.

¿From hypotheses D) and the sign of F on D>
2 ∪ D<

1 , it follows easily
that for all (x, y) ∈ D>

2 ∪ D<
1 one has: (y − ζ(x)) (φ(y)− F (x, y)) > 0.

Hence a cycle intersects (D>
2 ∪D<

1 ) ∩ {y > 0} in a region where φ(y) −
F (x, y) > 0, whereas the intersection with (D>

2 ∪D<
1 ) ∩ {y < 0} holds

where φ(y) − F (x, y) < 0. This remark allows us to divide the path of
integration needed to evaluate Iγj , j ∈ {1, 2}, in two parts: an “horizontal”
one where ẋ > 0 and a “vertical” one, where ẋ vanishes, to be more clear
look at Figure 1 where DiAi and BiCi are horizontal arcs, whereas CiDi

and AiBi are vertical ones.
Let us define (see Figure 1), for j ∈ {1, 2}, Aj (respectively Bj) the

intersection point of γj with x = ψ1(y) for y > 0 (respectively y < 0),
and Cj (respectively Dj) the intersection point of γj with x = ψ2(y) for
y < 0 (respectively y > 0). Let also introduce, A∗ being the intersection
point of γ1 and the line x = xA2 contained in the first quadrant, and A∗∗
being the intersection point of γ2 and the line y = yA1 contained in the
first quadrant. Similarly we introduce points: B∗, B∗∗, C∗, C∗∗ and D∗,
D∗∗ (see Figure 1).

According to this subdivision of the arcs of limit cycles, we evaluate Iγj

as follows:

Iγ1 =

∫

D∗A∗
+

∫

A∗A1

+

∫

A1B1

+

∫

B1B∗
+

∫

B∗C∗
+

∫

C∗C1

+

∫

C1D1

+

∫

D1D∗
,



36 TIMOTEO CARLETTI

Iγ2 =

∫

D2A2

+

∫

A2A∗∗
+

∫

A∗∗B∗∗
+

∫

B∗∗B2

+

∫

B2C2

+

∫

C2C∗∗
+

∫

C∗∗D∗∗
+

∫

D∗∗D2

.(5)

x

y

A2

A1
A* A

**

B2

B1B*
B
**

D2

D1
D*D**

C2

C1 C*
C

**

FIG. 1. The non–trivial zeros of F (thick), the limit cycles γ1 and γ2 (thin) inter-
secting both non–trivial zeros of F and their subdivision into arcs.

Let now show that Iγ1 < Iγ2 , which prove the contradiction and conclude
the proof.

2.1. Integration along “horizontal arcs”.
Because along horizontal arcs we have ẋ 6= 0, we can change integration

variable from t to x, hence for example:

∫

DjAj

g(x)F (x, y) dt =
∫ xAj

xDj

g(x)F (x, yj(x))
φ(yj(x))− F (x, yj(x))

dx ,

where yj(x), j ∈ {1, 2}, is the parametrization of γj as graph over x for
x ∈ (xDj , xAj ).
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Because y2(x) > y1(x) for all x ∈ (xD∗ , xA∗), using hypotheses D) and
the sign assumptions C) we get:

g(x)F (x, y1(x))
φ(y1(x))− F (x, y1(x))

<
g(x)F (x, y2(x))

φ(y2(x))− F (x, y2(x))
,

hence:
∫ xA1

xD1

g(x)F (x, y1(x))
φ(y1(x))− F (x, y1(x))

dx <

∫ xD∗

xD1

g(x)F (x, y1(x))
φ(y1(x))− F (x, y1(x))

dx+

+
∫ xA1

xA∗

g(x)F (x, y1(x))
φ(y1(x))− F (x, y1(x))

dx +
∫ xA2

xD2

g(x)F (x, y2(x))
φ(y2(x))− F (x, y2(x))

dx

≤
∫ xA2

xD2

g(x)F (x, y2(x))
φ(y2(x))− F (x, y2(x))

dx ,

(6)

the last step follows because the integrand function is negative by hy-
pothesis C2) and from the previous discussion on the sign of φ(y)−F (x, y).

In a very similar way we can prove that:
∫ xC1

xB1

g(x)F (x, y1(x))
φ(y1(x))− F (x, y1(x))

dx <

∫ xC2

xB2

g(x)F (x, y2(x))
φ(y2(x))− F (x, y2(x))

dx . (7)

2.2. Integration along “vertical arcs”.
Along vertical arcs ẏ never vanishes, hence we can perform the integra-

tion with respect to the y variable and getting for example:
∫

AjBj

g(x)F (x, y) dt =
∫ yAj

yBj

F (xj(y), y) dy ,

where xj(y), j ∈ {1, 2}, is the parametrization of γj as graph over y for
y ∈ (yBj , yAj ).

Because x2(y) > x1(y) for all y ∈ (yA∗∗ , yB∗∗), from hypothesis E) and
the definition of A∗∗ and B∗∗, we get:

∫ yA1

yB1

F (x1(y), y) dy <

∫ yA∗∗

yB∗∗

F (x2(y), y) dy .

Again from the sign assumption on F in D>
1 , we get:

∫ yA2

yA∗∗

F (x2(y), y) dy > 0 and
∫ yB∗∗

yB2

F (x2(y), y) dy > 0 ,
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hence we obtain:
∫ yA1

yB1

F (x1(y), y) dy <

∫ yA2

yB2

F (x2(y), y) dy . (8)

Analogously we can prove that:
∫ yD1

yC1

F (x1(y), y) dy <

∫ yD2

yC2

F (x2(y), y) dy . (9)

2.3. Conclusion of the proof.
We are now able to complete our proof. In fact from (6) and (7) of § 2.1,

from (8) and (9) of § 2.2 and the subdivision (4) we get:

Iγ1 < Iγ2 ,

which contradicts (4), and so the Theorem is proved.

3. A SYSTEM WITH EXACTLY ONE LIMIT CYCLE

In this last part we present a class of examples exhibiting exactly one
limit cycle, which turn out to be a natural generalization, in the case where
F depends on both x and y, of the classical cubic Van der Pol case.

Let us assume that F has the following “special form”:

F (x, y) = x [x− ψ1(y)] [x− ψ2(y)] , (10)

where (ψj)j=1,2 verify hypotheses B). We observe that for this particular
dependence of F on x and y, hypothesis F) is equivalent to the following
one:

F’) the function y 7→ Φ(y) + G(ψj(y)) is strictly increasing for positive
y and strictly decreasing for negative ones, j ∈ {1, 2}.
In fact we have:

A1(y) = ψ1(y) [ψ1(y)− ψ2(y)] [φ(y) + g(ψ1(y))ψ′1(y)]
= ψ1(y) [ψ1(y)− ψ2(y)] d

dy [Φ(y) + G(ψ1(y))] ,

and the claim follows from the sign properties of ψj and the definitions of
Φ and G. Similarly for A2.

In the rest of the section we will consider the following concrete example
given by:

φ(y) = y , g(x) = x , ψ1(y) = c1e
−d1y2

+ e1 and

ψ2(y) = −c2e
−d2y2 − e2 , (11)
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with cj , dj , and ej positive real numbers such that:

(1) c1 + e1 = c2 + e2 = r,
(2) c1 ≥ c2 and d1 ≥ d2,
(3) c1d1 max{r, r2} < 1/2.

The remaining part of the section will be devoted to prove the exis-
tence of exactly one limit cycle. The proof will be achieved by showing
that all, eventually, limit cycles must intersect both non–trivial zeros of F ,
then proving the existence of at least a limit cycle, we will conclude using
Theorem 1.

We left to the reader the easy check that with the above hypotheses,
system (11) with F given by (10) satisfies all hypotheses of Theorem 1.

We claim that the vector field is transversal (pointing outward) to the
circle Cρ = {(x, y) ∈ R2 : x2 + y2 = ρ2}, with ρ ≤ r = c1 + e1; thus it
can be used as inner boundary of a Poincaré–Bendixson domain. More-
over this circle passes through the points (ψ1(0), 0), (ψ2(0), 0), because
r = ψ1(0) = − ψ2(0), and it lies inside the domain D>

2 ∪ D<
1 (just

check the curvature of the circle and of the non–trivial zeros of F at these
common points, by using (2) and (3)). Hence all orbits, and thus also all
eventually limit cycles, must intersect both non–trivial zeros of F .

To conclude it will be enough to prove the existence of at least a limit
cycle. To do this we will construct the outer boundary of a Poincaré–
Bendixson domain by using phase–plane comparison techniques. The proof
will be divided into three parts, each one considering the regions of phase–
plane where pieces of orbits lie.

3.1. Comparing flows for positive x

Let φ0(x) = F (x, 0) = x(x2 − r2) and let us compare the flow of the
vector field X, given in coordinates by:

ẋ = y − x [x− ψ1(y)] [x− ψ2(y)] , ẏ = −x , (12)

where (ψj(y))j=1,2 are given by (11), with the (Liénard) vector field X0:

ẋ = y − φ0(x), ẏ = −x . (13)

The latter system has [4] one and only one attracting limit cycle, Γ0, (which
intersect both zeros of φ0(x) = 0, i.e. x = ±r). Let γ0(t) be a trajectory of
this vector field lying outside Γ0 (i.e. contained in the unbounded domain
whose boundary is Γ0), passing by the points A = (r′, yA), yA > 0, and
A0 = (r′, yA0), yA0 < 0, where r′ = r+ε, for some fixed ε > 0 (see Figure 2).
Let yA + yA0 = ∆, because the cycle is attracting we have ∆ > 0, a simple
bound is given by ∆ ≥ 2εr′(r′ + ε).
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To compare the slopes of the vector fields (12) and (13) we need to
estimate F (x, y)−φ0(x) for x > 0; this will be done in the following lemma

Lemma 3. Let F (x, y) = x [x− ψ1(y)] [x− ψ2(y)], where (ψ(y))j=1,2 are
given by (11), and let φ0(x) = x(x− ψ1(0))(x− ψ2(0)). Assume moreover
hypotheses (1), (2) and (3) to hold, then:

F (x, y)− φ0(x) > 0 , (14)

for all x > 0 and y ∈ R.

Proof. A direct computation gives:

F (x, y)− φ0(x) = −x2 [ψ1(y) + ψ2(y)] + x
[
ψ1(y)ψ2(y) + r2

]
. (15)

Using the form of (ψj(y))j=1,2 given by (11), the last term in the right
hand side can be rewritten as:

ψ1(y)ψ2(y) + r2 = c1c2

(
1− e−(d1+d2)y

2
)

+ c1e2

(
1− e−d1y2

)

+e1c2

(
1− e−d2y2

)
,

thus by the sign assumptions on (cj)j=1,2, (dj)j=1,2 and (ej)j=1,2, we
conclude that this term is always non–negative and zero only for y = 0.

Recalling that c1 + e1 = c2 + e2, the remaining term in (15) can be
rewritten as:

ψ1(y) + ψ2(y) = −c1
(
1− e−d1y2

)
+ c2

(
1− e−d2y2

)

≤ (c1 − c2)
(
e−d2y2 − 1

)
≤ 0 ,

where the inequality follows by hypothesis (2).
We hence conclude that:

F (x, y)− φ0(x) = −x2 [ψ1(y) + ψ2(y)] + x
[
ψ1(y)ψ2(y) + r2

]
> 0 ,

for all positive x and all y 6= 0

The slope of the vector field (12) is dy
dx

∣∣∣
X

= −x
y−F (x,y) , whereas the one

for (13) is dy
dx

∣∣∣
X0

= −x
y−φ0(x) , thus the previous lemma ensures that for x > 0

one has:

dy

dx

∣∣∣
X

<
dy

dx

∣∣∣
X0

, (16)

namely orbits of X lying in x > 0 enter orbits of X0 (see Figure 2).
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D0

0A

Γ0

γ
0
(t)

γ(t)

x

y A

C

D

B

−r r’

A’

FIG. 2. Construction of the outer boundary of a Poincaré–Bendixson domain. We
show the attracting limit cycle of X0, Γ0, and part of one of its orbits from A to A0,
γ0(t) (dotted curves). The dashed curve from C to D0, is a piece of the circle Cr. Solid
curves AB, BC, CD and DA′ are trajectories of X, γ(t). Arrows denote the vector field
X across the orbit AA0 and CD0. BC and DA′ are the so–called “horizontal arcs”.

3.2. Comparing flows for negative x

Orbits lying in x < 0 are controled with the following remark. F (x, y) is
negative for x < −r and all y ∈ R, thus comparing the flow of X through
circles Cρ = {(x, y) ∈ R2 : x2 + y2 = ρ2}, with ρ > r, we get:

d

dt
Cρ = −xF (x, y) < 0 x < 0, y ∈ R ,

hence the orbit passing through C = (−r, yC), yC < 0, will reach again
the vertical line x = −r at some D = (−r, yD), yD > 0, and moreover
yD < |yC |.

3.3. Comparing flows for “horizontal arcs”
The following lemma allows us to control “horizontal arcs”of trajectories

(see Figure 2):
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Lemma 4. The orbit starting at D = (−r, yD), yD > 0, will reach the
y–axis and then the point A′ = (r′, yA′), yA′ > 0. Moreover |yD − yA′ | can
be made as small as we want taking sufficiently large yD.

We observe that a similar result holds for orbits lying in y < 0 connecting
B to C.

3.4. Conclusion of the proof
We are now able to conclude our proof by constructing the outern bound-

ary of a Poincaré–Bendixson domain. Let δ be a positive number such that
δ < ∆/2, where ∆ has been introduced is § 3.1. Assume moreover, see
Lemma 4, that |yD − yA′ | < δ and |yB − yC | < δ, then we can prove that
orbits of X will approach the origin when winding around it:

yA − yA′ = yA − yD + (yD − yA′) > yA + yC − δ

where we used the closeness of yD and yA′ and the relation −yD > yC ,
moreover

yA + yC − δ = yA + yB + (yC − yB)− δ > ∆− 2δ > 0 ,

where again we used the closeness of yC and yB . Thus yA−yA′ > 0 and the
construction of an outern Poincaré–Bendixson boundary is achieved. This
allows us to prove the existence of at least one limit cycle, which intersect
both curves x = ψj(y), j = 1, 2, hence by Theorem 1 we conclude that this
limit cycle is indeed unique.

In Figure 3 we present a numerical example, to show an application of
Theorem 1.

y
1

0,5

0

-0,5

-1

x
10,50-0,5-1

FIG. 3. An example with c1 = 0.4, e1 = 0.25, d1 = 0.95, c2 = 0.25, e2 = 0.4,
d2 = 0.75. We numerically compute the attracting unique limit cycle (thick) of X, the
unique attracting limit cycle of X0 (thin) and non–trivial zeros of F (dashed thick).
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