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In this paper we deal with attractive central forces, more precisely with the
system

ẍ = −xf(x, y), ÿ = −yf(x, y), f(0, 0) > 0 f ∈ Cω .

We characterize the stability of the origin whenever the system admits a first
integral of the following kind

V (x, y, ẋ, ẏ) = u(ẋ, ẏ) + Π(x, y),

with u(ẋ, ẏ) = aẋ2 + bẋẏ + cẏ2 undefinite and make repairs to some optimisms
we have committed in [3].
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1. INTRODUCTION

Let us consider the following system of ODEs.

ẍ = −xf(x, y), ÿ = −yf(x, y), (1)

f : Ω =
◦
Ω ⊂ R2 → R, 0 ∈ Ω, f ∈ Cω, f(0, 0) > 0.

This can be related to a point on a plane, under the influence of a central
force. Remark that (1) admits the first integral s = xẏ−yẋ, called the areal
integral and that (up to a scale time changing) we can suppose f(0, 0) = 1.
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Suppose there exist a, b, c ∈ R, and a function Π : D → R, D =
◦
D ⊂

Ω, 0 ∈ D, such that

V (x, y, ẋ, ẏ) = aẋ2 + bẋẏ + cẏ2 + Π(x, y) (2)

is a first integral of (1) and that u(ẋ, ẏ) = aẋ2 + bẋẏ + cẏ2 is an undefinite
quadratic form.

In this case, f has a particular structure, namely there exists a function

g(u) : I =
◦
I → R, 0 ∈ I, g ∈ Cω

such that f(x, y) = g(u), with u = ax2 + bxy + cy2.
Indeed the condition

V̇ = 2aẋẍ + bẍẏ + bẋÿ + 2cẏÿ + Πxẋ + Πy ẏ = 0.

with (2) and (1) gives

Πx = (2ax + by)f, Πy = (2cy + bx)f.

So the condition Πxy = Πyx gives

(2ax + by)fy = (2cy + bx)fx.

The general analytic solution of this last equation is

f(x, y) = g(u),

with u = ax2 + bxy + cy2, the function g ∈ Cω, g(0) = 1 being arbitrary.
The system (1) then becomes

ẍ = −xg(u), ÿ = −yg(u), with u = ax2 + bxy + cy2. (3)

The quadratic form u plays an important role.
Our principal contribution is

Theorem 1. For an indefinite u and under the hypothesis of analiticity,
the origin is stable if and only if g (so f) is constant.

An easy calculus shows that

Π(x, y) =
∫ ax2+bxy+cy2

0

g(ξ)dξ =
∫ u

0

g(ξ)dξ.
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Up to a linear change of variables, we can suppose that u = xy and the
system (3) becomes

ẍ = −xg(u), ÿ = −yg(u), u = xy, (4)

called the main system, in the sequel, which admits the following first
integral

ẋẏ +
∫ u

0

g(ξ)dξ = K. (5)

We have: u̇ = xẏ + yẋ, ü = xÿ + yẍ + 2ẋẏ, thus

ü = −2ug(u)− 2
∫ u

0

g(ξ)dξ + 2K. (6)

called the auxiliary equation, in the sequel.
Therefore, we obtain a family of differential equations, with a parameter

K. Such family admits the following first integral

u̇2

2
+ 2u

[∫ u

0

g(ξ)dξ −K

]
=

u̇2

2
+ W (u). (7)

Given K, all solutions to equation (6), for each small enough |K|, are
periodic. Indeed, if we put

G(u) = ug(u) +
∫ u

0

g(ξ)dξ,

it is easy to verify that, to each small enough |K|, there corresponds a
unique number u, such that G(u) = K.

The equation (6) becomes: ü = −2[G(u) − G(u)]. For u = u + U , we
have:

Ü = −2[G(u + U)−G(u)] = −2U
G(u + U)−G(u)

U
= −UF (u,U),

where F (u, 0) = lim
U→0

F (u,U) = 2G′(u) = 4g(u) + 2ug′(u) > 0, for small

enough |u|. A simple calculus shows that F ∈ Cω (g ∈ Cω). Therefore, for
each small enough |u|, the solutions of

Ü = −UF (u,U), (8)

are periodic (U = 0 is a center).
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2. RELATION BETWEEN THE SOLUTIONS OF THE MAIN
SYSTEM AND OF THE AUXILIARY EQUATION

The deduction of equation (6) leads us to the following result: if (x(t), y(t))
is a solution of (4), then u(t) = x(y)y(t) is a solution of (6), where K is
determined by (5). Vice-versa: given K and a solution u(t) of (6), what
are the solutions of (4) such that x(t)y(t) = u(t)?

For each K, the solutions of (6) are periodic. Therefore, the problem can
be solved in an instant t1, for which u(t) is maximum, i.e. u(t1) = umax,
u̇(t1) = 0.

Furthermore, since (4) and (6) are autonomous, we can suppose t1 = 0.
Before the solution of the problem, let us make the following considerations:

Given K, u(t, u0, K) stands for the solution of (6) with initial values
u0 = umax ≥ 0, u̇0 = 0, and τ(u0,K) stands for its period. Under this
solution, (4) yields the following Hill system family:

ẍ = −xg(u(t, u0, K)), ÿ = −yg(u(t, u0,K)). (9)

Note that the above stated problem is equivalent to determine the solu-
tions of (9), x(t, u0, K), y(t, u0,K), with initial values x0, y0, ẋ0, ẏ0, which
are also solutions of (4).

In fact, under a straight verification, the solutions of (4) and (9) will
coincide if and only if

x(t, u0, K)y(t, u0,K) = u(t, u0,K),

which means:

x0y0 = u0, x0ẏ0 + y0ẋ0 = 0,

ẋ0ẏ0 +
∫ u0

0

g(ξ)dξ = K (10)

The values x0, y0, ẋ0, ẏ0 which satisfy (10) will be called consonant (com-
patible) with the fixed values u0 ≥ 0, u̇0 = 0 and K, and the correspondent
solutions will be called consonant with the solution u(t, u0,K).

Since u0 ≥ 0, by the second relation in (10), we will have ẋ0ẏ0 ≤ 0 and
by the third

∫ u0

0
g(ξ)dξ ≥ K.

The trivial cases, u0 = 0 and K ≤ 0 or u0 > 0 and
∫ u0

0
g(ξ)dξ =

K, correspond to solutions of (4) with null areal velocity, i.e., solutions
contained in straight lines of the plane xy through the origin.

We can consider only the case in which the areal velocity s is strictly
positive and x0 > 0, y0 > 0. Then, ẋ0 < 0 and ẏ0 > 0.
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From (10), we have

ẋ0 = −x0

√∫ u0

0
g(ξ)dξ −K

u0
, ẏ0 = y0

√∫ u0

0
g(ξ)dξ −K

u0
. (11)

We therefore see that: given K, u0 > 0,
∫ u0

0
g(ξ)dξ > K and supposing

s > 0, through each point x0 > 0, y0 > 0, such that x0y0 = u0, there is
only one velocity ẋ0, ẏ0 and so only one consonant solution.

3. FLOQUET THEORY

Let y1(t, u0,K) and y2(t, u0,K) be the fundamental solutions of each one
of the equations of system (9), i.e.,

y1(0, u0,K) = 1, ẏ1(0, u0,K) = 0, y2(0, u0, K) = 0, ẏ2(0, u0,K) = 1.

So the consonants solutions can be written




x(t, u0,K) = x0


y1(t, u0,K)−

√∫ u0

0
g(ξ)dξ −K

u0
y2(t, u0,K)


,

y(t, u0,K) = y0


y1(t, u0,K) +

√∫ u0

0
g(ξ)dξ −K

u0
y2(t, u0,K)


,

(12)

∀x0 > 0, y0 > 0, x0y0 = u0.
In an analogous way of the deduction of (11), in the instant τ(u0,K) we

will have the following relations:





ẋ(τ(u0,K), u0, K) = −x(τ(u0,K), u0,K)

√∫ u0

0
g(ξ)dξ −K

u0

ẏ(τ(u0, K), u0,K) = y(τ(u0,K), u0,K)

√∫ u0

0
g(ξ)dξ −K

u0
.

(13)

From the first relations in (13) and (12), we have

ẏ1(τ(u0, K), u0,K)−
√∫ u0

0
g(ξ)dξ −K

u0
ẏ2(τ(u0,K), u0,K)

= −

y1(τ(u0,K), u0,K)−

√∫ u0

0
g(ξ)dξ −K

u0
y2(τ(u0,K), u0,K)




√∫ u0

0
g(ξ)dξ −K

u0



6 M. O. CESAR AND A. BARONE-NETTO

and since ẏ2(τ(u0,K), u0,K) = y1(τ(u0,K), u0,K) ([1] even case), it re-
sults

ẏ1(τ(u0,K), u0, K) = y2(τ(u0, K), u0,K)

∫ u0

0
g(ξ)dξ −K

u0
.

There are only two possibilities:

• Either ẏ1(τ(u0,K), u0,K) = y2(τ(u0,K), u0,K) = 0 and all conso-
nants solutions x(t, u0, K), y(t, u0, K) are periodic and their corresponding
periods are 2τ(u0,K).
• Or [1]

ẏ1(τ(u0,K), u0,K)
y2(τ(u0,K), u0,K)

=
y2
1(τ(u0,K), u0,K)− 1
y2
2(τ(u0,K), u0,K)

=

∫ u0

0
g(ξ)dξ −K

u0
> 0

what means y2
1(τ(u0,K), u0, K) > 1.

In this case we will prove that ∀x0 > 0, y0 > 0, x0y0 = u0, all the
solutions x(t, u0,K) (respec. y(t, u0, K)) will be unbounded in the future
if

y2(τ(u0,K), u0,K) > 0 (respec. y2(τ(u0,K), u0,K) < 0).
In fact, from Floquet theory in the even case, the characteristic equation

of any of the relations (9) is

ρ2 − 2y1(τ(u0,K), u0,K)ρ + 1 = 0

and its roots ρ1 and ρ2 are: ρ1 < −1 and 0 > ρ2 > −1.
It’s easy to see that:
if y2(τ(u0,K), u0,K) > 0 (respec. y2(τ(u0,K), u0,K) < 0) the con-

sonants solutions x(t, u0,K), y(t, u0,K) are respectively the eigen-vectors
associated to the eigen-values ρ1 and ρ2 (respec. ρ2 and ρ1). In the first
case

{
x(t + τ(u0,K), u0,K) = ρ1x(t, u0,K)
y(t + τ(u0,K), u0,K) = ρ2y(t, u0,K),

{
x(t + 2τ(u0,K), u0,K) = ρ2

1x(t, u0,K)
y(t + 2τ(u0,K), u0,K) = ρ2

2y(t, u0,K),

and therefore x(t, u0, K) is unbounded in the future. In the second case
y(t, u0,K) is unbounded in the future.
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4. FLOW AFTER TWO PERIODS

Let us give a more geometrical proof of the same results obtained in 3.
We proved in 2 that: given K, u0 > 0, u̇0 = 0,

∫ u0

0
g(ξ)dξ > K, and sup-

posing s > 0 through each point of the hyperbola branch x0y0 = u0 in the
first quadrant, there is a unique consonant solution x(t, u0,K), y(t, u0,K)
such that x(0, u0,K) = x0, y(0, u0,K) = y0.

The flow of this solution in the instant 2τ(u0,K) is a diffeomorphism of
the hyperbola branch and its first coordinate, given by x(2τ(u0,K), u0,K) =
ϕ(x0) is a diffeomorphism of the half-straight line x > 0, y = 0 and then it
is monotonous. (The function ψ defined by y(2τ(u0,K), u0,K) = ψ(y0) is
a diffeomorphism of the half-straight line x = 0, y > 0).

We therefore have two possibilities:

• Either y2
1(τ(u0, K), u0,K) = 1, and then all consonants solutions will

be periodic and ϕ is the identity.
• Or y2

1(τ(u0,K), u0, K) > 1, and no consonant solution will be peri-
odic. Then ϕ does not admit a fixed point (ϕ(x0) 6= x0, ∀x0). Supposing
ϕ(x0) > x0 (respec. ϕ(x0) < x0) we can conclude that x(t, u0,K) (respec.
y(t, u0,K)) is unbounded in the future.

5. STABILITY OF THE ORIGIN OF THE MAIN SYSTEM

Let us consider in the plane u,K the region

u > 0 and
∫ u

0

g(ξ)dξ > K. (14)

From the explanation we can conclude that:

• If in (14) there is a vanishing sequence (un,Kn) (tending to the ori-
gin), in which y2

1(τ(un,Kn), un,Kn) > 1 then there will be a sequence
(xn, yn, ẋn, ẏn) tending to the origin of (4), in which all the correspondent
solutions will be unbounded. As a result, the origin (4) will be unstable.
• Otherwise, the restriction of y2

1(τ(u,K), u,K) to the intersection of the
region (14) with a convenient neighbourhood of the origin will be equal to
1. In this case there will be a neighbourhood of the origin of (4) in which
all the solutions are periodic.

in this way, we showed the following

Theorem 2. A necessary and sufficient condition for the stability of the
origin in (4) is that the restriction of y2

1(τ(u,K), u,K) to the intersection
of the region (14) with a convenient neighbourhood of the origin be identical
to 1.
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6. CONCLUSION

Let us consider the system

{
Ü = −UF (u,U)
ÿ = −yg(u + U)

in which the first equation is (8) and, as we have seen,

F (u, 0) = 4g(u) + 2ug′(u).

In the the region (14) we have shown y2
1(τ(u,K), u, K) ≥ 1.

From [2], we know that

4g(u) = n2[4g(u) + 2ug′(u)],

has a natural solution n, for every number u small enough, otherwise
y2
1(τ(u,K), u, K) < 1 for every number u in a convenient neighbourhood

of u. It happens if and only if ug′(u) = 0.
Under the hypothesis of analiticity of g, if locally y2

1(τ(u,K), u, K) = 1
in the region (14), then y2

1(τ(u,K), u, K) = 1 in a neighbourhood of u = 0,
K = 0. Therefore g′(u) = 0 for every small enough |u|, what happens if
and only if g is locally constant.

This way, we showed the following

Theorem 3. Under the hypothesis of analiticity and undefiniteness of
u, a necessary and sufficient condition for the stability of the origin of (4),
is that g be locally constant.
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