Some Central Forces-Stability

Mauro de Oliveira Cesar
Departamento de Matemática Aplicada, Instituto de Matemática e Estatística, Universidade de São Paulo and
Angelo Barone - Netto
Departamento de Matemática Aplicada, Instituto de Matemática e Estatística,
Universidade de São Paulo
E-mail: barone@ime.usp.br

In this paper we deal with attractive central forces, more precisely with the system

$$
\ddot{x}=-x f(x, y), \quad \ddot{y}=-y f(x, y), \quad f(0,0)>0 \quad f \in \mathcal{C}^{\omega} .
$$

We characterize the stability of the origin whenever the system admits a first integral of the following kind

$$
V(x, y, \dot{x}, \dot{y})=u(\dot{x}, \dot{y})+\Pi(x, y)
$$

with $u(\dot{x}, \dot{y})=a \dot{x}^{2}+b \dot{x} \dot{y}+c \dot{y}^{2}$ undefinite and make repairs to some optimisms we have committed in [3].

Key Words: Non-Linearly Coupled Oscilators, Liapounov Stability.

1. INTRODUCTION

Let us consider the following system of ODEs.

$$
\begin{equation*}
\ddot{x}=-x f(x, y), \quad \ddot{y}=-y f(x, y), \tag{1}
\end{equation*}
$$

$f: \Omega=\stackrel{\circ}{\Omega} \subset \mathbf{R}^{2} \rightarrow \mathbf{R}, 0 \in \Omega, f \in \mathcal{C}^{\omega}, f(0,0)>0$.
This can be related to a point on a plane, under the influence of a central force. Remark that (1) admits the first integral $s=x \dot{y}-y \dot{x}$, called the areal integral and that (up to a scale time changing) we can suppose $f(0,0)=1$.

Suppose there exist $a, b, c \in \mathbf{R}$, and a function $\Pi: D \rightarrow \mathbf{R}, D=\stackrel{\circ}{D} \subset$ $\Omega, 0 \in D$, such that

$$
\begin{equation*}
V(x, y, \dot{x}, \dot{y})=a \dot{x}^{2}+b \dot{x} \dot{y}+c \dot{y}^{2}+\Pi(x, y) \tag{2}
\end{equation*}
$$

is a first integral of (1) and that $u(\dot{x}, \dot{y})=a \dot{x}^{2}+b \dot{x} \dot{y}+c \dot{y}^{2}$ is an undefinite quadratic form.

In this case, f has a particular structure, namely there exists a function

$$
g(u): I=\stackrel{\circ}{I} \rightarrow \mathbf{R}, 0 \in I, g \in \mathcal{C}^{\omega}
$$

such that $f(x, y)=g(u), \quad$ with $u=a x^{2}+b x y+c y^{2}$.
Indeed the condition

$$
\dot{V}=2 a \dot{x} \ddot{x}+b \ddot{x} \dot{y}+b \dot{x} \ddot{y}+2 c \dot{y} \ddot{y}+\Pi_{x} \dot{x}+\Pi_{y} \dot{y}=0 .
$$

with (2) and (1) gives

$$
\Pi_{x}=(2 a x+b y) f, \quad \Pi_{y}=(2 c y+b x) f
$$

So the condition $\Pi_{x y}=\Pi_{y x}$ gives

$$
(2 a x+b y) f_{y}=(2 c y+b x) f_{x}
$$

The general analytic solution of this last equation is

$$
f(x, y)=g(u)
$$

with $u=a x^{2}+b x y+c y^{2}$, the function $g \in \mathcal{C}^{\omega}, g(0)=1$ being arbitrary.
The system (1) then becomes

$$
\begin{equation*}
\ddot{x}=-x g(u), \quad \ddot{y}=-y g(u), \quad \text { with } u=a x^{2}+b x y+c y^{2} . \tag{3}
\end{equation*}
$$

The quadratic form u plays an important role.
Our principal contribution is
Theorem 1. For an indefinite u and under the hypothesis of analiticity, the origin is stable if and only if $g(s o f)$ is constant.

An easy calculus shows that

$$
\Pi(x, y)=\int_{0}^{a x^{2}+b x y+c y^{2}} g(\xi) \mathrm{d} \xi=\int_{0}^{u} g(\xi) \mathrm{d} \xi
$$

Up to a linear change of variables, we can suppose that $u=x y$ and the system (3) becomes

$$
\begin{equation*}
\ddot{x}=-x g(u), \quad \ddot{y}=-y g(u), \quad u=x y \tag{4}
\end{equation*}
$$

called the main system, in the sequel, which admits the following first integral

$$
\begin{equation*}
\dot{x} \dot{y}+\int_{0}^{u} g(\xi) \mathrm{d} \xi=K \tag{5}
\end{equation*}
$$

We have: $\dot{u}=x \dot{y}+y \dot{x}, \ddot{u}=x \ddot{y}+y \ddot{x}+2 \dot{x} \dot{y}$, thus

$$
\begin{equation*}
\ddot{u}=-2 u g(u)-2 \int_{0}^{u} g(\xi) \mathrm{d} \xi+2 K \tag{6}
\end{equation*}
$$

called the auxiliary equation, in the sequel.
Therefore, we obtain a family of differential equations, with a parameter K. Such family admits the following first integral

$$
\begin{equation*}
\frac{\dot{u}^{2}}{2}+2 u\left[\int_{0}^{u} g(\xi) \mathrm{d} \xi-K\right]=\frac{\dot{u}^{2}}{2}+W(u) \tag{7}
\end{equation*}
$$

Given K, all solutions to equation (6), for each small enough $|K|$, are periodic. Indeed, if we put

$$
G(u)=u g(u)+\int_{0}^{u} g(\xi) \mathrm{d} \xi
$$

it is easy to verify that, to each small enough $|K|$, there corresponds a unique number \bar{u}, such that $G(\bar{u})=K$.

The equation (6) becomes: $\ddot{u}=-2[G(u)-G(\bar{u})]$. For $u=\bar{u}+U$, we have:

$$
\ddot{U}=-2[G(\bar{u}+U)-G(\bar{u})]=-2 U \frac{G(\bar{u}+U)-G(\bar{u})}{U}=-U F(\bar{u}, U)
$$

where $F(\bar{u}, 0)=\lim _{U \rightarrow 0} F(\bar{u}, U)=2 G^{\prime}(\bar{u})=4 g(\bar{u})+2 \bar{u} g^{\prime}(\bar{u})>0$, for small enough $|\bar{u}|$. A simple calculus shows that $F \in \mathcal{C}^{\omega}\left(g \in \mathcal{C}^{\omega}\right)$. Therefore, for each small enough $|\bar{u}|$, the solutions of

$$
\begin{equation*}
\ddot{U}=-U F(\bar{u}, U), \tag{8}
\end{equation*}
$$

are periodic ($U=0$ is a center).

2. RELATION BETWEEN THE SOLUTIONS OF THE MAIN SYSTEM AND OF THE AUXILIARY EQUATION

The deduction of equation (6) leads us to the following result: if $(x(t), y(t))$ is a solution of (4), then $u(t)=x(y) y(t)$ is a solution of (6), where K is determined by (5). Vice-versa: given K and a solution $u(t)$ of (6), what are the solutions of (4) such that $x(t) y(t)=u(t)$?

For each K, the solutions of (6) are periodic. Therefore, the problem can be solved in an instant t_{1}, for which $u(t)$ is maximum, i.e. $u\left(t_{1}\right)=u_{\max }$, $\dot{u}\left(t_{1}\right)=0$.

Furthermore, since (4) and (6) are autonomous, we can suppose $t_{1}=0$. Before the solution of the problem, let us make the following considerations:

Given $K, u\left(t, u_{0}, K\right)$ stands for the solution of (6) with initial values $u_{0}=u_{\max } \geq 0, \dot{u}_{0}=0$, and $\tau\left(u_{0}, K\right)$ stands for its period. Under this solution, (4) yields the following Hill system family:

$$
\begin{equation*}
\ddot{x}=-x g\left(u\left(t, u_{0}, K\right)\right), \quad \ddot{y}=-y g\left(u\left(t, u_{0}, K\right)\right) . \tag{9}
\end{equation*}
$$

Note that the above stated problem is equivalent to determine the solutions of (9), $x\left(t, u_{0}, K\right), y\left(t, u_{0}, K\right)$, with initial values $x_{0}, y_{0}, \dot{x}_{0}, \dot{y}_{0}$, which are also solutions of (4).

In fact, under a straight verification, the solutions of (4) and (9) will coincide if and only if

$$
x\left(t, u_{0}, K\right) y\left(t, u_{0}, K\right)=u\left(t, u_{0}, K\right)
$$

which means:

$$
\begin{align*}
& x_{0} y_{0}=u_{0}, \quad x_{0} \dot{y}_{0}+y_{0} \dot{x}_{0}=0, \\
& \dot{x}_{0} \dot{y}_{0}+\int_{0}^{u_{0}} g(\xi) \mathrm{d} \xi=K \tag{10}
\end{align*}
$$

The values $x_{0}, y_{0}, \dot{x}_{0}, \dot{y}_{0}$ which satisfy (10) will be called consonant (compatible) with the fixed values $u_{0} \geq 0, \dot{u}_{0}=0$ and K, and the correspondent solutions will be called consonant with the solution $u\left(t, u_{0}, K\right)$.

Since $u_{0} \geq 0$, by the second relation in (10), we will have $\dot{x}_{0} \dot{y}_{0} \leq 0$ and by the third $\int_{0}^{u_{0}} g(\xi) \mathrm{d} \xi \geq K$.

The trivial cases, $u_{0}=0$ and $K \leq 0$ or $u_{0}>0$ and $\int_{0}^{u_{0}} g(\xi) \mathrm{d} \xi=$ K, correspond to solutions of (4) with null areal velocity, i.e., solutions contained in straight lines of the plane $x y$ through the origin.

We can consider only the case in which the areal velocity s is strictly positive and $x_{0}>0, y_{0}>0$. Then, $\dot{x}_{0}<0$ and $\dot{y}_{0}>0$.

From (10), we have

$$
\begin{equation*}
\dot{x}_{0}=-x_{0} \sqrt{\frac{\int_{0}^{u_{0}} g(\xi) \mathrm{d} \xi-K}{u_{0}}}, \quad \dot{y}_{0}=y_{0} \sqrt{\frac{\int_{0}^{u_{0}} g(\xi) \mathrm{d} \xi-K}{u_{0}}} \tag{11}
\end{equation*}
$$

We therefore see that: given $K, u_{0}>0, \int_{0}^{u_{0}} g(\xi) \mathrm{d} \xi>K$ and supposing $s>0$, through each point $x_{0}>0, y_{0}>0$, such that $x_{0} y_{0}=u_{0}$, there is only one velocity \dot{x}_{0}, \dot{y}_{0} and so only one consonant solution.

3. FLOQUET THEORY

Let $y_{1}\left(t, u_{0}, K\right)$ and $y_{2}\left(t, u_{0}, K\right)$ be the fundamental solutions of each one of the equations of system (9), i.e.,

$$
y_{1}\left(0, u_{0}, K\right)=1, \dot{y}_{1}\left(0, u_{0}, K\right)=0, y_{2}\left(0, u_{0}, K\right)=0, \dot{y}_{2}\left(0, u_{0}, K\right)=1 .
$$

So the consonants solutions can be written

$$
\left\{\begin{array}{l}
x\left(t, u_{0}, K\right)=x_{0}\left[y_{1}\left(t, u_{0}, K\right)-\sqrt{\frac{\int_{0}^{u_{0}} g(\xi) \mathrm{d} \xi-K}{u_{0}}} y_{2}\left(t, u_{0}, K\right)\right] \tag{12}\\
y\left(t, u_{0}, K\right)=y_{0}\left[y_{1}\left(t, u_{0}, K\right)+\sqrt{\frac{\int_{0}^{u_{0}} g(\xi) \mathrm{d} \xi-K}{u_{0}}} y_{2}\left(t, u_{0}, K\right)\right]
\end{array}\right.
$$

$\forall x_{0}>0, y_{0}>0, x_{0} y_{0}=u_{0}$.
In an analogous way of the deduction of (11), in the instant $\tau\left(u_{0}, K\right)$ we will have the following relations:

$$
\left\{\begin{array}{l}
\dot{x}\left(\tau\left(u_{0}, K\right), u_{0}, K\right)=-x\left(\tau\left(u_{0}, K\right), u_{0}, K\right) \sqrt{\frac{\int_{0}^{u_{0}} g(\xi) \mathrm{d} \xi-K}{u_{0}}} \tag{13}\\
\dot{y}\left(\tau\left(u_{0}, K\right), u_{0}, K\right)=y\left(\tau\left(u_{0}, K\right), u_{0}, K\right) \sqrt{\frac{\int_{0}^{u_{0}} g(\xi) \mathrm{d} \xi-K}{u_{0}}} .
\end{array}\right.
$$

From the first relations in (13) and (12), we have

$$
\begin{aligned}
& \dot{y}_{1}\left(\tau\left(u_{0}, K\right), u_{0}, K\right)-\sqrt{\frac{\int_{0}^{u_{0}} g(\xi) \mathrm{d} \xi-K}{u_{0}}} \dot{y}_{2}\left(\tau\left(u_{0}, K\right), u_{0}, K\right) \\
& =-\left[y_{1}\left(\tau\left(u_{0}, K\right), u_{0}, K\right)-\sqrt{\frac{\int_{0}^{u_{0}} g(\xi) \mathrm{d} \xi-K}{u_{0}}} y_{2}\left(\tau\left(u_{0}, K\right), u_{0}, K\right)\right] \sqrt{\frac{\int_{0}^{u_{0}} g(\xi) \mathrm{d} \xi-K}{u_{0}}}
\end{aligned}
$$

and since $\dot{y}_{2}\left(\tau\left(u_{0}, K\right), u_{0}, K\right)=y_{1}\left(\tau\left(u_{0}, K\right), u_{0}, K\right)$ ([1] even case), it results

$$
\dot{y}_{1}\left(\tau\left(u_{0}, K\right), u_{0}, K\right)=y_{2}\left(\tau\left(u_{0}, K\right), u_{0}, K\right) \frac{\int_{0}^{u_{0}} g(\xi) \mathrm{d} \xi-K}{u_{0}}
$$

There are only two possibilities:

- Either $\dot{y}_{1}\left(\tau\left(u_{0}, K\right), u_{0}, K\right)=y_{2}\left(\tau\left(u_{0}, K\right), u_{0}, K\right)=0$ and all consonants solutions $x\left(t, u_{0}, K\right), y\left(t, u_{0}, K\right)$ are periodic and their corresponding periods are $2 \tau\left(u_{0}, K\right)$.
- Or [1]

$$
\frac{\dot{y}_{1}\left(\tau\left(u_{0}, K\right), u_{0}, K\right)}{y_{2}\left(\tau\left(u_{0}, K\right), u_{0}, K\right)}=\frac{y_{1}^{2}\left(\tau\left(u_{0}, K\right), u_{0}, K\right)-1}{y_{2}^{2}\left(\tau\left(u_{0}, K\right), u_{0}, K\right)}=\frac{\int_{0}^{u_{0}} g(\xi) \mathrm{d} \xi-K}{u_{0}}>0
$$

what means $y_{1}^{2}\left(\tau\left(u_{0}, K\right), u_{0}, K\right)>1$.
In this case we will prove that $\forall x_{0}>0, y_{0}>0, x_{0} y_{0}=u_{0}$, all the solutions $x\left(t, u_{0}, K\right)$ (respec. $y\left(t, u_{0}, K\right)$) will be unbounded in the future if
$y_{2}\left(\tau\left(u_{0}, K\right), u_{0}, K\right)>0$ (respec. $\left.y_{2}\left(\tau\left(u_{0}, K\right), u_{0}, K\right)<0\right)$.
In fact, from Floquet theory in the even case, the characteristic equation of any of the relations (9) is

$$
\rho^{2}-2 y_{1}\left(\tau\left(u_{0}, K\right), u_{0}, K\right) \rho+1=0
$$

and its roots ρ_{1} and ρ_{2} are: $\rho_{1}<-1$ and $0>\rho_{2}>-1$.
It's easy to see that:
if $y_{2}\left(\tau\left(u_{0}, K\right), u_{0}, K\right)>0$ (respec. $\left.y_{2}\left(\tau\left(u_{0}, K\right), u_{0}, K\right)<0\right)$ the consonants solutions $x\left(t, u_{0}, K\right), y\left(t, u_{0}, K\right)$ are respectively the eigen-vectors associated to the eigen-values ρ_{1} and ρ_{2} (respec. ρ_{2} and ρ_{1}). In the first case

$$
\begin{aligned}
& \left\{\begin{array}{l}
x\left(t+\tau\left(u_{0}, K\right), u_{0}, K\right)=\rho_{1} x\left(t, u_{0}, K\right) \\
y\left(t+\tau\left(u_{0}, K\right), u_{0}, K\right)=\rho_{2} y\left(t, u_{0}, K\right),
\end{array}\right. \\
& \left\{\begin{array}{l}
x\left(t+2 \tau\left(u_{0}, K\right), u_{0}, K\right)=\rho_{1}^{2} x\left(t, u_{0}, K\right) \\
y\left(t+2 \tau\left(u_{0}, K\right), u_{0}, K\right)=\rho_{2}^{2} y\left(t, u_{0}, K\right),
\end{array}\right.
\end{aligned}
$$

and therefore $x\left(t, u_{0}, K\right)$ is unbounded in the future. In the second case $y\left(t, u_{0}, K\right)$ is unbounded in the future.

4. FLOW AFTER TWO PERIODS

Let us give a more geometrical proof of the same results obtained in 3.
We proved in 2 that: given $K, u_{0}>0, \dot{u}_{0}=0, \int_{0}^{u_{0}} g(\xi) \mathrm{d} \xi>K$, and supposing $s>0$ through each point of the hyperbola branch $x_{0} y_{0}=u_{0}$ in the first quadrant, there is a unique consonant solution $x\left(t, u_{0}, K\right), y\left(t, u_{0}, K\right)$ such that $x\left(0, u_{0}, K\right)=x_{0}, y\left(0, u_{0}, K\right)=y_{0}$.

The flow of this solution in the instant $2 \tau\left(u_{0}, K\right)$ is a diffeomorphism of the hyperbola branch and its first coordinate, given by $x\left(2 \tau\left(u_{0}, K\right), u_{0}, K\right)=$ $\varphi\left(x_{0}\right)$ is a diffeomorphism of the half-straight line $x>0, y=0$ and then it is monotonous. (The function ψ defined by $y\left(2 \tau\left(u_{0}, K\right), u_{0}, K\right)=\psi\left(y_{0}\right)$ is a diffeomorphism of the half-straight line $x=0, y>0)$.

We therefore have two possibilities:

- Either $y_{1}^{2}\left(\tau\left(u_{0}, K\right), u_{0}, K\right)=1$, and then all consonants solutions will be periodic and φ is the identity.
- Or $y_{1}^{2}\left(\tau\left(u_{0}, K\right), u_{0}, K\right)>1$, and no consonant solution will be periodic. Then φ does not admit a fixed point $\left(\varphi\left(x_{0}\right) \neq x_{0}, \forall x_{0}\right)$. Supposing $\varphi\left(x_{0}\right)>x_{0}$ (respec. $\left.\varphi\left(x_{0}\right)<x_{0}\right)$ we can conclude that $x\left(t, u_{0}, K\right)$ (respec. $\left.y\left(t, u_{0}, K\right)\right)$ is unbounded in the future.

5. STABILITY OF THE ORIGIN OF THE MAIN SYSTEM

Let us consider in the plane u, K the region

$$
\begin{equation*}
u>0 \quad \text { and } \quad \int_{0}^{u} g(\xi) \mathrm{d} \xi>K \tag{14}
\end{equation*}
$$

From the explanation we can conclude that:

- If in (14) there is a vanishing sequence $\left(u_{n}, K_{n}\right)$ (tending to the origin), in which $y_{1}^{2}\left(\tau\left(u_{n}, K_{n}\right), u_{n}, K_{n}\right)>1$ then there will be a sequence $\left(x_{n}, y_{n}, \dot{x}_{n}, \dot{y}_{n}\right)$ tending to the origin of (4), in which all the correspondent solutions will be unbounded. As a result, the origin (4) will be unstable.
- Otherwise, the restriction of $y_{1}^{2}(\tau(u, K), u, K)$ to the intersection of the region (14) with a convenient neighbourhood of the origin will be equal to 1. In this case there will be a neighbourhood of the origin of (4) in which all the solutions are periodic.
in this way, we showed the following
Theorem 2. A necessary and sufficient condition for the stability of the origin in (4) is that the restriction of $y_{1}^{2}(\tau(u, K), u, K)$ to the intersection of the region (14) with a convenient neighbourhood of the origin be identical to 1 .

6. CONCLUSION

Let us consider the system

$$
\left\{\begin{array}{l}
\ddot{U}=-U F(\bar{u}, U) \\
\ddot{y}=-y g(\bar{u}+U)
\end{array}\right.
$$

in which the first equation is (8) and, as we have seen,

$$
F(\bar{u}, 0)=4 g(\bar{u})+2 \bar{u} g^{\prime}(\bar{u}) .
$$

In the the region (14) we have shown $y_{1}^{2}(\tau(u, K), u, K) \geq 1$.
From [2], we know that

$$
4 g(\bar{u})=n^{2}\left[4 g(\bar{u})+2 \bar{u} g^{\prime}(\bar{u})\right],
$$

has a natural solution n, for every number \bar{u} small enough, otherwise $y_{1}^{2}(\tau(u, K), u, K)<1$ for every number u in a convenient neighbourhood of \bar{u}. It happens if and only if $\bar{u} g^{\prime}(\bar{u})=0$.

Under the hypothesis of analiticity of g, if locally $y_{1}^{2}(\tau(u, K), u, K)=1$ in the region (14), then $y_{1}^{2}(\tau(u, K), u, K)=1$ in a neighbourhood of $u=0$, $K=0$. Therefore $g^{\prime}(\bar{u})=0$ for every small enough $|\bar{u}|$, what happens if and only if g is locally constant.

This way, we showed the following
Theorem 3. Under the hypothesis of analiticity and undefiniteness of u, a necessary and sufficient condition for the stability of the origin of (4), is that g be locally constant.

REFERENCES

1. W. Magnus and S. Winkler Hills Equation, Interscience, New York, 1966.
2. M.O. Cesar and A. Barone-Netto, The existence of Liapunov functions for some non-conservative positional mechanical systems, J. Differential Equations, 91 (1991), 235-244.
3. M.O. Cesar and A. Barone-Netto, Stability of some central forces NoDEA, 6 (1999), 289-296.
