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In this paper we consider families of rational maps of degree 2n on the
Riemann sphere Fλ : C→ C given by

Fλ(z) = zn +
λ

zn

where λ ∈ C − {0} and n ≥ 2. One of our goals in this paper is to describe
a type of structure that we call a Cantor necklace that occurs in both the
dynamical and the parameter plance for Fλ. Roughly speaking, such a set is
homeomorphic to a set constructed as follows. Start with the Cantor middle
thirds set embedded on the x-axis in the plane. Then replace each removed
open interval with an open circular disk whose diameter is the same as the
length of the removed interval. A Cantor necklace is a set that is homeomorphic
to the resulting union of the Cantor set and the adjoined open disks.

The second goal of this paper is to use the Cantor necklaces in the parameter
plane to prove the existence of several new types of Sierpinski curve Julia sets
that arise in these families of rational maps. Unlike most examples of this type
of Julia set, the maps on these Julia sets are structurally unstable. That is,
small changes in the parameter λ give rise to Julia sets on which the dynamical
behavior is quite different. In addition, we also describe a new type of related
Julia set which we call a hybrid Sierpinski curve.
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In this paper we consider families of rational maps of degree 2n on the
Riemann sphere Fλ : C→ C given by

Fλ(z) = zn +
λ

zn

where λ ∈ C \ {0} and n ≥ 2. The case where n = 1 is very different and
hence is excluded from this study. We denote the family of all such rational
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maps of degree 2n by Λn. A function in Λn is called a singular perturbation
of zn.

One of our goals in this paper is to describe a type of structure that we
call a Cantor necklace that occurs in both the dynamical and the parameter
plance for Fλ. Such a set is homeomorphic to a set constructed as follows.
Start with the Cantor middle thirds set embedded on the x-axis in the
plane. Then replace each removed open interval with an open circular disk
whose diameter is the same as the length of the removed interval. A Cantor
necklace is a set that is homeomorphic to the resulting union of the Cantor
set and the adjoined open disks.

Of primary interest in the dynamical plane for Fλ is the Julia set which
we denote by J(Fλ). The second goal of this paper is to use the Cantor
necklaces in the parameter plane to prove the existence of several new types
of Sierpinski curve Julia sets (defined below) that arise in these families of
rational maps. Unlike most examples of this type of Julia set, the maps
on these Julia sets are structurally unstable. That is, small changes in
the parameter λ give rise to Julia sets on which the dynamical behavior is
quite different. In addition, we also describe a new type of related Julia
set which we call a hybrid Sierpinski curve.

Despite the possibly high degree of the rational map Fλ, there are essen-
tially only three critical orbits for this function. One critical point occurs
at ∞, which is therefore a superattracting fixed point for Fλ, and thus
there always exists an immediate basin of attraction at ∞ which we call
Bλ. The origin is a pole for each of these maps, and since n > 1, this point
is a second critical point which is mapped onto the fixed point at ∞. In
particular, there is an open set Tλ containing 0 that is mapped onto Bλ

by Fλ. We remark that either Bλ = Tλ or Bλ and Tλ are disjoint. Finally,
there are 2n other critical points, but the orbits of each of these points are
symmetric about the origin, so there is essentially only one “free” critical
orbit for Fλ.

The dynamics on and the topology of J(Fλ) are quite rich when this free
critical orbit tends to ∞. The following theorem is proved in [2] and is
called the escape trichotomy.

Theorem 1. Suppose the free critical orbit tends to ∞.

1.If the critical values lie in Bλ, then J(Fλ) is a Cantor set;
2.If the critical values lie in Tλ (and Bλ 6= Tλ), then J(Fλ) is a Cantor

set of simple closed curves;
3.If the critical values lie in some other preimage of Bλ, then J(Fλ) is

a Sierpinski curve.

A Sierpinski curve is a planar set that is characterized by the following
five properties: it is a compact, connected, locally connected and nowhere
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FIG. 1. Some Julia sets for z4+λ/z4: if λ = 0.23, J(Fλ) is a Cantor set; if λ = 0.03,
J(Fλ) is a Cantor set of circles; and if λ = −0.1, J(Fλ) is a Sierpinski curve.

dense set whose complementary domains are bounded by simple closed
curves that are pairwise disjoint. It is known [14] that any two Sierpinski
curves are homeomorphic. In fact, they are homeomorphic to the well-
known Sierpinski carpet fractal. From the point of view of topology, a
Sierpinski curve is a universal set in the sense that this set contains a
homeomorphic copy of any planar, compact, connected, one-dimensional
set.

The case where the Julia sets of these maps is a Cantor set of simple
closed curves was first observed by McMullen [7]. For some examples of
each of these three types of Julia sets drawn from the family when n = 4,
see Figure 1.

Even though Sierpinski curve Julia sets are always homeomorphic, from
a dynamical systems point of view, these sets can be quite different from
one another. In [2] it is shown that, for each n ≥ 2, there are infinitely
many disjoint open sets Oj in Λn such that, if λj ∈ Oj , then J(Fλj ) is
a Sierpinski curve. However, Fλj is not topologically conjugate to Fλk

if
j 6= k. So the Julia sets of these maps are the same but the dynamics on
these sets are different. In [1] it is shown that, in the special case where
n = 2, there are infinitely many such Oj in every neighborhood of 0 in
the parameter plane. See Figure 2 for several examples of Sierpinski curve
Julia sets drawn from the family with n = 2.

There are other ways besides having all critical orbits tend to ∞ that
the Julia sets of Fλ can be Sierpinski curves. For example, in [5], it is
shown that each of these families also posseses infinitely many Sierpinski
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λ = −1/16 λ = 0.132 + 0.097i

FIG. 2. Two Sierpinski curve Julia sets for z2 + λ/z2.

curve Julia sets whose complementary domains consist of a finite number
of basins of attraction of different attracting cycles including the basin at
∞, together with all of their preimages. Again, each of these Julia sets
comes with different dynamics.

One of the main properties of all of the Julia sets mentioned above is that
the corresponding maps are structurally stable within Λn. That is, there
is an open neighborhood U about such a λ ∈ Λn having the property that
if µ ∈ U , then Fλ and Fµ are topologically conjugate on their Julia sets.
This can be seen by noting that both Fλ and Fµ have the same symbolic
dynamics on their Julia sets as described in [4].

In this paper, we present a very different collection of Sierpinski curve
Julia sets. Unlike the previous examples, these types occur when the critical
orbits do not escape to ∞ but rather have a certain type of preperiodic
behavior. Our main result here is:

Theorem 2. There exist infinitely many parameter values λ in each Λn

such that J(Fλ) is a Sierpinski curve but Fλ is not structurally stable on
this Julia set. In particular, in every neighborhood U of each such λ:

1.There exist infinitely many parameter values µj ∈ U such that J(Fµj )
is a structurally stable Sierpinski curve Julia set, but Fµj is not conjugate
to Fµk

for j 6= k;
2.There exist infinitely many parameter values νj ∈ U such that J(Fνj )

is a Sierpinski curve Julia set which is not structurally stable and again,
Fνj is not conjugate to Fνk

when j 6= k nor is Fνj conjugate to any of the
Fµ`

;
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3.Finally, there exist infinitely many parameter values τj ∈ U such that
J(Fτj

) is a hybrid Sierpinski curve, and again, Fτj
is not conjugate to Fτk

for j 6= k, nor to any of the Fµ`
or Fν`

above.

A hybrid Sierpinski curve is a set that has the same five properties as a
Sierpinski curve except that infinitely many of the complementary domains
have a boundary point in common with exactly one other complementary
domain, while infinitely many other complementary domains have bound-
aries that do not meet any other such boundary. See Figure 3 for an
example of such a hybrid Sierpinski curve Julia set. We conjecture that,
as in the case of an ordinary Sierpinski curve, any two hybrid Sierpinski
curves are homeomorphic.

1. BASIC PROPERTIES

For simplicity, for most of this paper we shall concentrate on the specific
family of maps given by

Fλ(z) = z2 +
λ

z2
,

i.e., the case where n = 2. In the final section, we briefly describe the
straightforward modifications necessary to extend these results to the case
n > 2.

We begin by reviewing some basic properties of functions in this family.
See [1] or [3] for proofs of these facts.

Note first that 0 is the only pole for each function in this family. The
points (−λ)1/4 are prepoles for Fλ since they are mapped by Fλ directly to
0. The critical points for Fλ occur at the four points λ1/4. Since Fλ(λ1/4) =
±2λ1/2 = ±vλ, there are only two critical values for Fλ. Also, F 2

λ(λ1/4) =
1/4 + 4λ, so each of the four critical points lies on the same forward orbit
after two iterations. Thus the orbit of 1/4+4λ is the tail of the free critical
orbit.

The circle given by |z| = |λ1/4| is known as the critical circle for this
family and is denoted by Cλ. A computation shows that the critical circle is
mapped onto a straight line segment connecting the two critical values and
passing through the origin. The map takes Cλ in 4 to 1 fashion onto this
segment except at the critical values, each of which has only two preimages.

Recall that the point at ∞ is a superattracting fixed point for Fλ and
that Bλ is its immediate basin of attraction. Let ∂Bλ denote the boundary
of Bλ. The basin Bλ is a (forward) invariant set for Fλ in the sense that,
if z ∈ Bλ, then Fn

λ (z) ∈ Bλ for all n ≥ 0. The same is true for ∂Bλ.
Recall that J = J(Fλ) is the Julia set of Fλ. By definition, J(Fλ) is

the set of points at which the family of iterates of Fλ fails to be a normal
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FIG. 3. A hybrid Sierpinski curve Julia set and a magnification. Note that some
of the complementary domains appear to be bounded by isolated simple closed curves
while others are bounded by simple closed curves that meet another such curve at a
single point.



CANTOR NECKLACES AND SIERPINSKI CURVE JULIA SETS 343

family in the sense of Montel. Equivalently, J(Fλ) is the closure of the set
of repelling periodic points of Fλ and it is also the boundary of the set of
points whose orbits tend to ∞. See [9] for proofs of these equivalences.

As in the escape trichotomy, we may have different types of Julia sets
when the free critical orbit escapes to ∞. However, in the special case
where n = 2, the Cantor set of circles case does not occur. As shown in
[3], the critical values cannot lie in Tλ and so we really have a dichotomy
in this case:

Theorem 3. For the family of rational maps given by

Fλ(z) = z2 +
λ

z2
,

1.If the critical values lie in Bλ, then J(Fλ) is a Cantor set;
2.Otherwise, J(Fλ) is a compact, connected set and Bλ is open and sim-

ply connected. In particular, if the critical orbit escapes to ∞ but the critical
values do not lie in Bλ, then J(Fλ) is a Sierpinski curve.

In case 2 of this theorem, since the critical values do not lie in Bλ, it is
known that the preimage of Bλ surrounding the origin, Tλ, is disjoint from
Bλ. The map is 2 to 1 on both Bλ and Tλ. Since Fλ has degree 4, these
two sets contain all of the preimages of points in Bλ. We call Tλ the trap
door, since any orbit that eventually enters Bλ must pass through Tλ.

Each of the maps Fλ possess certain symmetries. For example, we have
that Fλ(−z) = Fλ(z) and Fλ(iz) = −Fλ(z) so that F 2

λ(iz) = F 2
λ(z) for all

z ∈ C. As a consequence, each of the sets Bλ, Tλ, and J(Fλ) are invariant
under z 7→ iz. We therefore say that these sets possess fourfold symmetry.

There is a second symmetry present for this family. Consider the map
H(z) =

√
λ/z. Note that there are two such maps depending upon which

square root of λ we choose. H is an involution and we have Fλ(H(z)) =
Fλ(z). As a consequence, H also preserves J . The involution H also
preserves the circle of radius |λ|1/4, the critical circle, and interchanges the
interior and exterior of this circle. Hence J is symmetric about the critical
circle with respect to the action of H.

Finally, in analogy with the well-studied quadratic polynomial family
z 7→ z2 +c, since Fλ has degree two on Bλ (in case 2 of the above theorem),
it is known that Fλ is conjugate to z 7→ z2 on Bλ when the critical values do
not lie in Bλ. That is, there is an analytic homeomorphism φλ : Bλ → C−D
that satisfies φλ ◦Fλ(z) = (φλ(z))2 for all z ∈ Bλ. Here D is the open unit
disk in C. As is well known, the map z 7→ z2 preserves the straight rays
Arg z = constant, so the inverse images of these straight rays under φλ are
preserved by Fλ. These curves are known as external rays. In particular,
there is an external ray corresponding to the ray Arg z = 0. It is known
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FIG. 4. The Cantor middle–thirds necklace.

(see [11]) that this ray limits on a unique point pλ in ∂Bλ and that pλ is
the unique fixed point of Fλ that lies in ∂Bλ. Similarly, the external ray
corresponding to Arg z = π limits on the point −pλ ∈ ∂Bλ.

2. CANTOR NECKLACES IN DYNAMICAL PLANE

One of the principal objects contained in the dynamical plane of Fλ is
a Cantor necklace. To define this set, we let Γ denote the Cantor middle
thirds set in the unit interval [0, 1]. We regard this interval as a subset of
the real axis in the plane. For each open interval of length 1/3n removed
from the unit interval in the construction of Γ, we replace this interval by
an open disk of diameter 1/3n centered at the midpoint of the removed
interval. Thus the boundary of this open disk meets the Cantor set at the
two endpoints of the removed interval. We call the resulting set the Cantor
middle-thirds necklace. See Figure 4. Any set homeomorphic to the Cantor
middle-thirds necklace is called a Cantor necklace. We do not include
the boundary of the open disks in the Cantor necklace for the following
technical reason: it is sometimes difficult in practice to verify that these
bounding curves are simple closed curves. On the other hand, in our case,
the open regions will be preimages of the basin at ∞, and we know that
these preimages are open and simply connected.

Our aim in this section is to describe various Cantor necklaces in the
dynamical plane for Fλ. In the next section we prove the existence of
similar sets in the parameter plane.

Write λ = |λ|eiη. For the rest of this paper, we will consider only the
case where 0 < η < 2π. All of the results below also hold when η = 0, but
the arguments are slightly different and we will not consider this case in
the sequel anyway.

When |λ| < 1, we have the following escape criterion.

Proposition 4 (The Escape Criterion). Suppose |λ| < 1 and |z| ≥ 2.
Then z ∈ Bλ, so J(Fλ) is contained in the open disk |z| < 2.
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Proof. If |z| ≥ 2, then we have

|Fλ(z)| ≥ |z|2 − |λ|
|z|2 ≥ 2|z| − 1

4
>

3
2
|z|.

Inductively, we find

|Fn
λ (z)| ≥

(
3
2

)n

|z|.

Therefore the orbit of any such z tends to ∞ so all points on or outside
the circle of radius 2 lie in Bλ.

From the results in [2], it is known that J(Fλ) is a Cantor set if |λ| ≥ 1,
so we also exclude this case for the remainder of this paper. Therefore we
assume throughout that λ = |λ|eiη with 0 < η < 2π and |λ| < 1.

Recall that the critical points of Fλ are given by λ1/4. Therefore one of
the critical points of Fλ lies on the straight line through the origin given
by t exp(iη/4) with t > 0. The image of this line lies in the straight line
with argument θ = η/2, and Fλ maps the line t exp(iη/4) with t > 0 in
two-to-one fashion over the portion of this straight line that lies beyond the
critical value 2

√
λ whose argument is η/2. Note that the image of the line is

disjoint from the line itself since we have assumed that 0 < η < 2π. There is
a second critical point of Fλ lying on the line with argument θ = η/4−π/2,
and this line is mapped in two-to-one fashion to the opposite line θ = −η/2
exactly as in the previous case.

By the escape criterion, we know that any point on or outside r = 2 is
mapped closer to ∞. Let βλ denote the image of this circle, so that βλ ⊂
Bλ. Using the involution H, there is a second circle, namely r = |λ|1/2/2,
that is also mapped two-to-one onto βλ.

Consider the open region Rλ bounded by the rays θ = η/4 and θ =
η/4 − π/2 and the two circular preimages of βλ. The set Rλ is a quarter
of an annulus. Let Lλ = −Rλ. We call Rλ (resp. Lλ) the right (resp. left)
fundamental sector. These fundamental sectors are a pair of disjoint, open,
simply connected regions in C. Note that, for each λ, Rλ lies in the right
half plane Re z > 0, while Lλ lies in the left half plane. See Figure 5.

Proposition 5. Fλ maps each of the fundamental sectors in one-to-one
fashion onto the open set O bounded by βλ minus the portions of the two
straight lines θ = ±η/2 extending from the critical values ±vλ to βλ. So
the image of each of these fundamental sectors contains the closures of both
Rλ and Lλ in its interior.

Proof. The images of the straight rays bounding Rλ and Lλ are con-
tained in the rays θ = ±η/2, both of which lie outside these sectors. The
image of the outer circular boundary of each fundamental sector is exactly
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FIG. 5. Rλ and Lλ and their image under Fλ, which is the interior of βλ minus the
two segments connecting this circle to the critical values.

one-half of βλ, while the inner boundary of each sector is mapped to the
opposite half of βλ. Hence each fundamental sector is mapped onto the
open disk bounded by βλ minus the two portions of the rays θ = ±η/2
lying beyond the critical values. This set is O. By fourfold symmetry, this
map must be one-to-one on each fundamental sector.

Since Fλ maps the union of the fundamental sectors strictly outside itself,
many points in Rλ ∪ Lλ have orbits that leave this set at some iteration.
Let Γλ be the set of points whose orbits remain for all iterations in Rλ∪Lλ.
Then we have:

Proposition 6. The set Γλ is a Cantor set and Fλ |Γλ is conjugate to
the one-sided shift on two symbols.

Proof. By the previous result, each of the fundamental sectors is map-
ped in one-to-one fashion onto the open region O that properly contains
Rλ ∪ Lλ in C. So we have a pair of well-defined inverses G0 (resp. G1) of
Fλ that map O into Rλ (resp. Lλ). Standard arguments then show that
these inverses are contractions in the Poincaré metric on O. Moreover, for
any one-sided sequence (s0s1s2 . . .) of 0’s and 1’s, the set

∞⋂

j=0

Gs0 ◦ . . . ◦Gsj (O)

is a unique point and the map that takes the sequence (s0s1s2 . . .) to this
point defines a homeomorphism between the space of one-sided sequences
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pλ

−q q

6

FIG. 6. The graph of Fλ on the real line for λ < 0. The points ±q = ±qλ bound
the trap door on the real axis.

of 0’s and 1’s endowed with the usual topology and Γλ. Hence Γλ is a
Cantor set and we have that Fλ |Γλ is conjugate to the one-sided shift on
two symbols.

We remark that when λ ∈ R−, the Cantor set Γλ lies on the real axis.
Indeed, a glance at the graph of the real function Fλ shows that Fλ maps
the interval [−pλ, pλ] in two-to-one fashion over itself, where pλ is the fixed
point for Fλ on the positive real axis and on the boundary of Bλ, see
Figure 6. See [1] for details.

Now suppose in addition that the critical values do not lie in Bλ. So, by
the dichotomy of the previous section, J(Fλ) is a connected set and Bλ is
a simply connected open set. Our goal is to construct a Cantor necklace
in the dynamical plane. The Cantor set portion of the necklace will be
the set Γλ constructed above, whereas the open disks will be certain of the
preimages of the basin of ∞ lying in Rλ and Lλ.

To construct the necklace, recall that, as discussed in Section 1, there
are a pair of external rays in Bλ that limit on ±pλ ∈ Γλ. Let ±qλ be
the preimages of −pλ in Lλ and Rλ. Then there is a unique curve in
Tλ passing through 0 and connecting qλ to −qλ that is mapped onto the
external ray connecting −pλ to ∞. Since Tλ is open and simply connected,
we may define a homeomorphism that takes Tλ onto a disk centered at
1/2 on the real line and having radius 1/6. This is the central disk in
the Cantor middle-thirds necklace. Moreover, we may arrange that this
homeomorphism extends to the points ±qλ in ∂Tλ so that the point −qλ

is sent to 1/3 and the point qλ is sent to 2/3.
Now consider the preimages of the trap door. Since the critical values do

not lie in the trap door, there are four preimages of this set, but only two of
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them lie in the fundamental sectors by fourfold symmetry. These give a pair
of simply connected open sets that contain the preimages of ±qλ in their
boundaries; one of these sets lies in Rλ, the other lies in Lλ. These may be
mapped homeomorphically to the open disks in the Cantor middle-thirds
necklace whose diameter is 1/9 with the property that an extension of this
homeomorphism takes the preimages of ±qλ to the corresponding endpoints
of the Cantor middle thirds set. We then continue in this fashion by taking
appropriate preimages of the trap door under compositions of G0 and G1

and defining a homeomorphism these preimages and the appropriate disk
in the Cantor middle-thirds necklace. Note that the symbolic dynamics
described above dictates which preimages correspond to which disks. As
above, we extend this homeomorphism to the two special boundary points
that eventually map to pλ. This defines the homeomorphism on a set whose
image is then the union of the disks in the middle-thirds necklace together
with the corresponding endpoints in their boundaries. By the symbolic
dynamics, these preimages of pλ are dense in the Cantor set Γλ, so we may
extend this homeomorphism to all of the remaining points in the Cantor
set. This then gives a homeomorphism between the points in Γλ together
with necklace. We have proved:

Theorem 7. Suppose that the critical values of certain preimages of
the trap door and the Cantor middle thirds F do not lie in Bλ and that
0 < Arg λ < 2π. Then, the set Γλ together with the preimages of Bλ under
compositions of the maps G0 and G1 forms a Cantor necklace.

3. CANTOR NECKLACES IN PARAMETER PLANE

In this section we show that there is an analogue of the Cantor necklace
in the parameter plane and that the Cantor set portion of this necklace lies
along the negative real axis.

Let Σ2 denote the space of one-sided sequences of 0’s and 1’s endowed
with the usual topology. Let Σ′2 denote the subset of Σ2 consisting of all
sequences whose first digit is 1. Under the conjugacy between Fλ |Γλ and
the shift map, the set Σ′2 corresponds to points in Γλ that lie in Lλ. Let
wλ(s) denote the point in Γλ whose itinerary is s. We will prove that, for
each s ∈ Σ′2, there is a unique λ = λs such that F 2

λs
(cλs) = wλs(s). That

is, there is a unique parameter for which the second image of the critical
points lies on the specified point wλ(s) ∈ Γλ.

Let D be the half-disk {λ |Re λ < 0, |λ| < 1}. For each s ∈ Σ′2, let
Is : D → C be given by Is(λ) = wλ(s). That is, Is assigns to each λ ∈ D
the unique point in Γλ ∩ Lλ whose itinerary is s. It is well known that Is

depends analytically on λ and continuously on s. Note that Is takes values
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in the half disk given by Re z ≤ 0 and |z| ≤ 2, since each Lλ is completely
contained in this region.

We also have an analytic homeomorphism Φ defined on D by Φ(λ) =
F 2

λ(cλ) = 4λ + 1/4. Note that Φ maps D to the half-disk determined by
Re z < 1/4 and |z − 1/4| < 4. This half-disk contains the closure of Lλ

for each λ ∈ D. In particular, Is(λ) ∈ Φ(D) for all λ ∈ D and all s ∈ Σ′2.
Therefore we may define a new map Ψs : D → D by Ψs(λ) = Φ−1(Is(λ)).
Since Is(λ) is contained inside a compact subset of Φ(D), it follows that
Ψs maps D into a compact subset of itself. Moreover, Ψs is an analytic
function of λ. By the Schwarz Lemma, it follows that Ψs has a unique
fixed point in D. We call this fixed point λs. So λs is a parameter value
for which Φ(λs) = Is(λs) = wλs

(s). That is, for the parameter λs, the
second iterate of the critical point lands exactly on the point in Γλ whose
itinerary is s ∈ Σ′2. Moreover, λs is the unique parameter value for which
this occurs. Also, since Ψs depends continuously on s, it follows that λs is
also a continuous function of s for s ∈ Σ′2. Therefore the set of parameters
in D of the form λs as s runs over Σ′2 forms a Cantor set in D which we
denote by Γ. We emphasize that Γ is a Cantor set in the parameter plane,
whereas Γλ is a Cantor set in the dynamical plane for each λ.

If λ ∈ R−, then the graph of Fλ (Figure 6) shows that the entire dy-
namical Cantor set Γλ lies in R and, in particular, the portion of Γλ that
lies in Lλ lies in R−. As λ → 0 for λ ∈ R−, F 2

λ(cλ) → 1/4, so F 2
λ(cλ)

lies to the right of the portion of Γλ in R−. However, for λ near −1,
F 2

λ(cλ) = 4λ + 1/4 approaches −3.75 and so lies in R− to the left of −2.
Hence F 2

λ(cλ) lies to the left of the portion of Γλ in R−. Since the portion
of Γλ in Lλ is trapped in the interval [−2, 0], and since any given point
wλ(s) moves continuously as a function of λ, it follows that there is at least
one λ-value in R− for which F 2

λ(cλ) = wλ(s). By the uniqueness property
of this parameter, it follows that this value must in fact be the (unique)
λs-value found above. In particular, it follows that the parameter plane
Cantor set Γ lies in R− and has the same order along the real line as each
Γλ. That is, if s1 and s2 lie in Σ′2, then both wλ(s1) and wλ(s2) lie in
R−, and if wλ(s1) < wλ(s2), then λs1 < λs2 in Γ. Also, if s is a sequence
in Σ′2 that ends in all 0’s (so that wλ(s) is a point whose orbit eventually
lands on pλ), then λs is a parameter for which the critical orbit lies on
the boundaries of preimages of Bλ. We call such values of λ endpoints for
the Cantor set Γ. Now it is known by work of Roesch [12] that the set of
parameters for which the critical orbit lies in a given preimage of Bλ forms
a simply connected open subset of parameter plane. Hence if we append
any such open set to the corresponding endpoints of Γ just as we did in the
dynamical plane construction, we see that this new set has the structure
of a Cantor necklace.
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FIG. 7. The parameter plane for the family z2 + λ/z2. White regions correspond
to λ-values for which the critical orbit escapes to ∞.

We have shown:

Theorem 8. There is a Cantor necklace C in the parameter plane whose
Cantor set portion lies along the negative real axis and has the following
properties:

1.Any point in the Cantor set portion Γ of C is a parameter value λs for
which F 2

λs
(cλs) has itinerary s in Γλs ;

2.Any point in the open regions of C are λ-values for which the critical
orbit tends to ∞, so J(Fλ) is a Sierpinski curve and Fλ is structurally
stable;

3.Any endpoint λs of Γ in C is a parameter value for which the critical
orbit eventually lands at the fixed point pλs

on the boundary of Bλs
.

We display in black in Figure 7 the set of λ values for which the orbit
of the critical point remains bounded under Fλ. The white holes in this
picture are the “Sierpinski holes” where the critical orbit eventually falls
through the trap door and so the Julia set is a Sierpinski curve. In Figure 8,
we display several magnifications of the “tail” of the parameter plane that
shows the Cantor necklace C running down the negative real axis.
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FIG. 8. Two magnifications of the parameter plane for the family z2 + λ/z2 along
the negative real axis. In the first image, −0.4 ≤ Re λ ≤ −0.06 and, in the second,
−0.2 ≤ Re λ ≤ −0.15
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4. SIERPINSKI CURVE JULIA SETS

In this section we prove the theorem concerning structurally unstable
Sierpinski curve Julia sets. We assume throughout that λ = λs is one of the
negative real parameter values described in the previous section for which
the critical orbit (eventually) lands on a repelling periodic point wλ(s) that
is not equal to pλ. In particular, the sequence s is periodic or eventually
periodic but does not end in all 0’s. Hence the (eventually) periodic point
wλ(s) does not lie at an endpoint of the corresponding Cantor necklace in
dynamical plane since these are points that eventually land on pλ. Such a
point is therefore said to be buried since it is inaccessible from any given
preimage of the trap door lying along the real axis.

We first prove that the Julia set corresponding to such a λ is a Sierpinski
curve. From the Theorem in Section 1, J(Fλ) is compact and connected.
Since J(Fλ) is not the entire plane, standard facts from complex dynamics
show that J(Fλ) is nowhere dense. Also, since the orbits of the critical
points are all preperiodic, it follows that Fλ | J(Fλ) is subhyperbolic. Hence
J(Fλ) is a locally connected set. See [9] for proofs of these facts. Thus it
suffices to prove that all of the complementary domains of the Julia set are
bounded by simple closed curves and that no two of these curves meet one
another.

We need a few lemmas. Recall that Bλ is the immediate basin of ∞ and
Cλ is the critical circle.

Lemma 9. The intersection of Bλ and Cλ is empty, as it is the inter-
section of Bλ and the interval (−pλ, pλ) ⊂ R.

Proof. Suppose first that z0 ∈ Bλ ∩ (−pλ, pλ). Since λ ∈ R−, the real
line is preserved by Fλ and Bλ is symmetric under the reflection z 7→ z.
Since the critical values do not lie in Bλ, Bλ is connected. Therefore ±pλ

lie in different components of C − Bλ. Thus J(Fλ) is disconnected. This
gives a contradiction, so Bλ cannot meet (−pλ, pλ).

If z0 ∈ Bλ ∩ Cλ, then F 2
λ(z0) ∈ Bλ ∩ (−pλ, pλ) which is impossible by

the previous observation. This proves the lemma.

Lemma 10. The boundary of Bλ neither does intersect (−pλ, pλ) nor
does meet Cλ.

Proof. Suppose that x0 ∈ ∂Bλ∩ (−pλ, pλ). Let ±νλ be the two preima-
ges of 0 on the real axis. The points ±νλ also lie on Cλ. The point x0

cannot lie in the interval (−νλ, νλ) since this interval lies inside Cλ, and Bλ

would meet Cλ. Hence x0 ∈ (−pλ,−νλ] or x0 ∈ [νλ, pλ). Assume first that
x0 ∈ [νλ, pλ). Since Fλ is decreasing on R+ and maps [0, νλ) to [−∞, 0), it
follows that there exists a first integer k such that F k

λ (x0) ∈ [0, νλ). Since
∂Bλ is invariant, it follows that F k

λ (x0) ∈ ∂Bλ, so this again says that Bλ

meets Cλ. This yields a contradiction. In the case where x0 ∈ (−pλ,−νλ],
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note that Fλ(x0) ∈ [0, pλ), so the previous argument applies to show that
Fλ(x0) does not lie in ∂Bλ. Consequently, x0 does not lie there as well.
The fact that ∂Bλ misses Cλ follows from forward invariance of ∂Bλ and
the fact that Cλ maps into (−pλ, pλ) after two iterations.

The origin lies in the open set C−Bλ. Let W0 denote the component of
C−Bλ containing 0. We claim that W0 is the only component of C−Bλ.

Lemma 11. If z ∈ W0, then all four preimages of z lie in W0.

Proof. By the previous lemma, (−pλ, pλ) does not meet ∂Bλ, and so
this entire interval is contained in W0. The preimage of this interval lying
on the imaginary axis likewise does not meet ∂Bλ, and so this set lies in
W0 since it intersects (−pλ, pλ) at 0. Consequently, all four prepoles lie in
W0, so that all four preimages of 0 lie in W0.

Now let U be the set of points in W0 for which all four preimages also
lie in W0. The set U is open and nonempty since 0 ∈ U . We claim that
U = W0. If this is not the case, let z0 ∈ ∂U ∩W0. Then z0 lies in W0 but
at least one of the preimages of z0 does not. This preimage must then lie
on the boundary of W0, but ∂W0 ⊂ ∂Bλ. Since ∂Bλ is forward invariant,
we must have z0 ∈ ∂Bλ as well. But this contradicts our assumption that
z0 ∈ W0.

It follows immediately from this lemma that, if z0 ∈ ∂W0, then all four
preimages of z0 also lie in ∂W0. This implies that ∂W0 = ∂Bλ. To see this,
note that if there were a point z1 ∈ ∂Bλ − ∂W0, then z1 ∈ J(Fλ). Let V
be a neighborhood of z1 that is disjoint from W 0. By Montel’s Theorem,
the forward images of V must hit all (except possibly two) points in C, and
so some points in V must map into W0. But, by the previous lemma, this
cannot happen. Therefore, ∂Bλ = ∂W0. Equivalently, we have:

Proposition 12. The open and connected set W0 is equal to C−Bλ.

We now prove that ∂Bλ is a simple closed curve. As mentioned earlier,
since ∞ is a superattracting fixed point of order two, there is a conjugacy

φλ : Bλ → C− D

between Fλ |Bλ and z 7→ z2 in the complement of the unit disk in C. Recall
that the preimage of a straight ray given by teiθ for fixed θ and t > 1 under
φλ is called an external ray of angle θ for Fλ and is denoted by γθ. Since
J(Fλ) is locally connected, it is known that each external ray limits on a
single point in ∂Bλ (see [9]). That is,

lim
t→1

φ−1
λ (teiθ)

is a single point in ∂Bλ.
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To prove that Bλ is a simple closed curve, it then suffices to show that
no two external rays limit on the same point in ∂Bλ. Suppose that this
happens. Say γθ and γψ both limit on z0 ∈ ∂Bλ. Then one of two things
must occur. Either all external rays corresponding to angles in one of the
arcs between θ and ψ must also limit on z0. But this implies that in fact all
external rays limit on z0, which cannot happen. The only other possibility
is that these two rays together with the point z0 divide ∂Bλ − {z0} into
two disjoint, nonempty sets, each of which contains pieces of J(Fλ). But
the proof of the previous proposition shows that this cannot occur. We
conclude that no two rays limit on the same point and so ∂Bλ is a simple
closed curve.

Finally, we need to show that all of the preimages of ∂Bλ are simple
closed curves that are pairwise disjoint. By assumption, the forward orbits
of the critical points do not land on pλ and hence do not lie in any of the
preimages of Bλ. Therefore all of the preimages of ∂Bλ are mapped in one-
to-one fashion onto ∂Bλ, and so each of these preimages is a simple closed
curve. Also, by one of the lemmas above, ∂Bλ lies outside of Cλ. Hence
∂Tλ lies inside Cλ and so ∂Bλ and ∂Tλ are disjoint simple closed curves.
If two different preimages of ∂Bλ intersect, then iterating these preimages
forward shows that some preimage of ∂Bλ must intersect ∂Bλ. Since ∂Bλ

is forward invariant, we may iterate forward again to show that in fact
∂Tλ and ∂Bλ must intersect. But, by the above, this does not happen.
Therefore no two of these simple closed curves meet each other. We have
proved:

Theorem 13. Let s ∈ Σ′2 be a (pre)-periodic sequence that does not end
in all zeroes. Let λs be the unique parameter value for which F 2

λs
(cλs) =

wλs(s), i.e., the second image of the critical point lands on the point in Γλs

that has itinerary s. Then the Julia set of Fλs is a Sierpinski curve.

5. STRUCTURAL INSTABILITY

We now turn attention to values of the parameter that lie in a neigh-
borhood of λs, where λs ∈ R− is one of the parameter values described in
the previous two sections for which the critical orbit lands on a repelling
periodic point not equal to pλ. Our goal is to show that there are infinitely
many dynamically different maps in any neighborhood of λs.

Proposition 14. Let U be a neighborhood of λs. There exist infinitely
many parameter values µj ∈ U such that J(Fµj ) is a structurally stable
Sierpinski curve Julia set, but Fµj is not conjugate to Fµk

for j 6= k.

Proof. In any neighborhood of λs in the parameter plane, there are in-
finitely many intervals in R− that contain parameters for which the critical
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orbit eventually escapes into Bλ. These correspond to Sierpinski holes in
the parameter plane and it is known [3] that any two maps drawn from
the same hole are conjugate on their Julia sets. Moreover, since λs is a
buried point in the Cantor set in parameter plane, we may choose an in-
finite subset of these intervals for which the number of iterations that it
takes for the critical orbit to enter Bλ is different in each hole. As shown in
[4], this implies that functions drawn from distinct holes are not conjugate
on their Julia sets. This proves the existence of infinitely many values of
the parameter µj for which J(Fµj

) is a structurally stable Sierpinski curve,
but Fµj is not conjugate to Fµk

for j 6= k.

Proposition 15. Let U be a neighborhood of λs. There exist infinitely
many parameter values νj ∈ U such that J(Fνj

) is a Sierpinski curve Julia
set which is not structurally stable and again, Fνj

is not conjugate to Fνk

when j 6= k nor is Fνj
conjugate to any of the Fµ`

.

Proof. Since λs is a buried point in the Cantor set in the parame-
ter plane, we may find in any neighborhood of λs infinitely many buried
preperiodic points (of different periods) in Γλ. These then yield additional
parameters for which the Julia set is a structurally unstable Sierpinski
curve. As above, no two of these maps are conjugate if the periods of these
periodic points are different.

Proposition 16. Let U be a neighborhood of λs. There exist infinitely
many parameter values τj ∈ U such that J(Fτj ) is a hybrid Sierpinski curve,
and again, Fτj is not conjugate to Fτk

for j 6= k, nor to any of the Fµ`
or

Fν`
above.

Proof. There are infinitely many endpoints of Γλs in any neighborhood
of wλs . Hence there are infinitely many parameters λτj for which the
critical orbits land on the fixed point pλ that lies on the boundary of the
basin at ∞. We claim that the Julia set associated to such a parameter
is a hybrid Sierpinski curve. To see this, first note that the proof in the
previous section that ∂Bλ is a simple closed curve goes through without
change. Suppose that the nth iterate of the critical points land on pλ where
n ≥ 3. Then the ith preimage of ∂Bλ is a collection of disjoint simple closed
curves for each i < n. By four-fold symmetry, among these simple closed
curves, only the boundary of the trap door surrounds the origin. However,
the particular nth preimages that contain a critical point now consist of
a pair of simple closed curves that meet at the critical point. We cannot
have more than two such curves meeting, for by fourfold symmetry, a chain
of more than two such curves would necessarily contain all of the critical
points. But then the image of this set of curves would be a simple closed
curve that contains both critical values and hence, by symmetry, surrounds
the origin. But this cannot happen, as we observed above. Hence there
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are exactly 4 such figure eight curves in the nth preimage of ∂Bλ, one
corresponding to each critical point of Fλ. The remaining preimages are
necessarily simple closed curves. Now continue pulling back either these
figure eight or simple closed curve preimages of ∂Bλ. We obtain infinitely
many distinct preimages that are figure eights as well as infinitely many
that are simple closed curves. This shows that the Julia set is a hybrid
Sierpinski curve.

6. CONCLUDING REMARKS

In this paper we have concentrated on the family

Fλ(z) = z2 +
λ

z2
,

but all of the results go over more or less intact for the higher degree families

Gλ(z) = zn +
λ

zn

where n ≥ 3. When n is even, there is an analogous Cantor necklace
along the negative real axis in parameter plane, and all of the above results
go through without change. When n is odd, one must choose a different
straight line in parameter space dictated by symmetries present in the sys-
tem. On this line one finds small copies of the Mandelbrot sets interspersed
with Cantor necklaces, but the results about structurally unstable Sierpin-
ski curve Julia sets remain the same. In Figure 9 we display the parameter
planes for the cases n = 3 and n = 4.

For example, when n = 3, we consider parameters along the imaginary
axis. Let ω be a primitive eighth root of unity. Then, for λ ∈ R, the
function Fiλ interchanges the two lines tω and tω3. A computation shows
that

Fiλ(tω) = ω3

(
t3 − λ

t3

)

and

Fiλ(tω3) = ω

(
t3 +

λ

t3

)
.

Let

g±λ (t) = t3 ± λ

t3
.

Then the second iterate of Fiλ on the line tω3 is conjugate to the function
g−λ (g+

λ (t)) on the real line. The graph of this function on the real line shows
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FIG. 9. The parameter planes in the cases n = 3 and n = 4.
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FIG. 10. The graphs of g−λ (g+
λ (t)) for λ = 0.05 and λ = 0.09. Note that each of

these functions has an invariant Cantor set on either side of the origin and that the
critical points on opposite sides of 0 map into this Cantor set regime as λ varies.

that critical points become entangled in a Cantor set as the parameter λ is
varied. See Figure 10. Then the same arguments as above produce λ-values
surrounded by infinitely many Sierpinski holes centered on the imaginary
axis, although the complete structure here is more intricate than a Cantor
necklace. We leave the straightforward details to the reader.
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