Cantor Necklaces and Structurally Unstable Sierpinski Curve Julia Sets for Rational Maps *

Robert L. Devaney

Boston University
E-mail: bob@bu.edu

In this paper we consider families of rational maps of degree $2 n$ on the Riemann sphere $F_{\lambda}: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$ given by

$$
F_{\lambda}(z)=z^{n}+\frac{\lambda}{z^{n}}
$$

where $\lambda \in \mathbb{C}-\{0\}$ and $n \geq 2$. One of our goals in this paper is to describe a type of structure that we call a Cantor necklace that occurs in both the dynamical and the parameter plance for F_{λ}. Roughly speaking, such a set is homeomorphic to a set constructed as follows. Start with the Cantor middle thirds set embedded on the x-axis in the plane. Then replace each removed open interval with an open circular disk whose diameter is the same as the length of the removed interval. A Cantor necklace is a set that is homeomorphic to the resulting union of the Cantor set and the adjoined open disks.

The second goal of this paper is to use the Cantor necklaces in the parameter plane to prove the existence of several new types of Sierpinski curve Julia sets that arise in these families of rational maps. Unlike most examples of this type of Julia set, the maps on these Julia sets are structurally unstable. That is, small changes in the parameter λ give rise to Julia sets on which the dynamical behavior is quite different. In addition, we also describe a new type of related Julia set which we call a hybrid Sierpinski curve.

Key Words: Cantor necklace, Julia set, Sierpinski curve
In this paper we consider families of rational maps of degree $2 n$ on the Riemann sphere $F_{\lambda}: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$ given by

$$
F_{\lambda}(z)=z^{n}+\frac{\lambda}{z^{n}}
$$

where $\lambda \in \mathbb{C} \backslash\{0\}$ and $n \geq 2$. The case where $n=1$ is very different and hence is excluded from this study. We denote the family of all such rational

[^0]maps of degree $2 n$ by Λ_{n}. A function in Λ_{n} is called a singular perturbation of z^{n}.

One of our goals in this paper is to describe a type of structure that we call a Cantor necklace that occurs in both the dynamical and the parameter plance for F_{λ}. Such a set is homeomorphic to a set constructed as follows. Start with the Cantor middle thirds set embedded on the x-axis in the plane. Then replace each removed open interval with an open circular disk whose diameter is the same as the length of the removed interval. A Cantor necklace is a set that is homeomorphic to the resulting union of the Cantor set and the adjoined open disks.
Of primary interest in the dynamical plane for F_{λ} is the Julia set which we denote by $J\left(F_{\lambda}\right)$. The second goal of this paper is to use the Cantor necklaces in the parameter plane to prove the existence of several new types of Sierpinski curve Julia sets (defined below) that arise in these families of rational maps. Unlike most examples of this type of Julia set, the maps on these Julia sets are structurally unstable. That is, small changes in the parameter λ give rise to Julia sets on which the dynamical behavior is quite different. In addition, we also describe a new type of related Julia set which we call a hybrid Sierpinski curve.
Despite the possibly high degree of the rational map F_{λ}, there are essentially only three critical orbits for this function. One critical point occurs at ∞, which is therefore a superattracting fixed point for F_{λ}, and thus there always exists an immediate basin of attraction at ∞ which we call B_{λ}. The origin is a pole for each of these maps, and since $n>1$, this point is a second critical point which is mapped onto the fixed point at ∞. In particular, there is an open set T_{λ} containing 0 that is mapped onto B_{λ} by F_{λ}. We remark that either $B_{\lambda}=T_{\lambda}$ or B_{λ} and T_{λ} are disjoint. Finally, there are $2 n$ other critical points, but the orbits of each of these points are symmetric about the origin, so there is essentially only one "free" critical orbit for F_{λ}.

The dynamics on and the topology of $J\left(F_{\lambda}\right)$ are quite rich when this free critical orbit tends to ∞. The following theorem is proved in [2] and is called the escape trichotomy.

Theorem 1. Suppose the free critical orbit tends to ∞.
1.If the critical values lie in B_{λ}, then $J\left(F_{\lambda}\right)$ is a Cantor set;
2.If the critical values lie in T_{λ} (and $B_{\lambda} \neq T_{\lambda}$), then $J\left(F_{\lambda}\right)$ is a Cantor set of simple closed curves;
3.If the critical values lie in some other preimage of B_{λ}, then $J\left(F_{\lambda}\right)$ is a Sierpinski curve.

A Sierpinski curve is a planar set that is characterized by the following five properties: it is a compact, connected, locally connected and nowhere

FIG. 1. Some Julia sets for $z^{4}+\lambda / z^{4}$: if $\lambda=0.23, J\left(F_{\lambda}\right)$ is a Cantor set; if $\lambda=0.03$, $J\left(F_{\lambda}\right)$ is a Cantor set of circles; and if $\lambda=-0.1, J\left(F_{\lambda}\right)$ is a Sierpinski curve.
dense set whose complementary domains are bounded by simple closed curves that are pairwise disjoint. It is known [14] that any two Sierpinski curves are homeomorphic. In fact, they are homeomorphic to the wellknown Sierpinski carpet fractal. From the point of view of topology, a Sierpinski curve is a universal set in the sense that this set contains a homeomorphic copy of any planar, compact, connected, one-dimensional set.

The case where the Julia sets of these maps is a Cantor set of simple closed curves was first observed by McMullen [7]. For some examples of each of these three types of Julia sets drawn from the family when $n=4$, see Figure 1.

Even though Sierpinski curve Julia sets are always homeomorphic, from a dynamical systems point of view, these sets can be quite different from one another. In [2] it is shown that, for each $n \geq 2$, there are infinitely many disjoint open sets \mathcal{O}_{j} in Λ_{n} such that, if $\lambda_{j} \in \mathcal{O}_{j}$, then $J\left(F_{\lambda_{j}}\right)$ is a Sierpinski curve. However, $F_{\lambda_{j}}$ is not topologically conjugate to $F_{\lambda_{k}}$ if $j \neq k$. So the Julia sets of these maps are the same but the dynamics on these sets are different. In [1] it is shown that, in the special case where $n=2$, there are infinitely many such \mathcal{O}_{j} in every neighborhood of 0 in the parameter plane. See Figure 2 for several examples of Sierpinski curve Julia sets drawn from the family with $n=2$.

There are other ways besides having all critical orbits tend to ∞ that the Julia sets of F_{λ} can be Sierpinski curves. For example, in [5], it is shown that each of these families also posseses infinitely many Sierpinski

$\lambda=-1 / 16$

$$
\lambda=0.132+0.097 i
$$

FIG. 2. Two Sierpinski curve Julia sets for $z^{2}+\lambda / z^{2}$.
curve Julia sets whose complementary domains consist of a finite number of basins of attraction of different attracting cycles including the basin at ∞, together with all of their preimages. Again, each of these Julia sets comes with different dynamics.
One of the main properties of all of the Julia sets mentioned above is that the corresponding maps are structurally stable within Λ_{n}. That is, there is an open neighborhood \mathcal{U} about such a $\lambda \in \Lambda_{n}$ having the property that if $\mu \in \mathcal{U}$, then F_{λ} and F_{μ} are topologically conjugate on their Julia sets. This can be seen by noting that both F_{λ} and F_{μ} have the same symbolic dynamics on their Julia sets as described in [4].
In this paper, we present a very different collection of Sierpinski curve Julia sets. Unlike the previous examples, these types occur when the critical orbits do not escape to ∞ but rather have a certain type of preperiodic behavior. Our main result here is:

Theorem 2. There exist infinitely many parameter values λ in each Λ_{n} such that $J\left(F_{\lambda}\right)$ is a Sierpinski curve but F_{λ} is not structurally stable on this Julia set. In particular, in every neighborhood \mathcal{U} of each such λ :
1.There exist infinitely many parameter values $\mu_{j} \in \mathcal{U}$ such that $J\left(F_{\mu_{j}}\right)$ is a structurally stable Sierpinski curve Julia set, but $F_{\mu_{j}}$ is not conjugate to $F_{\mu_{k}}$ for $j \neq k$;
2.There exist infinitely many parameter values $\nu_{j} \in \mathcal{U}$ such that $J\left(F_{\nu_{j}}\right)$ is a Sierpinski curve Julia set which is not structurally stable and again, $F_{\nu_{j}}$ is not conjugate to $F_{\nu_{k}}$ when $j \neq k$ nor is $F_{\nu_{j}}$ conjugate to any of the $F_{\mu_{\ell}}$;
3.Finally, there exist infinitely many parameter values $\tau_{j} \in \mathcal{U}$ such that $J\left(F_{\tau_{j}}\right)$ is a hybrid Sierpinski curve, and again, $F_{\tau_{j}}$ is not conjugate to $F_{\tau_{k}}$ for $j \neq k$, nor to any of the $F_{\mu_{\ell}}$ or $F_{\nu_{\ell}}$ above.

A hybrid Sierpinski curve is a set that has the same five properties as a Sierpinski curve except that infinitely many of the complementary domains have a boundary point in common with exactly one other complementary domain, while infinitely many other complementary domains have boundaries that do not meet any other such boundary. See Figure 3 for an example of such a hybrid Sierpinski curve Julia set. We conjecture that, as in the case of an ordinary Sierpinski curve, any two hybrid Sierpinski curves are homeomorphic.

1. BASIC PROPERTIES

For simplicity, for most of this paper we shall concentrate on the specific family of maps given by

$$
F_{\lambda}(z)=z^{2}+\frac{\lambda}{z^{2}},
$$

i.e., the case where $n=2$. In the final section, we briefly describe the straightforward modifications necessary to extend these results to the case $n>2$.

We begin by reviewing some basic properties of functions in this family. See [1] or [3] for proofs of these facts.

Note first that 0 is the only pole for each function in this family. The points $(-\lambda)^{1 / 4}$ are prepoles for F_{λ} since they are mapped by F_{λ} directly to 0 . The critical points for F_{λ} occur at the four points $\lambda^{1 / 4}$. Since $F_{\lambda}\left(\lambda^{1 / 4}\right)=$ $\pm 2 \lambda^{1 / 2}= \pm v_{\lambda}$, there are only two critical values for F_{λ}. Also, $F_{\lambda}^{2}\left(\lambda^{1 / 4}\right)=$ $1 / 4+4 \lambda$, so each of the four critical points lies on the same forward orbit after two iterations. Thus the orbit of $1 / 4+4 \lambda$ is the tail of the free critical orbit.
The circle given by $|z|=\left|\lambda^{1 / 4}\right|$ is known as the critical circle for this family and is denoted by C_{λ}. A computation shows that the critical circle is mapped onto a straight line segment connecting the two critical values and passing through the origin. The map takes C_{λ} in 4 to 1 fashion onto this segment except at the critical values, each of which has only two preimages.
Recall that the point at ∞ is a superattracting fixed point for F_{λ} and that B_{λ} is its immediate basin of attraction. Let ∂B_{λ} denote the boundary of B_{λ}. The basin B_{λ} is a (forward) invariant set for F_{λ} in the sense that, if $z \in B_{\lambda}$, then $F_{\lambda}^{n}(z) \in B_{\lambda}$ for all $n \geq 0$. The same is true for ∂B_{λ}.

Recall that $J=J\left(F_{\lambda}\right)$ is the Julia set of F_{λ}. By definition, $J\left(F_{\lambda}\right)$ is the set of points at which the family of iterates of F_{λ} fails to be a normal

FIG. 3. A hybrid Sierpinski curve Julia set and a magnification. Note that some of the complementary domains appear to be bounded by isolated simple closed curves while others are bounded by simple closed curves that meet another such curve at a single point.
family in the sense of Montel. Equivalently, $J\left(F_{\lambda}\right)$ is the closure of the set of repelling periodic points of F_{λ} and it is also the boundary of the set of points whose orbits tend to ∞. See [9] for proofs of these equivalences.
As in the escape trichotomy, we may have different types of Julia sets when the free critical orbit escapes to ∞. However, in the special case where $n=2$, the Cantor set of circles case does not occur. As shown in [3], the critical values cannot lie in T_{λ} and so we really have a dichotomy in this case:

Theorem 3. For the family of rational maps given by

$$
F_{\lambda}(z)=z^{2}+\frac{\lambda}{z^{2}}
$$

1.If the critical values lie in B_{λ}, then $J\left(F_{\lambda}\right)$ is a Cantor set;
2.Otherwise, $J\left(F_{\lambda}\right)$ is a compact, connected set and B_{λ} is open and simply connected. In particular, if the critical orbit escapes to ∞ but the critical values do not lie in B_{λ}, then $J\left(F_{\lambda}\right)$ is a Sierpinski curve.

In case 2 of this theorem, since the critical values do not lie in B_{λ}, it is known that the preimage of B_{λ} surrounding the origin, T_{λ}, is disjoint from B_{λ}. The map is 2 to 1 on both B_{λ} and T_{λ}. Since F_{λ} has degree 4 , these two sets contain all of the preimages of points in B_{λ}. We call T_{λ} the trap door, since any orbit that eventually enters B_{λ} must pass through T_{λ}.
Each of the maps F_{λ} possess certain symmetries. For example, we have that $F_{\lambda}(-z)=F_{\lambda}(z)$ and $F_{\lambda}(i z)=-F_{\lambda}(z)$ so that $F_{\lambda}^{2}(i z)=F_{\lambda}^{2}(z)$ for all $z \in \mathbb{C}$. As a consequence, each of the sets B_{λ}, T_{λ}, and $J\left(F_{\lambda}\right)$ are invariant under $z \mapsto i z$. We therefore say that these sets possess fourfold symmetry.
There is a second symmetry present for this family. Consider the map $H(z)=\sqrt{\lambda} / z$. Note that there are two such maps depending upon which square root of λ we choose. H is an involution and we have $F_{\lambda}(H(z))=$ $F_{\lambda}(z)$. As a consequence, H also preserves J. The involution H also preserves the circle of radius $|\lambda|^{1 / 4}$, the critical circle, and interchanges the interior and exterior of this circle. Hence J is symmetric about the critical circle with respect to the action of H.
Finally, in analogy with the well-studied quadratic polynomial family $z \mapsto z^{2}+c$, since F_{λ} has degree two on B_{λ} (in case 2 of the above theorem), it is known that F_{λ} is conjugate to $z \mapsto z^{2}$ on B_{λ} when the critical values do not lie in B_{λ}. That is, there is an analytic homeomorphism $\phi_{\lambda}: B_{\lambda} \rightarrow \overline{\mathbb{C}}-\overline{\mathbb{D}}$ that satisfies $\phi_{\lambda} \circ F_{\lambda}(z)=\left(\phi_{\lambda}(z)\right)^{2}$ for all $z \in B_{\lambda}$. Here \mathbb{D} is the open unit disk in \mathbb{C}. As is well known, the map $z \mapsto z^{2}$ preserves the straight rays $\operatorname{Arg} z=$ constant, so the inverse images of these straight rays under ϕ_{λ} are preserved by F_{λ}. These curves are known as external rays. In particular, there is an external ray corresponding to the ray $\operatorname{Arg} z=0$. It is known

FIG. 4. The Cantor middle-thirds necklace.
(see [11]) that this ray limits on a unique point p_{λ} in ∂B_{λ} and that p_{λ} is the unique fixed point of F_{λ} that lies in ∂B_{λ}. Similarly, the external ray corresponding to $\operatorname{Arg} z=\pi$ limits on the point $-p_{\lambda} \in \partial B_{\lambda}$.

2. CANTOR NECKLACES IN DYNAMICAL PLANE

One of the principal objects contained in the dynamical plane of F_{λ} is a Cantor necklace. To define this set, we let Γ denote the Cantor middle thirds set in the unit interval $[0,1]$. We regard this interval as a subset of the real axis in the plane. For each open interval of length $1 / 3^{n}$ removed from the unit interval in the construction of Γ, we replace this interval by an open disk of diameter $1 / 3^{n}$ centered at the midpoint of the removed interval. Thus the boundary of this open disk meets the Cantor set at the two endpoints of the removed interval. We call the resulting set the Cantor middle-thirds necklace. See Figure 4. Any set homeomorphic to the Cantor middle-thirds necklace is called a Cantor necklace. We do not include the boundary of the open disks in the Cantor necklace for the following technical reason: it is sometimes difficult in practice to verify that these bounding curves are simple closed curves. On the other hand, in our case, the open regions will be preimages of the basin at ∞, and we know that these preimages are open and simply connected.
Our aim in this section is to describe various Cantor necklaces in the dynamical plane for F_{λ}. In the next section we prove the existence of similar sets in the parameter plane.

Write $\lambda=|\lambda| e^{i \eta}$. For the rest of this paper, we will consider only the case where $0<\eta<2 \pi$. All of the results below also hold when $\eta=0$, but the arguments are slightly different and we will not consider this case in the sequel anyway.

When $|\lambda|<1$, we have the following escape criterion.
Proposition 4 (The Escape Criterion). Suppose $|\lambda|<1$ and $|z| \geq 2$. Then $z \in B_{\lambda}$, so $J\left(F_{\lambda}\right)$ is contained in the open disk $|z|<2$.

Proof. If $|z| \geq 2$, then we have

$$
\left|F_{\lambda}(z)\right| \geq|z|^{2}-\frac{|\lambda|}{|z|^{2}} \geq 2|z|-\frac{1}{4}>\frac{3}{2}|z|
$$

Inductively, we find

$$
\left|F_{\lambda}^{n}(z)\right| \geq\left(\frac{3}{2}\right)^{n}|z|
$$

Therefore the orbit of any such z tends to ∞ so all points on or outside the circle of radius 2 lie in B_{λ}.

From the results in [2], it is known that $J\left(F_{\lambda}\right)$ is a Cantor set if $|\lambda| \geq 1$, so we also exclude this case for the remainder of this paper. Therefore we assume throughout that $\lambda=|\lambda| e^{i \eta}$ with $0<\eta<2 \pi$ and $|\lambda|<1$.

Recall that the critical points of F_{λ} are given by $\lambda^{1 / 4}$. Therefore one of the critical points of F_{λ} lies on the straight line through the origin given by $t \exp (i \eta / 4)$ with $t>0$. The image of this line lies in the straight line with argument $\theta=\eta / 2$, and F_{λ} maps the line $t \exp (i \eta / 4)$ with $t>0$ in two-to-one fashion over the portion of this straight line that lies beyond the critical value $2 \sqrt{\lambda}$ whose argument is $\eta / 2$. Note that the image of the line is disjoint from the line itself since we have assumed that $0<\eta<2 \pi$. There is a second critical point of F_{λ} lying on the line with argument $\theta=\eta / 4-\pi / 2$, and this line is mapped in two-to-one fashion to the opposite line $\theta=-\eta / 2$ exactly as in the previous case.

By the escape criterion, we know that any point on or outside $r=2$ is mapped closer to ∞. Let β_{λ} denote the image of this circle, so that $\beta_{\lambda} \subset$ B_{λ}. Using the involution H, there is a second circle, namely $r=|\lambda|^{1 / 2} / 2$, that is also mapped two-to-one onto β_{λ}.

Consider the open region R_{λ} bounded by the rays $\theta=\eta / 4$ and $\theta=$ $\eta / 4-\pi / 2$ and the two circular preimages of β_{λ}. The set R_{λ} is a quarter of an annulus. Let $L_{\lambda}=-R_{\lambda}$. We call R_{λ} (resp. L_{λ}) the right (resp. left) fundamental sector. These fundamental sectors are a pair of disjoint, open, simply connected regions in \mathbb{C}. Note that, for each λ, R_{λ} lies in the right half plane $\operatorname{Re} z>0$, while L_{λ} lies in the left half plane. See Figure 5.

Proposition 5. $\quad F_{\lambda}$ maps each of the fundamental sectors in one-to-one fashion onto the open set \mathcal{O} bounded by β_{λ} minus the portions of the two straight lines $\theta= \pm \eta / 2$ extending from the critical values $\pm v_{\lambda}$ to β_{λ}. So the image of each of these fundamental sectors contains the closures of both R_{λ} and L_{λ} in its interior.

Proof. The images of the straight rays bounding R_{λ} and L_{λ} are contained in the rays $\theta= \pm \eta / 2$, both of which lie outside these sectors. The image of the outer circular boundary of each fundamental sector is exactly

FIG. 5. $\quad R_{\lambda}$ and L_{λ} and their image under F_{λ}, which is the interior of β_{λ} minus the two segments connecting this circle to the critical values.
one-half of β_{λ}, while the inner boundary of each sector is mapped to the opposite half of β_{λ}. Hence each fundamental sector is mapped onto the open disk bounded by β_{λ} minus the two portions of the rays $\theta= \pm \eta / 2$ lying beyond the critical values. This set is \mathcal{O}. By fourfold symmetry, this map must be one-to-one on each fundamental sector.

Since F_{λ} maps the union of the fundamental sectors strictly outside itself, many points in $R_{\lambda} \cup L_{\lambda}$ have orbits that leave this set at some iteration. Let Γ_{λ} be the set of points whose orbits remain for all iterations in $R_{\lambda} \cup L_{\lambda}$. Then we have:

Proposition 6. The set Γ_{λ} is a Cantor set and $F_{\lambda} \mid \Gamma_{\lambda}$ is conjugate to the one-sided shift on two symbols.

Proof. By the previous result, each of the fundamental sectors is mapped in one-to-one fashion onto the open region \mathcal{O} that properly contains $R_{\lambda} \cup L_{\lambda}$ in \mathbb{C}. So we have a pair of well-defined inverses G_{0} (resp. G_{1}) of F_{λ} that $\operatorname{map} \mathcal{O}$ into R_{λ} (resp. L_{λ}). Standard arguments then show that these inverses are contractions in the Poincaré metric on \mathcal{O}. Moreover, for any one-sided sequence ($s_{0} s_{1} s_{2} \ldots$) of 0 's and 1 's, the set

$$
\bigcap_{j=0}^{\infty} G_{s_{0}} \circ \ldots \circ G_{s_{j}}(\mathcal{O})
$$

is a unique point and the map that takes the sequence $\left(s_{0} s_{1} s_{2} \ldots\right)$ to this point defines a homeomorphism between the space of one-sided sequences

FIG. 6. The graph of F_{λ} on the real line for $\lambda<0$. The points $\pm q= \pm q_{\lambda}$ bound the trap door on the real axis.
of 0's and 1's endowed with the usual topology and Γ_{λ}. Hence Γ_{λ} is a Cantor set and we have that $F_{\lambda} \mid \Gamma_{\lambda}$ is conjugate to the one-sided shift on two symbols.

We remark that when $\lambda \in \mathbb{R}^{-}$, the Cantor set Γ_{λ} lies on the real axis. Indeed, a glance at the graph of the real function F_{λ} shows that F_{λ} maps the interval $\left[-p_{\lambda}, p_{\lambda}\right]$ in two-to-one fashion over itself, where p_{λ} is the fixed point for F_{λ} on the positive real axis and on the boundary of B_{λ}, see Figure 6. See [1] for details.

Now suppose in addition that the critical values do not lie in B_{λ}. So, by the dichotomy of the previous section, $J\left(F_{\lambda}\right)$ is a connected set and B_{λ} is a simply connected open set. Our goal is to construct a Cantor necklace in the dynamical plane. The Cantor set portion of the necklace will be the set Γ_{λ} constructed above, whereas the open disks will be certain of the preimages of the basin of ∞ lying in R_{λ} and L_{λ}.
To construct the necklace, recall that, as discussed in Section 1, there are a pair of external rays in B_{λ} that limit on $\pm p_{\lambda} \in \Gamma_{\lambda}$. Let $\pm q_{\lambda}$ be the preimages of $-p_{\lambda}$ in L_{λ} and R_{λ}. Then there is a unique curve in T_{λ} passing through 0 and connecting q_{λ} to $-q_{\lambda}$ that is mapped onto the external ray connecting $-p_{\lambda}$ to ∞. Since T_{λ} is open and simply connected, we may define a homeomorphism that takes T_{λ} onto a disk centered at $1 / 2$ on the real line and having radius $1 / 6$. This is the central disk in the Cantor middle-thirds necklace. Moreover, we may arrange that this homeomorphism extends to the points $\pm q_{\lambda}$ in ∂T_{λ} so that the point $-q_{\lambda}$ is sent to $1 / 3$ and the point q_{λ} is sent to $2 / 3$.

Now consider the preimages of the trap door. Since the critical values do not lie in the trap door, there are four preimages of this set, but only two of
them lie in the fundamental sectors by fourfold symmetry. These give a pair of simply connected open sets that contain the preimages of $\pm q_{\lambda}$ in their boundaries; one of these sets lies in R_{λ}, the other lies in L_{λ}. These may be mapped homeomorphically to the open disks in the Cantor middle-thirds necklace whose diameter is $1 / 9$ with the property that an extension of this homeomorphism takes the preimages of $\pm q_{\lambda}$ to the corresponding endpoints of the Cantor middle thirds set. We then continue in this fashion by taking appropriate preimages of the trap door under compositions of G_{0} and G_{1} and defining a homeomorphism these preimages and the appropriate disk in the Cantor middle-thirds necklace. Note that the symbolic dynamics described above dictates which preimages correspond to which disks. As above, we extend this homeomorphism to the two special boundary points that eventually map to p_{λ}. This defines the homeomorphism on a set whose image is then the union of the disks in the middle-thirds necklace together with the corresponding endpoints in their boundaries. By the symbolic dynamics, these preimages of p_{λ} are dense in the Cantor set Γ_{λ}, so we may extend this homeomorphism to all of the remaining points in the Cantor set. This then gives a homeomorphism between the points in Γ_{λ} together with necklace. We have proved:

Theorem 7. Suppose that the critical values of certain preimages of the trap door and the Cantor middle thirds F do not lie in B_{λ} and that $0<\operatorname{Arg} \lambda<2 \pi$. Then, the set Γ_{λ} together with the preimages of B_{λ} under compositions of the maps G_{0} and G_{1} forms a Cantor necklace.

3. CANTOR NECKLACES IN PARAMETER PLANE

In this section we show that there is an analogue of the Cantor necklace in the parameter plane and that the Cantor set portion of this necklace lies along the negative real axis.
Let Σ_{2} denote the space of one-sided sequences of 0's and 1's endowed with the usual topology. Let Σ_{2}^{\prime} denote the subset of Σ_{2} consisting of all sequences whose first digit is 1 . Under the conjugacy between $F_{\lambda} \mid \Gamma_{\lambda}$ and the shift map, the set Σ_{2}^{\prime} corresponds to points in Γ_{λ} that lie in L_{λ}. Let $w_{\lambda}(s)$ denote the point in Γ_{λ} whose itinerary is s. We will prove that, for each $s \in \Sigma_{2}^{\prime}$, there is a unique $\lambda=\lambda_{s}$ such that $F_{\lambda_{s}}^{2}\left(c_{\lambda_{s}}\right)=w_{\lambda_{s}}(s)$. That is, there is a unique parameter for which the second image of the critical points lies on the specified point $w_{\lambda}(s) \in \Gamma_{\lambda}$.

Let D be the half-disk $\left\{\lambda|\operatorname{Re} \lambda<0,|\lambda|<1\}\right.$. For each $s \in \Sigma_{2}^{\prime}$, let $I_{s}: D \rightarrow \mathbb{C}$ be given by $I_{s}(\lambda)=w_{\lambda}(s)$. That is, I_{s} assigns to each $\lambda \in D$ the unique point in $\Gamma_{\lambda} \cap L_{\lambda}$ whose itinerary is s. It is well known that I_{s} depends analytically on λ and continuously on s. Note that I_{s} takes values
in the half disk given by $\operatorname{Re} z \leq 0$ and $|z| \leq 2$, since each L_{λ} is completely contained in this region.

We also have an analytic homeomorphism Φ defined on D by $\Phi(\lambda)=$ $F_{\lambda}^{2}\left(c_{\lambda}\right)=4 \lambda+1 / 4$. Note that Φ maps D to the half-disk determined by $\operatorname{Re} z<1 / 4$ and $|z-1 / 4|<4$. This half-disk contains the closure of L_{λ} for each $\lambda \in D$. In particular, $I_{s}(\lambda) \in \Phi(D)$ for all $\lambda \in D$ and all $s \in \Sigma_{2}^{\prime}$. Therefore we may define a new map $\Psi_{s}: D \rightarrow D$ by $\Psi_{s}(\lambda)=\Phi^{-1}\left(I_{s}(\lambda)\right)$. Since $I_{s}(\lambda)$ is contained inside a compact subset of $\Phi(D)$, it follows that Ψ_{s} maps D into a compact subset of itself. Moreover, Ψ_{s} is an analytic function of λ. By the Schwarz Lemma, it follows that Ψ_{s} has a unique fixed point in D. We call this fixed point λ_{s}. So λ_{s} is a parameter value for which $\Phi\left(\lambda_{s}\right)=I_{s}\left(\lambda_{s}\right)=w_{\lambda_{s}}(s)$. That is, for the parameter λ_{s}, the second iterate of the critical point lands exactly on the point in Γ_{λ} whose itinerary is $s \in \Sigma_{2}^{\prime}$. Moreover, λ_{s} is the unique parameter value for which this occurs. Also, since Ψ_{s} depends continuously on s, it follows that λ_{s} is also a continuous function of s for $s \in \Sigma_{2}^{\prime}$. Therefore the set of parameters in D of the form λ_{s} as s runs over Σ_{2}^{\prime} forms a Cantor set in D which we denote by Γ. We emphasize that Γ is a Cantor set in the parameter plane, whereas Γ_{λ} is a Cantor set in the dynamical plane for each λ.

If $\lambda \in \mathbb{R}^{-}$, then the graph of F_{λ} (Figure 6) shows that the entire dynamical Cantor set Γ_{λ} lies in \mathbb{R} and, in particular, the portion of Γ_{λ} that lies in L_{λ} lies in \mathbb{R}^{-}. As $\lambda \rightarrow 0$ for $\lambda \in \mathbb{R}^{-}, F_{\lambda}^{2}\left(c_{\lambda}\right) \rightarrow 1 / 4$, so $F_{\lambda}^{2}\left(c_{\lambda}\right)$ lies to the right of the portion of Γ_{λ} in \mathbb{R}^{-}. However, for λ near -1 , $F_{\lambda}^{2}\left(c_{\lambda}\right)=4 \lambda+1 / 4$ approaches -3.75 and so lies in \mathbb{R}^{-}to the left of -2 . Hence $F_{\lambda}^{2}\left(c_{\lambda}\right)$ lies to the left of the portion of Γ_{λ} in \mathbb{R}^{-}. Since the portion of Γ_{λ} in L_{λ} is trapped in the interval $[-2,0]$, and since any given point $w_{\lambda}(s)$ moves continuously as a function of λ, it follows that there is at least one λ-value in \mathbb{R}^{-}for which $F_{\lambda}^{2}\left(c_{\lambda}\right)=w_{\lambda}(s)$. By the uniqueness property of this parameter, it follows that this value must in fact be the (unique) λ_{s}-value found above. In particular, it follows that the parameter plane Cantor set Γ lies in \mathbb{R}^{-}and has the same order along the real line as each Γ_{λ}. That is, if s_{1} and s_{2} lie in Σ_{2}^{\prime}, then both $w_{\lambda}\left(s_{1}\right)$ and $w_{\lambda}\left(s_{2}\right)$ lie in \mathbb{R}^{-}, and if $w_{\lambda}\left(s_{1}\right)<w_{\lambda}\left(s_{2}\right)$, then $\lambda_{s_{1}}<\lambda_{s_{2}}$ in Γ. Also, if s is a sequence in Σ_{2}^{\prime} that ends in all 0 's (so that $w_{\lambda}(s)$ is a point whose orbit eventually lands on p_{λ}), then λ_{s} is a parameter for which the critical orbit lies on the boundaries of preimages of B_{λ}. We call such values of λ endpoints for the Cantor set Γ. Now it is known by work of Roesch [12] that the set of parameters for which the critical orbit lies in a given preimage of B_{λ} forms a simply connected open subset of parameter plane. Hence if we append any such open set to the corresponding endpoints of Γ just as we did in the dynamical plane construction, we see that this new set has the structure of a Cantor necklace.

FIG. 7. The parameter plane for the family $z^{2}+\lambda / z^{2}$. White regions correspond to λ-values for which the critical orbit escapes to ∞.

We have shown:
Theorem 8. There is a Cantor necklace \mathcal{C} in the parameter plane whose Cantor set portion lies along the negative real axis and has the following properties:
1.Any point in the Cantor set portion Γ of \mathcal{C} is a parameter value λ_{s} for which $F_{\lambda_{s}}^{2}\left(c_{\lambda_{s}}\right)$ has itinerary s in $\Gamma_{\lambda_{s}}$;
2.Any point in the open regions of \mathcal{C} are λ-values for which the critical orbit tends to ∞, so $J\left(F_{\lambda}\right)$ is a Sierpinski curve and F_{λ} is structurally stable;
3.Any endpoint λ_{s} of Γ in \mathcal{C} is a parameter value for which the critical orbit eventually lands at the fixed point $p_{\lambda_{s}}$ on the boundary of $B_{\lambda_{s}}$.

We display in black in Figure 7 the set of λ values for which the orbit of the critical point remains bounded under F_{λ}. The white holes in this picture are the "Sierpinski holes" where the critical orbit eventually falls through the trap door and so the Julia set is a Sierpinski curve. In Figure 8, we display several magnifications of the "tail" of the parameter plane that shows the Cantor necklace \mathcal{C} running down the negative real axis.

FIG. 8. Two magnifications of the parameter plane for the family $z^{2}+\lambda / z^{2}$ along the negative real axis. In the first image, $-0.4 \leq \operatorname{Re} \lambda \leq-0.06$ and, in the second, $-0.2 \leq \operatorname{Re} \lambda \leq-0.15$

4. SIERPINSKI CURVE JULIA SETS

In this section we prove the theorem concerning structurally unstable Sierpinski curve Julia sets. We assume throughout that $\lambda=\lambda_{s}$ is one of the negative real parameter values described in the previous section for which the critical orbit (eventually) lands on a repelling periodic point $w_{\lambda}(s)$ that is not equal to p_{λ}. In particular, the sequence s is periodic or eventually periodic but does not end in all 0 's. Hence the (eventually) periodic point $w_{\lambda}(s)$ does not lie at an endpoint of the corresponding Cantor necklace in dynamical plane since these are points that eventually land on p_{λ}. Such a point is therefore said to be buried since it is inaccessible from any given preimage of the trap door lying along the real axis.

We first prove that the Julia set corresponding to such a λ is a Sierpinski curve. From the Theorem in Section 1, $J\left(F_{\lambda}\right)$ is compact and connected. Since $J\left(F_{\lambda}\right)$ is not the entire plane, standard facts from complex dynamics show that $J\left(F_{\lambda}\right)$ is nowhere dense. Also, since the orbits of the critical points are all preperiodic, it follows that $F_{\lambda} \mid J\left(F_{\lambda}\right)$ is subhyperbolic. Hence $J\left(F_{\lambda}\right)$ is a locally connected set. See [9] for proofs of these facts. Thus it suffices to prove that all of the complementary domains of the Julia set are bounded by simple closed curves and that no two of these curves meet one another.

We need a few lemmas. Recall that B_{λ} is the immediate basin of ∞ and C_{λ} is the critical circle.

Lemma 9. The intersection of B_{λ} and C_{λ} is empty, as it is the intersection of B_{λ} and the interval $\left(-p_{\lambda}, p_{\lambda}\right) \subset \mathbb{R}$.

Proof. Suppose first that $z_{0} \in B_{\lambda} \cap\left(-p_{\lambda}, p_{\lambda}\right)$. Since $\lambda \in \mathbb{R}^{-}$, the real line is preserved by F_{λ} and B_{λ} is symmetric under the reflection $z \mapsto \bar{z}$. Since the critical values do not lie in B_{λ}, B_{λ} is connected. Therefore $\pm p_{\lambda}$ lie in different components of $\mathbb{C}-B_{\lambda}$. Thus $J\left(F_{\lambda}\right)$ is disconnected. This gives a contradiction, so B_{λ} cannot meet $\left(-p_{\lambda}, p_{\lambda}\right)$.
If $z_{0} \in B_{\lambda} \cap C_{\lambda}$, then $F_{\lambda}^{2}\left(z_{0}\right) \in B_{\lambda} \cap\left(-p_{\lambda}, p_{\lambda}\right)$ which is impossible by the previous observation. This proves the lemma.

Lemma 10. The boundary of B_{λ} neither does intersect $\left(-p_{\lambda}, p_{\lambda}\right)$ nor does meet C_{λ}.

Proof. Suppose that $x_{0} \in \partial B_{\lambda} \cap\left(-p_{\lambda}, p_{\lambda}\right)$. Let $\pm \nu_{\lambda}$ be the two preimages of 0 on the real axis. The points $\pm \nu_{\lambda}$ also lie on C_{λ}. The point x_{0} cannot lie in the interval $\left(-\nu_{\lambda}, \nu_{\lambda}\right)$ since this interval lies inside C_{λ}, and B_{λ} would meet C_{λ}. Hence $x_{0} \in\left(-p_{\lambda},-\nu_{\lambda}\right]$ or $x_{0} \in\left[\nu_{\lambda}, p_{\lambda}\right)$. Assume first that $x_{0} \in\left[\nu_{\lambda}, p_{\lambda}\right)$. Since F_{λ} is decreasing on \mathbb{R}^{+}and maps $\left[0, \nu_{\lambda}\right)$ to $[-\infty, 0)$, it follows that there exists a first integer k such that $F_{\lambda}^{k}\left(x_{0}\right) \in\left[0, \nu_{\lambda}\right)$. Since ∂B_{λ} is invariant, it follows that $F_{\lambda}^{k}\left(x_{0}\right) \in \partial B_{\lambda}$, so this again says that B_{λ} meets C_{λ}. This yields a contradiction. In the case where $x_{0} \in\left(-p_{\lambda},-\nu_{\lambda}\right]$,
note that $F_{\lambda}\left(x_{0}\right) \in\left[0, p_{\lambda}\right)$, so the previous argument applies to show that $F_{\lambda}\left(x_{0}\right)$ does not lie in ∂B_{λ}. Consequently, x_{0} does not lie there as well. The fact that ∂B_{λ} misses C_{λ} follows from forward invariance of ∂B_{λ} and the fact that C_{λ} maps into ($-p_{\lambda}, p_{\lambda}$) after two iterations.

The origin lies in the open set $\mathbb{C}-\bar{B}_{\lambda}$. Let W_{0} denote the component of $\mathbb{C}-\bar{B}_{\lambda}$ containing 0 . We claim that W_{0} is the only component of $\mathbb{C}-\bar{B}_{\lambda}$.

Lemma 11. If $z \in W_{0}$, then all four preimages of z lie in W_{0}.
Proof. By the previous lemma, $\left(-p_{\lambda}, p_{\lambda}\right)$ does not meet ∂B_{λ}, and so this entire interval is contained in W_{0}. The preimage of this interval lying on the imaginary axis likewise does not meet ∂B_{λ}, and so this set lies in W_{0} since it intersects $\left(-p_{\lambda}, p_{\lambda}\right)$ at 0 . Consequently, all four prepoles lie in W_{0}, so that all four preimages of 0 lie in W_{0}.
Now let \mathcal{U} be the set of points in W_{0} for which all four preimages also lie in W_{0}. The set \mathcal{U} is open and nonempty since $0 \in \mathcal{U}$. We claim that $\mathcal{U}=W_{0}$. If this is not the case, let $z_{0} \in \partial \mathcal{U} \cap W_{0}$. Then z_{0} lies in W_{0} but at least one of the preimages of z_{0} does not. This preimage must then lie on the boundary of W_{0}, but $\partial W_{0} \subset \partial B_{\lambda}$. Since ∂B_{λ} is forward invariant, we must have $z_{0} \in \partial B_{\lambda}$ as well. But this contradicts our assumption that $z_{0} \in W_{0}$.

It follows immediately from this lemma that, if $z_{0} \in \partial W_{0}$, then all four preimages of z_{0} also lie in ∂W_{0}. This implies that $\partial W_{0}=\partial B_{\lambda}$. To see this, note that if there were a point $z_{1} \in \partial B_{\lambda}-\partial W_{0}$, then $z_{1} \in J\left(F_{\lambda}\right)$. Let V be a neighborhood of z_{1} that is disjoint from \bar{W}_{0}. By Montel's Theorem, the forward images of V must hit all (except possibly two) points in $\overline{\mathbb{C}}$, and so some points in V must map into W_{0}. But, by the previous lemma, this cannot happen. Therefore, $\partial B_{\lambda}=\partial W_{0}$. Equivalently, we have:

Proposition 12. The open and connected set W_{0} is equal to $\mathbb{C}-\bar{B}_{\lambda}$.
We now prove that ∂B_{λ} is a simple closed curve. As mentioned earlier, since ∞ is a superattracting fixed point of order two, there is a conjugacy

$$
\phi_{\lambda}: B_{\lambda} \rightarrow \overline{\mathbb{C}}-\overline{\mathbb{D}}
$$

between $F_{\lambda} \mid B_{\lambda}$ and $z \mapsto z^{2}$ in the complement of the unit disk in \mathbb{C}. Recall that the preimage of a straight ray given by $t e^{i \theta}$ for fixed θ and $t>1$ under ϕ_{λ} is called an external ray of angle θ for F_{λ} and is denoted by γ_{θ}. Since $J\left(F_{\lambda}\right)$ is locally connected, it is known that each external ray limits on a single point in ∂B_{λ} (see [9]). That is,

$$
\lim _{t \rightarrow 1} \phi_{\lambda}^{-1}\left(t e^{i \theta}\right)
$$

is a single point in ∂B_{λ}.

To prove that B_{λ} is a simple closed curve, it then suffices to show that no two external rays limit on the same point in ∂B_{λ}. Suppose that this happens. Say γ_{θ} and γ_{ψ} both limit on $z_{0} \in \partial B_{\lambda}$. Then one of two things must occur. Either all external rays corresponding to angles in one of the arcs between θ and ψ must also limit on z_{0}. But this implies that in fact all external rays limit on z_{0}, which cannot happen. The only other possibility is that these two rays together with the point z_{0} divide $\partial B_{\lambda}-\left\{z_{0}\right\}$ into two disjoint, nonempty sets, each of which contains pieces of $J\left(F_{\lambda}\right)$. But the proof of the previous proposition shows that this cannot occur. We conclude that no two rays limit on the same point and so ∂B_{λ} is a simple closed curve.
Finally, we need to show that all of the preimages of ∂B_{λ} are simple closed curves that are pairwise disjoint. By assumption, the forward orbits of the critical points do not land on p_{λ} and hence do not lie in any of the preimages of $\overline{B_{\lambda}}$. Therefore all of the preimages of ∂B_{λ} are mapped in one-to-one fashion onto ∂B_{λ}, and so each of these preimages is a simple closed curve. Also, by one of the lemmas above, ∂B_{λ} lies outside of C_{λ}. Hence ∂T_{λ} lies inside C_{λ} and so ∂B_{λ} and ∂T_{λ} are disjoint simple closed curves. If two different preimages of ∂B_{λ} intersect, then iterating these preimages forward shows that some preimage of ∂B_{λ} must intersect ∂B_{λ}. Since ∂B_{λ} is forward invariant, we may iterate forward again to show that in fact ∂T_{λ} and ∂B_{λ} must intersect. But, by the above, this does not happen. Therefore no two of these simple closed curves meet each other. We have proved:

Theorem 13. Let $s \in \Sigma_{2}^{\prime}$ be a (pre)-periodic sequence that does not end in all zeroes. Let λ_{s} be the unique parameter value for which $F_{\lambda_{s}}^{2}\left(c_{\lambda_{s}}\right)=$ $w_{\lambda_{s}}(s)$, i.e., the second image of the critical point lands on the point in $\Gamma_{\lambda_{s}}$ that has itinerary s. Then the Julia set of $F_{\lambda_{s}}$ is a Sierpinski curve.

5. STRUCTURAL INSTABILITY

We now turn attention to values of the parameter that lie in a neighborhood of λ_{s}, where $\lambda_{s} \in \mathbb{R}^{-}$is one of the parameter values described in the previous two sections for which the critical orbit lands on a repelling periodic point not equal to p_{λ}. Our goal is to show that there are infinitely many dynamically different maps in any neighborhood of λ_{s}.

Proposition 14. Let \mathcal{U} be a neighborhood of λ_{s}. There exist infinitely many parameter values $\mu_{j} \in \mathcal{U}$ such that $J\left(F_{\mu_{j}}\right)$ is a structurally stable Sierpinski curve Julia set, but $F_{\mu_{j}}$ is not conjugate to $F_{\mu_{k}}$ for $j \neq k$.
Proof. In any neighborhood of λ_{s} in the parameter plane, there are infinitely many intervals in \mathbb{R}^{-}that contain parameters for which the critical
orbit eventually escapes into B_{λ}. These correspond to Sierpinski holes in the parameter plane and it is known [3] that any two maps drawn from the same hole are conjugate on their Julia sets. Moreover, since λ_{s} is a buried point in the Cantor set in parameter plane, we may choose an infinite subset of these intervals for which the number of iterations that it takes for the critical orbit to enter B_{λ} is different in each hole. As shown in [4], this implies that functions drawn from distinct holes are not conjugate on their Julia sets. This proves the existence of infinitely many values of the parameter μ_{j} for which $J\left(F_{\mu_{j}}\right)$ is a structurally stable Sierpinski curve, but $F_{\mu_{j}}$ is not conjugate to $F_{\mu_{k}}$ for $j \neq k$.

Proposition 15. Let \mathcal{U} be a neighborhood of λ_{s}. There exist infinitely many parameter values $\nu_{j} \in \mathcal{U}$ such that $J\left(F_{\nu_{j}}\right)$ is a Sierpinski curve Julia set which is not structurally stable and again, $F_{\nu_{j}}$ is not conjugate to $F_{\nu_{k}}$ when $j \neq k$ nor is $F_{\nu_{j}}$ conjugate to any of the $F_{\mu_{\ell}}$.

Proof. Since λ_{s} is a buried point in the Cantor set in the parameter plane, we may find in any neighborhood of λ_{s} infinitely many buried preperiodic points (of different periods) in Γ_{λ}. These then yield additional parameters for which the Julia set is a structurally unstable Sierpinski curve. As above, no two of these maps are conjugate if the periods of these periodic points are different.

Proposition 16. Let \mathcal{U} be a neighborhood of λ_{s}. There exist infinitely many parameter values $\tau_{j} \in \mathcal{U}$ such that $J\left(F_{\tau_{j}}\right)$ is a hybrid Sierpinski curve, and again, $F_{\tau_{j}}$ is not conjugate to $F_{\tau_{k}}$ for $j \neq k$, nor to any of the $F_{\mu_{\ell}}$ or $F_{\nu_{\ell}}$ above.

Proof. There are infinitely many endpoints of $\Gamma_{\lambda_{s}}$ in any neighborhood of $w_{\lambda_{s}}$. Hence there are infinitely many parameters $\lambda_{\tau_{j}}$ for which the critical orbits land on the fixed point p_{λ} that lies on the boundary of the basin at ∞. We claim that the Julia set associated to such a parameter is a hybrid Sierpinski curve. To see this, first note that the proof in the previous section that ∂B_{λ} is a simple closed curve goes through without change. Suppose that the $n^{\text {th }}$ iterate of the critical points land on p_{λ} where $n \geq 3$. Then the $i^{t h}$ preimage of ∂B_{λ} is a collection of disjoint simple closed curves for each $i<n$. By four-fold symmetry, among these simple closed curves, only the boundary of the trap door surrounds the origin. However, the particular $n^{t h}$ preimages that contain a critical point now consist of a pair of simple closed curves that meet at the critical point. We cannot have more than two such curves meeting, for by fourfold symmetry, a chain of more than two such curves would necessarily contain all of the critical points. But then the image of this set of curves would be a simple closed curve that contains both critical values and hence, by symmetry, surrounds the origin. But this cannot happen, as we observed above. Hence there
are exactly 4 such figure eight curves in the $n^{\text {th }}$ preimage of ∂B_{λ}, one corresponding to each critical point of F_{λ}. The remaining preimages are necessarily simple closed curves. Now continue pulling back either these figure eight or simple closed curve preimages of ∂B_{λ}. We obtain infinitely many distinct preimages that are figure eights as well as infinitely many that are simple closed curves. This shows that the Julia set is a hybrid Sierpinski curve.

6. CONCLUDING REMARKS

In this paper we have concentrated on the family

$$
F_{\lambda}(z)=z^{2}+\frac{\lambda}{z^{2}}
$$

but all of the results go over more or less intact for the higher degree families

$$
G_{\lambda}(z)=z^{n}+\frac{\lambda}{z^{n}}
$$

where $n \geq 3$. When n is even, there is an analogous Cantor necklace along the negative real axis in parameter plane, and all of the above results go through without change. When n is odd, one must choose a different straight line in parameter space dictated by symmetries present in the system. On this line one finds small copies of the Mandelbrot sets interspersed with Cantor necklaces, but the results about structurally unstable Sierpinski curve Julia sets remain the same. In Figure 9 we display the parameter planes for the cases $n=3$ and $n=4$.

For example, when $n=3$, we consider parameters along the imaginary axis. Let ω be a primitive eighth root of unity. Then, for $\lambda \in \mathbb{R}$, the function $F_{i \lambda}$ interchanges the two lines $t \omega$ and $t \omega^{3}$. A computation shows that

$$
F_{i \lambda}(t \omega)=\omega^{3}\left(t^{3}-\frac{\lambda}{t^{3}}\right)
$$

and

$$
F_{i \lambda}\left(t \omega^{3}\right)=\omega\left(t^{3}+\frac{\lambda}{t^{3}}\right) .
$$

Let

$$
g_{\lambda}^{ \pm}(t)=t^{3} \pm \frac{\lambda}{t^{3}}
$$

Then the second iterate of $F_{i \lambda}$ on the line $t \omega^{3}$ is conjugate to the function $g_{\lambda}^{-}\left(g_{\lambda}^{+}(t)\right)$ on the real line. The graph of this function on the real line shows

FIG. 9. The parameter planes in the cases $n=3$ and $n=4$.

FIG. 10. The graphs of $g_{\lambda}^{-}\left(g_{\lambda}^{+}(t)\right)$ for $\lambda=0.05$ and $\lambda=0.09$. Note that each of these functions has an invariant Cantor set on either side of the origin and that the critical points on opposite sides of 0 map into this Cantor set regime as λ varies.
that critical points become entangled in a Cantor set as the parameter λ is varied. See Figure 10. Then the same arguments as above produce λ-values surrounded by infinitely many Sierpinski holes centered on the imaginary axis, although the complete structure here is more intricate than a Cantor necklace. We leave the straightforward details to the reader.

REFERENCES

1. Blanchard, P., Devaney, R. L., Look, D. M., Seal, P., and Shapiro, Y. Sierpinski Curve Julia Sets and Singular Perturbations of Complex Polynomials. Ergodic Theory and Dynamical Systems. 25 (2005), 1047-1055.
2. Devaney, R. L., Look, D. M., and Uminsky, D. The Escape Trichotomy for Singularly Perturbed Rational Maps. To appear in Indiana University Math. J.
3. Devaney, R. L. and Look, D. M. A Criterion for Sierpinski Curve Julia Sets. To appear in Topology Proceedings.
4. Devaney, R. L. and Look, D. M. Symbolic Dynamics for a Sierpinski Curve Julia Set. Journal of Difference Equations and Applications 11 (2005), 581-596.
5. Devaney, R. L. and Look, D. M. Buried Sierpinski Curve Julia Sets. Discrete and Continuous Dynamical Systems 13 (2005), 1035-1046.
6. Douady, A. and Hubbard, J. Itération des Polynômes quadratiques complexes C.R. Acad. Sci. Paris, t.29, Serie I-1982, pp. 123-126.
7. McMullen, C. Automorphisms of Rational Maps. Holomorphic Functions and Moduli. Vol. 1. Math. Sci. Res. Inst. Publ. 10. Springer, New York, 1988.
8. McMullen, C. The Classification of Conformal Dynamical Systems. Current Developments in Mathematics. Internat. Press, Cambridge, MA, 1995, 323-360.
9. Milnor, J. Dynamics in One Complex Variable. Vieweg, 1999.
10. Milnor, J. and Tan Lei. A "Sierpinski Carpet" as Julia Set. Appendix F in Geometry and Dynamics of Quadratic Rational Maps. Experiment. Math. 2 (1993), 37-83.
11. Petersen, C. and Ryd, G. Convergence of Rational Rays in Parameter Spaces. In The Mandelbrot Set: Theme and Variations. ed. Tan Lei. Cambridge Univ. Press (2000), 161-172.
12. Roesch, P. On Captures for the Family $f_{\lambda}(z)=z^{2}+\lambda / z^{2}$. To appear.
13. Sullivan, D. Quasiconformal Maps and Dynamical Systems I, Solutions of the Fatou-Julia Problem on Wandering Domains. Ann. Math. 122 (1985), 401-418.
14. Whyburn, G. T. Topological Characterization of the Sierpinski Curve. Fund. Math. 45 (1958), 320-324.

[^0]: * Partially supported by NSF grant 0205779.

