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In this paper are considered periodic perturbations, depending on two para-
meters, of planar polynomial vector fields having an annulus of large amplitude
periodic orbits, which accumulate on a symmetric infinite heteroclinic cycle.
Such periodic orbits and the heteroclinic trajectory can be seen only by the
global consideration of the polynomial vector fields on the whole plane, and
not by their restrictions to any compact region. The global study envolving
infinity is performed via the Poincaré Compactification. It is shown that, for
certain types of periodic perturbations, one can seek, in a neighborhood of
the origin in the parameter plane, curves Cm of subharmonic bifurcations,
to which the periodically perturbed system has subharmonics of order m, for
sufficiently large integer m. Also, in the quadratic case, it is shown that, as m
tends to infinity, the tangent lines of the curves Cm, at the origin, approach
the curve C of bifurcation to heteroclinic tangencies, related to the periodic
perturbation of the infinite heteroclinic cycle. The results are similar to those
stated by Chow, Hale and Mallet–Paret in [4], although the type of systems
and perturbations considered there are quite different, since they are restricted
to compact regions of the plane.

Key Words: Subharmonic bifurcations, periodic perturbations, polynomial sys-
tems.

1. INTRODUCTION

The infinite heteroclinic cycles of planar polynomial vector fields may be
either hyperbolic (attractors or repelors) or nonhyperbolic (accumulated
by large amplitude periodic orbits), as shown in Figure 1. Stability and bi-
furcation of these cycles due to autonomous perturbations were considered
by many authors, as Sotomayor and Paterlini [13], Dumortier, Roussarie
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and Rousseau [6] and, more recently, by Gasull, Mañosa and Mañosas [7].
In [10], [11] and [12], the author studied tangencies and transversal het-
eroclinic bifurcations of such infinite heteroclinic cycles, due to periodic
(nonautonomous) perturbations. The present work considers the effect of
the periodic perturbations on the annulus of large amplitude periodic orbits
which accumulate on these cycles. Also, in the quadratic case, the interac-
tion between the subharmonic bifurcations and heteroclinic tangencies are
considered.
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γ−α α γ−α α

(a) (b) 
FIG. 1. Hyperbolic and nonhyperbolic symmetric infinite heteroclinic cycles of a

planar polynomial vector field on the Poincaré Disk.

It is a fundamental engineering problem to determine the response of a
physical system to an applied force, specially when this force is periodic,
what may lead to resonances. This subject has a long history in applied
science and mathematics and there are several related papers (see, for in-
stance, [2] and references therein). However, the extensive literature there
is on the subject is related to periodic perturbations restricted to compact
regions of the phase plane. Here a global analysis is carried out, considering
perturbations of the large amplitude periodic orbits, which are near infinity
and can be seen only by the global consideration of the system in the whole
plane. These large amplitude periodic orbits appear in the study of several
applied problems, like those related to Astrophysics, fluid dynamics and
Lotka–Volterra equations [5].

The results obtained are similar to those stated in [4] and [8], although
the type of systems and perturbations considered there are quite different,
since they are restricted to compact regions of the plane.
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2. BASIC DEFINITIONS AND PRELIMINARIES

In order to formulate the results that will be stated and establish some
preliminary notations and results, consider the system

u̇ = f(u) + εg(u, t), (1)

where u ∈ R2, ε ∈ R and g is a periodic function of class Ck, k ≥ 2, in R,
with period T , in the variable t.

Suppose that (1) has, for ε = 0, an annulus of periodic orbits, in which is
contained a periodic orbit Γ, whose period is in resonance with the period
T of the perturbation function g, that is, there is a natural number m such
that the minimum period of Γ is equal to mT . In this case Γ is said to be a
resonant periodic orbit. Under these assumptions, an important problem is
to determine the existence of values of ε different from zero, for which the
periodically perturbed system (1) has periodic orbits of period mT , close to
Γ. Such orbits are said to be subharmonics of order m, since their periods
are m times the period of g(u, t). In this context, one tries to determine
bifurcation curves ε 7→ σ(ε) in the phase plane of (1), with σ(0) ∈ Γ, such
that σ(ε) is the initial value of a subharmonic of order m. In other words,
one seeks for subharmonics which bifurcate from the resonant orbit Γ, σ(ε)
being a curve of subharmonic bifurcations.

To study the problem stated above, considering the periodic character
of the function g, let us take (1) as an autonomous system defined on the
cylinder R2 × S1, through the change of variable φ = t, φ̇ = 1, from which
one obtains

u̇ = f(u) + εg(u, φ)
φ̇ = 1,

(2)

with u ∈ R2 and φ ∈ S1, where S1 is identified with the interval [0, T ),
considering [0, T ) as the quotient space R/TZ. Due to this change, the
periodic orbits of the unperturbed system, (2) with ε = 0, become invariant
tori, contained in IR2 × S1.

In this way, as φ̇ > 0, one can take a global transversal section through
the flow of the system (2) (see Figure 2), given by

Σφ0 = {(u, φ) | u ∈ IR2 and φ = φ0 ∈ [0, T )},

on which one can define Pm
ε : Σφ0 → Σφ0 , which is the mth iteraction of

the Poincaré Map, given by

Pm
ε (ξ) = u(mT, ξ, ε), (3)

where u(t, ξ, ε) is the solution of (2) with u(0, ξ, ε) = ξ ∈ Σφ0 . So, if Γ
is a resonant periodic orbit of (1) then, for ε = 0, every point ξ ∈ Γ is a
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identified

FIG. 2. Invariant tori generated by the periodic perturbations of the annulus of
periodic orbits of the system (1) for ε = 0.

fixed point of Pm
0 (ξ). Indeed, Pm

0 (ξ) = u(mT, ξ, 0) = ξ. Such fixed points
correspond to period m periodic orbits of the system (2), with ε = 0, which
are subharmonics of order m.

Aiming to verify if these fixed points (and, consequently, these periodic
orbits) persist for small enough values of ε 6= 0, we shall consider the
displacement function

δ(ξ, ε) = Pm
ε (ξ)− ξ = u(mT, ξ, ε)− ξ. (4)

So, the zeroes of δ(ξ, ε), which give the fixed points of Pm
ε , correspond

to periodic orbits of period mT of the perturbed system (2), which are
subharmonics of order m, since P j

ε (ξ) 6= ξ, for 1 < j < m.
Aiming to study the existence of zeroes of the function δ defined above,

in the next two subsections following which is done in [1] and [2] we shall
use a nonhomogeneous linear variational equation related to the perturbed
system (given by Diliberto’s Propostition) in connection with the reduction
method of Lyapunov–Schmidt, to obtain some preliminaries results, which
will be used in section 3, to prove the statements related to subharmonic
bifurcations of large amplitude periodic orbits of polynomial vector fields.

2.1. Variational equations and subharmonic bifurcations
The solution of the first variational equations

Ẇ = Df(ϕt(ξ))W,

related to the system u̇ = f(u), over a regular solution u = ϕt(ξ), can be
obtained with the following Proposition (see [1] or [2]). First, let us recall
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that the divergence and the curl of a vector function f : R2 → R2, with
f(x, y) = (f1(x, y), f2(x, y)), are defined as follows

divf(x, y) :=
∂f1

∂x
(x, y) +

∂f2

∂y
(x, y),

rotf(x, y) :=
∂f2

∂x
(x, y)− ∂f1

∂y
(x, y),

and the scalar curvature of a differentiable curve t 7→ (x(t), y(t)) is

κ :=
ẋÿ − ẏẍ

(ẋ2 + ẏ2)3/2
.

Proposition 1 (Diliberto’s Proposition). Let ϕt be the flow of the dif-
ferential equation u̇ = f(u), u ∈ R2.If f(u) 6= 0, then the fundamental
matrix t → Φ(t), with Φ(0) = Id, solution of the homogeneous variational
equation

Ẇ = Df(ϕt(ξ))W,

related to u̇ = f(u), is such that

Φ(t)f(ξ) = f(ϕt(ξ)),

Φ(t)f⊥(ξ) = a(t, ξ)f(ϕt(ξ)) + b(t, ξ)f⊥(ϕt(ξ)),

where

a(t, ξ) =
∫ t

0

(
2κ(s, ξ)‖f(ϕs(ξ))‖ − rotf(ϕs(ξ))

)
b(s, ξ)ds,

b(t, ξ) =
‖f(ξ)‖2

‖f(ϕt(ξ))‖2
e
R t
0 divf(ϕs(ξ))ds.

Remark 2. The Functions a and b which appear in the integral ex-
pressions given above have an important geometric mean: if ξ is on the
T–periodic orbit Γ and Σ is transversal to Γ in ξ, then the function b takes
the form

b(T, ξ) = e

∫ T

0

divf(ϕs(ξ))ds
,

which is exactly the derivative of the Poincaré map related to Γ, on ξ =
Γ∩Σ. On the other side, if Γ belongs to an annulus A of periodic orbits and
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Σ is an orthogonal transversal section to this annulus, then the function
a(T, ξ) is proportional to the derivative T ′(ξ), of the period function T (p),
which, for each p ∈ A ∩Σ, gives the minimum period of the periodic orbit
through p, as stated in [1] (or [2], p.329–330).

The remark above will be used later, in conjunction with the following
definition:

Definition 3. Let A be an annulus of periodic orbits of the system
u̇ = f(u), with u ∈ R2. Let T (p) be the period function, which associates
to each point p ∈ A the minimum period of the orbit through p. If T ′(p) 6=
0, ∀p, then A is said to be a regular annulus.

Consider now a nonhomogeneous equation u̇ = f(u) + εg(u, t), u ∈ R2,
with the regular solution ϕt(ξ, ε).The variational equation given by

Ẇ = Df(ϕt(ξ, 0))W + g(ϕt(ξ, 0), t), (5)

is called the second variational equation related to u̇ = f(u) + εg(u, t),
over a regular solution u = ϕt(ξ). The solution of (5) can be obtained
from Proposition 1, using the variation of constants method, since their
homogeneous part coincide. The following lemma holds (the proof is made
in [1]):

Lemma 4. Let ϕt be the flow of the system u̇ = f(u), u ∈ R2. If
f(u) 6= 0, then the solution t → W (t) of the initial value problem

Ẇ = Df(ϕt(ξ))W + g(ϕt(ξ), t), W (0) = 0

is given by

W (t) = [N(t) + a(t, ξ)M(t)]f(ϕt(ξ)) + [b(t, ξ)M(t)]f⊥(ϕt(ξ)),

with

N(t) :=
∫ t

0

[ 1
‖f‖2 < f, g > − a(s, ξ)

b(s, ξ)‖f‖2 < f⊥, g >
]
(ϕs(ξ))ds,

M(t) :=
∫ t

0

[ 1
b(s, ξ)‖f‖2 < f⊥, g >

]
(ϕs(ξ))ds,

where a and b are the functions defined in Proposition 1, and <,> is the
usual inner product in R2.

Suppose that system u̇ = f(u)+ εg(u, t) has, for ε = 0, a regular annulus
of periodic orbits, which contains a periodic orbit Γ, whose period is in
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resonance with the period T of the function g. In the next subsection it is
shown (Theorem 5) that, under these conditions, the existence of zeroes to
the displacement function δ(ξ, ε) = Pm

ε (ξ)− ξ, defined in (4), is equivalent
to the existence of simple zeroes of the function M(t), that appears in
Lemma 4.

2.2. Subharmonic bifurcations on a regular annulus
It can be proved (see [1] p.342) that if ξ belongs to a resonant periodic

orbit of u̇ = f(u), then f(ξ) ∈ Ker[δξ(ξ, 0)], where δ(ξ, ε) = u(mT, ξ, ε)− ξ
is defined in (4). As a consequence, it is not possible to use the Implicit
Function Theorem to determine the existence of zeroes of the displacement
function δ(ξ, ε), since, even if δ(ξ, 0) = 0, δξ(ξ, 0) is not an isomorphism.
Then, to solve the problem Lyapunov–Schmidt reduction is used, which
consists in considering projections of the δ function on some special spaces
and using the Implicit Function Theorem to find zeroes of these projections,
as it will be done in the next theorem (the proof follows closely what is
done in [1]).

Theorem 5. Suppose that the system u̇ = f(u) + εg(u, t + φ0), given in
(2), has, for ε = 0, a regular annulus A of periodic orbits, in the transversal
section Σφ0 = {(u, φ) | u ∈ R2 and φ = φ0 ∈ [0, T )} (Figure 2). Suppose
that in A there exists a periodic orbit Γ, whose period is in resonance with
the period T of the function g, that is, there is a natural number m such
that the minimum period of Γ is mT . Consider both the function

M(s, φ0) =
∫ mT

0

e−
R t
0 divf(ϕτ+s(v))dτ < f⊥(ϕt+s(v)), g(ϕt+s(v), t+φ0) > dt,

where ϕt(v) is a parametrization of Γ, and Pm
ε : Σφo → Σφ0 is the Poincaré

map, defined by Pm
ε (ξ) = u(mT, ξ, ε), where u(t, ξ, ε) is the solution of (2)

such that u(0, ξ, ε) = ξ ∈ Σφ0 . If there exists a point (s̄, φ̄0) such that
M(s̄, φ̄0) = 0 and ∂M

∂s (s̄, φ̄0) 6= 0, then, for ε 6= 0 sufficiently small, Pm
ε (ξ)

has a fixed point bifurcating from Γ. Such fixed point corresponds to a
subharmonic of order m of the perturbed system (2).

Proof. Let ϕt be the flow of the system u̇ = f(u) and ψt the flow of
the orthogonal system u̇ = f⊥(u). Consider a local system of coordinates
(r, s), defined on some neighborhood V of the resonant periodic orbit Γ,
with V belonging entirely in the annulus A ⊂ Σφ0 , through the function
H(r, s) = ψrϕs(v), where s ∈ [0,mT ], r is near zero, v ∈ Γ, being a fixed
but arbitrary point. Then one has

Hr(r, s) = f⊥(H(r, s)) and Hs(r, s) = Dψr(ϕs(v))f(ϕs(v)),
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which are linearly independent and, consequently, to each ξ ∈ V, there
is (r, s) such that ξ = H(r, s). Using theses coordinates, the function
δ(ξ, ε) = Pm

ε (ξ)− ξ = u(mT, ξ, ε)− ξ becomes ∆(r, s, ε) = δ(H(r, s), ε).
So, the zeroes of the function ∆(r, s, ε) correspond to fixed points of

the Poincaré map Pm
ε : Σφ0 → Σφ0 . Let us apply the Lyapunov–Schmidt

reduction in conjunction with the Implicit Function Theorem to find them.
Firstly one has ∆(0, s, 0) = δ(ϕs(v), 0) = u(mT, ϕs(v), 0) − ϕs(v) = 0.

Consider now the projection of ∆ on the f(ϕs(v)) direction, given by

P(r, s, ε) =< ∆(r, s, ε), f(ϕs(v)) > .

The partial derivative of P, with relation to r, evaluated on (0, s, 0) is
< ∆r(0, s, 0), f(ϕs(v)) >, and ∆r(0, s, 0) = δξ(ϕs(v), 0)f⊥(ϕs(v)). Also,

δξ(ϕs(v), 0)f⊥(ϕs(v))

=
∂

∂r

(
u(mT,ψr(ϕs(v)), 0)− ψr(ϕs(v))

)
|r=0

=
(
uξ(mT,ψr(ϕs(v)), 0)ψ̇r(ϕs(v))− ψ̇r(ϕs(v))

)
|r=0

= uξ(mT,ϕs(v), 0)f⊥(ϕs(v))− f⊥(ϕs(v)),

where uξ(mT,ϕs(v), 0) is the fundamental matrix of the variational equa-
tion Ẇ = Df(ϕs(v))W , with W (0) = Id. So, using Proposition 1 one
obtains

uξ(mT, ϕs(v), 0)f⊥(ϕs(v)) =
a(mT,ϕs(v))f(ϕs(v)) + b(mT, ϕs(v))f⊥(ϕs(v)),

and so one has

δξ(ϕs(v), 0)f⊥(ϕs(v)) =
a(mT, ϕs(v))f(ϕs(v)) + [b(mT,ϕs(v))− 1]f⊥(ϕs(v)).

As the periodic orbit Γ is nonhyperbolic, b(mT, ϕs(v)) = 1 (see Remark 2
after Proposition 1). So, using the calculations above, it follows that

∆r(0, s, 0) = b(s, v)a(mT,ϕs(v))f(ϕs(v)), (6)

from which one obtains

< ∆r(0, s, 0), f(ϕs(v)) >= b(s, v)a(mT,ϕs(v))‖f(ϕs(v))‖2, (7)

which is different from zero, since b 6= 0, f 6= 0 on the periodic orbit Γ and
a(mT, ϕs(v)) 6= 0, since by hypothesis Γ is contained in a regular annulus
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A, and the function a is proportional to the period function (see Remark
2).

So, as P(0, s, 0) = 0 and Pr(0, s, 0) 6= 0, it follows from the Implicit
Function Theorem that, for ε 6= 0 small enough, there exists a function
h = h(s, ε), with h(s, 0) = 0, such that

P(h(s, ε), s, ε) =< ∆(h(s, ε), s, ε), f(ϕs(v)) >= 0.

Define now ∆̃ as the projection of ∆(h(s, ε), s, ε) on the f⊥ direction, in
the following way:

∆̃(s, ε) =< ∆(h(s, ε), s, ε), f⊥(ϕs(v)) > .

As ∆(0, s, 0) = 0 and h(s, 0) = 0, then ∆̃(s, 0) = 0. So, taylor expanding
∆̃ in ε, around ε = 0, one obtains

∆̃(s, ε) = ε[∆̃ε(s, 0) + O(ε)] = εd(s, ε),

from which follows that the simple zeros of d(s, ε) = ∆̃ε(s, 0) + O(ε) cor-
respond to the zeroes of ∆(r, s, ε), for ε 6= 0 sufficiently small. Indeed, if
d(s̄, 0) = 0 and ∂d

∂s (s̄, 0) 6= 0 then, by the implicit function theorem there
exists a function s = s(ε) such that d(s(ε), ε) = 0, for sufficiently small ε.
Therefore, diminishing ε if necessary, one has, from the calculations above,
∆(h(s(ε), ε), s(ε), ε) = 0.

To finish the proof, it is necessary to show that these simple zeroes
correspond to the zeroes of the expression M(s, φ0) given in the theorem.
To see that, it is sufficient to derive ∆̃ with respect to ε, evaluating in ε = 0,
from which one obtains

∆̃ε(s, 0) =< ∆r(h(s, 0), s, 0)hε(s, 0) + ∆ε(h(s, 0), s, 0)), f⊥(ϕs(v)) > .

Since h(s, 0) = 0, using the expression ∆r given in (6), it follows that

∆̃ε(s, 0) =< ∆ε(0, s, 0), f⊥(ϕs(v)) > .

On the other hand, from the definition of ∆(r, s, ε) one has ∆ε(r, s, 0) =
uε(mT, r, s, 0), where uε(t, r, s, 0) is the solution of the variational equation
Ẇ = Df(ϕt(ξ))W + g(ϕt(ξ, 0), t + φ0), which, from Lemma 4 is given by

W (t) = [N(t) + a(t, ξ)M(t)]f(ϕt(ξ)) + [b(t, ξ)M(t)]f⊥(ϕt(ξ)).

In (r, s) coordinates one has ξ = H(r, s) = ψrϕs(v). As we are interested
in the computation of ∆ε(0, s, 0) = uε(mT, 0, s, 0), taking r = 0, from which
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ξ = ϕs(v), and considering t = mT in the expression of M(t) given in
Lemma 4, one obtains the following expression for M(mT ):

1
‖f(ϕs(v))‖2

∫ mT

0

e−
R t
0 divf(ϕτ+s(v))dτ< f⊥(ϕt+s(v)), g(ϕt+s(v), t+φ0) > dt.

Therefore,

∆̃ε(s, 0) =< ∆ε(0, s, 0), f⊥(ϕs(v)) >= b(mT, v)‖f⊥(ϕs(v))‖2M(mT ),

and, as b(mT, v) = 1, for Γ is nonhyperbolic,

∆̃ε(s, 0)

=
∫ mT

0

e−
R t
0 divf(ϕτ+s(v))dτ < f⊥(ϕt+s(v)), g(ϕt+s(v), t + φ0) > dt

= M(s, φ0),

and the result follows from the Implicit Function Theorem.

The theorem above will be used in the next section in the analysis of the
subharmonic bifurcations near infinity for two parameter families of planar
polynomial vector fields.

3. SUBHARMONIC BIFURCATIONS OF POLYNOMIAL
VECTOR FIELDS WITH AN INVARIANT STRAIGHT LINE

Let X be a planar polynomial vector field of degree n, with an invari-
ant straight line, free from singularities, connecting two hyperbolic saddle
points at infinity. Without loss of generality, one can consider such straight
line as the y axis and the system of ordinary differential equations deter-
mined by the vector field takes the form

ẋ = xP (x, y)
ẏ = Q(x, y),

where P (x, y) and Q(x, y) are polynomials of degree n− 1 and n, respec-
tively, with Q(0, y) > 0, ∀y. Note that the degree of Q(0, y) must be even,
otherwise Q(0, y) has at least one real root and, consequently, the system
has at least one critical point in the y axis.

For technical reasons, we perform a translation in the system above, in
order to let the straight line {x = 1} invariant, from which one obtains,
after renaming the coefficients and variables, the equivalent system

ẋ = (x− 1)P (x, y)
ẏ = Q(x, y), (8)
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with Q(1, y) > 0, ∀y.
Suppose that the system (8) has only two saddles at infinity. Then, the

compactification of the system on the Poincaré disk has an infinite hetero-
clinic cycle, composed by γ(s) (which is the compactification of the solution
contained in the line {x = 1}), θ1 and θ2 (which are the saddles at infinity)
and α(s) (which is the trajectory arc of the compactfied system belonging
to the border of the Poincaré disk) (see Figure 1 at the introduction).

Suppose now that the singular heteroclinic cycle γ(s) ∪ θ1 ∪ α(s) ∪ θ2 is
accumulated by periodic orbits of the compactfied system (Figure 1(b)).
Such periodic orbits correspond to large amplitude periodic orbits of the
planar polynomial vector field. Then, consider the periodic perturbation
of (8) given by

ẋ = P̃ (x, y) + µ + Af(t)
ẏ = Q(x, y) + Ag(t),

(9)

where P̃ (x, y) = (x − 1)P (x, y), f and g are Ck functions, k ≥ 2, peri-
odic with period T = 2π, with µ and A being real small parameters. It
is a periodic perturbation of amplitude A, combined with an autonomous
perturbation, given by the parameter µ. The autonomous perturbation is
transversal to the annulus of periodic orbits and, consequently, ”breaks”
these orbits, while the parameter A controls the amplitude of the nonau-
tonomous (periodic) part of the perturbation.

In this section the effect of the periodic perturbation above on the an-
nulus of large amplitude periodic orbits will be analyzed. The method
used can also be applied to the analysis of other types of two parameter
perturbations, as, for example, the type considered in [14],

ẋ = P̃ (x, y) + µ1f(ωt)
ẏ = Q(x, y) + µ2g(ωt),

where µ1 and µ2 are real parameters.
In order to study the system on the whole plane let us consider the

Poincaré compactification of (9) through the change to polar coordinates

x =
cos θ

ρ
y =

sin θ

ρ

in order that {ρ = 0} correspond to the equator, from which one obtains,
after the multiplication by ρn−1, which is equivalent to the introduction of
a new time s via dt

ds = ρn−1 [10]:

θ̇ =
∑n

i=1 ρiAn−i(θ) + f̄(θ, ρ, µ, A, t(s))
ρ̇ = −∑n

i=0 ρi+1Rn−i(θ) + ḡ(θ, ρ, µ, A, t(s)),
(10)
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where

Ak(θ) = −Pk(cos θ, sin θ) sin θ + Qk(cos θ, sin θ) cos θ

Rk(θ) = Pk(cos θ, sin θ) cos θ + Qk(cos θ, sin θ) sin θ,

for k = 0, 1, . . . , n, with θ ∈ [0, 2π) and ρ ∈ [0,∞),

f̄(θ, ρ, µ,A, s) = ρn [Ag(t(s)) cos θ − (µ + Af(t(s))) sin θ] ,
ḡ(θ, ρ, µ,A, s) = −ρn+1 [(µ + Af(t(s)) cos θ + Ag(t(s)) sin θ] .

Observe that the functions f̄ and ḡ depend explicitly on the time s, which
is the time of the compactfied system, on the Poincaré disk (the system is
nonautonomous). Also, {ρ = 0} correspond to the points on the border of
the disk, which represent the points at infinity.

The question now is: will the large amplitude periodic orbits, which exist
for µ = A = 0, persist for µ 6= 0 and A 6= 0 sufficiently small?

Following the ideas presented in the previous section, taking φ = t(s)
such that φ̇ = dt

ds = ρn−1, one can transform (10) into an autonomous
system, defined on the solid torus D2 × S1, given by

θ̇ =
n∑

i=1

ρiAn−i(θ) + f̄(θ, ρ, µ,A, φ)

ρ̇ = −
n∑

i=0

ρi+1Rn−i(θ) + ḡ(θ, ρ, µ, A, φ)

φ̇ = ρn−1,

(11)

where φ ∈ S1, which is identified with the interval [0, 2π), considering it
as the quotient space R/2πZ. A representation of the system (11), with
µ = A = 0, on the solid torus, is presented in Figure 3. The large amplitude
periodic orbits of the planar system become, on the extended phase space
D2 × S1, invariant tori.

One can now apply the results stated in the previous section. In order
to do that, consider (11) in the form

u̇ = F (u) + µG1(u) + AG2(u, φ) (12)
φ̇ = ρn−1 (13)

where u = (θ, ρ), φ ∈ [0, 2π), and

F (θ, ρ) =
( n∑

i=1

ρiAn−i(θ),−
n∑

i=0

ρi+1Rn−i(θ)
)
,

G1(θ, ρ) = (−ρnsinθ,−ρn+1cosθ),
G2(θ, ρ) = (ρn(g(φ)cosθ − f(φ)sinθ),−ρn+1(f(φ)cosθ + g(φ)sinθ)).
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θ1θ2

φ=0
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θ2(s)
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θ (s)
1

FIG. 3. Invariant tori generated by the periodic orbits of the compactfied polynomial
vector field (11) with µ = A = 0.

As φ̇ > 0 and the system is 2π–periodic in φ, one can consider the global
cross section to the flow of the system, given by

Σφ0 = {(θ, ρ, φ) | (θ, ρ) ∈ [0, 2π)× [0, +∞) and φ = φ0 ∈ [0, 2π)},

on which one can define the mth iterated of the Poincaré return map,
related to (11), Pm

µ,A : Σφ0 −→ Σφ0 , given by

Pm
µ,A(u0) = u(mT, u0, φ0, µ, A),

where u(s, u0, φ0, µ, A) is the solution of

u̇ = F (u) + µG1(u) + AG2(u, φ(s, φ0)), (14)

with u(0, u0, φ0, µ, A) = u0, and φ(s, φ0) is the solution of φ̇ = ρn−1 (equa-
tion (13)), with φ(0) = φ0. Thus, for s = 0, u0 ∈ Σφ0 . This way,
fixed points of Pm

µ,A correspond to order m subharmonics of (11), since
P j

µ,A(u0) 6= u0 for 1 < j < m.
Remember that we are assuming that the system u̇ = F (u), associated to

the compactfied system (11) has, for µ = A = 0, an annulus A of periodic
orbits, which accumulate on the infinite heteroclinic cycle θ1 ∪ γ(s) ∪ θ2 ∪
α(s). We are interested in determining which of these periodic orbits will
persist for the periodically perturbed system (14), for µ and A sufficiently
small.

We prove now two technical lemmas, which will be used to prove Theorem
8, the main result of this section.
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Lemma 6. The annulus A ⊂ Σφ0 of periodic orbits of (14), with µ =
A = 0, which accumulate on the infinite heteroclinic cycle γ(s)∪θ1∪α(s)∪
θ2, is regular in a sufficiently small neighborhood of the cycle.

Proof. Consider the Poincaré cross section, transversal to the flow of
the system (14), with µ = A = 0, given by Σ = {(θ, ρ) | θ = π and ρ ∈
[0, ρ̄)},with ρ̄ sufficiently small (see Figure 4).

θ

ρ

3π/2π/2

Σ

γ

Σ Σ
Σ Σ

1

34

2

U U2

qρ(s)

α π

1

(s)

(s)

ρ

ρ=ε

FIG. 4.

Let qρ(s) be the periodic orbit contained in the annulus A, such that
qρ(0) = (ρ, π) ∈ Σ, with ρ ∈ (0, ρ̄). Let T (ρ) be the period of qρ(s). We
shall prove that T ′(ρ) 6= 0, for all ρ ∈ (0, ρ̄) (diminishing ρ̄, if necessary).

In order to accomplish that, consider sections Σi, i = 1, 2, 3, 4, transver-
sal to A, in the following way (Figure 4):

Σ1 = {(θ, ρ) | θ =
π

2
+ ε and ρ ∈ [0, ε)},

Σ2 = {(θ, ρ) | θ =
3π

2
− ε and ρ ∈ [0, ε)},

Σ3 = {(θ, ρ) | θ ∈ (
3π

2
− ε,

3π

2
+ ε) and ρ = ε},

Σ4 = {(θ, ρ) | θ ∈ (
π

2
− ε,

π

2
+ ε) and ρ = ε},

with 0 < ε < ρ̄.
As the periodic orbits qρ(s) accumulate on the cycle γ(s) ∪ θ1 ∪ α(s) ∪

θ2, for ρ̄ sufficiently small, each orbit qρ(s), with ρ ∈ (0, ρ̄), crosses the
transversal sections Σi, i = 1, 2, 3, 4, defined above. Then one can consider
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the period function

T (ρ) = T1(ρ) + T2(ρ) + T3(ρ) + T4(ρ),

where Ti(ρ) is the time taken to qρ(s) to go from Σi to Σi+1 (identifying
Σ5 with Σ1, to close the cycle).

From the continuous dependence theorem with respect to the initial con-
ditions, it follows that T1(ρ) and T3(ρ) are analytic functions of ρ, such that

lim
ρ→0+

T1(ρ) = T1(0) < +∞ and lim
ρ→0+

T3(ρ) = T3(0) < +∞. (15)

On the other hand, the times T2 and T4 are the transition times of qρ(s)
in the neighborhood of the saddle points θ1 = (θ1, 0) and θ2 = (θ2, 0) of the
system (11) in the equator, being θ1 = π/2 and θ2 = 3π/2.By hypothesis,
such points are hyperbolic and the jacobian matrix of the compactfied
system, evaluated in these points, is given by

(
A
′
n(θi) An−1(θi)
0 −Rn(θi)

)
,

with i = 1, 2. So, by a theorem due to Hartman (see [9], pg. 258), there ex-
ist neighborhoods U1 and U2 of θ1 and θ2, in which the system is conjugated
to

θ̇ = A′n(θ1)(θ − π/2)
ρ̇ = −Rn(θ1)ρ,

and θ̇ = A′n(θ2)(θ − 3π/2)
ρ̇ = −Rn(θ2)ρ,

where −Rn(θ1) < 0 < A′n(θ1) and A′n(θ2) < 0 < −Rn(θ2) are the
eigenvalues of the system on the saddle points θ1 and θ2, respectively.

Taking ε fixed, sufficiently small, so that Σ1,Σ4 ⊂ U1 and Σ2, Σ3 ⊂ U2

(Figure 4), one has, from the second equations in the linear systems above,
that the transition time close to the saddle points, as a function of ρ, is
given by

T2(ρ) = − 1
Rn(θ2)

ln
( ε

ρ2(ρ)

)
> 0 and T4(ρ) = − 1

Rn(θ1)
ln

(ρ1(ρ)
ε

)
> 0,

(16)
with ρ1(ρ) being the point where qρ(s) crosses the transversal section Σ1,
ρ2(ρ) is the point where it crosses Σ2, being ρ1 and ρ2 differentiable func-
tions of ρ, with

lim
ρ→0+

ρ1(ρ) = lim
ρ→0+

ρ2(ρ) = 0.

It follows from the expression (16) that

lim
ρ→0+

T2(ρ) = +∞ and lim
ρ→0+

T4(ρ) = +∞. (17)
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Also, differentiating T2 and T4 with respect to ρ one has

T ′2(ρ) =
ρ′2(ρ)

Rn(θ2)ρ2(ρ)
< 0 and T ′4(ρ) = − ρ′1(ρ)

Rn(θ1)ερ1(ρ)
< 0,

from which follows that

lim
ρ→0+

T ′2(ρ) = −∞ and lim
ρ→0+

T ′4(ρ) = −∞. (18)

Finally, from (15), (17) and (18) follows that, for sufficiently small ρ,
T ′(ρ) < 0 and limρ→0+ T (ρ) = +∞, which ends the proof.

Using the lemma above, one can make a sketch of the graphic of period
function T (ρ), which is shown in Figure 5. Still using this lemma, one can
prove the following result.

_
ρ( )

_
ρ

(ρ)T

ρ
Τ

FIG. 5. Sketch of the period function graphic.

Lemma 7. If ρ̄ is sufficiently small, there exists a sequence {ρmi}i∈N ⊂
(0, ρ̄), with limi→+∞ ρmi = 0, to which corresponds a family {qρmi (s)}i∈N ,
of periodic orbits of the system (14), with µ = A = 0, belonging to the
annulus A, such that the period T (ρmi) of qρmi (s) satisfies, for each i,
the following resonance condition with the period 2π of the perturbation
function G2(u, φ(s)) in 14

T (ρmi) = 2πmi, (19)

where mi are natural numbers such that limi→+∞mi = +∞.

Proof. The proof follows immediately from the previous lemma, since
T (ρ) is a continuous function which tends to infinity as ρ → 0, assuming
all the values in the interval [T (ρ̄),+∞). Also, as limi→+∞ ρmi = 0, and
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T (ρmi
) → +∞ as ρmi

→ 0, from the resonance relation (19) it follows that
mi →∞, as i → +∞.

Using these lemmas and the results stated in the previous section (Theo-
rem 5), we shall prove the following, which is the main result of the paper.

Theorem 8. Consider the system u̇ = F (u)+µG1(u)+AG2(u, φ(s, φ0)),
given in (14). Suppose that, for µ = A = 0, the system has a singular
cycle γ(s)∪ θ1 ∪α(s)∪ θ2, accumulated by an annulus A of periodic orbits.
Consider the functions

Sm =
∫ mT

0

e−
R s
0 divF (qρm (τ))dτ < F⊥(qρm(s)), G1(qρm(s)) > ds,

Mm(φ0) =
∫ mT

0

e−
R s
0 divF (qρm (τ))dτ < F⊥(qρm(s)), G2(qρm(s), φ(s, φ0)) > ds,

where qρm(s) is a resonant periodic orbit belonging to A and F , G1 and
G2 are the functions on the system (14), F⊥ being the orthogonal of F .

If Sm is different from zero and Mm has only two nondegenerated critical
points, a maximum and a minimum, given by φmax and φmin, such that
M ′′(φmax) 6= 0 and M ′′(φmin) 6= 0, with M(φmin) < 0 < M(φmax), then
the following results hold: there exist, for sufficiently small µ, differentiable
curves Am

1 (µ) and Am
2 (µ), with Am

1 (0) = Am
2 (0) = 0, which divide the

parameter space (µ,A) in two disjoint regions R1 and R2 (Figure 6) such
that: a) for (µ,A) in R1, the perturbed system has two subharmonics of
order m, which bifurcate from the resonant periodic orbit qρm(s); b) for
(µ,A) in R2, there are no subharmonics bifurcating from qρm(s); c) for
(µ,A) on the border of the regions R1 and R2 (in the curves Am

1 (µ) and
Am

2 (µ)), there exists only one subharmonic of order m, that bifurcates from
qρm(s).

Remark 9. The functions Sm and Mm(φ0) which appear in the theorem
above correspond to the functions M(s, φ0), with s = 0, in Theorem 5.
Also, it can be proved that ∂M

∂s = ∂M
∂φ0

([15], pg. 503). Sm does not depend
on φ0, for it is related to the autonomous part of the perturbation, while
Mm(φ0) is related to the nonautonomous (periodic) part.

Proof. Consider the Poincaré map Pm
µ,A(u) : Σφ0 → Σφ0 , associated to

(14), given by

Pm
µ,A(u) = u(mT, u, φ0, µ,A),
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where u is the solution of u̇ = F (u) + µG1(u) + AG2(u, φ(s, φ0)), with
u(0, u, φ0, µ,A) = u ∈ Σφ0 , and

Σφ0 = {(u, φ) | u ∈ IR2 and φ = φ0 ∈ [0, 2π)}.

Taylor expanding Pm
µ,A, with respect to the parameters µ and A, near

µ = A = 0, one obtains

Pm
µ,A(u) = u(mT, u, φ0, 0, 0) + uµ(mT, u, φ0, 0, 0)µ

+uA(mT, u, φ0, 0, 0)A + R(φ0, µ,A),

where R(φ0, µ,A) = a(φ0, µ, A)µ2 + b(φ0, µ, A)µA + c(φ0, µ, A)A2 + h.o.t,
and a, b, c are differentiable functions such that a(φ0, 0, 0) = b(φ0, 0, 0) =
c(φ0, 0, 0) = 0

Suppose that u belongs to one of the resonant periodic orbits of the
unperturbed systems, say qρm(s), given by Lemma 7. Then, one has
u(mT, u, φ0, 0, 0) = u, from which follows that

Pm
µ,A(u)− u = uµ(mT, u, φ0, 0, 0)µ + uA(mT, u, φ0, 0, 0)A + R(φ0, µ, A).

Taking

∆(φ0, µ, A) := uµ(mT, u, φ0, 0, 0)µ + uA(mT, u, φ0, 0, 0)A + R(φ0, µ,A),

it follows that the fixed points of Pm
µ,A are given by the zeroes of ∆.

From Theorem 5 and Lemma 6, which guarantee that the annulus A
of (14) is regular, it follows that, for µ and A sufficiently small, the ze-
roes of the function ∆ depend only on their projection over the direction
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f⊥(qρm(s)), that is, they depend only on the components of uµ and uA on
the direction of f⊥(qρm(s)), where uµ and uA are the solutions of the sec-
ond variational equation associated to (14), obtained from differentiating
the system with respect to µ and A, respectively.

Therefore, using Lemma 4, one has

< ∆(φ0, µ,A), f⊥(qρm(s)) >:= Smµ + Mm(φ0)A + R(φ0, µ,A),

where

Sm =
∫ mT

0

e−
R s
0 divF (qρm (τ))dτ < F⊥(qρm(s)), G1(qρm(s)) > ds,

Mm(φ0) =
∫ mT

0

e−
R s
0 divF (qρm (τ))dτ < F⊥(qρm(s)), G2(qρm(s), φ(s, φ0)) > ds,

which are the projections of uµ and uA, respectively, on the direction of
f⊥(qρm(s)).

Factoring µ in the expression above, one obtains

< ∆(φ0, µ,A), f⊥(qρm(s)) >:=
µ[Sm + Mm(φ0)η + R̃(φ0, µ, η)] := µ∆̃(φ0, µ, η),

where η = A/µ,

R̃(φ0, µ, η) = a(φ0, µ, ηµ)µ + b(φ0, µ, ηµ)µη + c(φ0, µ, ηµ)µη2 = O(µ)

and, in this way, for µ 6= 0 sufficiently small, the zeroes of the projection of
the function ∆(φ0, µ, A) on the direction of f⊥(qρm(s)) coincide with the
zeroes of the function

∆̃(φ0, µ, η) = Sm + Mm(φ0)η + O(µ). (20)

Using now the hypotheses that Sm 6= 0 and Mm(φ0) have a non degenerated
maximum and a minimum, with Mm(φmin) < 0 < Mm(φmax), and
supposing, without loss of generality, that Sm > 0, one can determine the
regions R1 and R2 described in the theorem from the function ∆̃. Indeed,
∆̃(φ0, µ, η) = 0 if and only if

Sm + Mm(φ0)η + O(µ) = 0. (21)

On the other hand,

Mm(φmin) ≤ Mm(φ0) ≤ Mm(φmax).
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From the relations above, isolating M(φ0) in (21) and being η = A/µ, it
follows that

Mm(φmin) ≤ −Sm

η
−O(µ2) ≤ Mm(φmax),

from which one has the relations

η ≥ − Sm

Mm(φmin)
−O(µ) or η ≥ − Sm

Mm(φmax)
−O(µ) if η > 0,

and

η ≤ − Sm

Mm(φmin)
−O(µ) or η ≤ − Sm

Mm(φmax)
−O(µ) if η < 0,

The inequalities η ≥ − Sm

Mm(φmax) −O(µ) and η ≤ − Sm

Mm(φmin) −O(µ)
are always satisfied, due to the hypotheses. From the other inequalities,
one has (changing back the change of variables η = A/µ), for µ > 0,

A ≥ − Sm

Mm(φmin)
µ−O(µ2 and A ≤ − Sm

Mm(φmax)
µ−O(µ2).

Also, if µ < 0 one has

A ≤ − Sm

Mm(φmin)
µ−O(µ2) and A ≥ − Sm

Mm(φmax)
µ−O(µ2).

These four inequalities determine the regions R1 and R2 (Figure 6), in
the parameter plane, in which there exist one subharmonic of order m for
(14), which bifurcates from the resonant orbit qρm(s). Such regions are
delimited by the curves Am

1 (µ) and Am
2 (µ), with µ small enough, given by

Am
1 (µ) = − Sm

Mm(φmax)
µ−O(µ2), Am

2 (µ) = − Sm

Mm(φmin)
µ−O(µ2),

and depend only on the values of Sm, Mm(φmin) and Mm(φmax).
Let us show, using the hypotheses M ′′(φmax) < 0 and M ′′(φmin) > 0,

that, if (µ,A) belongs to the interior of the regions R1 and R2, there exist
two subharmonics of order m bifurcating from the resonant periodic orbit
qρm(s) and, if (µ,A) is in the curves Am

1 (µ) or Am
2 (µ),there exists only one

subharmonic of order m.
Taylor expanding M(φ0) with respect to φ0 around φ0 = φmax and

putting it in the expression of ∆̃(φ0, µ, η) in (20), one obtains

∆̃(φ0, µ, η) = Sm+Mm(φmax)η+βη(φ0−φmax)2+O((φ0−φmax)3)η+O(µ),
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with β = M ′′(φmax)/2 < 0. So, if (µ,A) ∈ Am
1 (µ), then

η = −Sm/Mm(φmax)−O(µ),

which, substituted in the last expression, implies that ∆̃(φ0, µ, η) = 0 if,
and only if,

βη(φ0 − φmax)2 + O((φ0 − φmax)3)η = 0.

As, for µ sufficiently small, βη 6= 0, it follows that the expression above
is equal to zero if, and only if, φ0 − φmax = 0. Thus, if (µ,A) ∈ Am

1 (µ),
φ0 = φmax is the unique zero of ∆̃(φ0), which correspond to a subharmonic
of order m, bifurcating from qρm(s).

In the same way, by Taylor expanding M(φ0) around φmin, one can
conclude that, if (µ,A) is in Am

2 (µ), then φ0 = φmin is the only zero of
∆̃(φ0).

Suppose now that (µ,A) belongs to the interior of the region R2. The
equality

∆̃(φ0, µ, η) = Sm + Mm(φmax)η + βη(φ0 − φmax)2

+ O((φ0 − φmax)3)η + O(µ) = 0,

is equivalent to

βηφ0
2 − 2βηφ0φmax + βηφmax

2 + Sm + Mm(φmax)η
+O((φ0 − φmax)3)η + O(µ) = 0.

The equation above, as a function of φ0, has two real roots if, and only
if, its discriminant is strictly positive, which, after a straight forward cal-
culations leads to

−4βη[Sm + Mm(φmax)η + O((φ0 − φmax)3)η + O(µ)] > 0.

As, for small enough µ, βη > 0, the inequality above holds if, and only
if,

η < −Sm/Mm(φmax)−O((φ0 − φmax)3)η −O(µ).

Taking (φ0 − φmax) of order µ2/3, as η = A/µ, it follows that O((φ0 −
φmax)3)η = O(µ). Then, the last inequality takes the form

η <
−Sm

Mm(φmax)
−O(µ)
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which implies that (µ,A) belongs to the interior of the region R2, with
A > 0,for µ sufficiently small.

In the same way, after expanding ∆̃ around φ0 = φmin, one can conclude
that the equation ∆̃(φ0, µ, η) = 0 has two real roots if (µ,A) belongs to the
interior of the region R2, with A < 0.

These two real roots of ∆̃ = 0 correspond to the 2m fixed points of the
Poincaré map Pm

µ,A, which correspond to the two subharmonics of order
m of the perturbed system (14), which bifurcate from the resonant orbit
qρm(s). The theorem is proved.

The hypotheses on the function M(φ0) in the previous theorem are
directly related to the properties of the periodic perturbation function
G2(u, φ(s, φ0)) of the system (14), as it can be easily seen.

Looking at the Figure 6, let us see the scenery described in Theorem 8.
Fixing a value of the parameter µ > 0, taking A varying in the vertical
direction, from A = 0, one has: initially, for A closer to zero, the system
does not have subharmonics bifurcating from qρm(s); when the parameter
A crosses the value A = Am

1 (µ), one subharmonic of order m arises; finally,
for A > Am

1 (µ), there exist two subharmonics of order m arising from the
resonant orbit qρm(s). These subharmonics correspond to fixed points of
the Poincaré map Pm

µ,A, with µ fixed, sufficiently small. This scenery is
commonly found in the study of one parameter family of difeomorfisms,
which is given, in this case, by Pm

µ,A, considering the parameter µ fixed. As
the value of A crosses the curve Am

1 (µ), a saddle node bifurcation occurs,
which gives rise to the subharmonics.

In the next section, the quadratic case will be considered, since it appears
in several applied equations, as Lotka–Volterra model, Blasius equation of
the fluid flow and Endem–Fowler equations of Astrophysics ([5], [14]).

4. QUADRATIC CASE

Consider the family of quadratic polynomial vector fields

ẋ = xy − y
ẏ = α + mx + ny + ax2 + bxy + cy2.

(22)

and suppose that the system satisfies the hypotheses (H1)–(H3) below:

(H1) (b + n)2 − 4(α + m + a)c < 0 and m2 − 4aα > 0;
(H2) 0 < c < 1;
(H3) b2 − 4a(c− 1) < 0.

Then, as it is proved in [10], (22) has only two hyperbolic saddles at
infinity, θ1 and θ2, connected by a heteroclinic trajectory γ(s), which is a
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reparametrization of the solution contained in the straight line {x = 1},
forming the infinite heteroclinic cycles γ(s)∪θ1∪±α(s)∪θ2 on the Poincaré
disk (see Figures 1 and 7). Also, the system has two critical points on the
x axis, which are foci or centers.

Lemma 10. The system (22) has two centers on the x axis if, and only
if, n = b = 0.

Proof. System (22) has two critical points in the x axis, given by

E1,2 =
−m±√m2 − 4aα

2a
,

and the trace of the jacobian matrix evaluated in these points is equals to
zero if, and only if, n = b = 0, which is a necessary condition for E1 and
E2 to be centers.

Considering the change of variables (x, y) → (x,−y) it follows that, if
b = n = 0, the system is symmetric with respect to the x axis and, therefore,
E1 and E2 are centers.

The phase plane of the compactification of the system (22) on the Poin-
caré disk, with n = b = 0, is as shown in Figure 7.

θ

θ 2

−α α

1   

FIG. 7. Phase plane of the system (22) with n = b = 0.

Consider now the following periodic perturbation of system (22):

ẋ = xy − y + µ + A(a1 cos t + a2 sin t)
ẏ = α + mx + ax2 + cy2 + A(b1 cos t + b2 sin t), (23)

where µ and A are real parameters.
In order to use the results stated in the previous section to consider

subharmonic bifurcations to the system above, it must be observed first
that, although the annulus of periodic orbits tend, on the one hand, to
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the critical point E2 and, on the other, to the infinite heteroclinic cycle
γ(s) ∪ θ1 ∪ +α(s) ∪ θ2, it is not possible to guarantee that it is regular.
In fact, it is still an open problem to determine the number of critical
points of the period function associated to an annulus of periodic orbits
of a polynomial vector field in the case in which it is unbounded (see,
for example, [3]). So, as it was done previously, it will be analyzed only
the subharmonic bifurcations that occur with the large amplitude periodic
orbits, which is the part of the annulus that is regular, as proved in Lemma
6.

The compactification of (23), in polar coordinates (θ, ρ) is given by

θ̇ = a cos3 θ + (c− 1) sin2 θ cos θ + ρ(m cos2 θ + sin2 θ) + ρ2α cos θ

−µρ2 sin θ + Aρ2[(b1 cos s + b2 sin s) cos θ − (a1 cos s + a2 sin s) sin θ]
ρ̇ = −ρ[c sin3 θ + (a + 1) cos2 θ sin θ + ρ(m− 1) sin θ cos θ + ρ2α sin θ]

−µρ3 cos θ −Aρ3[(a1 cos s + a2 sin s) cos θ + (b1 cos s + b2 sin s) sin θ]

Taking F (θ, ρ) = (F1(θ, ρ), F2(θ, ρ)), where

F1(θ, ρ) = a cos3 θ + (c− 1) sin2 θ cos θ + ρ(m cos2 θ + sin2 θ) + ρ2α cos θ,

F2(θ, ρ) = −ρ[c sin3 θ + (a + 1) cos2 θ sin θ + ρ(m− 1) sin θ cos θ + ρ2α sin θ],

G1(θ, ρ) = (−ρ2 sin θ,−ρ3 cos θ),

and

G2(θ, ρ) = (G1
2(θ, ρ), G2

2(θ, ρ)),

with

G1
2 = ρ2[(b1 cos s + b2 sin s) cos θ − (a1 cos s + a2 sin s) sin θ]

G2
2 = −ρ3[(a1 cos s + a2 sin s) cos θ + (b1 cos s + b2 sin s) sin θ],

one can write the system in the following way

u̇ = F (u) + µG1(u) + AG2(u, φ(s, φ0)), (24)

where u = (θ, ρ), and φ(s, φ0) is the solution of φ̇ = ρ, with φ(0) = φ0.
One can now apply the results stated in the previous theorems. First

it will be shown that the hypotheses of Theorem 8 hold for the periodic
perturbation above, that is, the functions Sm and Mm(φ0) associated with
(24), defined in the theorem, satisfy the conditions Sm 6= 0 and Mm(φ0) has
only one maximum point φmax, and a minimum, φmin, non degenerated
(M ′′(φmax) 6= 0 and M ′′(φmin) 6= 0).
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Lemma 11. The functions Sm and Mm(φ0), defined in Theorem 8, re-
lated to the system (24), are given by

Sm = −
∫ mT

0

e−
R s
0 σ(τ)dτρ3[a cos2 θ + c sin2 θ + ρm cos θ + ρ2α]ds,

and

Mm(φ0) = −
∫ mT

0

e−
R s
0 σ(τ))dτρ(s)3K(θ, ρ, φ0, s)ds,

where K(θ, ρ, φ0, s) is equals to

[a1 cos(φ(s, φ0)) + a2 sin(φ(s, φ0))](a cos2 θ + c sin2 θ + ρm cos θ + ρ2α)
+[b1 cos(φ(s, φ0)) + b2 sin(φ(s, φ0))](ρ sin θ − ρ2 sin θ cos θ),

where (θ, ρ) = (θ(s), ρ(s)) are the coordinates of the resonant periodic orbit
qρm(s) of (24), and

σ(s) =
2∑

i=0

ρ(s)iA
′
n−i(θ(s))−

2∑

i=0

(i + 1)ρ(s)iRn−i(θ(s)),

with Ak(θ) and Rk(θ) defined above.

Proof. Consider the polynomial vector field

ẋ = P (x, y) + εf(s)
ẏ = Q(x, y) + εg(s),

and its compactification in (θ, ρ) coordinates, given by

θ̇ =
n∑

i=1

ρiAn−i(θ) + f̄(θ, ρ, ε, φ)

ρ̇ = −
n∑

i=0

ρi+1Rn−i(θ) + ḡ(θ, ρ, ε, φ)

φ̇ = ρ,

where

Ak(θ) = −Pk(cos θ, sin θ) sin θ + Qk(cos θ, sin θ) cos θ

Rk(θ) = Pk(cos θ, sin θ) cos θ + Qk(cos θ, sin θ) sin θ,
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for k = 0, 1, 2, with θ ∈ [0, 2π) and ρ ∈ [0,∞),

f̄(θ, ρ, ε, φ) = ρn[εg(φ) cos θ − εf(φ) sin θ],
ḡ(θ, ρ, ε, φ) = −ρn+1[εf(φ) cos θ + εg(φ) sin θ].

Let us calculate, for this system, the terms of the integrand in M(φ0),
given in Theorem 8. In order to do that, let us take

F (θ, ρ) =

(
n∑

i=1

ρiAn−i(θ),−
n∑

i=0

ρi+1Rn−i(θ)

)
.

Then, neglecting the arguments of the functions, to simplify, and taking
sin θ = s and cos θ = c, one obtains:

< F⊥, (f̄ , ḡ) >=

cf̄

n∑

i=0

ρi+1Pn−i + sf̄

n∑

i=0

ρi+1Qn−i − sḡ

n∑

i=0

ρiPn−i + cḡ

n∑

i=0

ρiQn−i.

Substituting f̄ and ḡ on the expression above, one obtains, after a straight-
forward calculation

< F⊥, (f̄ , ḡ) > = gρn+1
∑n

i=0 ρiPn−i − fρn+1
∑n

i=0 ρiQn−i

= ρn+1 <
(
−∑n

i=0 ρiQn−i,
∑n

i=0 ρiPn−i

)
, (f, g) >,

where Pk and Qk are the homogeneous polynomials of degree k, components
of P and Q, which are the polynomial that determine the unperturbed
system on the plane, (P =

∑n
k=0 Pk and Q =

∑n
k=0 Qk), f and g are the

perturbation functions of the polynomial vector field (P,Q), and <,> is
the usual inner product in R2.

For the system (23), whose compactification is given by (24), there exist
two pairs (f, g) of perturbation functions: (f, g) = (1, 0), related to the
parameter µ (autonomous part), and

(f, g) = (a1 cos s + a2 sin s, b1 cos s + b2 sin s),

related to the parameter A (nonautonomous part).
Putting these expressions and the quadratic polynomials given in (23)

on the equations < F⊥, (f̄ , ḡ) > obtained above, and considering the di-
vergence of the unperturbed system, given by

divF (qρm(s)) = σ(s) =
n∑

i=0

ρ(s)iA
′
n−i(θ(s))−

n∑

i=0

(i + 1)ρ(s)iRn−i(θ(s)),
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one can obtain the expressions Sm and Mm(φ0) stated in the lemma.

Lemma 12. For ρm sufficiently small one has Sm < 0, for

∫ mT

0

e−
R s
0 σ(τ)dτρ(s)3[a cos2 θ(s)+c sin2 θ(s)+ρ(s)m cos θ(s)+ρ(s)2α]ds >0.

Proof. Consider the periodic orbit qρm(s) = (θ(s), ρ(s)). For ρm suffi-
ciently small such periodic orbit is closer to the infinite heteroclinic cycle
θ1 ∪ γ(s) ∪ θ2 ∪ α(s) and we can consider the cross section Σ1 and Σ2,
transversal to this orbit, defined by

Σ1 = {(θ, ρ) | θ ∈ (
3π

2
− ε,

3π

2
+ ε), ρ = ε},

Σ2 = {(θ, ρ) | θ ∈ (
π

2
− ε,

π

2
+ ε), ρ = ε},

with ε > 0 sufficiently small (see Figure 8).

θ

ρ

3π/2π/2

γ

Σ Σ

qρ

α π
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(s)

(s)

1

(s)m

FIG. 8.

This way, taking qρm(0) ∈ Σ1, one can divide the integral in two parts:
Z mT

0

e−
R s
0 σ(τ)dτρ(s)3[a cos2 θ(s) + c sin2 θ(s) + ρ(s)m cos θ(s) + ρ(s)2α]ds =

Z T1

0

e−
R s
0 σ(τ))dτρ(s)3[a cos2 θ(s) + c sin2 θ(s) + ρ(s)m cos θ(s) + ρ(s)2α]ds+

Z mT

T1

e−
R s
0 σ(τ))dτρ(s)3[a cos2 θ(s) + c sin2 θ(s) + ρ(s)m cos θ(s) + ρ(s)2α]ds

= S1 + S2,

where T1 is the time taken to the orbit qρm(s) to go from Σ1 to Σ2.
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Let us prove that S1 > 0 and that S2 is closer to zero, for ρm sufficiently
small.

Considering the cross sections defined above (Figure 8) and that qρm(s)
stay ε–close to the singular cycle γ(s)∪ θ1 ∪α(s)∪ θ2, for s ∈ [T1,mT ] one
has 0 < ρ(s) ≤ ε << 1, from which follows that ρ(s)3 < ε. On the other
hand, being ρ(s) bounded, the term

σ(s) =
n∑

i=0

ρ(s)iA
′
n−i(θ(s))−

n∑

i=0

(i + 1)ρ(s)iRn−i(θ(s)),

is bounded, and the term exp{−∫ s

0
σ(τ)dτ} is also bounded for s ∈ [T1, mT ],

say by a constant K1 < ∞. Also, it is clear that [a cos2 θ(s) + c sin2 θ(s) +
ρ(s)m cos θ(s) + ρ(s)2α] ≤ K2, for some constant K2 < ∞. Then one has
����
Z mT

T1

e−
R s
0 σ(τ))dτρ(s)3[a cos2 θ(s) + c sin2 θ(s) + ρ(s)m cos θ(s) + ρ(s)2α]ds

����
< K1K2(mT − T1)ε. (25)

In order to prove that S1 > 0, we will take into account the fact that, for

ρm sufficiently small and s ∈ [0, T1], one has, by the continuous dependence

theorem, that qρm(s) stay close to the portion γ(s) between Σ1 and Σ2 (see

Figure 8). Considering the relations

xρ = cos θ, yρ = sin θ and
ds

dt
=

1

ρn−1
(26)

and changing the variables in the integral above, one obtains S1 given by

Z T1

0

e−
R s
0 σ(τ)dτρ(s)3[a cos2 θ(s) + c sin2 θ(s) + ρ(s)m cos θ(s) + ρ(s)2α]ds =

Z t2

t1

e−
R s
0 σ̃(τ))dτ‖(x(t), y(t))‖−2[ax(t)2 + cy(t)2 + mx(t) + α]dt =

Z t2

t1

e−
R s
0 σ̃(τ))dτ‖(x(t), y(t))‖−2Q(x(t), y(t))dt,

where q(t) = (x(t), y(t)), with t ∈ [t1, t2], is the portion of the periodic
orbit on the plane, in (x, y) coordinates, which is a reparametrization of
the portion of qρm(s), with s ∈ [0, T1].

As the change of coordinates (26) is a difeomorfism for (x, y) 6= (0, 0), and
s ∈ [0, T1], qρm(s) stay ε–close to γ(s), on the Poincaré disk, it follows from
the continuous dependence theorem that for t ∈ [t1, t2] the periodic orbit
q(t) stay close to the solution ϕ(t) = (1, ϕ2(t)) of the polynomial system,
on the plane, contained in the invariant line {x = 1} (corresponding to
γ(s) on the disk). Then, the coordinate x(t) of the periodic orbit q(t) stay
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close to 1, for t ∈ [t1, t2]. As, by hypothesis, Q(1, y) > 0, ∀y, one has,
by continuity, that the integrand of S1 is the product of positive functions
and, therefore, the integral is strictly positive, and the lemma is proved.

Lemma 13. The function Mm(φ0), associated with (24), has two non
degenerate critical points on the interval [0, 2π), being one of them a min-
imum and the other a maximum.

Proof. As stated in Lemma 11, the expression of Mm(φ0) is given by

Mm(φ0) =
∫ mT

0

e−
R s
0 σ(τ)dτρ(s)3K(θ, ρ, φ0)ds,

where

σ(s) =
n∑

i=0

ρiA
′
n−i(θ)−

n∑

i=0

(i + 1)ρiRn−i(θ),

which does not depend on φ0, and

K(θ, ρ, φ0) =
[a1 cos(φ(s, φ0)) + a2 sin(φ(s, φ0))](a cos2 θ + c sin2 θ + ρm cos θ + ρ2α)
+[b1 cos(φ(s, φ0)) + b2 sin(φ(s, φ0))](ρ sin θ − ρ2 sin θ cos θ),

where (θ, ρ) = (θ(s), ρ(s)) are the coordinates of the resonant orbit qρm(s)
of (24).

Calculating the first two derivatives of Mm(φ0) with respect to φ0 it
follows that M ′′

m(φ0) = −ζ(φ0)Mm(φ0), for every φ0 ∈ [0, 2π). Therefore
Mm(φ0) has nondegenerate critical points, a maximum and a minimum,
on the interval [0, 2π), with M(φmin) < 0 < M(φmax).

Using Lemmas 12 and 13 one can conclude, using Theorem 8, that the
bifurcation diagram of the system (24) is similar to that shown in Figure
6.

5. ASYMPTOTIC BEHAVIOR OF THE SUBHARMONIC
BIFURCATIONS

The subharmonics of order m, detected by the theorem of the previous
section, for the quadratic system, correspond only to those that bifurcate
from the resonant orbit qρm(s), when the parameters µ and A vary on a
neighborhood of the origin, in the parameter space.

Although, by Lemma 7, for ρ̄ sufficiently small, there exists a countable
sequence ρmi ⊂ (0, ρ̄), with i ∈ N, such that, to each element of this
sequence correspods a resonant periodic orbit qρmi (s), of the unperturbed
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system (24), contained in the regular annulus, that accumulate on the
infinite heteroclinic cycle. Also, limi→+∞ ρmi

= 0, from which one can
conclude that the resonant periodic orbits qρmi (s) tend, as a set, to the
singular cycle, as i → +∞.

Based on these considerations in this section it will be done an analysis of
the asymptotic behavior of the subharmonics of order mi, which bifurcate
from the resonant one qρmi (s), as the sequence ρmi tends to zero.

The aim is to prove that the tangent line, at the origin, to the bifurcation
curves, Ami

1 (µ) and Ami
2 (µ), associated to the resonant orbit qρmi (s), tends

to the heteroclinic tangency curves, , as i → +∞.

AM (µ) = − S

M(φmax)
µ−O(µ2) and Am(µ) = − S

M(φmin)
µ−O(µ2)

obtained by this author in [10]. In other words, it shall be proved the
following convergences

Smi
→ S, Mmi

(φmax) → M(φmax) and Mmi
(φmin) → M(φmin),

as i → +∞.
Since, for each mi there exist two subharmonics of order mi, bifurcating

from the resonant orbit qρmi (s), as the parameters µ,A cross the curves
Ami

1 (µ) e Ami
2 (µ), then, if mi → +∞, the total number of subharmonics of

the system tends to infinity. On the other hand, as the resonant periodic
orbits qρmi (s) accumulate on the infinite heteroclinic cycle γ(s)∪θ1∪α(s)∪
θ2, the subharmonics of order mi bifurcating from them accumulate on the
heteroclinic tangencies. In the Figure 9 a sketch of this convergence is
shown, based on the considerations above.

µ

A

(0)

(2)

(4)

(6)

(2)

(4)

(6)

A

Am

M

(µ)

(µ)

FIG. 9.
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Consider then the following periodic perturbation of the quadratic sys-
tem with two centers and an invariant straight line

ẋ = xy − y + µ + A(a1 cos t + a2 sin t)
ẏ = α + mx + ax2 + cy2 + A(b1 cos t + b2 sin t),

with its compactification on the Poincaré disk

u̇ = F (u) + µG1(u) + AG2(u, φ(s, φ0),

given in (24).
The subharmonic bifurcation curves for this system, related to a resonant

periodic orbit qρmi (s), are given by

Ami
1 (µ) = − Smi

Mmi
(φmax)

µ−O(µ2)

and

Ami
2 (µ) = − Smi

Mmi(φmin)
µ−O(µ2),

where

Smi =
∫ miT

0

e−
R s
0 σ(τ)dτρmi(s)

3[a cos2 θmi(s) + c sin2 θmi(s)

+ρmi(s)m cos θmi(s) + ρmi(s)
2α]ds

Mmi(φmax) =
∫ miT

0

e−
R s
0 σ(τ)dτρmi(s)

3F (θmi(s), ρmi(s), φmax)ds,

Mmi(φmin) =
∫ miT

0

e−
R s
0 σ(τ)dτρmi(s)

3F (θmi(s), ρmi(s), φmin)ds,

with

σ(s) =
2∑

i=0

ρmi(s)
iA

′
n−i(θmi(s))−

2∑

i=0

(i + 1)ρmi(s)
iRn−i(θmi(s)),

and
F (θmi (s), ρmi (s), φ0) =

−(a1 cos(ωs + φ0) + a2 sin(ωs + φ0))
2X

i=0

ρmi (s)
iQn−i(cos θmi (s), sin θmi (s))

+(b1 cos(ωs + φ0) + b2 sin(ωs + φ0))
2X

i=0

ρmi (s)
iPn−i(cos θmi (s), sin θmi (s)),



332 M. MESSIAS

where (θmi
(s), ρmi

(s)) are the coordinates of the resonant orbit qρmi (s),
Pk and Qk the homogeneous polynomials of degree k such that P (x, y) =∑2

k=0 Pk(x, y) and Q(x, y) =
∑2

k=0 Qk(x, y), where P (x, y) = xy − y and
Q(x, y) = α + mx + ax2 + cy2 are the polynomials which determine the
quadratic system in the plane.

From the study developed in [10], it follows that the heteroclinic tan-
gencies, related to the periodic perturbation of the heteroclinic connection
γ(s) of the system (24), are given, in the parameter space, by

AM (µ) = − S

M(φmax)
µ−O(µ2) and Am(µ) = − S

M(φmin)
µ−O(µ2),

where

S =
∫ +∞

−∞
e−
R s
0 σ(τ)dτρ0(s)3[a cos2 θ0(s) + c sin2 θ0(s)

+ρm cos θ0(s) + ρ2(s)α]ds,

M(φmin) =
∫ +∞

−∞
e−
R s
0 σ(τ)dτρ0(s)3F (θ0(s), ρ0(s), φmin)ds,

M(φmax) =
∫ +∞

−∞
e−
R s
0 σ(τ)dτρ0(s)3F (θ0(s), ρ0(s), φmax)ds,

with

σ(s) =
2∑

i=0

ρ0(s)iA
′
n−i(θ0(s))−

2∑

i=0

(i + 1)ρ0(s)iRn−i(θ0(s)),

and
F (θ0(s), ρ0(s), φ0) =

−(a1cos(ωs + φ0) + a2sin(ωs + φ0))
nX

i=0

ρ0(s)iQn−i(cos(θ0(s)), sin(θ0(s)))

+(b1cos(ωs + φ0) + b2sin(ωs + φ0))
nX

i=0

ρ0(s)iPn−i(cos(θ0(s)), sin(θ0(s))),

(θ0(s), ρ0(s)) being the coordinate of the heteroclinic trajectory γ(s),
which connects the saddle points θ1 and θ2, of the compactified unperturbed
polynomial system, and Pk and Qk are the homogeneous polynomials of
degree k such that P (x, y) =

∑2
k=0 Pk(x, y) and Q(x, y) =

∑2
k=0 Qk(x, y),

being P and Q the quadratic polynomials which determine the planar sys-
tem.

It is clear the similarity in the expressions of the integral formulas S and
Sm, M(φ0) and Mm(φ0). Let us prove then, firstly, that Smi → S, as
i → +∞.
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Lemma 14. Smi
→ S as i → +∞.

Proof. In order to establish the convergence, let us show that, given
ε > 0, there exists i ∈ N such that |S − Smi

| < ε.
As ρmi

→ 0, for i → +∞, it follows that the correspondent resonant
periodic orbit, qρmi (s) such that qρmi (0) = ρmi , tends, as a set, to the
singular cycle γ(s) ∪ θ1 ∪ α ∪ θ2 (see Figure 8), as i → +∞.

Then, one can take Poincaré sections, transversal to qρmi (s) and to γ(s),
given by

Σ1 = {(θ, ρ) | θ ∈ (
3π

2
− ε,

3π

2
+ ε) and ρ = ε},

Σ2 = {(θ, ρ) | θ ∈ (
π

2
− ε,

π

2
+ ε) and ρ = ε},

with ε > 0 sufficiently small (see Figure 8).
As, for i → +∞, qρmi (s) tends to the singular cycle γ(s) ∪ θ1 ∪ α ∪ θ2,

for i sufficiently large one has from the continuous dependence theorem,
that there exists τ > 0 such that qρmi (s) stays ε−close to γ(s), for every
s ∈ [−τ, τ ], with

qρmi (−τ), γ(−τ) ∈ Σ1 and qρmi (τ), γ(τ) ∈ Σ2.

Consider then the integral S in the form
Z −τ

−∞
e−

R s
0 σ(τ)dτ ρ0(s)3[acos2θ0(s) + csin2θ0(s) + ρmcosθ0(s) + ρ2(s)α]ds

+

Z τ

−τ
e−

R s
0 σ(τ)dτ ρ0(s)3[acos2θ0(s) + csin2θ0(s) + ρmcosθ0(s) + ρ2(s)α]ds

+

Z +∞

τ
e−

R s
0 σ(τ)dτ ρ0(s)3[acos2θ0(s) + csin2θ0(s) + ρmcosθ0(s) + ρ2(s)α]ds.

Using now the periodicity of qρmi (s), one can write the integral Smi in
the following way

∫ miT/2

−miT/2

e−
R s
0 σ(τ)dτρmi(s)

3[acos2θmi(s) + csin2θmi(s)

+ρmi(s)mcosθmi(s) + ρ2
mi

(s)α]ds

and thus, as mi → +∞, for i → +∞ (Lemma 7), one obtains
Smi =
Z −τ

−miT/2
e−

R s
0 σ(τ)dτ ρ3

mi
[a cos2 θmi + c sin2 θmi + ρmim cos θmi + ρ2

mi
α]ds

+

Z τ

−τ
e−

R s
0 σ(τ)dτ ρ3

mi
[a cos2 θmi + c sin2 θmi + ρmimcosθmi + ρ2

mi
α]ds

+

Z miT/2

τ
e−

R s
0 σ(τ)dτ ρ3

mi
[a cos2 θmi + c sin2 θmi + ρmim cos θmi + ρ2

mi
α]ds,
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where θmi
= θmi

(s) and ρmi
= ρmi

(s) are the coordinates of the resonant
orbit qρmi (s).

In order to simplify the calculations, let us call F (qρmi (s)) and G(γ(s))
the integrands of Smi

and S, respectively. This way, from the considera-
tions above follows that

|S − Smi
| =

∣∣∣
∫ −τ

−∞
G(γ(s))ds +

∫ τ

−τ

G(γ(s))ds +
∫ +∞

τ

G(γ(s))ds

−
∫ −τ

−miT/2

F (qρmi (s))ds−
∫ τ

−τ

F (qρmi (s))ds−
∫ miT/2

τ

F (qρmi (s))ds
∣∣∣

≤
∣∣∣
∫ −τ

−∞
G(γ(s))ds

∣∣∣ +
∣∣∣
∫ −τ

−miT/2

F (qρmi (s))ds
∣∣∣

+
∣∣∣

∫ τ

−τ

G(γ(s))ds
∣∣∣ +

∣∣∣
∫ τ

−τ

F (qρmi (s))ds
∣∣∣

+
∣∣∣

∫ +∞

τ

G(γ(s))ds
∣∣∣ +

∣∣∣
∫ miT/2

τ

F (qρmi (s))ds
∣∣∣.

Let us consider each one of the integrals above, for i → +∞ (and, con-
sequently, ρmi → 0).

As, for i sufficiently large and s ∈ [−τ, τ ], one has that γ(s) and qρmi (s)
stay ε–close (continuous dependence theorem) and, being G and F contin-
uous functions of γ(s) and qρmi (s), respectively, with

lim
i→+∞

F (qρmi (s)) = G(γ(s)),

one has that, for i sufficiently large,

∣∣∣
∫ τ

−τ

G(γ(s))ds−
∫ τ

−τ

F (qρmi (s))ds
∣∣∣

=
∣∣∣
∫ τ

−τ

[G(γ(s))− F (qρmi (s))]ds
∣∣∣ < ε.

Consider now γ(s) = (θ0(s), ρ0(s)) and qρmi (s) = (θmi(s), ρmi(s)). Ba-
sed on the construction of the transversal sections Σ1 and Σ2 (Figure 8)
and considering that qρmi (s) tends to the singular cycle γ(s)∪θ1∪α(s)∪θ2,
it follows that, for i sufficiently large and s ∈ [−∞,−τ) or s ∈ [τ, +∞), the
following inequalities hold

|θmi(s)| < ε and |ρmi(s)| < ε.
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From these considerations, one has that

∣∣∣
∫ −τ

−miT/2

F (qρmi (s))ds
∣∣∣ ≤

∫ −τ

−miT/2

∣∣∣F (qρmi (s))
∣∣∣ds < ε1M1

and also

∣∣∣
∫ miT/2

τ

F (qρmi (s))ds
∣∣∣ ≤

∫ miT/2

τ

∣∣∣F (qρmi (s))
∣∣∣ds < ε2M2,

where

M1 = sup
s∈[−miT/2,−τ ]

∣∣∣F (qρmi (s))
∣∣∣ and M2 = sup

s∈[τ,miT/2]

∣∣∣F (qρmi (s))
∣∣∣.

As mi → +∞ and the improper integral above is convergent (see [2] for
a proof), for i → +∞ one can take τ sufficiently large (say τ = miT

2 − ε),
so that

∣∣∣
∫ −τ

−∞
G(γ(s))ds

∣∣∣ < ε/4 and
∣∣∣

∫ ∞

τ

G(γ(s))ds
∣∣∣ < ε/4.

Taking finally εi, i = 1, 2 in the apropriate form in the majorities above,
one can conclude that

|S − Smi | < ε,

for every given ε, from which the converge of the integrals follows, for
i → +∞.

Lemma 15. M
(j)
mi (φmax) → M (j)(φmax), as i → +∞, for j = 0, 1, 2,

where (j) denotes the jth derivative of M with respect to φ0.

Proof. The proof is analogous to that of Lemma 14.

From the proof of lemmas above follows that the heteroclinic tangencies
of the infinite heteroclinic cycle of the compactfied vector field are limits of
subharmonic bifurcations, which occur on the annulus of large amplitude
periodic orbits. Also, as mi → +∞ for i → +∞ and for each mi there exist
two subharmonics of order mi which bifurcate from the resonant periodic
orbit qρmi (s), one can conclude that there exists an infinite number of
subharmonics in the neighborhood of the heteroclinic tangencies.

Similar results were stated in [4], although for other classes of vector fields
and periodic perturbations, restricted to compact regions of the plane.
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vetoriais polinomiais planares, PhD Thesis, IME–USP, Brazil, 2000.

11. M.Messias, Periodic perturbations of quadratic planar polynomial vector fields,
Ann. Braz. Acad. Scienc. 74 (2002), no. 2, 193–198.

12. M.Messias and M.Meneguette Jr., On the existence of infinite heteroclinic cycles
in polynomial systems and its dynamic consequences, Proc. of the ICNAAM – Intern.
Conf. Numer. Anal. and Appl. Math., WILEY–VCH Verlag, Weinheim (2004), 261–
264.

13. J. Sotomayor and R. Paterlini, Bifurcations of polynomial vector fields in the
plane, Canadian Mathematical Society, Conference Proceedings 8 (1987), 665–685.
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