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We give a simple algorithm to decide if a non–constant rational fraction
R = P/Q in the field K(x) = K(x1, . . . , xn) in n ≥ 2 variables over a field K
of characteristic 0 can be written as a non–trivial composition R = U(R1),
where R1 is another n–variable rational fraction whereas U is a one–variable
rational fraction which is not a homography.

More precisely, this algorithm produces a generator of the algebraic closure
of a rational fraction in the field K(x).

Although our algorithm is simple (it uses only elementary linear algebra), its
proof relies on a structure theorem: the algebraic closure of a rational fraction
is a purely transcendental extension of K of transcendence degree 1.

Despite this theorem is a generalization of a result of Poincaré about the
rational first integrals of polynomial planar vector fields, we found it useful to
give a complete proof of it: our proof is as algebraic as possible and thus very
different from Poincaré’s original work.
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1. INTRODUCTION

During the preparation of the paper [4], Andrzej Nowicki asked the very
natural question

Please devise an algorithm to decide if a non–constant rational fraction
R = P/Q in the field K(x) = K(x1, . . . , xn), where the field K has charac-
teristic 0, can be written as a composition R = U(R1), where R1 = P1/Q1

is another n–variable rational fraction whereas U = S/T is a one–variable
rational fraction, a non–trivial one i. e. not a homography.

Our paper [4] indeed deals with polynomials instead of rational fractions;
in this paper, we prove the correctness of our algorithm by using an im-
portant theorem of Zaks [16]. We tried to get rid of Zaks theorem in our
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proof, but to avoid it, we encountered the classical theorem of Lüroth; this
remark could be the purpose of a short paper, that remains to be written.

In the two–variable case, if R = P/Q is a rational fraction with coprime P
and Q, then R is a rational first integral of the vector field (PQy−QPy)∂x+
(QPx−PQx)∂y or a rational first integral of the 1–form QdP −P dQ; the
above question is then related to the algebraic integration of differential
equations developed by Poincaré [11, 12, 13].

Generally, in the many–variable case, a rational fraction R = P/Q with
coprime P and Q is a first integral or a constant of the 1–form ω =
QdP − P dQ which means that ω ∧ dR = 0.

The field of constants of ω, i. e. the field of all Φ in K(x) such that
ω ∧ dΦ = 0 then coincides with the algebraic closure of K(R) in K(x).

Characterizing this field thus answers the above mentioned question :
this field of constants turns out to be generated over K by one element,
which is transcendental over K; moreover, every element of minimal level of
the algebraic closure of K(R) in K(x) can then be chosen as a generator of
it. This result we call the structure theorem. It is the key of our algorithm
to produce a generator of the algebraic closure of a rational fraction.

We first prove the structure theorem when K = K is algebraically closed.
As rank conditions of linear systems are involved, it is thereafter possible
to go back from the algebraic closure K to the given base field K.

Our proof will be algebraic. Besides the specific arguments, two main
general facts are involved in it as important lemmas :

• Given a K–derivation δ of K[x] and a positive integer m, there are only
finitely many cofactors for all Darboux polynomials of total degree at most
m.
• If P/Q is a non–constant rational fraction in K(x) and if F is an

irreducible Darboux polynomial of the vector derivation δ associated to
the irreducible 1–form ω deduced from the exterior derivative of P/Q, then
P/Q is an absolute constant in the quotient field of the domain K[x]/(F ).

These lemmas belong to the folklore of polynomial dynamical systems,
but, for sake of completeness, we give a thorough description and a proof
of them.

The present paper is then organized as follows:

• In Section 2, we recall all necessary definitions, global notations and
so on. We ask the reader to forgive the maybe too didactic style of this
section.
• In the next three sections (3,4,5), we deal with the “important algebraic

general facts”.
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• Section 6 is devoted to the main structure theorem.
• In Section 7, we give the announced algorithm.

Remark that there exists an “Algebra membership algorithm” ([15], [3]
Proposition C.2.3), which is based on the theory of Gröbner bases that can
be used in connection with these topics.

2. PRELIMINARIES
2.1. Global notations

Throughout the paper we will keep the notations K for a given field of
characteristic 0 and K for its algebraic closure or to put emphasis on the
fact that K is algebraically closed.

Then A = K[x] = K[x1, . . . , xn] stands for the polynomial ring in n ≥ 2
variables over K (resp. A = K[x] = K[x1, . . . , xn]); if we need the ring of
polynomials in one variable over K or K, we will denote the indeterminate
by t.

2.2. Level
As the word degree, which is sometimes used with this meaning, could be

confusing, it is convenient to call the maximum of the total degrees of two
coprime polynomials P and Q the level of the non–zero rational fraction
R = P/Q :

lev(R) = max(deg(P ), deg(Q)).

This definition is valid for any number of variables; the level enjoys inter-
esting properties connected with the present subject :

• The level of a polynomial is equal to its total degree: lev(P ) = deg(P ).
• lev(R) = 0 if and only if R ∈ K∗.
• For a univariate U , lev(U) = 1 if and only if U is a homography and,

more generally, lev(U(R)) = lev(U ◦R) = lev(U) · lev(R).

2.3. Derivations
A K–derivation δ of the polynomial ring A = K[x] is a K–linear map

from A to itself that satisfies the Leibniz rule for the product

∀[f, g] ∈ A2, δ(f · g) = g · δ(f) + f · δ(g). (1)

The same definition of a K–derivation can be given for any K–algebra.
In the case of a polynomial ring in n variables, the n partial derivatives

∂i = ∂/∂(xi) are derivations and moreover they constitute a basis of the
A–module of all K–derivations from A to A.
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It is then convenient to consider the n–tuple of them as a vector deriva-
tion from A to the free module Λ1(An).

The image df of an element f of A by this n–tuple is called the exterior
derivative of f or simply its derivative.

Every K–derivation δ from A to A is then completely and uniquely given
by coupling the vector field V , which is the n–tuple V = [δ(x1), . . . , δ(xn)]
of Λ1(An) with the derivative, which is a 1–form :

∀f ∈ A, δ(f) = < V, df > =
n∑

i=1

δ(xi) · ∂i(f). (2)

Refer to [1] for a general study of derivations and differentials.

A K–derivation δ from A to A has a unique extension to the quotient
field K(x) of A as a K–derivation of K(x) and there is no trouble to denote
this extension by the same δ.

It is also a classical fact that a K–derivation of a field extension L of K
can be extended in a unique way to become a K–derivation of an algebraic
extension L1 of L [8].

2.4. Algebraic and functional closure of a rational fraction
Let R be a element of K(x1, . . . , xn)\K. Its exterior derivative dR is not

the 0–vector
We will say that a rational fraction Φ is functionally parallel to R if dΦ

is a multiple of dR by some element of K(x); we will denote this fact by
dΦ // dR.

Clearly, the set of all rational fractions that are functionally parallel to
a given R ∈ K(x) \ K constitute a subfield of K(x), the functional closure
FC(R) of R in K(X).

It could also be interesting to consider the functional closure of R in a
larger field like K(x); there will be no confusion in using the same symbol
FC(R).

On the other hand, the set of all rational fractions that are algebraic over
K(R) for a given R ∈ K(x) \K constitute a subfield of K(x), the algebraic
closure AC(R) of R.

Here also, it could also be interesting to consider the algebraic closure of
R in a larger field like K(x); there will be no confusion either in using the
same symbol AC(R).

If R = U(Φ) with a univariate U , then dR = U ′(Φ) dΦ and Φ is func-
tionally parallel to R. In the same situation, Φ is algebraic over R.

This is not surprising according to the next proposition for which we
need the following slight generalization of Lemma 2.5 of [4].
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Lemma 1. Let K0 ⊂ K1 ⊂ K2 be fields of characteristic 0 such that the
extension K1 ⊂ K2 is algebraic. Let δ be some K0–vector derivation of K1

whose field of constants is exactly K0. If K0 is algebraically closed in K2,
the field of constants of the unique extension of δ to K2 is also K0.

Proof. There is no difficulty to change a scalar derivation for a vector
one in the proof of [4].

Proposition 2. Let R be a element of K(x1, . . . , xn)\K. The functional
closure of R is equal to its algebraic closure.

Proof. Let R = P/Q where P and Q are coprime polynomials in K[x].
Denote by ω the 1–form ω = QdP − P dQ and consider the K–vector
derivation δω defined on K(x) by δω(F ) = ω ∧ dF for a F ∈ K(x).

Clearly, δω(F ) = 0 if and only if dF is a multiple of ω, i. e. a multiple of
dR. Thus, the functional closure of R is the kernel of the vector derivation
δω: FC(R) = K(x)δω .

As R /∈ K, there exists a partial derivative of R, say ∂n(R), such that
∂n(R) 6= 0.

Let now M be the algebraic closure of R: M = AC(R). The field
M(x1, . . . , xn−1) is a purely transcendental extension of M , K(x) is an
algebraic extension of it whereas M is algebraically closed in K(x).

According to the previous Lemma 1, the field of constants of δω in K(x)
is M , which is the sought result, as soon as we can prove that the field of
constants of δω in the intermediate field M(x1, . . . , xn−1) is M .

Let us compute δω(Φ(x1, . . . , xn−1), where Φ is a n− 1 variable rational
fraction with coefficients in M :

δω(Φ(x1, . . . , xn−1) =
n−1∑

i=1

Φ′i (ω ∧ dxi),

where Φ′i is the partial derivative in M(x1, . . . , xn−1).
Since δn(R) 6= 0, the ω ∧ dxi are linearly independent over K(x). Con-

sequently, if δω(Φ) = 0, then all Φ′i are 0 and then Φ ∈ M .

2.5. Darboux polynomials and constants of vector derivations
Let δ from A to Am be a vector derivation i. e. an m–tuple of scalar

derivations.
A non–zero polynomial F ∈ A is said to be a Darboux polynomial of δ if

there exists a Λ ∈ Am such that δ(F ) = FΛ. In this case, Λ is unique and
it is called the cofactor of F for the derivation δ.

We have been used for a long time to paying attention to such polynomi-
als in connection with the theory of integrability of vector fields initiated
by Darboux himself [2].
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The essential first properties of Darboux polynomials are the following.

• The product of two Darboux polynomials is a Darboux polynomial and
the cofactor of the product is the sum of the cofactors.
• Conversely, if the product FG of two coprime polynomials is a Darboux

polynomial, then F and G are Darboux polynomials.
• If Fα, α ∈ N?, is a Darboux polynomial then F itself is a Darboux

polynomial (this is a point where the characteristic 0 plays a role).

When δ is extended to a vector derivation from K(x) to K(x)m, a rational
fraction R ∈ K(x) \ K is said to be a constant of δ if δ(R) = 0. In this
case, its numerator and denominator are Darboux polynomials for δ with
the same cofactor .

3. ABSOLUTE RELATIVE CONSTANTS

The aim of this section is to show, when the base field K is algebraically
closed, that a non–constant rational fraction P/Q in K(x) becomes an
absolute constant , i. e. an element of K, relatively to F , i. e. in the quotient
field of the domainK[x]/(F ), where F is an irreducible Darboux polynomial
of some precise vector derivation built from the Pfaffian form Q dP − P dQ.

Proposition 3. Let K be an algebraically closed field and let A = K[x]
be the polynomial ring in n variables over K. Let P and Q be coprime
elements in K[x] such that QdP − P dQ = φ ω 6= 0, where ω is
an irreducible 1–form in Λ1(An) [φ is the greatest common diviosr of the
coefficients of QdP − P dQ].

Let then δω be the K–vector derivation from A to Λ2(An) defined by
δω(f) = ω ∧ df .

If F be an irreducible Darboux polynomial of δω, then there exists a pair
[α, β] 6= [0, 0] in K2

such that F divides αP + βQ.

Proof. If F divides Q, we take [α, β] = [0, 1].

Otherwise, consider the non–zero images P and Q of P and Q in the
quotient domain K[x]/(F ). Let then c = P/Q be their quotient in the
quotient field KF of K[x]/(F ).

As K is algebraically closed, to show that c belongs to K, which gives the
conclusion, it suffices to show that c is an absolute constant in KF which
means that δ(c) = 0 for every K–derivation of KF . Indeed, an absolute
constant is algebraic over K, hence belongs to it.

Up to a factor, a K–derivation of KF is the extension to KF of a K–
derivation of K[x]/(F ).
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Then it suffices to prove, for every K–derivation δ of K[x]/(F ) that

Q
2
δ

(
P

Q

)
= Qδ(P )− Pδ(Q) = 0.

Now, every K–derivation δ of K[x]/(F ) is given by a (non–unique) K–
derivation of A for which F is a Darboux polynomial; there is no trouble
to denote by the same δ such a preimage.

We have thus to prove that Qδ(P ) − P δ(Q) belongs to the ideal (F )
for any K–derivation δ of A for which F is a Darboux polynomial.

Such a derivation is given by

δ(g) =
i=n∑

i=1

δ(xi) gi,

where gi stands for the partial derivative of the polynomial g with respect
to xi.

As Q dP−P dQ = φ ω, it suffices to prove that < δ, ω > =
∑i=n

i=1 δ(xi) ωi

belongs to the ideal (F ), where the ωi are the coordinates of ω.
Recall that F is a Darboux polynomial for δω which means in this case

that there exists polynomials Λi,j for all pairs of integers 1 ≤ i , j ≤ n such
that

∀[i, j], 1 ≤ i , j ≤ n, ωi Fj − ωj Fi = F Λi,j . (3)

From the previous equality (3), summing δ(xj) (ωi Fj − ωj Fi) over all j
gives

∀i, 1 ≤ i ≤ n, ωi δ(F ) − Fi . < δ, ω > = F
∑

j

δ(xj)Λi,j (4)

As δ(F ) belongs to (F ), all products Fi . < δ, ω > also belong to the
ideal (F ). As F is irreducible, F and a partial derivative Fi are coprime
for some i, it follows that < δ, ω > itself has to belong to the ideal (F ).

4. FINITENESS OF COFACTORS

In this section we describe a folklore result and we give a proof of it in
algebraic terms.

Proposition 4. Let δ be a scalar K–derivation of A = K[x1, . . . , xn] and
m be a positive integer. Then the set of cofactors of all Darboux polynomials
of δ of total degree at most m is finite.
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Proof.

Some notations.
The K–derivation δ is completely and uniquely given by the δi := δ(xi).

Let s be the maximum of the total degrees of the polynomials δ(xi).

We denote by Tn,m the set of all n–tuples α = [α1, . . . , αn] of nonnegative
integers with a “total degree” |α|= α1 + · · · + αn ≤ m and, as usual, xα

stands for the product of powers xα1
1 . · · · .xαn

n .
The symbol ]E will stand for the number of elements of a finite set E.

Every polynomial δi = δ(xi) can be written as

δi =
∑

α∈Tn,s

δi,α xα (5)

whereas a polynomial F of total degree at most m can be written as

F =
∑

α∈Tn,m

Fα xα. (6)

A linear algebra problem.

Let F be a non–zero Darboux polynomial of total degree at most m of
δ and let Λ be its cofactor:

i=n∑

i=1

δi
∂F

∂xi
= Λ F. (7)

The polynomial cofactor Λ has a total degree at most s−1 and thus can
be written as

Λ =
∑

α∈Tn,s−1

Λα xα. (8)

The Darboux relation (7) can be expanded as

(∑
α∈Tn,s−1

Λαxα
) (∑

β∈Tn,m
Fβxβ

)

−∑i=n
i=1

(∑
α∈Tn,s

δi,αxα
)(∑

β∈Tn,m,βi>0 βiFβxβ−εi

)
= 0.

(9)

In the previous formula (9), εi stands for the n–tuple [0, . . . , 1, . . . , 0] of
Tn,1 whose all coordinates are 0 except the i–th one which is equal to 1.
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The 0 polynomial on the left–hand side of (9) of total degree at most
m + s− 1 can be expanded as

∑

α∈Tn,m+s−1


 ∑

β∈Tn,m

Mα,β Fβ


 xα = 0, (10)

where the coefficient Mα,β of the matrix is

Mα,β =
∑

γ+β=α

Λγ −
∑

1≤i≤n,βi>0

βi


 ∑

γ+β=α+εi

δi,γ


 . (11)

Then there exists a non–zero Darboux polynomial of total degree at most
m with a cofactor Λ for δ if and only if the linear system in the unknowns
{Fα, α ∈ Tn,m} given by the matrix M has a non–zero solution.

A necessary and sufficient condition for that is that all minor determi-
nants of maximal order (] Tn,m) of M vanish.

A polynomial algebra problem.

All previous determinants are homogeneous polynomials in the variables
Λα and δi,β together, they have the same degree ] Tn,m and their coefficients
are integers.

Let us denote by DM the set of all these polynomials.

For every ∆ ∈ DM , ∆+ denote the homogeneous part of ∆ of degree
] Tn,m in the Λα only. Equivalently, we obtain ∆+ by evaluating ∆ when
all δi,β vanish.

For combinatorial reasons, ∆+ may be the 0 polynomial for some ∆ of
DM . Among all elements of DM , let us select those for which ∆+ is not the
0 polynomial in the unknowns Λα and denote by DM the set of them. That
all ∆ of DM vanish is a necessary (but maybe not sufficient) condition for
Λ to be a cofactor.

Consider now the special case of the above matrix M where all δi,α

vanish. This corresponds to the special case of the Darboux relation (7)
for the 0 derivation:

Λ F = 0. (12)

The only possibility for the cofactor is then Λ = 0 : ∀α ∈ Tn,s−1,Λα = 0.
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On the other hand, a necessary and sufficient condition is that the tuple
Λα of unknowns is a zero of the set of homogeneous polynomials {∆+, ∆ ∈
DM}.

For the elements of DM considered as non–homogeneous polynomials in
the Λα, ∆+ is the leading form. Thus, the only common zero of all these
leading forms is the 0–tuple.

It is now a general fact that a family of polynomials over an algebraically
closed field without zero at infinity has only a finite number of zeroes. We
discuss this elementary but important result in the next section.

Corollary 5. Let δ be a scalar or vector K–derivation of the K–algebra
A := K[x1, . . . , xn] and m be a positive integer. Then the set of cofactors
of all Darboux polynomials of δ of total degree at most m is finite.

Proof. The finiteness result of Proposition 4, which is true for a scalar
K–derivation, is also true for a scalar K–derivation.

Cofactors with coefficients in K are cofactors with coefficients in K.
Then, a cofactor of a vector derivation from A to some finitely generated

free module over A has coordinates that are cofactors of scalar derivations
and the finiteness result also holds for vector K–derivations.

5. IDEALS WITH A FINITE NUMBER OF ZEROES

Let us consider the following situation :

• A = K[x] is the polynomial ring in n variables over an algebraically
closed field K,
• [f1, . . . , fs] is a finite set of polynomials in A,
• there is no common zero for all fi at infinity, which means that the

finite set of homogeneous polynomials [f1, · · · , fs], where f stands for the
homogeneous component of highest total degree of a polynomial f , has
only the trivial common zero : [x1 = 0, . . . , xn = 0].

Then, the fi have only a finite number of common zeroes in the affine
space, namely

• there is only a finite number of n–tuples [x1, . . . , xn] in Kn
at which

all fi vanish.

This classical fact is a consequence of Hilbert’s Nullstellensatz and argu-
ments for it can be found in many places [5, 6, 9, 10, 14]. The result itself
can be found in [9] as the last assumption of theorem 3.2 in it. Let us give
nevertheless some general idea of its proof.
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Let I be the ideal generated in A by the fi. This ideal has a finite number
of zeroes if and only if the quotient ring A/I has a finite dimension as a
K–vector space ([5], Corollary 4 p. 23, for instance).

For every total degree d, consider the finite–dimensional K–vector space
Bd of all homogeneous polynomials of degree d in B = K[x0, x1, . . . , xn] and
the the finite–dimensional K–vector space Id of all of them which belong
to I (when evaluated at x0 = 1).

For any d, the multiplication by x0 is a K–linear map from the quotient
space Bd/Id to the next one Bd+1/Id+1.

This map is clearly injective; the key assumption that there is no common
zero at infinity implies that it is also surjective for a large enough d. Indeed,
according to the Nullstellensatz, for large enough d, all monomials of total
degree d in x1, . . . , xn belong to Id.

Thus, the dimension of Ad/Id becomes constant.
The quotient ring A/I is a subspace of the inductive limit of the previous

inductive system of quotients and thus has a finite dimension as a K–vector
space.

6. THE MAIN THEOREM

As we said in the introduction, the proof of our algorithm depends
on a structure result, which is a generalization of some considerations of
Poincaré about the rational integration of polynomial planar vector fields.

Theorem 6. Let R belong to K(x) \ K. Then the algebraic/functional
closure of R in K(x) is a purely transcendental extension of transcendence
degree 1; every element S of it with minimal positive level is a generator:
AC(R) = FC(R) = K(S).

Proof.

The 1–form ω and the vector derivation δω.
Let us write R = P/Q, where P and Q are coprime polynomials in

A = K[x1, . . . , xn]. A rational fraction R1 = P1/Q1 belongs to FC(R) if
and only if dR1 is a multiple of the non–zero 1–form QdP − P dQ.

This 1–form can be written as φω, where ω is irreducible, which means
that the greatest common divisor of all its components is 1.

Consider now the vector derivation δω defined by δω(F ) = ω ∧ dF .
Clearly, ω∧ (QdP −P dQ) = 0. This means that Qω∧ dP = P ω∧ dQ;

as P and Q are coprime, P divides ω ∧ dP and Q divides ω ∧ dQ and they
are Darboux polynomials of δω with the same cofactor ρ0 ∈ Λ2(An).

Moreover, as QdP − P dQ = φω, (Q dP − P dQ) ∧ dQ = φω ∧ dQ =
φQ ρ0. and dP ∧ dQ = φρ0.
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A fraction R1 = P1/Q1 belongs to FC(R) if and only if

ω ∧ (Q1 dP1 − P1 dQ1) = 0 as an element of Λ2(An). (13)

In this case P1 and Q1, that are assumed to be coprime, are Darboux
polynomials of the vector derivation δω with the same cofactor ρ(P1) =
ρ(Q1) ∈ Λ2(An).

Darboux polynomials of δω with prescribed cofactor.
Given a level l and a 2–form ρ, denote by D(ω, l, ρ) the K–vector space of

all polynomials in K[x] of degree at most l that are Darboux polynomials
of δω with the cofactor ρ. In the same way, K being the algebraic closure
of K, denote by D(ω, l, ρ) the K–vector space of all polynomials in K[x] of
degree at most l that are Darboux polynomials of δω with the cofactor ρ.
The dimension of these two vector spaces over different fields is the same,
as it it given by a rank condition of a linear system like (11); denote this
dimension by dim(ω, l, ρ).

The functional closure in K(x), minimal level.

Denote by l1 (resp. by l2) the minimal level for which there exists a
functionally parallel rational fraction R2 = P2/Q2 of such level in K(x)
(resp. in K(x)). R2 is defined up to a homography.

We don’t know yet that l2 = l1, we have only l2 ≤ l1.
Let then ρ2 ∈ Λ2(A

n
) be the common cofactor of the coprime P2 and

Q2 for δω [we don’t know yet that ρ2 ∈ Λ2(An)].

The key point to prove is that dim(ω, l2, ρ2) = 2.

Let us first show that there is a finite number of reducible elements in the
vector space D(ω, l2, ρ2) or more accurately in the corresponding projective
space.

Indeed, if there are infinitely many reducible elements in it, according
to the finiteness of cofactors (Corollary 5), among all irreducible factors of
all the previous Darboux polynomials, we will have two non–proportional
Darboux polynomials with the same cofactor and a common level strictly
less than l2; their quotient would then be an element of the functional
closure with a smaller level.

For the same reason, there is only one direction at most in D(ω, l2, ρ2) of
degree strictly smaller than l2. If there is such a one, take Q2 as this one
by performing a suitable homography on R2.



ALGEBRAIC CLOSURE OF A RATIONAL FUNCTION 297

Now, according to Proposition 3, every irreducible element of D(ω, l2, ρ2)
of degree l2 divides αP2 + βQ2; then, for degree reasons, it belongs to the
K–vector space V S(P2, Q2) they generate.

Similarly, an element of D(ω, l2, ρ2) of degree strictly less than l2 is a
multiple of Q2 and belongs to V S(P2, Q2).

The set–theoretic difference D(ω, l2, ρ2) \ V S(P2, Q2) is contained in the
finite union of the one–dimensional vector spaces generated by reducible
elements of D(ω, l2, ρ2).

The field K is infinite and this difference is empty.
D(ω, l2, ρ2) is then equal to V S(P2, Q2) and dim(ω, l2, ρ2) = 2.

The functional closure in K(x), conclusion.

According to Proposition 3, every irreducible Darboux polynomial of δω

divides some αP2 + βQ2 and its degree is at most l2.
Among irreducible Darboux polynomials of δω (in K[x]), we thus dis-

tinguish the regular ones that are the irreducible elements αP2 + βQ2 of
the pencil and the small ones, that are factors of reducible elements of the
pencil.

There is a finite number of small ones, up to scalar multiplication.

Now, if P3/Q3 is functionally parallel to P/Q and belongs to K(x), then
we can find two independent linear combinations S3 = αP3 + βQ3, T3 =
γP3 + δQ3 of P3 and Q3 that are not divisible by any small Darboux
polynomial.

The Darboux polynomials S3 and T3 thus factor into irreducible Darboux
polynomials that are regular λiP2 + µiQ2 of V S(P2, Q2).

Then, as products of elements of V S(P2, Q2), S3 and T3 are homogeneous
polynomials in K[P2, Q2]. Since the cofactors of S3 and T3 are equal, they
are homogeneous polynomials of the same degree in K[P2, Q2] and so are
P3 and Q3 themselves as linear combinations of them.

As a by–product, the cofactor of P3 and Q3 is lev(P3/Q3)/l2 times the
cofactor of P2 and Q2.

Thus, the functional closure of P/Q in K(x) is generated by one element
P2/Q2.

Moreover, lev(P2/Q2) divides lev(P/Q) and the common cofactor ρ2 of
P2 and Q2 belongs to Λ2(An), which will allow us to describe the functional
closure in K(x) itself.

Back to the functional closure in K(x).
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As a K–vector space, D(ω, l2, ρ2) has dimension 2 and we can find an
element of the functional closure of P/Q in K(x) with level l2, hence l1 = l2.

This means that P2 and Q2 can be chosen in K[x].
It is not difficult to show that if a polynomial P3 ∈ K[x] is a homogeneous

polynomial in K[P2, Q2] with P2 and Q2 in K[x], then P3 is in fact a
homogeneous polynomial in K[P2, Q2].

Proposition 7. In the above situation, dim(ω,l2,ρ2)−1
l2

= dim(ω,l0,ρ0)−1
l0

.

Proof. Elements of D(ω, l0, ρ0) are the homogeneous two–variable poly-
nomials of degree l0/l2 in P2 and Q2; they constitute a K–vector space of
dimension l0/l2 + 1.

6.1. The special case of polynomials
Our main theorem 6 holds in the particular case where the non–constant

rational fraction R is a polynomial, R = P/1.
Let P2/Q2 be a generator of AC(P/1) = FC(P/1).
Then P and 1 are both homogeneous polynomials of the same degree k

of P2 and Q2 with coefficients in K.
This implies that some linear combination of P2 and Q2 belongs to K∗.

Then we can use a homography to produce a polynomial generator of the
previous functional/algebraic closure of P .

Moreover, the cofactor involved in the proof is 0 is this particular case.
We thus find again a result (Lemma 2.5) of [4] : the integral closure of
a non–constant polynomial f in K[x] is a polynomial ring K[h] for some
polynomial h.

7. THE ALGORITHM

7.1. The algorithm
The announced algorithm then goes as follows.

INPUT : Let P and Q be coprime polynomials in K[x1, . . . , xn].
• Compute the level l of R = P/Q.
• Compute the irreducible 1–form ω from QdP − P dQ.
• Compute the common cofactor ρ of P and Q for the derivation δω.
• Compute the dimension d = dim(ω, l, ρ).

TEST : If d = 2 then P/Q generates its algebraic closure

else dim(ω, l
d−1 , ρ

d−1 )=2.
OUTPUT : any pair [P2, Q2] of independent elements of the corresponding
K–vector space gives the sought generator P2/Q2 .
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Proof. This is a consequence of theorem 6 and of its proof.

7.2. Reconstruction
In order to complete the previous algorithm, it remains to produce the

homogeneous two–variable polynomials of degree k expressing P and Q
in P2 and Q2 which amounts to giving the element U of K(t) such that
R = P/Q = U(P2/Q2).

From an algorithmic point of view, this task is a special case of a proce-
dure that decides if a polynomial F ∈ K[x] is a homogeneous polynomial of
degree k of two polynomials G and H of K[x] and produces the B ∈ Kk[u, v]
such that F = B(G,H) if the answer is “yes”. This is a special case because
we know the answer and want to compute B.

This reconstruction algorithm is only valid if dG ∧ dH 6= 0. The basic
remark is the following : if F = B(G,H), then dF = ∂u(B)(G,H) dG +
∂v(B)(G,H) dH and k B(G, H) = G∂u(B)(G,H) + H ∂v(B)(G,H) ac-
cording to Euler’s identity.

Here are the headlines of such an algorithm.

• If k = 0, F is a homogeneous polynomial of degree 0 of G and H if and
only if F is a constant.
◦ If F is not a constant, the answer is “no”;
◦ if F is a constant, the answer is “yes” and B = F .
• If k ≥ 1, there is at most one way to write dF as a linear combination
F1 dG + F2 dH with F1 and F2 in K(x).
◦ If this is not possible, then F is not a function of G and H and the answer
is “no”.
◦ If this is possible, F1 and F2 have to be polynomials otherwise the answer
is “no”.
◦ In the case where F1 and F2 are polynomials, we have to check recursively
if both of them are homogeneous polynomials of G and H of degree k − 1.
∗ If the recursive answer is “no”, then the answer is “no”.
∗ If the recursive answer is “yes”, we receive polynomials B1, B2: the answer
is “yes” and the sought B is B(G,H) = (1/k).(GB1(G,H) + HB2(G, H)).

When the rational fraction R is a (homographical transform of a) polyno-
mial, the previous reconstruction algorithm cannot be applied as the wegde
product dG ∧ dH is 0.

The special simple algorithm given in [4] has to be used in place of it.
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