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1. INTRODUCTION AND RESULTS

Hyperbolicity as been a key idea in the modern theory of Dynamical Sys-
tems and a basic related problem has been that of proving hyperbolicity of
particular systems or general classes under a priori weaker assumptions. In
1985, Mañé [6] proved a remarkable result in the setting of one–dimensional
maps to the effect that any compact invariant set not containing any critical
points and with all periodic points hyperbolic repelling is actually uniformly
hyperbolic. The point here is that the periodic points are not assumed to
be uniformly hyperbolic, and that even if they were, this hyperbolicity does
not necessarily extend to the whole invariant set. Generalizations of this
result to the higher dimensional setting are quite problematic and there has
been no substantial progress to date. Here we solve this problem under the
slightly stronger but natural assumptions that all invariant measures are
hyperbolic repelling, i.e. have positive Lyapunov exponents. As an interme-
diate result of independent interest we get that if all Lyapunov exponents
are positive then they are uniformly positive and the minimum of such
exponents is actually realized for some invariant measure.

Throughout the paper, we let M be a compact Riemannian manifold
of dimension d ≥ 1 and let f : M → M be C1 map . We say that x is
a critical point for f if det Dfx = 0. For a compact invariant set Λ we
let M(f) = M(f, Λ) denote the set of all f–invariant Borel probability
measures with support in Λ and E(f, Λ) the subset of all ergodic invariant
measures.

1.1. Lyapunov exponents

Definition 1. We say that λ is a Lyapunov exponent for f if there
exists a point x and a vector v ∈ TxM such that

λ = lim
n→∞

1
n

log ‖Dfn
x (v)‖.

We let L(f) denote the set of all Lyapunov exponents for f .

Classical results [8, 9] imply that for each ergodic measure µ ∈ M(f)
there exists a number 0 < k ≤ d, constants λ1 < . . . < λk, and a µ–
measurable splitting TxM = E1 ⊕ . . . ⊕ Ek of the tangent bundle over Λ,
such that limn→∞ 1

n log ‖Dfn
x (v)‖ = λj for µ–almost every x and every

non–zero vector v ∈ Ej
x ⊂ TxM . For non–ergodic measures the number k,

the constants λj , and the tangent bundle decomposition may depend on the
ergodic component. The constants λj are called the Lyapunov exponents
associated to the measure µ.

Definition 2. We let L(µ) denote the set of all Lyapunov exponents
associated to a given ergodic measure µ
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Notice that exceptional points for all invariant measures may still have
some have a well defined Lyapunov exponent which may be unrelated to
any of the Lyapunov exponents of any ergodic invariant measure. Therefore
in general we have

⋃

µ∈E(f,Λ)

L(µ) ( L(f).

1.2. The minimum principle
Lyapunov exponents do not in general vary continuous either with the

base point x or with the measure, and so it is hard if not impossible to for-
mulate any general compactness statements about the sets L(f) of ∩µL(µ).
Here we prove the following

Theorem 3 (Minimum principle for Lyapunov exponents).
Suppose Λ does not contain any critical points. Then there exists an

ergodic measure µ ∈M(f, Λ) such that

inf{L(f)} ∈ L(µ).

This can be interpreted as a mild compactness result on L(f): there
exists some invariant probability measure µ with support in Λ with an as-
sociated Lyapunov exponent which realizes the infimum over all Lyapunov
exponents associated to all invariant measures. It also says that no freak
exponent can be less than a proper exponent associated to some ergodic
invariant measure. Exactly the same argument also shows that there exists
some (other) measure µ for which

sup{L(f)} ∈ L(µ).

We do not show however that L(f) is closed. We conjecture this to be
the case in this setting and believe that the absence of critical points is a
necessary condition for such property to hold.

In the application to be given below we shall consider the situation in
which all invariant measures have only positive Lyapunov exponents. The
minimum principle then immediately implies the following

Corollary 4. Suppose Λ contains no critical points and

L(f) > 0.

Then there exists a constant λ > 0 such that

L(f) > λ.
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1.3. Mañé’s Theorem in arbitrary dimension
Our next result says that in fact an even stronger statement holds in this

case. before stating it we recall some standard notation. The set Λ is said
to be uniformly expanding if there exist constants C, λ > 0 such that

‖Dfn
x (v)‖ ≥ Ceλn‖v‖ (1)

for all x ∈ Λ, all v ∈ TxM and all n ≥ 1. A measure µ is expanding if
L(µ) > 0. The definition of uniform hyperbolicity implies in particular
that all invariant measures supported on Λ are uniformly expanding: there
exists some λ > 0 such that L(f) ≥ λ > 0. The converse however is
non–trivial.

Theorem 5. Suppose Λ contains no critical points and

L(f) > 0.

Then Λ is uniformly expanding.

This is a generalization to the higher–dimensional setting of the well
known theorem of Mañé [6] which gives the same conclusions in the one–
dimensional setting under the weaker assumption that every periodic point
is expanding. This has become almost a Folklore Theorem in one–dimensio-
nal dynamics for the fundamental role it plays in a huge number of argu-
ments. By comparison, the theory of higher–dimensional non–uniformly
expanding maps is just taking off, see [1, 5]. By analogy with the one–
dimensional case, perhaps these results might play some significant role in
that theory.

We emphasize that the absence of critical points in Λ is a necessary
condition. There are many quite generic situations, including for exam-
ple Collet–Eckmann one–dimensional maps [7], of compact invariant sets
Λ satisfying L(f) ≥ λ > 0 but which contain a critical point and thus
clearly cannot be uniformly expanding. Partial results in the direction of
our Theorem 5 were obtained in [2, 3] in the context of globally C1 local
diffeomorphisms. Here we provide a generalization of those results by using
a quite different argument based on the minimum principle given above.
Theorem 5 also implies the following

Corollary 6. Let f : M → M be a C1+α local diffeomorphism of a
compact Riemannian manifold M and suppose that

L(f) > 0.

Then there exists a (unique) measure µ ∈ E(f) which is absolutely contin-
uous with respect to the Riemannian volume on M .
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The conclusion follows from the uniform hyperbolicity of f by well known
and absolutely classical arguments. However we want to emphasize here
that the assumptions differ from most kinds of assumptions used to imply
the existence of absolutely continuous invariant measures, both in the uni-
form and non–uniform setting, in at least one important feature. They do
not, a priori, say anything about the dynamical or hyperbolic properties
of a positive measure set of points for the Riemannian volume. They just
specify that any invariant measure must have positive Lyapunov exponent.
A priori all of these measures may be singular with respect to the Rie-
mannian volume. Notice that for this corollary we need the derivative of f
to be Hölder continuous, since the proof of the existence of an absolutely
continuous invariant measure requires distortion estimates which require
more regularity than that needed for the other results.

1.4. Fibred maps
Some straightforward adaptations of the definitions and the arguments

allow us to obtain our results in the more general setting of fibred maps.
More precisely, we assume as above that f : M → M is a C1 map of a
compact Riemannian manifold and that Λ is a compact invariant set. We
now assume that the tangent bundle TΛM over Λ admits a continuous de-
composition TΛM = E1

Λ⊕E2
Λ into Df–invariant subbundles. In particular

the angles between the subspaces E1
x and E2

x are uniformly bounded below
for all x ∈ Λ. The (measurable) Oseledets–Ruelle decomposition must be
consistent with this continuous decomposition and therefore it makes sense
to talk about the sets L1(µ) and L2(µ) of Lyapunov exponents in the di-
rections of E1 and E2 respectively. Notice that L(µ) = L1(µ)∪L2(µ). We
then have the following

Theorem 7. Suppose Λ does not contain any critical points. Then

inf{L1(f)} ∈ L1(f).

The definition of uniform hyperbolicity given above can also be general-
ized and we say that the set Λ is uniformly expanding in the direction of
E1 if there exist constants C, λ > 0 such that

‖Dfn
x (v)‖ ≥ Ceλn‖v‖ (2)

for all x ∈ Λ, all v ∈ E1
x and all n ≥ 1. Then we have the following

Theorem 8. Suppose Λ contains no critical points and

L1(f) > 0.

Then Λ is uniformly expanding in the direction of E1.
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We emphasize that we are not assuming here any partial hyperbolicity.
The results do not depend in anyway on the hyperbolicity properties in
the complementary subspace to the one under consideration. Theorems 3
and 5 are special cases of Theorems 7 and 8 corresponding to the case in
which the complementary subbundle E2

Λ is trivial. The proofs of the more
general cases differ from the special cases only in the notation and so, in
order to keep this as simple as possible, we shall prove the results explicitly
in the special cases.

1.5. Remarks
Before starting the proof of the Theorems, we make some observations

concerning the setup. In particular we want to emphasize the difference
between the uniformity statement in Corollary 1 and that in Theorem 5.

An invariant measure µ has at most d distinct Lyapunov exponents and
thus the condition L(µ) > 0 implies that there exists λ1(µ) = inf{L(µ)}.
By the definition of Lyapunov exponents this implies

lim inf
n→∞

1
n
‖Dfn

x (v)‖ ≥ λ1 (3)

for µ–almost every x and for every non–zero v ∈ TxM (the actual limit
exists only for those vectors in the appropriate subspace E1

x ⊂ TxM). In
particular (directly from the definition of lim inf) there exists, for every
λ1 > λ > 0, a measurable function Cx, non–zero µ–almost everywhere,
such that

‖Dfn
x (v)‖ ≥ Cxeλn‖v‖ (4)

for every non–zero vector v ∈ TxM and every n ≥ 1. Crucially here, the
liminf in (3) cannot be assumed to be achieved uniformly and thus the
constant Cx is in general not uniformly bounded away from 0.

Thus, the step from L(f) > 0 to uniform expansivity requires two uni-
formity estimates to be obtained. The first, given by Corollary 1, implies
that (4) holds on a set of total probability, (i.e. on a set B such that
µ(B) = 1 for all measures µ ∈ M(f)) with a uniform bound on the growth
rate λ. However, this still leaves us with a family of measurable functions
Cx(µ) which are not, a priori, uniformly bounded below. Theorem 5 says
that in the absence of critical points they are indeed uniformly bounded
below. Therefore the inequality (4) can be extended to every point of Λ
for uniform constants λ and C, as required in the definition (1) of uniform
expansion.

After writing this paper we became aware of some previously published
papers [4, 10–12] containing related results concerning uniformity of Lya-
punov exponents and other quantities in the spirit of our Minimum Prin-
ciple. The arguments given there are significantly more general and the
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proofs significantly more complicated and it is not clear that our result
follows immediately from the statements in any of these papers without
some additional non–trivial arguments.

2. SETUP AND NOTATION

A key tool in our approach is that of lifting certain quantities to the unit
tangent bundle

SM = SΛM = {(x, v) ∈ TM : x ∈ Λ, v ∈ TxM, ‖v‖ = 1}.
Notice that SM is a compact, metric, measure space. We let π : SM → M
denote the standard projection π(x, v) = x. We start by defining the map
F : SM → SM by

F (x, v) =
(

f(x),
Dfx(v)
‖Dfx(v)‖

)
.

Notice that F is well defined on Λ since Λ contains no critical points and
thus ‖Dfx(v)‖ 6= 0. We define iterates of F by

Fn(x, v) =
(

fn(x),
Dfn

x v

||Dfn
x v||

)
.

We let M(F ) denote the space of F–invariant probability measures on SM
and let

π∗ : M(F ) →M(f)

denote the standard projection of measures where π∗µ(A) = µ(π−1(A)) for
any µ ∈M(F ) and Borel set A ⊂ Λ. Let E(F ) ⊂M(F ) and E(f) ⊂M(f)
denote the subsets of ergodic invariant measures for F and f respectively.

Lemma 9. The projection π∗ sends E(F ) to E(f) and the restriction
π∗ : E(F ) → E(f) is surjective.

Proof. We show first of all that π∗(E(F )) ⊆ E(f). Let µ ∈ E(F )
and let µ∗ = π∗µ. Suppose that A ⊂ M satisfies f−1(A) = A. Then
F−1(π−1(A)) = π−1(A) and by ergodicity we have µ(π−1(A)) = 0 or 1.
Then by the definition of π∗ we have µ∗(A) = π∗µ(A) = µ(π−1(A)) = 0 or
1. Thus µ∗ is ergodic.

We now show that π∗ : M(F ) → E(f) is surjective by fixing a measure
µ∗ ∈ E(f) and finding a measure µ ∈ M(F ) with π∗µ = µ∗. By the
Birkhoff ergodic theorem we know that the set

X =

{
x :

1
n

n−1∑

i=0

δfi(x) → µ∗
}

satisfies µ∗(X) = 1.
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For such a generic point x ∈ X and some vector v ∈ TxM , consider the
sequence of measures

µn =
1
n

n−1∑

i=0

δF i(x,v)

and let µ ∈ M(F ) be the limit of some subsequence µnk
. We claim that

π∗µ = µ∗. To see this, consider a continuous test function ϕ : M → R. We
claim that

∫

M

ϕd(π∗µ) =
∫

SM

ϕ ◦ πdµ =
∫

M

ϕdµ∗.

Since ϕ is chosen arbitrarily this implies the claim. The first equality follows
immediately. To obtain the second we write, for x ∈ X and v ∈ TxM as
above,

∫

M

ϕdµ∗ = lim
n→∞

1
n

n−1∑

i=0

ϕ(f i(x))

= lim
k→∞

1
nk

nk−1∑

i=0

ϕ(f i(x))

= lim
k→∞

1
nk

nk−1∑

i=0

(ϕ ◦ π)(F i(x, v))

=
∫

SM

(ϕ ◦ π)dµ.

The measure µ is not necessarily ergodic, but we claim that any ergodic
component µ̃ of µ also satisfies π∗µ̃ = π∗µ = µ∗. Indeed consider the
set X ⊂ M of µ∗ generic points defined above. Since µ∗(X) = 1 we also
have that µ(π−1(X)) = 1 and therefore also π∗µ̃(X) = µ̃(π−1(X)) = 1.
Moreover, π∗µ̃ is ergodic by the first part of the statement in the Lemma,
and therefore the Dirac averages of almost every point in X converge to
π∗µ̃ implying that π∗µ̃ = µ∗.

3. MINIMUM PRINCIPLE

In this section we prove Theorem 3. We define the observable φ : SM →
R by

φ(x, v) = log ‖Dfx(v)‖.
Notice that φ is continuous and that we have
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Lemma 10. For every (x, v) ∈ SM and every n ≥ 1 we have

1
n

log ‖Dfn
x (v)‖ =

1
n

n−1∑

i=0

φ(F i(x, v)).

In particular

λ(x, v) = lim
n→∞

1
n

log ‖Dfn
x (v)‖ = lim

n→∞
1
n

n−1∑

i=0

φ(F i(x, v))

whenever such limits exist (and the existence of one limit implies the exis-
tence of the other).

Proof. Write first of all

‖Dfn
x (v)‖
‖v‖ =

‖Dffn−1(x)(Dfn−1
x (v))‖

‖Dfn−1
x (v)‖

‖Dffn−2(x)(Dfn−2
x (v))‖

‖Dfn−2
x (v)‖ . . .

. . .
‖Dff(x)(Dfx(v))‖

‖Dfx(v)‖
‖Dfx(v)‖
‖v‖ .

Then, taking logs and using the definition of φ we have

log
‖Dfn

x (v)‖
‖v‖ =

n−1∑

i=0

log
‖Dffi(x)(Df i

x(v))‖
‖Df i

x(v)‖

=
n−1∑

i=0

log
∥∥∥∥Dffi(x)

(
Df i

x(v)
‖Df i

x(v)‖
)∥∥∥∥

=
n−1∑

i=0

φ(F i(x, v)).

Lemma 11. There exists a measure µ̂ ∈ E(F ) such that

∫

SM

φdµ̂ = inf
µ∈M(F )

∫

SM

φdµ.

Proof. By the compactness of M(F ) and continuity of φ and of the in-
tegral functional `φ(µ) =

∫
φdµ, it follows that there exists some measure µ̄

for which the the equality in the statement of the Lemma holds. This mea-
sure is not necessarily ergodic but we claim that some ergodic component



270 Y. CAO, S. LUZZATTO, I. RIOS

of µ̄ also satisfies the required equality. Indeed, by the Ergodic Decompo-
sition Theorem [13, page153], there exists a measure τ on M(F ) and a set
Eµ̄(F ) ⊆ E(F ) with τ(Eµ̄(F )) = 1 such that we have

∫
E(F )

νdτ = µ̄ in the
sense that ∫

E(F )

(∫

SM

φdν

)
dτ =

∫

SM

φdµ̄. (5)

Now, for any ν ∈ Eµ̄(F ) we have
∫

SM

φdν ≥ inf
µ∈M(F )

∫

SM

φdµ =
∫

φdµ̄. (6)

If the inequality was strict for a positive τ measure set, we would have
∫

E(F )

(∫

SM

φdν

)
dτ >

∫
φdµ̄

contradicting (5). Therefore there must be a τ full measure (in particular
non–empty) set of measures in Eµ̄(F ) for which the equality in (6) holds.

Lemma 12. ∀ λ ∈ L(f) ∃ µ ∈M(F ) such that
∫

φdµ = λ.

Proof. By assumption, there exists some (x, v) ∈ SM such that

λ(x, v) = lim
n→∞

1
n

log ‖Dfn
x (v)‖ = λ. (7)

For such a point (x, v), consider the sequence of measures

µn =
1
n

n−1∑

i=0

δF i(x,v)

and let µ ∈ M(F ) be the limit of some subsequence µnk
. For any n ≥ 1

we have

1
n

n−1∑

i=0

φ(F i(x, v)) =
∫

φdµn.

Therefore, by the definition of weak–star convergence,

lim
k→∞

1
nk

n−1∑

i=0

φ(F i(x, v)) = lim
nk→∞

∫
φdµn =

∫
φdµ.
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Moreover, using the existence of the limit in (7), we have

lim
k→∞

1
nk

log
‖Dfn

x (v)‖
‖v‖ = lim

n→∞
1
n

log
‖Dfn

x (v)‖
‖v‖ = λ(x, v) = λ.

Finally, the definition of φ implies

lim
k→∞

1
nk

log
‖Dfn

x (v)‖
‖v‖ = lim

k→∞
1
nk

n−1∑

i=0

φ(F i(x, v)).

Substituting this into the two previous equations completes the proof.

Lemma 13. ∀ µ ∈ E(F ) ∃ λ ∈ L(f) such that

λ =
∫

φdµ.

Proof. By the ergodicity of µ there exists a set A ⊆ SM with µ(A) = 1
such that for all (x, v) ∈ A there exists a constant

λ = λ(x, v) = lim
n→∞

‖Dfn
x (v)‖
‖v‖ = lim

n→∞
1
n

n−1∑

i=0

φ(F i(x, v)) =
∫

φdµ. (8)

It remains to show that λ ∈ L(f), i.e. that there actually exists a measure
µ∗ ∈ M(f) such that λ ∈ L(µ∗), as opposed to the possibility that the
limit in (8) exists by complete coincidence for some exceptional point. By
Lemma (9) the measure µ∗ = π∗µ is invariant and ergodic for f . Moreover
we have µ∗(π(A)) = 1. Thus, for µ∗ almost every x ∈ π(A) and every
v ∈ TxM such that (x, v) ∈ A we have that equation (8) holds and thus
λ is one of the Lyapunov exponents associated to the measure µ∗ and
therefore belongs to L(f).

Proof (Proof of Theorem 3). By Lemma 11, there exists a measure
µ ∈ E(F ) which minimizes the integral

∫
φdµ. By Lemma 13 there exists

a Lyapunov exponent λ ∈ L(f) associated to some measure µ∗ ∈ E(f),
which satisfies λ =

∫
φdµ. Thus it just remains to show that there exist

no other Lyapunov exponents λ′ < λ. By Lemma 12 this would imply the
existence of a measure µ′ ∈ M(F ) such that

∫
φdµ′ = λ′ < λ =

∫
φdµ

which contradicts the minimality of
∫

φdµ over all measures in M(F ).

4. UNIFORM EXPANSIVITY

We now prove Theorem 5. We first reformulate the definition of uniform
hyperbolicity in the following clearly equivalent form: there exists constants
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λ > 0 and N > 0 such that

‖Dfx(v)‖ ≥ eλn‖v‖ ∀ x ∈ Λ v ∈ TxM, n ≥ N.

Proof (Proof of Theorem 5). By Theorem 3 we can choose a constant
λ satisfying

inf{L(f)} = λ′ > λ > 0

We assume by contradiction that there exists a sequence of times nk →∞,
a sequence of points xk ∈ Λ and a sequence of vectors vk ∈ Txk

M such
that

‖Dfnk
xk

(vk)‖ < eλnk‖vk‖.
Now consider the sequence of measures

µnk
=

1
nk

nk−1∑

i=0

δF i(xk,vk)

and any (invariant) limit measure µ of this sequence. For simplicity we
shall suppose without loss of generality that µnk

→ µ. Then we have

1
nk

nk−1∑

i=0

φ(F i(xk, vk)) =
∫

φdµnk
< λ

for every nk. In particular

lim
k→∞

1
nk

nk−1∑

i=0

φ(F i(xk, vk)) = lim
k→∞

∫
φdµnk

=
∫

φdµ ≤ λ.

However, by Lemma 13 this implies λ ∈ L(f) which contradicts our choice
of λ.
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