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In a recent paper [9] we analyze conservation of volume for a series of ex-
amples of mechanical systems with linear, affine and non linear constraints
aiming to make evident some geometric aspects related with them. Here, we
only consider examples with linear constraints (defined by a constant rank dis-
tribution), in which we have conservation of volume. Conservation of volume
means, equivalently, that the orthogonal distribution (the metric is defined by
the kinetic energy) is minimal (see [15]) and so, if it is integrable, the corre-
sponding foliation has minimal leaves. Properties of the falling penny and of
the vertical disc rolling on a horizontal plane without slipping are very special.
A dynamically symmetric sphere that rolls without slipping on a given surface
S ⊂ R3 conserves volume, and the orthogonal distribution is integrable if, and
only if, S is parallel to a surface with a fixed constant mean curvature. Semi–
simple Lie groups endowed with suitable metrics have foliations with minimal
leaves. Geometric questions related with the kinematics of the rolling motion
of two surfaces are also considered.
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1. NOTATION

All the data we will consider in this paper are of class C∞. Let us
start with a Riemannian manifold (M, g) where M has dimension n and
represents the configuration space; g is the metric tensor with associated
Levi–Civita connection denoted by ∇. The map K = (1/2)g : TM → R is
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the kinetic energy and D ⊂ TM denotes a vector sub–bundle of the tangent
bundle τTM : TM → M . D can be seen, equivalently, as a distribution of
plane fields with constant rank m on M and represents the constraint for
the velocities; to say that the mechanical system is non holonomic means
that D is non integrable. Denote by D⊥ the orthogonal distribution to
D with respect to g that is a distribution of constant rank (n − m) (see
[10, 7, 12, 14, 9, 13]).

2. THE TOTAL SECOND FUNDAMENTAL FORM OF A
DISTRIBUTION D̃

This notion was introduced in [12] (see also [5] and [14]) and we recall
it for the sake of completeness. Let D̃ be a distribution (integrable or
not) defined on M ; the total second fundamental form of D̃ is a bilinear
vector bundle morphism BD̃ : TM ×M D̃ → D̃⊥ defined in the following
way: fix x ∈ M , consider (X̄, Ȳ ) ∈ TxM × D̃x, choose local extensions
X,Y of X̄, Ȳ with Y ∈ D̃ and consider BD̃(X̄, Ȳ ) as the orthogonal pro-
jection P⊥D̃ [(∇XY )x]; the value of BD̃(X̄, Ȳ ) does not depend on the local
extensions X, Y of X̄, Ȳ .

Remark 1. At this point it is important to emphazise ([12]) that when D̃
is integrable, the restriction of BD̃ to D̃ ×M D̃ gives, precisely, the classical
second fundamental form of the leaves of the foliation defined by D̃. In
particular when the trace of the second fundamental form of a leaf is equal
to zero, one concludes that the leaf is minimal (see [15]).

The meaning of minimality just mentioned in the remark above is the
following: if Ω is a sufficiently small domain contained in a leaf of D̃ (which
is an immersed submanifold of M) and has a regular boundary ∂Ω, then
the volume of Ω in the induced metric of D̃ ⊂ M is less or equal to the
volume of any other submanifold of M with the same boundary.

3. D’ALEMBERT PRINCIPLE:EQUATIONS OF MOTION
AND THE CONDITION FOR INVARIANCE OF A VOLUME

ON D
The non holonomic systems we want to consider aim to the determi-

nation of motions q(t) ∈ M such that q̇(t) ∈ Dq(t) for all t, under the
condition that the difference between the acceleration Dq̇

dt and the external
force (−gradV )(q(t)) has to be orthogonal to Dq(t); in other words, this
means that D’Alembert principle (see [12, 14]) holds. That leads to the
second order ODE
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Dq̇

dt
+ PD(gradV (q)) = BD(q̇, q̇) (1)

where we need to consider the initial conditions q(0) ∈ M and q̇(0) ∈ Dq(0).
The ODE system (1) defines a vector field on the manifold D ⊂ TM ;

under a certain condition, that vector field leaves invariant a local volume
on D ∩ TU where U(q1, ..., qn) is a local system of coordinates on M (see
[12] for more details).

Theorem 2 (Kupka and Oliva). There exists a local volume form ω
defined on TU such that its restriction to D∩TU is invariant under the flow
of the vector field defined by (1) if, and only if, the trace of the restriction
of BD⊥ to D⊥ ×M D⊥ vanishes.

To obtain a (global) volume form on D one needs to assume that D is
orientable as submanifold of TM .

Corollary 3. If the flow defined by system (1) conserves the local volu-
me ω considered in Theorem 2 and D⊥ is integrable, then the leaves of D⊥
are immersed minimal submanifolds of M .

The proof follows from Theorem 2 and Remark 1.

4. THE HOMOGENEOUS FALLING PENNY AND THE
VERTICAL ROLLING DISC

The so called falling penny is a homogeneous disc rolling without slipping
on a horizontal plane. The configuration space M = R2 × SO(3) is 5–
dimensional and has local coordinates (x, y, φ, θ, ψ), the mass of the penny
is m > 0 and its radius is R (see [3]). The constraint D is defined, locally,
by the zeros of the linear differential forms dx + R dψ cos(φ) and dy +
R dψ sin(φ); so it is a non integrable rank 3 distribution. After writting
the kinetic energy we see in [9] that the volume mentioned in Theorem 2 is
not conserved. On the other hand applying Frobenius theorem we see that
the rank 2 distribution D⊥ is integrable; thus no conclusions one can take
about its minimality.

Now we analize the vertical disc (not necessarily homogeneous) rolling
without slipping on a horizontal plane. The configuration manifold is M =
R2 × S1 × S1 so it is 4–dimensional with local coordinates (x, y, φ, ψ) and
the constraint distribution is written as in the example related with the
falling penny. The kinetic energy is also presented in [9], defining the
metric. In this case we have dimD dimD⊥ = 2 and there is conservation of
volume. On the other hand the rank 2 distribution D⊥ is integrable. So,
by Corollary 3, the leaves of the foliation defined by D⊥ are 2–dimensional
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manifolds and so they are minimal surfaces immersed in the 4–dimensional
manifold M .

5. SEMI–SIMPLE LIE GROUPS UNDER CARTAN
DECOMPOSITION

Let us start by recalling the following definitions and results for semi-
simple Lie algebras (we follow here the notation of [8]; see also [5] and
[9]):

1. A Lie algebra g is called semisimple if the Killing form

κ(X, Y )trace(adXadY )

on g×g is non–degenerate. An analytical Lie group is semisimple if its Lie
algebra is semisimple.

2. Let g be a Lie algebra. Then θ ∈ Aut(g) is an involution if θ2 = 1.
3. If g is a real semisimple Lie algebra, then an involution θ on g is called

a Cartan involution if the symmetric bilinear form

κθ(X,Y ) = −κ(X, θY )

is positive definite, where κ is the Killing form of g.
4. Every real semisimple Lie algebra has a Cartan involution. Moreover

any two Cartan involutions are conjugate via Int(g).
5. Any Cartan involution yields a Cartan Decomposition g = t⊕ p, with

t = {X ∈ g | θ(X) = X},
p = {X ∈ g | θ(X) = −X},

where t is a maximal compactly embedded subalgebra of g (for more details
see [8]).

6. The following properties hold:

(i) [t, t] ⊂ t, [t, p] ⊂ p, [p, p] ⊂ t,

(ii) κθ(t, p) = κ(t, p) = 0,

(iii) κ|t is negative definite, κ|p is positive definite.

On a semisimple analytical Lie group G with Lie algebra g, let us consider
the left invariant distribution defined by De = p and the left invariant
metric associated with an arbitrary metric on g such that p and t are
orthogonal, for instance, 〈X, Y 〉 = κθ(X,Y ) for all X, Y ∈ g.
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Theorem 4. Let G be an analytic semi–simple Lie group considered as
the configuration space of a mechanical system where the kinetic energy and
the constraint are given by the invariant metric and distribution, respec-
tively, introduced above. Then the left invariant distribution D⊥ such that
D⊥e = t is integrable and BD⊥ |D⊥×D⊥ vanishes. So, in particular, the
leaves of D⊥ are minimal submanifolds of G.

As concrete examples, we mention the so called pseudo–rigid bodies (see
[14]), whose configuration space is SL(n); for any X ∈ sl(n), θ(X) = −X†,
X† being the transpose of X. Another example is SO(n, 1) (see [5]) whose
Lie algebra is so(n, 1) = {X ∈ gl(n + 1)|X†In̄ + In̄X† = 0} where In̄ =
diag(−In, 1).

Remark 5. A totally geodesic distribution is a distribution invariant
under the geodesic spray of the Levi–Civita connection. So, if D⊥ is to-
tally geodesic we have Bs

D⊥ |D⊥×D⊥ = 0 and then the GMA flow conserves
volume. Semi–simple Lie groups with the Cartan decomposition satisfy
this latter property.

6. SPHERE ROLLING WITHOUT SLIPPING ON A
HORIZONTAL PLANE

The configuration space in this section is the 5–dimensional manifold
R2×SO(3); we deal with the classical local coordinates (x, y, φ, θ, ψ). As in
[1, 7, 9], let us consider I1, I2, I3 as the moments of inertia corresponding to
the distribution of mass, and |a| > 0 being the distance between the center
of mass and the geometric center of the sphere of radius δ. The total mass
is m > 0 and the non integrable constraint distribution D is defined by the
zeros of the two differential forms

dx− δ[−dψ sin(θ) cos(φ) + dθ sin(φ)]

and

dy − δ[−dψ sin(θ) sin(φ)− dθ cos(φ)].

The kinetic energy is obtained from formula (4) of [9].
We quote from [9] the two following facts:

(i) the Routh sphere, that is (I1 = I2 6= I3) and |a| > 0, does not
conserve volume;

(ii) the Chaplygin sphere, that is (I1 = I2 6= I3) and |a| = 0, does
conserve volume.

On the other hand, using Frobenius theorem one concludes that, in the
case of Chaplygin sphere, the rank 2 distribution D⊥ is integrable. Since
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homogeneous spheres are of Chaplygin type the same is true for homoge-
neous spheres.

7. A DYNAMICALLY SYMMETRIC SPHERE ROLLING
WITHOUT SLIPPING ON A REGULAR SURFACE OF R3

Theorem 6. Let us consider a rigid sphere of radius δ > 0 and k =√
I/m its radius of gyration; m is is the mass and I is the moment of

inertia of the sphere around any axis passing through its center (we as-
sume that the mass distribution has spherical symmetry). The sphere rolls
without slipping on a fixed surface S ⊂ R3. Then:

1.We have conservation of volume.
2.The distribution D⊥ is integrable if, and only if, the surface C parallel

to S defined by the all possible positions of the center of mass of the sphere,
has the absolute value of the constant mean curvature equal to H(C) = δ

2k2 .

Proof. Since our computation is local we may assume that our regular
surface is a smooth graph, say (x, y) → Φ(x, y). If the normal vector is
given by (∂xΦ, ∂yΦ,−1), the absolute value of the mean curvature H(C) of
that graph surface can be determined (see [17] ) by the following formula:

∣∣[1 + (∂xΦ)2]∂yyΦ + [1 + (∂yΦ)2]∂xxΦ− 2(∂xΦ)(∂yΦ)(∂xyΦ)
∣∣

∣∣−2[1 + (∂xΦ)2 + (∂yΦ)2]3/2
∣∣

On the other hand, by the Frobenius theorem the computation relative
to the condition for the integrability of D⊥ (when we deal with a general
smooth surface and use a local graph representation) is equivalent to

[1 + (∂xΦ)2]∂yyΦ + [1 + (∂yΦ)2]∂xxΦ− 2(∂xΦ)(∂yΦ)(∂xyΦ)

+ (δ/k2)[1 + (∂xΦ)2 + (∂yΦ)2]3/2 = 0 or, necessarily, H(C) = δ
2k2 .

Special cases for C implying the integrability of D⊥ are: spheres, circular
cylinders, Delaunay surfaces, etc., provided that the absolute value of the
constant mean curvature of C be equal to H(C) = δ

2k2 . It is clear that we
need to choose S in a such way that the corresponding C has the desired
value for H(C), after taking into account the radius δ of the rolling sphere.

For example, for a homogeneous sphere of radius δ we have k2 = (2/5)δ2

and so H(C) 5
4δ . Let us choose as S a spherical surface of radius R. One

can see that we have integrability of the distribution D⊥ if and only if the
rolling sphere moves inside S with a radius δ = (5/9)R. If the moving
sphere rolls on S but outside it, then D⊥ is never integrable. One can then
state the following corollary.



NONHOLONOMIC SYSTEMS AND THE GEOMETRY OF CONSTRAINTS253

Corollary 7. If a homogeneous sphere of radius δ rolls without slip-
ping inside another sphere of radius R then the corresponding rank two
distribution D⊥ orthogonal to the constraint distribution D is integrable
and minimal if, and only if, δ = (5/9)R. The geometrical consequence is
that the compact manifold S2 × SO(3) (which represents the configuration
space of the mechanical problem) admits a foliation with dimension two
immersed minimal leaves.

Another example that we leave to the reader is the case of a small sphere
rolling internally or externally on the surface of a circular cylinder.

It can also be considered the case of a sphere of radius δ rolling on a
surface S (to be determined) such that its parallel surface C is a suitable
Delaunay surface.

From Corollary 3 and when there is integrability of D⊥ it follows that
the leaves of this foliation are minimal surfaces of S × SO(3).

8. ROLLING SURFACES

In this section we do not need to assume D’Alembert principle because
we will deal only with geometric questions related to the kinematics of the
problem to be studied.

In a previous section we considered the case of a dynamically symmetric
sphere rolling without slipping on a regular surface S ⊂ R3. The configu-
ration space in this problem is identified with the 5–dimensional manifold
S × SO(3) and the fact that the sphere rolls without slipping corresponds
to the consideration of a constant rank 3 distribution as constraints for the
velocities. If we want to consider rolling without slipping or twisting the
constraint has to be given by a constant rank 2 non integrable distribution.
This model gives rise to an example of a so called system of Cartan type
(see [4] where the authors investigate the geometry of the so called rigid
integral curves of rank 2 distributions on manifolds; see also the recent
book [13] by R. Montgomery).

Following [4] let Σ1 and Σ2 be oriented surfaces embedded in Euclidean
space and let F1 (resp. F2) denote the corresponding oriented orthonormal
frame bundle of Σ1 (resp. Σ2). Each of F1 and F2 are principal SO(2)–
bundles. It is well known that there are canonical 1–forms α1, α2 and
α21(= −α12) on F1 and correspondingly β1, β2 and β21(= −β12) on F2 (see
[17, 6]) satisfying on F1

dα1 = α21 ∧ α2

dα2 = −α21 ∧ α1

dα21 = Aα1 ∧ α2
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and analogous equations valid on F2 with β instead of α and B instead
of A, where A (respectively, B) is the Gauss curvature of Σ1 (respectively,
Σ2).

Let SO(2) acting diagonally on F1 × F2:

(g, (p̄1, p̄2)) ∈ SO(2)× (F1 × F2) → (gp̄1, gp̄2) ∈ F1 × F2

that is a proper and free action. Set M = (F1×F2)/SO(2) the 5–manifold
representing the configuration space. If p1 and p2 are the projections of p̄1

and p̄2, an element of M has a natural interpretation as a triple (p1, p2, i)
where i : Tp1Σ1 → Tp2Σ2 is an oriented isometry.

Let us take a curve γ : [a, b] → M , γ(t) = (u1(t), u2(t), i(t)), where
ui(t) : [a, b] → Σi, i = 1, 2, are smooth curves satisfying i(t)(u̇1(t)) = u̇2(t)
for all a ≤ t ≤ b; that last condition corresponds to the property rolling
without slipping. If one wants to prevent twisting one considers e1, f1 :
[a, b] → TΣ1 as any parallel orthonormal frame field along the curve u1,
such that the corresponding frame field e2, f2 : [a, b] → TΣ2 defined by
e2(t) = i(t)(e1(t)), f2(t) = i(t)(f1(t)), is also paralell along u2.

In usual formulations of the problem, one starts with Σ1 ⊂ R3 as a sta-
tionary surface and one can think on a rigid body in R3 whose boundary
surface Σ2 is into tangential contact with Σ1. So Σ1 and Σ2 are tangent
one to the other in an initial point P0. Let us consider two smooth curves
ui : [0, li] → Σi, i = 1, 2, and assume they are parametrized by the corre-
sponding arc lenghts s, with u′i(s) := ti(s) 6= 0, s ∈ [0, li], i = 1, 2. So, by
hypothesis u1(0) = u2(0) = P0 and u′1(0) = u′2(0). We have well defined
the moving frames Ei = (ti, ηi, Ni) with ηi = Ni × ti, i = 1, 2 (here we are
ommiting the argument s, s ∈ [0, li], for simplicity of notation). Let us see
how these two curves allow us to define a rolling of Σ2 on Σ1 (thanks to
[2] and also to a private communication from C.E. Harle). The component
Ni comes from the unitary normal field that gives the orientation of Σi, so
(ti(s), ηi(s)) is an oriented frame field tangent to Σi at ui(s), i = 1, 2. For
a curve ui(s) contained in Σi we have the well known Darboux relations

dti
ds

= k(i)
g ηi + h(i)Ni

dηi

ds
= −k(i)

g ti + τ (i)Ni

dNi

ds
= −h(i)ti − τ (i)ηi,

where k
(i)
g = k

(i)
g (s) is the geodesic curvature of ui = ui(s) on Σi, i = 1, 2

(see [6]). Recall that ui is a geodesic of Σi if, and only if, k
(i)
g (s) = 0 for

all s, i = 1, 2.
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For each value of the parameter s we consider the map I(s) ∈ SO(3)
defined by I(s)(t1) = t2, I(s)(η1) = η2, I(s)(N1) = N2; that corresponds
to rolling without slipping. By derivative with respect to s we obtain

I ′(s)I−1(s)t2 = I ′(s)t1 =
dt2
ds

− I(s)
dt1
ds

= (k(2)
g − k(1)

g )η2 + (h(2) − h(1))N2

and analogous expressions for I ′(s)I−1(s)η2 and I ′(s)I−1(s)N2. Since
I ′(s)I−1(s) is skew symmetric, there exists a vector ω(s) ∈ R3 , called
the direction of the instantaneous axis of rotation, such that I ′(s)I−1(s) =
ω(s)× (see [14]) and so (ommiting s variable, for simplicity) we have:

ω × t2 = (k(2)
g − k(1)

g )η2 + (h(2) − h(1))N2

ω × η2 = −(k(2)
g − k(1)

g )t2 + (τ (2) − τ (1))N2

ω ×N2 = −(h(2) − h(1))t2 − (τ (2) − τ (1))η2,

therefore

ω = (τ (2) − τ (1))t2 − (h(2) − h(1))η2 + (k(2)
g − k(1)

g )N2.

A special rolling can be considered if we impose ω orthogonal to N2 for
all values of the parameter s, that is, if and only if, k

(2)
g (s) = k

(1)
g (s) for all

s. As we will see, that kind of rolling turns out to be without slipping or
twisting and implies the following about the curves: curve u1 determines
curve u2 and conversely. In particular if u1 is a geodesic of Σ1, then u2 is
a geodesic of Σ2 and conversely.

As we mentioned above, the rolling without slipping defined in [4] means
that for the smooth curve γ(s) = (u1(s), u2(s), i(s)), the oriented isometry
i(s) has the property that i(s)(t1(s)) = t2(s) and so i(s)(η1(s)) = η2(s), s ∈
[a, b]. On the other hand to avoid twisting one starts with a parallel oriented
orthonormal frame (e1, f1) = (e1(s), f1(s)) along u1 = u1(s). Then both
covariant derivatives De1

ds and Df1
ds vanish; so since e1 = At1 + Bη1 and

f1 = Āt1 + B̄η1 one obtains by covariant derivative (see for instance [14]):

dA

ds
t1 +

dB

ds
η1 + A

Dt1
ds

+ B
Dη1

ds
= 0,

dĀ

ds
t1 +

dB̄

ds
η1 + Ā

Dt1
ds

+ B̄
Dη1

ds
= 0,

where one can assume A(s) = B̄(s) = cos(θ(s)) and B(s) = −Ā(s) =
sin(θ(s)). On the other hand, from the well known relations above and the
definition of covariant derivative it follows that Dt1

ds = k
(1)
g η1 and Dη1

ds =
−k

(1)
g t1. Then dA

ds = Bk
(1)
g ; dB̄

ds = −Āk
(1)
g ; also dB

ds = −Ak
(1)
g and dĀ

ds =
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B̄k
(1)
g . Then dA

ds = − sin(θ(s))θ̇(s) = Bk
(1)
g (k(1)

g ) sin(θ(s)); analogously
dB
ds = cos(θ(s))θ̇(s) = −Ak

(1)
g − (k(1)

g ) cos(θ(s)). Thus k
(1)
g = −θ̇. But the

definition given by Bryant and Hsu of rolling without slipping or twisting
implies also that i(s)t1(s) = t2(s) and that the two vectors i(s)e1 = e2

and i(s)f1 = f2 form a parallel frame, that is, De2
ds and Df2

ds vanish. Now,
arguing as before one sees that k

(2)
g = −θ̇ . From the above one concludes

that k
(1)
g = k

(2)
g . That shows the equivalence between the special rolling

mentioned above and the rolling without slipping or twisting defined in [4].
Another statement equivalent to both definitions can also be obtained

with the following equalities: i(s)(t1(s)) = t2(s) and i(s)Dt1
ds = Dt2

ds . It
follows from the first one and from the fact that i(s) is an oriented isometry
that we also have i(s)(η1(s)) = η2(s), because (t2, η2) is a positive frame.
Since we observe that i(s)Dt1

ds = k
(1)
g i(s)η1 = k

(1)
g η2 and that Dt2

ds = k
(2)
g η2

the equivalence is now an easy matter.

Theorem 8. Let Σ1 and Σ2 be oriented surfaces embedded in Euclidean
space and u1(s), u2(s) be two smooth contact curves on Σ1 and Σ2, respec-
tively, parametrized by arc lenght with u′i(s) 6= 0, i = 1, 2, for all values of
s, and obtained by the rolling without slipping of Σ1 along Σ2. Then the
rolling is without slipping or twisting if and only if u1(s) and u2(s) have
the same geodesic curvatures.

Bryant and Hsu described completely the canonical constant rank 2 dis-
tribution D on M which has the property that the curves on M tangent to
D (the so called D–curves) represent the possible ways of rolling without
slipping or twisting and they showed that the distributions D1 = D+[D,D]
and D1 + [D1,D1] have constant rank 3 and maximum rank 5, respec-
tively, on the open set characterized by A 6= B, where, as defined above,
A (resp.B) is the Gauss curvature of Σ1 (resp. Σ2) that is D is said to be
a distribution of Cartan type in that open set. In particular D and D1 are
bracket generating (see [4] and [13]).

For a sake of completeness, we recall some arguments of [4]; let D̃ be the
distribution of constant rank 3, defined on F1 × F2 by the Pfaff equations

α1 − β1 = 0
α2 − β2 = 0

α21 − β21 = 0.

In fact, the 1–forms appearing in these equations are the pull–back, by
the canonical projections, of the global canonical 1–forms on F1 and F2.
That distribution D̃ is invariant under the action of SO(2) on F1 × F2

and contains the tangent vectors to the fibers of the quotient map F1 ×
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F2 7→ M = (F1 × F2)/SO(2). So, by push–down of D̃, one obtains, on
the manifold M , a constant rank 2 distribution D. The motions of rolling
without slipping or twisting correspond, precisely, to the D–curves, that is
the constant rank 2 distribution D describes the nonholonomic constraints
of the considered rolling system.

Now, on the manifold M , one defines three 1–forms θi, i = 1, 2, 3, by the
equalities:

α1 − β1 = θ1

α2 − β2 = θ2

α21 − β21 = θ3;

to these 1–forms we add two new 1–forms ω1 and ω2 defined by the rela-
tions 2ω1(α1 + β1) and 2ω2 = (α2 + β2). It can be proved the following:

Lemma 9. The five 1–forms θ1, θ2, θ3, ω1 and ω2 are linearly indepen-
dent at each point of the configuration space M . Moreover,

dθ1 = θ3 ∧ ω2 +
1

2
(α21 + β21) ∧ θ2

dθ2 = −θ3 ∧ ω1 − 1

2
(α21 + β21) ∧ θ1

dθ3 =
1

2
(A−B)ω1 ∧ ω2 +

1

2
(A−B)θ1 ∧ θ2 +

1

2
(A + B)[θ1 ∧ ω2 + ω1 ∧ θ2].

Lemma 10. On the open set in M where A 6= B, the constant rank 2
distribution D corresponding to motions without slipping or twisting is of
Cartan type.

Proof. Let (X1, X2, X3, Y1, Y2) be the dual frame corresponding to the
sequence

(θ1, θ2, θ3, ω1, ω2).

The distribution D is framed by (Y1, Y2) and D1 = D+[D,D] is framed by
(Y1, Y2, [Y1, Y2]). In fact, the basic formula

dω(X,Y ) = X(ω(Y ))− Y (ω(X))− ω([X, Y ])

and the previous lemma imply that θ1([Y1, Y2]) = θ2([Y1, Y2]) = 0 and
θ3([Y1, Y2]) 1

2 (A − B). So, D1 has constant rank 3 on the open set in M
where A 6= B. To finish the proof one has to show that the distribution
D2 = D1+[D1,D1] has maximum rank 5; for this one considers the sequence

(Y1, Y2, [Y1, Y2], [Y1, [Y1, Y2]], [Y2, [Y1, Y2]]),
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show that the last two vector fields do not belong to D1 and that all the
five vector fields are linearly independent at each point of the open set in
M where A 6= B.

We quote from [4] the following result:

Theorem 11 (Bryant and Hsu). Consider the rolling without slipping
or twisting of an oriented surface Σ1 along another oriented surface Σ2,
both embedded in Euclidean space. On the configuration space M , the cor-
responding rank 2 distribution D is of Cartan type provided that we restrict
ourselves to the open set in M characterized by A 6= B where A (resp B) is
the Gauss curvature of Σ1 (resp Σ2). One can find a unique singular curve
through each point in each direction tangent to the distribution D and that
family of curves describes the motion of rolling Σ2 along Σ1 in a such way
that each of the contact curves ui traces out a geodesic in Σi, i = 1, 2.

For a characterization of singular curves (also called non–regular in [4])
see [4, 13, 12, 14]. A nice presentation of the subject, in the context of
subriemannian geometry, can also be seen in [11].

Observe that not all motions defining a rolling without slipping or twist-
ing (of an oriented surface Σ1 along another surface Σ2, both embedded in
an Euclidean space) give rise to two geodesics as contact curves. In fact,
Sharpe (see [16]) proved, in a quite general context, that given an arbi-
trary smooth curve u2 on Σ2, there is a unique motion defining a rolling of
Σ1 along Σ2 without slipping or twisting that has u2 as contact curve. A
simple explicit example can be obtained by considering a circumference C
of radius r on the surface of a sphere of radius R, with R > r, and take a
straight cone of basis C and vertex P , the cone being tangent to the sphere
along C; let Q be a point of C and one can think that the segment PQ lies
on a horizontal plane. Now, if the rigid body (cone + sphere) starts to roll
over the plane with the point P fixed, during this rolling motion the circle
C rolls over another circle C1 (on the plane) of center P and radius equal
to PQ. An elementary computation shows that C as a curve on the sphere
and C1 as a curve on the plane have the same geodesic curvatures, both

equal to (R2−r2)
1
2

rR . So, by Theorem 8 that rolling motion of the sphere
along the horizontal plane is without slipping or twisting but the contact
curves are not geodesics.
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