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In this paper we study the classification polynomial vector fields with
isolated singularities on C2 under the hypothesis that the non–singular orbits
are simply–connected. Also we regard the case these orbits are cylinders.
Regardless the natural relations with the study of complete vector fields on
C2 which is carried out in [9], we give examples where the vector field is not
complete. Our techniques are based on the geometry of the corresponding
projective foliation.
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1. INTRODUCTION

Let X = (P, Q):C2 → C2 be a polynomial vector field. For our purposes
we may assume that gcd(P, Q) = 1 and X has isolated singularities on C2.
As it is well–known there exists a unique (singular holomorphic) foliation
FX on CP(2), with finite singular set sing(FX), and whose leaves L ⊂
CP(2) satisfy: L∗ := L ∩C2 is an orbit of X for all L leaf of FX , except
possibly for the case L ⊂ P1

∞ = CP(2) \ C2. Motivated by well–known
results on real foliations [3] as well as the study of complete vector fields
[9] we consider the case the orbits of X are planes (isomorphic to C) or
cylinders (isomorphic to C∗). One question we consider is related to the
following example. By means of well–known constructions we may consider
proper domains U ⊂ C2, U 6= C2, which are biholomorphic to C2. We
may also proceed such construction in a way that for any horizontal line
L ⊂ C2 the intersection L ∩ U is conformally equivalent to the disk D =
{z ∈ C, |z| < 1}. Thus we obtain a foliation Fo on C2 whose leaves are
disks. A first question is: It is possible to construct such an algebraic
foliation by disks on C2? We prove that such a construction is not possible
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if we admit only generalized curves as singularities (appearing necessarily at
P1
∞) (cf. Theorem A). In what follows we give some examples illustrating

our basic situations.

Example 1. Foliations by Planes.

(i) We begin with an example of a non–complete vector field with simply–
connected orbits. Take X = (1 + xy) ∂

∂x − y2 ∂
∂y . Clearly X is non–singular

and the line {y = 0} is an orbit diffeomorphic to C. We show that all the
other orbits are diffeomorphic to C; in fact, if L∗ is the X–orbit correspond-
ing to the fiber {yexy = c}, other than the orbit {y = 0}, then we define
y(z) = yoe

z and x(z) = k−z
yo

e−z, for some suitable constant k ∈ C. The
map ϕ(z) = (x(z), y(z)), z ∈ C thus obtained is a parametrization of L∗,
and therefore the orbit L∗ is diffeomorphic to C. On the other hand since
since we have ẏ = y2 on the flow equation for X, it follows that X is not
complete on C2. Finally, we remark that F is holomorphically conjugated
to a product foliation Γ : C×{y}, y ∈ C, on C2. In fact, this conjugacy is
given by the entire automorphism Ψ ∈ Aut(C2), Ψ(x, y) = (−xexy, ye−xy)
and the vector field Ψ∗X = exy. X is complete, nevertheless, it is not poly-
nomial. Later on we will return to the problem of trivializing the foliations
FX .

(ii) We consider a polynomial Poincaré–Dulac normal form X̃ = (mx−
ym) ∂

∂x +y ∂
∂y , m ∈ N. Flow integration shows that X̃ has orbits diffeomor-

phic to C in C2\{y = 0}, but the one contained in {y = 0} is diffeomorphic
to C∗. X̃ has a Liouvillian first integral, F̃ (x, y) = yex/ym

. Given any poly-
nomial map Φ:C2 → C2, such that Φ

∣∣
C2\{y=0} is an automorphism, and

Φ(x, 0) = 0, ∀x ∈ C, the vector field X = Φ∗X̃ is polynomial and has
simply–connected orbits (planes) on C2, provided that it is non–singular
over the line (y = 0); for instance we can take Φ(x, y) = (1+xyk, y), k ∈ N,
giving the vector field X =

(
(m−k)xyk +m− ym

)
∂
∂x + yk+1 ∂

∂y , which has

the first integral F (x, y) = ye
1+xyk

ym .
(iii) Let X(x, y) = ∂

∂x +yb(x) ∂
∂y , where b(x) is a non–zero polynomial on

x. The 1–form ω = dy−yb(x)dx defines FX on C2; we have ω = yd(log y−
B(x)) = d(yeB(x))

yeB(x) where B(x) =
∫ x

1
b(z)dz ∈ C[x]. The orbits of X are

planes parameterized by C 3 x 7→ (x, y = C · expB(x)), where C ∈ C.
The line P1

∞ = CP(2)\C2 is invariant, and FX is given in the coordinates
(u, v) as above by: u2+rdv + v(−ur+1 + b̃(u))du, where r = deg b(x) and
b̃(x) = xr · b( 1

x ) satisfies b̃(0) 6= 0. Moreover sing(F) = {(u = 0, v = 0)},
which is non–dicritical; FX has the entire first integral F (x, y) = yeb(x). As
above we can use polynomial maps Φ ∈ Aut(C2\(y = 0)) to generate other
examples of the form Φ∗X. For instance if we take Φ(x, y) = (xyk+α(y), y),
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then we will have the first integral F̃ = yeb(xyk+α(y)). We can complete the
above example with:

Claim 2. Let F∗ be an algebraic Bernoulli foliation on C2 say, F∗ : ω =
p(x)dy − (y2a(x) + yb(x))dx = 0. Assume that every leaf of F∗ on C2 is
simply–connected. Then F∗ is given by dy − yb(x)dx = 0.

Proof. As we will see (Lemma 33) sing(F∗) = φ, it follows that p(x) is
constant and we can assume that p(x) = 1. Thus ω = dy − (y2a(x) +
yb(x))dx. Let B(x) =

∫ x

1
b(z)dz. Then, 1

y2 exp B(x) .ω = d
( −1

y exp B(x) +A(x)
)

where A(x) =
∫ x

1
a(z)dz. Thus the leaves of F are given by y = exp B(x)

C−A(x)

where C ∈ C. The function A(x) is polynomial, therefore if it is not
constant there exists at least one value of xC ∈ C such that A(xC)− C =
0, ∀C ∈ C. This shows that the leaves of F∗ are simply–connected if only
if a(x) = 0 and therefore ω = dy − yb(x)dx; in particular these leaves are
planes.

(iv) Let X = ∂
∂x ; the orbits of X are planes, P1

∞ is FX–invariant and in
the coordinates (u = 1

x , v = y
x ) FX is given by udv − vdu = 0; therefore

qo = (u = 0, v = 0) is a dicritical singularity (cf. §2.5).
(v) We take the polynomial vector field X = ∂

∂x + (a(x)y + b(x)) ∂
∂y .

Straightforward flow integration shows that X is complete and its flow
maps φt are injective for all t ∈ C, therefore X has simply–connected
orbits diffeomorphic to C; X is a particular case of a Riccati differential
equation on C2 (see also Example 42). If ω = dy − (a(x)y + b(x))dx and

η = a(x)dx, then (see [23]) d(ω/e
∫

η) = 0 so that we have the entire first
integral F = ω

e

∫
η
.

Example 3. Foliations by cylinders.
Now we give examples where X has orbits diffeomorphic to cylinders (i.e.,
diffeomorphic to C∗).

(i) Once again we begin with an example of a non–complete vector field;
the Euler equation {ẋ = x2, ẏ = x + y} gives an example with orbits
diffeomorphic to cylinders. Indeed, integrating this equation we obtain
x = 1

c−t and ẏ − y + 1
t−c = 0. The solutions are therefore defined over the

sets {t ∈ C, t 6= c} ' C∗. Though the orbits are cylinders, this equation
is not in the list of Theorem B below; the reason is the existence of a wild
singularity at P1

∞ (see §6 (iv)).
(ii) Take X = x ∂

∂x + (a(x)y + b(x)) ∂
∂y polynomial; straightforward com-

putations show that X is complete with periodic flow on C2. So the
orbits are diffeomorphic to C∗. Finally, if we take ω = iX(dx ∧ dy) =
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xdy − (a(x)y + b(x))dx, and η = (1+a(x))
x dx, then dω = η ∧ ω, the form η

is therefore a closed rational 1–form with dω = η ∧ ω, so that d( ω

e

∫
η
) = 0

and we have a holomorphic first integral F =
∫

ω

e

∫
η

on C2. Notice that

(η)∞ ∩ C2 = (x = 0), which has only one irreducible component and
(η)∞ ∩ P1

∞ is a dicritical singularity (definition in §2.5). Compare this
example with Theorem B(i).

(iii) X = x ∂
∂x + yb(x) ∂

∂y has generic orbit diffeomorphic to C∗; indeed
X is complete with a periodic flow. As in Claim 2 above we can prove a
kind of converse of this result:

Claim 4. Let F∗ be a rational pull–back on C2 of an algebraic Bernoulli
foliation B : p(x)dy − (y2a(x) + yb(x))dx = 0. Assume that the generic
leaf of F∗ is diffeomorphic to C∗. Then there exists an affine change of
coordinates in C2 such that B is given by one of the forms:

(a) dy − (y2 + yb(x))dx = 0,
(b) xdy − (y2 + yb(x))dx = 0,
(c) xdy − yb(x)dx = 0.

Remark 5. According to the above examples we may have non–complete
polynomial vector fields with simply–connected orbits or with cylindrical
orbits. This shows that the techniques used in [9] (e.g. the results of
Borel and Kizuka, and the results of M. Suzuki for holomorphic flows, cf.
[9]) do not apply to the present situation, though some of the geometrical
ideas still persist. Our approach is therefore different, we use the theory
of Nishino, Suzuki and H. Saito on meromorphic functions on C2 and use
the solvability of the holonomy of the line at infinity in order to classify the
foliation, as well as the theorems of Darboux and Zaidenberg–Lin. To put
in evidence this geometrical ideas is one of our goals and this is why we
state our results for C2 instead of an affine algebraic manifold. We refer
to [5], [4], [6] and [7] for the notion of holonomy group, singular projetive
holonomy group, resolution of singularities, dicritical singularity, saddle–
node singularity and further information.

Definition 6. A singularity p ∈ sing(F) is a generalized curve if π−1(p)
contains no saddle–node singularity for F̃ ([5]). We shall say that p is an
extended generalized curve if π−1(p) exhibits no saddle–node at corners of D
and no saddle–nodes with strong manifold transverse to D. In other words,
the only saddle–nodes appear outside corners and have strong manifold
contained in D.

The following Theorems A and B are the main results proved in this
paper.
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Theorem 7 (Theorem A). Let X be a polynomial vector field on C2

such that each non–singular orbit is simply–connected. We have the fol-
lowing possibilities for FX :

1. FX is given by dy = 0 in some suitable affine chart (x, y) ∈ C2.
2. sing(FX) ⊂ P1

∞ is non–dicritical and the line P1
∞ is invariant. If

sing(FX)∩P1
∞ is a single extended generalized curve singularity then, after

an affine change of coordinates, FX has one of the forms:

(i) d
(
yeP (x,y)

)
= 0,

(ii) d
(
ye

1+ykP (x,y)
ym

)
= 0, k,m ∈ N, or

(iii) (W,P )∗(dy − (a(x)y + b(x))dx) = 0 for some polynomials a, b ∈
C[x], W,P ∈ C[x, y], where W is primitive. In particular, the simply–
connected orbits of X are diffeomorphic to C.

Next we study the case where the generic orbit of X (see §2.2) is dif-
feomorphic to C∗ (a cylinder). A result of M.Suzuki [27] states that if X
is complete then it admits a meromorphic first integral in C2. We have a
similar result for (not necessarily complete) polynomial vector fields. The
list of possibilities is considerably larger:

Theorem 8 (Theorem B). Let X be a polynomial vector field on C2

with generic orbit diffeomorphic to C∗. We have the following possibilities
for FX :

1. FX has a rational first integral f and in suitable affine coordinates we
have:

(i)The origin is a dicritical singularity C2 and f = xp

yq , f = xp

(axk−by`)q ;

or f = (axk+by`)p

(cxk+dy`)q , where p, q ∈ N, k > 1, ` > 1, a, b, c, d ∈ C∗.

(ii)There exists no dicritical singularity in C2, and f = xm[x`y +
P`(x)]n, m,n ∈ Z− {0}, P` ∈ C[x] of degree ≤ `− 1.

2. F has a meromorphic (but no rational) first integral F on C2. In this
case P1

∞ is invariant, and we have the following possibilities after an entire
change of coordinates:

(i) X has no dicritical singularity on C2, and therefore there exists a
primitive holomorphic first integral F :C2 → C of the form F = xm[x`y +
P`(x)]n) = 0, m, n ∈ Z− {0}, P` ∈ C[x] of degree ≤ `− 1.

(ii)The origin is a dicritical singularity of X. If it is a simple sin-
gularity, that is DX(0, 0) is non–singular, then there exists an entire au-
tomorphism ψ ∈ Aut(C2), which linearizes X, that is, ψ∗X = nx ∂

∂x +
my ∂

∂y , n, m ∈ N, and therefore there exists only one singularity in C2.
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3. P1
∞ is invariant and contains no dicritical singularity. If each p ∈

sing(F) ∩ P1
∞ is a generalized curve, then X admits a Liouvillian first

integral and we have the following possibilities:

(i) FX is given by a closed rational and in suitable affine coordinates
we have:

(a) dy
y + d

(P (x,y)
ym

)
= 0;

(b) dx
x + λdy

y + d
(P (x,y)

xnym

)
= 0,

(c) dx
x + λ dx

x−a + d
( P (x,y)

xn(x−a)m

)
= 0; where a, λ ∈ C∗, n,m ∈ N, P ∈

C[x, y].

(ii)FX is a rational pull–back of a Bernoulli foliation of one of the
forms:

(d) dy − (y2 + yb(x))dx = 0,
(e) xdy − (y2 + yb(x))dx = 0,
(f) xdy − yb(x)dx = 0.

The proof of Theorems A and B can be (roughly) outlined as follows.
First we remark that due to Riemman–Koebe’s Uniformization Theorem
for Riemann surfaces if the line at infinity P1

∞ = CP(2) \C2 is not FX–
invariant then the leaves of FX are contained in rational algebraic curves
and therefore there exists some rational first integral. Using the results
of Zaidenberg–Lin ([13]) and T. Nishino ([18], [19]) we can finish the de-
scription of this case. This same situation occurs in Theorem A if P1

∞
contains some dicritical singularity; in the case of Theorem B we conclude
the existence of a meromorphic first integral. Thus we may consider only
the case P1

∞ is FX–invariant and has no dicritical singularities. In this
situation, we shall introduce the singular projective holonomy groups asso-
ciated to a resolution of singularities of FX

∣∣
P1
∞

(as in [6], [23]). Using the
fact that the leaves contain no cycles (Theorem A) or arguments involving
the existence of invariant transverse measures (cf. [7]) (Theorem B) and
the density of hyperbolic fixed points for non–solvable subgroups of germs
of one variable complex diffeomorphisms ([1], [29]) we conclude that these
enriched holonomy groups must be solvable. Now [22], [23] apply in order
to give us a Liouvillian first integral for FX on CP(2). Theorems A and
B follow from an analysis of the possibilities for such a first integral, which
comes either from a closed rational 1–form or from a Bernoulli (suitable
pull–back of a Riccati) differential equation on C2.

The structure of the paper is as follows: In §2 we introduce the main tools
from Complex Analysis, Riemann Surfaces and Holomorphic Dynamics we
shall use throughout the paper. §3 is dedicated to the preparation of the
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proof of Theorem A which is completed in §4. In §5 we give the proof
of Theorem B and related facts. Finally, in §6 we give some remarks
concerning the statements of Theorems A and B as well as some conjecture
concerning the general case.

This paper is conceived to be accessible also to non–specialists on singular
holomorphic foliations, thus we have included in §2 some useful material
on the subject.

2. MAIN TOOLS
2.1. Algebraic curves and algebraic foliations

We study relations between the topology of an algebraic curve and its
simplest polynomial expression. First we recall the following result of
Zaidenberg–Lin.

Theorem 9 (Zaidenberg–Lin, [13]). Given a simply–connected alge-
braic affine curve C ⊂ C2, C = {P = 0}, P ∈ C[x, y]; then there exists an
algebraic automorphism T :C2 → C2, such that either P ◦T (x, y) = ykp(x),
or P ◦T (x, y) = p(x)

∏r
j=1(ajx

k +bjy
`), k, ` ∈ N, < k, ` >= 1, p(x) ∈ C[x].

In particular C ' C (conformal equivalence) and P is quasi–homogeneous.

A consequence of this result is that C has at most one singular point in
C2. By an affine change of coordinates on C2 we mean a polynomial
automorphism of C2, and by an analytical change of coordinates we mean
an entire automorphism of C2. The following result is known as Stein
Factorization Theorem:

Theorem 10 (Stein, [10]). Let R be a rational function on CP(2).
Then there exists a rational function Ro on CP(2) such that:

(i) The fibers R−1
o (λ), λ ∈ C ∪ {∞} are connected.

(ii) R is constant along the fibers of Ro.
(iii) R = T (Ro) for some rational map T :C → C.

Such a function Ro is called primitive function. Moreover we have:
(iv) If S is a rational function such that S is constant along the fibers of

Ro then S = A(Ro) for some rational map A:C → C. In particular S is
primitive if, and only if, A ∈ PSL(2,C).

We shall call a pencil on CP(2), a family of algebraic curves {λP−µQ = 0},
where P and Q are polynomials on C2, parameterized by [λ ; µ] ∈ CP(1).
If F is an algebraic foliation on CP(2), with a rational first integral, then
we have a natural associated pencil, (P, Q) where R = P/Q is a rational
first integral for F . Using the results above and a theorem of Bertini we
can prove that:
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Lemma 11 ([12]). Let F be a pencil as above. There exists a pair
(P1, Q1) with P1, Q1 polynomials on C2, such that:

(i) P1 and Q1 have no non–constant common factors, and R1 = P1/Q1

is also a first integral for F .
(ii) The polynomial λP + µQ is irreducible for almost all (λ, µ) ∈ C2.
(iii) P/Q = ϕ(P1/Q1) for some rational map ϕ:C → C.

Such a pair will be called primitive and given any other primitive pair
(P2, Q2) we have P1/Q1 = σ(P2/Q2) for some Möebius map σ.

Theorem 12 (Darboux, [12]). Let X be a polynomial vector field on
C2. Then X admits a rational first integral if, and only if, X has infinitely
many algebraic orbits.

Theorem 13 (Dimca–Saito, [8]). Let X be a polynomial vector field
with isolated singularities on C2. Assume that for the 1–form ω = iX(dV )
(where dV = dx∧dy is volume element), there exists a closed polynomial 1–
form η on C2 with dω = η∧ω. Then there exist polynomials W,P ∈ C[x, y]
with W primitive, such that: ω = (W,P )∗(dy− (a(x)y+b(x))dx), for some
a(x), b(x) ∈ C[x], η = a(W )dW .

2.2. Potential Theory and foliations
We get some notions from [24] and [26]. A Riemann surface R is hyper-

bolic if given a point p ∈ R it admits a (finite) Green function with pole at p.
The basic example is the disk D. Riemann–Koebe’s Uniformization Theo-
rem assures that hyperbolic Riemann surfaces have holomorphic universal
covering equivalent to D. A non–hyperbolic and non–compact Riemann
surface is said to be parabolic. A (holomorphic singular one–dimensional)
foliation F on a Stein surface M2 is parabolic is all its leaves are parabolic
Riemann surfaces [26].

Theorem 14 (M. Suzuki, [26]). Let F be a foliation on a Stein surface
M2. Assume that the set P(F) = {p ∈ M \ sing(F), Lp is parabolic} has
positive logarithmic capacity. Then F is parabolic. If moreover the leaves
of F are properly embedded then F admits a meromorphic first integral on
M .

Definition 15. ([24]) Let F be a foliation on a Stein surface M2 and
R a Riemann surface. We say that the generic leaf of F is diffeomorphic
to R if the set {p ∈ M, Lp 6' R} has zero transverse logarithmic capacity,
where ' means conformal equivalence. If X is a holomorphic vector field
on M we say that the generic orbit of X is diffeomorphic to R if it is true
for the generic leaf of the corresponding foliation F on M .

As a consequence of this result M.Suzuki has achieved the following con-
clusion for holomorphic flows on Stein surfaces:
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Theorem 16 ([27]). Let X be a complete holomorphic vector field on
a Stein surface M2. The generic orbit of X is diffeomorphic to exactly
one of the following Riemann surfaces: C, C∗. If the generic orbit of X is
diffeomorphic to C∗ then X admits a meromorphic first integral.

Remark 17. Applying Theorem 16 above we conclude that if Z is a
complete holomorphic vector field on C2 then the generic orbit of Z is
diffeomorphic to exactly one of the following Riemann surfaces C,C∗. On
the other hand, given X a non–complete polynomial vector field on C2, it
is not clear whether there exists a well–defined generic conformal type for
its orbits.

2.3. Meromorphic functions of type C and C∗

Let now f be a meromorphic function on C2. We denote by σ(f) ⊂ C2

the set of indeterminacy points of f . Then we assume σ(f) is a codimen-
sion ≥ 2 analytic subset, and since for any open subset V ⊂ C the set
f−1(V ) ⊂ Dom(f) := C2 \ σ(f) is an open Stein subset [19], we conclude
that Nishino’s results above hold for the restriction f

∣∣
Dom(f)

. Thus we
may introduce the following terminology [28]: We say that f is of type C,
(respectively of type C∗) if every prime surface of f

∣∣
Dom(f)

is analytically

isomorphic to C respectively if almost every prime surface of f
∣∣
Dom(f)

is an-
alytically isomorphic to C∗. We conclude from above that f is of type C if,
and only if, the set {c ∈ C, (Sc = {(x, y) ∈ Dom(f), f(x, y)−c = 0}) ' C}
has positive logarithmic capacity.

Theorem 18 ([28]). Let f be a meromorphic function of type C on
C2. Then Dom(f) = C2 and there is an analytical change of coordinates
on C2 such that f = x.

Theorem 19 (H. Saito and M. Suzuki, [21], [28]). Let f be a primi-
tive meromorphic function of type C∗ on C2. There exists an analytical
change of coordinates on C2 such that f writes f = ξ(fo) where ξ(z) is a
degree one rational function, and fo = xm[x`y+P`(x)]n, m, n ∈ Z−{0}, ` ∈
N, P`(x) ∈ C[x] has degree ≤ `− 1. In case ` = 0 we define P`(x) = 0.

Combining Theorems 12 and 14 we obtain:

Proposition 20. Let R:C2 → C be a primitive rational function with-
out indeterminacy points (i.e., Dom(R) = C2). If R is of type C∗ then
there exists an affine change of coordinates such that R(x, y) = xm[x`y +
P`(x)]n, m, n ∈ Z− {0}, ` ∈ N, P`(x) ∈ C[x] has degree ≤ `− 1.
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2.4. Fixed points of subgroups of Diff(C, 0)
We shall denote by Diff(C, 0) the group of germs of complex diffeomor-

phisms f fixing 0 ∈ C, say f(z) = λz +
+∞∑
j=1

ajz
j , λ 6= 0. Let G ⊂ Diff(C, 0)

be a finitely generated subgroup.

Theorem 21 ([1, 17, 29]). Suppose G is non–solvable.

(i) The basin of attraction of (the pseudo–orbits of) G is an open neigh-
borhood of the origin 0 ∈ Ω.

(ii) Either G has dense pseudo–orbits in some neighborhood V of the
origin or there exists an invariant germ of analytic curve Γ (equivalent to
Im(zk) = 0 for some k ∈ N) where G has dense pseudo–orbits and also G
has dense pseudo–orbits in each component of V \ Γ.

(iii) There exists a neighborhood 0 ∈ V ⊂ Ω, where G has a dense set of
hyperbolic fixed points.

Thus, according to this result, a subgroup G ⊂ Diff(C, 0) having discrete
pseudo–orbits outside the origin or without dense fixed points close to the
origin must be solvable.

3. SIMPLY–CONNECTED ORBITS OF POLYNOMIAL
VECTOR FIELDS

Throughout the next sections of this paper X will denote a polynomial
vector field on C2 with isolated singularities. We shall also denote by FX

the corresponding foliation on CP(2). For simplicity, by an orbit we shall
mean a non–singular orbit, that is, an orbit of X

∣∣
C2\sing(X)

. By for almost
every will mean for all except for a zero logarithmic capacity subset. Let
L∗ ⊂ C2 be a simply–connected orbit of X and denote by L ⊃ L∗ the leaf
of F that contains L∗. If P1

∞ is F-invariant then we have L = L∗. We will
take a regard at some properties of the orbits of a polynomial vector field
X on C2, from the dynamical point of view. We introduce the complex
projective plane CP(2) where CP(2) \C2 = P1

∞ ' CP(1).
Using the Maximum Modulus Principle one can easily prove the following

well–known fact:

Lemma 22. Let F be a foliation on CP(2) and L be a leaf of F . Then,
L ∩P1

∞ 6= ∅.
This first remark allows us to focus, in a certain sense, our argumentation

to what occurs in a neighborhood of P1
∞. We shall assume that P1

∞ is F–
invariant where F is the foliation on CP(2) given on C2 by the orbits of
X.



ON COMPLEX VECTOR FIELDS 233

Example 23. We take P (x, y) = p(x)
∏r

j=1(ajx
k − bjy

`), k, ` ∈ N, <

k, ` >= 1, aj , bj ∈ C∗ or P (x, y) = p(x)yk, k where p(x) ∈ C[x]. Then P is
a quasi–homogeneous polynomial and C := (P = 0) is an affine algebraic
curve. If C is irreducible and if we have a simply–connected orbit L∗ of a
polynomial vector field X on C2 such that L∗ ⊂ C then we have L∗ = C
so that C is non–singular on C2. This implies that we have the following
list of possibilities for P (x, y): ax + by, ax + byk, a, b ∈ C, a 6= 0, k ∈ N.
We may therefore perform a polynomial change of coordinates on C2 and
obtain P (x, y) = y. Summarizing we have:

Lemma 24. Let X be a polynomial vector field on C2 having an algebraic
simply–connected orbit, L∗ ⊂ C2. We may find affine coordinates (x, y) ∈
C2 such that L∗ = (y = 0).

Next we prove the following lemma.

Lemma 25. Let X be a polynomial vector field on C2 having a simply–
connected orbit, L∗ ⊂ C2. Then we have two possible cases:

(i) L∗ ' D ⇒ P1
∞ is F–invariant.

(ii) L∗ ' C ⇒ either P1
∞ is F–invariant or L = L∗, L ' C and L ⊂

CP(2) is a rational curve.

Proof. Assume that P1
∞ is not F–invariant. We first claim that L ∩

P1
∞ 6= ∞ or ∅ 6= L\L ⊂ sing(F)∩P1

∞, in this last case ](L∩P1
∞) = 1 and

L is a rational curve on CP(2). In order to prove it we begin by recalling
that according to Lemma 22 above we have L ∩ P1

∞ 6= ∅. Take therefore
p ∈ L∗ ∩ P1

∞. If p /∈ sing(F) then by the Flow–Box Theorem we have
L ∩P1

∞ 6= ∅. Assume now that L \ L ⊂ sing(F) ∩P1
∞ and take p ∈ L \ L.

Then by Remmert–Stein Theorem [11] L is an analytic curve in CP(2). By
a Theorem of Chow [11] L is an algebraic curve. Now, L = L∗ ∪ (L∩P1

∞)
where D = L ∩ P1

∞ is finite. Thus we have neither L∗ ' D nor ]D ≥ 2.
This gives L∗ ' C and L ' C. Therefore L is rational (and by Bezout’s
Theorem it is a straight line provided that it is smooth at the point L∩P1

∞).
This proves (ii). Notice that this already implies the following: P1

∞ non–
invariant ⇒ L∗ is not equivalent to D by Zaidenberg–Lin Theorem.

Proposition 26 ([8]). If L∗ is simply–connected and L contains a
separatrix Γ ∩P1

∞ 6= ∅ then L∗ ' C and L is a rational curve.

Corollary 27. If X has infinitely many simply–connected (non–singu-
lar) orbits and P1

∞ is not FX–invariant then X admits a rational first
integral.

Proof. Indeed, according to Lemma 25(ii) X has infinitely many alge-
braic orbits. By Darboux’s Theorem (Theorem 12) X has a rational first
integral.
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Corollary 28. If almost every orbit of X is simply–connected and
sing(FX) ∩ P1

∞ contains some dicritical singularity then X admits a ra-
tional first integral.

Proof. Let p ∈ sing(FX)∩P1
∞ be a dicritical singularity. Given an orbit

L∗ containing a separatrix through p we have that L ' C∪{∞} = C, and
therefore L is a rational curve. On the other hand p is dicritical so there is
a sector of rational algebraic curves L as above. Darboux’s Theorem gives
a rational first integral for X.

Proposition 29. Assume that X has infinitely many simply–connected
orbits and admits a rational first integral. Then there are affine coordinates
(x, y) ∈ C2 such that X writes X = λ ∂

∂x , λ ∈ C∗.

Proof. According to Stein Factorization Theorem (Theorem 10) we
may take a primitive rational first integral say, R = P

Q , with P,Q ∈ C[x, y]
relatively prime.

Claim 30. X has no dicritical singularity in C2.

Indeed, if there exists (xo, yo) ∈ C2 such that X has a dicritical singular-
ity at (xo, yo) then P (xo, yo) = Q(xo, yo) = 0 and as a consequence, all the
orbits L∗ of X on C2 satisfy (xo, yo) ∈ L∗ ⊂ C2. This implies in particular
that for those L∗ ' C we have L∗ ' C ∪ {(xo, yo)} ' C, which is not
possible for C is compact and C2 contains no compact curve. This proves
the claim.

The claim implies that (P = 0)∩ (Q = 0) = ∅. Now, applying Lemma 24
we may choose affine coordinates so that P −Q = x : indeed, the orbits of
X in C2 are given by {λP + µQ = 0}, λ, µ ∈ C. We may therefore assume
that the leaf P −Q = 0 is generic and diffeomorphic to C (by a Theorem of
Bertini [12] the set of singular fibers of a rational map is finite). Thus we
have P

Q = x+Q
Q and the leaves in C2 are given by λ(x + Q) + µQ = 0 and

generically by x+ νQ = 0, ν ∈ C. This gives the first integral x
Q . Since C2

contains no dicritical singularities we may write Q(x, y) = 1 + xq(x, y), q ∈
C[x, y] and the first integral x

1+xq(x,y) · Now we consider a generic level say,
C = {x(1− q(x, y))− 1 = 0}. Then C is smooth. Let Co = {xy− 1 = 0} ⊂
C2. Then C = σ−1(Co) for σ:C2 → C2, σ(x, y) = (x, 1 − q(x, y)). Thus
σ
∣∣
C

: C → Co is a branched finite covering. Clearly Co ' C∗ ∈ Co (indeed,
C∗ 3 x 7→ (x, 1

x ) is a diffeomorphism).

Claim 31. If C is simply–connected then q(x, y) is constant.

proof. By hypothesis C ⊂ C2 is simply–connected so that by Zaidenberg–
Lin Theorem (Theorem 9) we have C ' C. Thus we have a finite branched
covering σ1:C → C∗ given by σ

∣∣
C

:C → Co. By Picard’s Theorem σ1

is rational (for it is finite map) so that it must be polynomial. But this
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implies that σ1(C) = C by the Fundamental Theorem of Algebra, except
in the case σ1 is constant. This implies that 1 − q(x, y) is constant and
therefore q(x, y) is constant. The claim is proved.

We have now x
1+xq(x,y) = x

1+λx for some λ ∈ C and the proposition is
proved.

Proposition 32. Assume that almost every orbit of X is simply–con-
nected, P1

∞ is FX–invariant, sing(FX)∩P1
∞ is non–dicritical and contains

only generalized curves. Then each singular projective holonomy group of
FX

∣∣
P1
∞

is solvable without dense fixed points.

Proof. It is enough to observe that every simply–connected leaf contains
only trivial cycles and therefore any singular projective holonomy group
has only trivial fixed points over such a leaf. The conclusion follows from
Theorem 21.

4. PROOF OF THEOREM A

Lemma 33. If the orbits of X are simply–connected and P1
∞ is FX–

invariant then X is non–singular in C2.

Proof. Suppose by contradiction that there exists qo ∈ C2 ∩ sing(X).
According to [5] there exists a separatrix Γ for F , qo ∈ Γ. That is, Γ is a
germ of analytic curve containing qo such that Γ\qo is contained in some
orbit L∗ of X. Fixed this orbit we denote as usual L the corresponding leaf
of FX . We claim that L is contained in a rational curve. This rational curve
intersects the line at the infinity at another singularity and therefore we will
achieve a contradiction. Now, if L 6⊂ C2 then according to Proposition 26
L is contained in a rational curve thus we may assume that L = L∗. We
have therefore L ' C or D. It is clear that F has no other singularity with
a separatrix contained in L. Therefore using the techniques of [8] one can
show, even in the case L ' D, that L = L ∪ {qo} ' C and therefore L is
contained in some rational curve on CP(2) as claimed (see Proposition 26
and [8]). Now, this implies L ∩ P1

∞ 6= φ by Bezout’s Theorem, therefore
L = L\(sing(F)∩L) ⊂ L\{qo, q1} for some point q1 6= qo. This contradicts
the fact that L ' C and L ' C. Hence X has no singularities in C2.

Lemma 34. Suppose the generic non–singular orbits of X are simply–
connected and X has no rational first integral. Then P1

∞ is invariant,
sing(F) ∩ P1

∞ is nondicritical and if q̃ ∈ sing(F̃) ∩ D is a saddle–node
singularity then p̃ has its strong manifold contained in some component of
the resolution divisor D of F∣∣

P1
∞

. In particular if p ∈ sing(F)∩P1
∞ is an

extended generalized curve then it is indeed a generalized curve.
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Proof. From Corollaries 27 and 28 it only remains to prove that if there
exists p̃ ∈ D, which is a saddle–node singularity, this strong manifold is con-
tained in some component of D. If the strong manifold of the saddle–node
p̃ is transverse to the divisor D, then it is contained in some leaf L ⊂ C2 of
F . Now, since this leaf is simply–connected it follows that the holonomy
of Γ (associated to this singularity p̃ ∈ sing(F̃)) is trivial. Therefore we
have a saddle–node p̃ whose strong manifold has trivial holonomy. This is
an absurd because according to [14] the holonomy of a strong manifold is
of the form h(z) = z + akzk+1 + . . . , a ∈ C∗, k ∈ N. Thus, this type of
singularity does not appear.

Lemma 35. Let X be as in Lemma 34 above. There exists at most one
singularity of F (lying over P1

∞) which exhibits separatrices different from
P1
∞. Indeed there exists at most one separatrix transverse to P1

∞.

Proof. In fact, if there are q1 6= qo, {qo, q1} ⊂ P1
∞, admitting non–

trivial separatrices, then these separatrices are rational algebraic curves
and therefore either they coincide (what is not possible because as we
have seen each separatrix intersects P1

∞ only once) or they must inter-
sect in an affine singularity of F which gives another contradiction. This
proves that at most one singularity of F on P1

∞ exhibits separatrices
transverse to P1

∞. Now we prove that the number of these separatri-
ces is at most one. In fact if there are two of these separatrices, say
Γ1 and Γ2 through a singularity qo, then they are contained on parallel
affine lines say, L1 and L2. Now, through the singularity qo pass three
lines L1, L2,P1

∞ which are invariant by the foliation F and by perform-
ing a blow–up centered at qo we obtain a an element γ ∈ π1(P1), where
P1 ' CP(1) is the new projective line of the exceptional divisor of the
blow–up, which comes from the commutator of the non–trivial elements
γ1 and γ2 ∈ π1(P1\sing(F̃)) defined by the lines L1, L2. Now we make
an important remark: Since the holonomy of P1\sing(F̃) is solvable, and
since π1(P1\sing(F̃)) is clearly non–solvable 1 it follows that the holonomy
homomorphism π: π1(P1\sing(F̃)) → Hol(F̃ ,P1\sing(F̃)) is non–injective
(already at level of commutators). Therefore we can find an element [γ]
belonging to the kernel of π. This element lifts into an element [γ̃] on
any leaf L̃ of F̃ (a cycle), sufficiently close to P1 (recall that since F is
non–dicritical, P1 is F̃–invariant). Now we claim that L̃ is not simply–
connected. In fact, the element [γ̃] ∈ π1(L̃) cannot be (homotopic to) [0]
in a neighborhood of the divisor P1, therefore (since L1, L2 are invariant)
the homotopy must take place in C2\(L1 ∪ L2), which is also impossible.
This gives a contradiction.

1In fact, π1(P1\{p1, . . . , pr+1}) is generated by the loops γj around the points pj ,
and there exists one sole relation [γ1] ∗ . . . ∗ [γr+1] = [0].
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Lemma 36. Let F be as in Theorem A without rational first integral.
Then, there exists a projective change of coordinates T :CP(2) → CP(2),
T (x, y) = (X, Y ), such that in the new affine chart (X,Y ) we have (i)
P1
∞ = (Y = 0), (ii) If it exists, the sole separatrix C of F transverse to

P1
∞ is given by (X = 0)

Proof. We may assume that F exhibits exactly two invariant curves,
P1
∞ and a rational curve C. Now, given the line P1

∞ and the rational curve
C, using Zaidenberg–Lin Theorem (Theorem 9) we can choose new affine
coordinates (u, v) such that in these coordinates we have C = Ov,P1

∞ is
still the line at the infinity and we have L1 ∩P1

∞ = (u = 0, v = ∞).

Lemma 37. Let X be as in Theorem A without rational first integral.
Assume that F , is given by a closed rational 1–form Ω on CP(2). There
exists an affine change of coordinates such that F has one of the forms:

(a)dy
y + dP = 0,

(b)dy
y + d

(
(1 + ykP (x, y))/ym

)
= 0, k,m ∈ N, P (x, y) ∈ C[x, y].

Proof. First we notice that (Ω)∞ ∩C2 6= ∅ (otherwise F has a polyno-
mial first integral on C2). According to Lemma 36 above we can choose
an affine chart (x, y) ∈ C2, so that we have (Ω)∞ ∩ C2 = (y = 0).
Now we recall according to the so called Integration Lemma (see [22]),
a closed meromorphic 1–form Ω on CP(n) can be written as Ω

∣∣
Cn =

r∑
1

λj
dfj

fj
+ d

(
g/

r∏
1

f
nj−1
j

)
, with polar divisor (Ω)∞ ∩Cn =

⋃{fj = 0}, λj

is the residue of Ω along {fj = 0}, g is a polynomial as well as fj , nj is
the order of {fj = 0} as a pole of Ω. Therefore in our case we can write
Ω = ady

y +dR(x, y) for some rational function R(x, y). We can assume that
a = 1 (if a = 0 then F has a rational first integral). Therefore the leaves of
F are the level curves of the function F (x, y) = y exp R(x, y). Now the fact
that Ω has its eventual poles over (y = 0), and F has no affine singularities
implies that either R = P ∈ C[x, y] or R(x, y) = (1 + ykP (x, y))/ym for
some polynomial P (x, y) and some k, m ∈ N. This finishes the proof of the
lemma.

Proof (Proof of Theorem A). Let X be as in Theorem A. According
to Lemma 34 (see also Corollaries 27 and 28) if P1

∞ is not F–invariant
or sing(FX) ∩ P1

∞ contains some dicritical singularity, then X admits a
rational first integral and in this case Proposition 29 implies that X is
of the form X = λ ∂

∂x for some λ ∈ C∗ and some choice of the affine
coordinates. Assume now that X admits no rational first integral, but is
given by some closed rational 1–form Ω. Then Lemma 37 implies that we
may write Ω = dy

y + dP or Ω = dy
y + d(1+ykP (x,y)

ym ) for some choice of
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the affine coordinates. Finally we may assume that P1
∞ is FX–invariant,

sing(FX)∩P1
∞ is non–dicritical and contains (by hypothesis) only extended

generalized curves. According to Lemma 34 the singularities p ∈ P1
∞ ∩

sing(FX) are generalized curves. By Proposition 32 the singular projective
holonomy groups appearing in the resolution of singularities of FX

∣∣
P1
∞

are solvable without dense fixed points. The fact that all these groups
are well–defined and solvable implies the following [23]: Given the dual
1–form ω = iX(dx ∧ dy) we can find a closed rational 1–form η such that
dω = η ∧ ω, and η has polar divisor of order one, as in [22],[23]. By its
turn, the existence of such η (and the hypothesis on sing(FX)∩P1

∞) imply
that FX is either given by a closed rational 1–form of it is a rational pull–
back of a Bernoulli foliation p(x)dy − (y2a(x) + yb(x))dx = 0. Now, if
(η)∞ ∩C2 = ∅ then according to Dimca–Saito Theorem 13 we have (c) in
Theorem A and we are done.

Lemma 38. η is polynomial on C2.

Proof. Suppose by contradiction that (η)∞ ∩ C2 6= ∅, according to
Lemma 36 we have (η)∞ = P1

∞ ∪L1 for some projective line L1 transverse
to P1

∞ and with L1 ∩ P1
∞ = {po} ⊂ sing(FX). Choose a small bidisc

U centered at po with local coordinates (u, v) such that L1 ∩ U : (u =
0), P1

∞ ∩ U : (v = 0) and a small transverse disc Σ : (v = vo). Let
γo ⊂ P1

∞ be a loop |v| = |vo| 6= 0. Since the holonomy of the leaf L∞ :=
P1
∞ \ sing(FX) = P1

∞ \ {po} ' C is trivial we conclude that given any
u ∈ Σ, u 6= 0 the loop γo lifts to a loop γu ⊂ Lu in the leaf Lu ⊂ C2

that contains the point (u, vo). Since η
∣∣
Lu

is closed holomorphic and since
Lu ' C necessarily we have

∫
γu

η =
∫

γu
η
∣∣
Lu

= 0. On the other hand,
clearly for any simple loop γ ⊂ C2\L1 around L1 we have

∫
γ

η = ±2π
√−1λ

where λ 6= 0 is the residue of η along L1. This gives a contradiction.

Theorem A is now proved.

5. POLYNOMIAL VECTOR FIELDS HAVING
CYLINDRICAL ORBITS

In this section we prove Theorem B.

Lemma 39. Suppose X has generic orbit diffeomorphic to C∗ and P1
∞ is

not FX–invariant. Given any generic orbit L∗ of X the closure L ⊂ CP(2)
is an algebraic curve.

Proof. Since L∗ is generic we may assume that there exists p ∈ L∗∩P1
∞

such that p /∈ sing(FX). Thus we may trivialize FX locally around p and
take a small transverse disk p ∈ Σ ⊂ P1

∞. If ](L ∩ Σ) = ∞ then we have
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a contradiction for L∗ ' C∗. Thus ](L ∩ Σ) < ∞ and by the Transversal
Uniformity Lemma [3] L∗ is closed in C2 and L\L ⊂ sing(FX). This implies
by Remmert–Stein Theorem and Chow Theorem [11] that L is algebraic of
dimension one. It remains to study the case ∅ 6= (L∗ ∩P1

∞) \ sing(FX). In
this case once again by the theorems of Remmert–Stein and Chow L is an
algebraic curve.

Remark 40. This same result holds if we assume that L∗ ' R\F , where
R is a simply–connected Riemann surface, and F ⊂ R is finite (always
assuming that P1

∞ is transverse to F). On the other hand this result does
not extend to the case P1

∞ is F–invariant: take X = x ∂
∂x +λy ∂

∂y , λ ∈ C\R.
The orbits L∗ 6⊂ (x.y = 0) are diffeomorphic to C and are not algebraic,
nevertheless P1

∞ is F–invariant.

Proposition 41. Assume that X has generic orbit diffeomorphic to C∗

and P1
∞ is not FX–invariant. Then X admits a rational first integral. In

particular, almost every orbit of X is diffeomorphic to C∗.

Proof. First we remark that by Lemma 39 and Darboux’s Theorem
(Theorem 12) there exists a rational first integral. Choose a primitive
rational first integral f :C2 → CP(1). Then, by hypothesis, for an infinite
set of values c ∈ C the fiber fc = f−1(c) ⊂ C2 satisfies fc ' C∗. On the
other hand fc is an algebraic curve, whose degree does not depend on c and
which (generically for c) meets P1

∞ (which is not F–invariant) at transverse
intersection points. Thus Bezout’s Theorem shows that this number of
intersection points is fixed (for generic c). Moreover, using the fact that
the fc have (for generic c) a fixed conformal type (g, n) we conclude that,
except for a zero logarithmic capacity set of exceptional values c, the affine
curves fc ∩C2 are diffeomorphic. This implies that almost every orbit of
X is diffeomorphic to C∗.

Next we give an example of a foliation on C×C with generic orbit diffeo-
morphic to the disk D, however this is not the case for the corresponding
foliation on CP(2).

Example 42. Generic Riccati differential equations.
Let X = (p(x), a(x)y2+b(x)y+c(x)) with generic (polynomial) coefficients.
X defines a Riccati differential equation; if c 6= 0 them mostly there exist
no algebraic invariant curve other than the invariant vertical lines given by
{p(x) = 0}. We know that F comes from a foliation F on C×C which is
(outside the invariant vertical lines) a suspension of a group G ⊂ PSL(2,C)
given by some representation π1(C \ {p(x) = 0}) → PSL(2,C). Mostly
we have (for degree p ≥ 3) the group G is free and without dense fixed
points. Thus from one hand Picard’s Theorem implies that the leaves
on (C × C) \ {p(x) = 0} are covered by D and from other hand (using
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the fact that the restriction of the first projection (x, y) 7→ x to these
leaves is a covering map) we conclude that the referred leaves are actually
diffeomorphic to D.

Finally, we remark that by Painleve’s Theorem [20] any leaf L which is
not a vertical line admits meromorphic parameterizations and this shows
that L crosses a finite number of times the line (y = ∞). Using now
the canonical birational morphism σ:C×C → CP(2) we obtain that the
foliation F induced by X on CP(2) has leaves L with the property that:
L∗ ' D \ D with ]D = ∞, and L is not algebraic, provided that L does
not come from an invariant line.

Now we return to the situation of Theorem B.

Lemma 43. Let X be given with generic orbit diffeomorphic to C∗ and
having a rational first integral f (which we may assume to be primitive).
Then we have two possibilities after some affine change of coordinates:

(i)The origin of C2 is a dicritical singularity and we have either f = xp

yq ,

f = xp

(axk−by`)q ; or f = (axk+by`)p

(cxk+dy`)q , p, q ∈ N, k > 1, ` > 1, a, b, c, d ∈ C∗.

(ii)There exists no dicritical singularity in C2 and f = xm[x`y+P`(x)]n,
m,n ∈ Z− {0}, P` ∈ C[x] of degree ≤ `− 1.

Proof. According to Theorem 10 and Lemma 11 we may choose a
primitive pair (P, Q) for F . We can assume that the polynomials P and
Q are irreducible. Since we have an affine dicritical singularity, we have
(P = 0) ∩ (Q = 0) ∩ C2 6= φ. The reducible affine curve (P · Q = 0)
is simply–connected, because it is the union of two C∗ ∪ qo, through the
(singular) point qo. Applying Zaidenberg–Lin we obtain either P.Q =

p(x)
r∏

j=1

(ajx
k−bjy

`), or P.Q = y`p(x), after an affine change of coordinates.

Therefore we have the following possibilities:

1. P ·Q = xp · yq, p, q ∈ N ;
2. P ·Q = xp · (axk − by`)q, p, q ∈ N, k > 1, ` > 1, ab ∈ C∗ ;
3. P ·Q = (axk+by`)p(cxk+dy`)q, p, q ∈ N, k > 1, ` > 1, (ad−bc)d ∈ C∗.

Assume now that F has no dicritical singularity in C2. Then R is of type
C∗ and we may choose R = P

Q as above such that (P = 0) ∩ (Q = 0) = ∅.
Now, according to Proposition 20 we may have R = xm[x`y + P`(x)]n,
m,n ∈ Z − {0}, P` ∈ C[x] of degree ≤ ` − 1, for some affine polynomial
coordinates (x, y) ∈ C2.

Proposition 44. Assume that the generic orbit of X is diffeomorphic
to C∗, P1

∞ is FX–invariant and the resolution of singularities of FX

∣∣
P1
∞
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exhibits no saddle–node singularity. If there is a dicritical singularity p ∈
sing(FX) ∩P1

∞ then X admits a meromorphic first integral.

Proof. Suppose p ∈ sing(FX) ∩ P1
∞ is dicritical. Given a leaf L =

L∗ ⊂ C2, if L accumulates P1
∞ only at p, then we claim that L is closed

in C2 \ sing(FX). Indeed, we consider the resolution of the singularity p.
This singularity gives a non–invariant projective line at least, say Do. Since
by hypothesis the singularities at the corners of the resolution divisor are
not saddle–nodes, it follows that L̃ = strict transform of L through the
resolution morphism, cuts Do at some regular point q̃ ∈ Do. Denote by
D the exceptional divisor of this resolution. Take a small transverse disk
p̃ ∈ Σ̃ ⊂ Do and regard the intersections Σ̃∩L̃. Since L̃ is a Riemann surface
and L̃\D ' L ' C∗ it follows that ](L̃∩Do) < ∞ and ](L̃∩ Σ̃) < ∞. This
implies by the Transversal Uniformity Lemma [3] that L̃ is closed outside
D ∪ sing(F̃X) and since the resolution morphism is a proper mapping it
follows that L is closed in C2 \ sing(FX). Now we take any leaf L ⊂ C2

which accumulates some non–dicritical singularity q ∈ sing(FX) ∩ P1
∞,

then either L also accumulates some regular point of P1
∞ and therefore it

accumulates the dicritical singularity p in which case L is closed in C2 \
sing(FX); or L ∩ U = L ∪ {q} for some neighborhood U 3 q in CP(2).
In this last case we also conclude that L is closed in C2 \ sing(FX). Since
the leaves are parabolic and is a Stein manifold it follows from Suzuki’s
Theorem (Theorem 14) that X admits a meromorphic first integral on
C2.

Lemma 45. If X has generic orbit C∗ and a non–constant meromorphic
first integral, then we have two possibilities:

(i)X has no dicritical singularity over C2, and therefore there exists
a primitive holomorphic first integral F :C2 → C. In this case we may
choose analytical coordinates on C2 such that F = xm[x`y + P`(x)]n) = 0,
m,n ∈ Z− {0}, P` ∈ C[x] of degree ≤ `− 1.

(ii)X has a dicritical singularity po ∈ C2. If po is simple, that is DX(po)
is non–singular, then there exists an entire automorphism ψ ∈ Aut(C2),
which linearizes X, that is, ψ∗X = nx ∂

∂x +my ∂
∂y , n, m ∈ N. In particular,

in this last case, there exists only one dicritical singularity over C2.

Proof. Indeed, according to [18] and the remark we made at the begin-
ning of §2.4 we may find a primitive meromorphic first integral f for FX

on C2. There are two cases to consider:

1. X has no dicritical singularity in C2. In this case the first integral f
has no base points and defines therefore a holomorphic function f :C2 →
C. Therefore σ(f) = ∅ and Dom(f) = C2. This implies that f is of
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type C∗ on C2 and we may apply Theorem 19 in order to find analytical
coordinates (x, y) ∈ C2 such that f writes f(x, y) = xm[x`y+P`(x)]n) = 0,
m,n ∈ Z − {0}, P` ∈ C[x] of degree ≤ ` − 1. Since we have X(f) = 0 it
follows that X = u.(nx`+1 ∂

∂x − [(m + `n)x`y + mP`(x) + nxP ′`(x)] ∂
∂y ), for

some unity u ∈ O∗(C2).
2. X has a dicritical singularity po ∈ C2. In this case it follows that

po ∈ σ(f), that is po is an indeterminacy point for f . This implies that
there exists a positive logarithmic capacity set of values c ∈ C for which
{(x, y) ∈ Dom(f), f(x, y) = c} ⊂ C2 is diffeomorphic to C∗ ∪ {po} ' C.
We can also assume that the po is the origin. Assume now that DX(0)
is non–singular. Then, since X admits a meromorphic first integral in a
neighborhood of 0 it follows that X is locally linearizable at 0 [16]. We
denote by U the attraction basin of 0 on C2. Let ψ: V, 0 → W, 0 be a
linearizing diffeomorphism for X. Then as it is plain to see, ψ extends to
a biholomorphism ψ: U → C2, and in particular U is diffeomorphic to C2.

We want to prove that indeed:

Lemma 46. U = C2.

Proof. Assume by contradiction that U 6= C2. Denote by ∂U the
boundary of U . Since U is clearly open it follows that ∂U = U −U , where
U means the closure of U on C2. We study ∂U . Take a point qo ∈ ∂U .
Since the attraction basin of any singularity is open it follows that qo does
not belong to another attraction basin. Since by hypothesis all orbits of X
are diffeomorphic to C∗, it follows that in particular the orbit Lqo passing
through qo ∈ ∂U is diffeomorphic to C∗.

We use this fact to prove that the orbit L∗qo
is not closed on C2. In fact,

if Lqo is closed then the orbits close to the former are also closed. This is a
consequence of the fact that the existence of a meromorphic first integral
implies that the holonomy group of L∗qo

is finite, and using the fact that
this leaf is closed in C2 we may argue as in Reeb’s Stability Theorem [3]
and conclude that the leaves close to L∗qo

are closed on C2. Therefore these
orbits cannot accumulate the singularity 0, but this contradicts the fact
that some of them pass by U . Thus L∗qo

is not closed and must accumulate
another singularity q1 ∈ C2 − {0}. This singularity must be non–dicritical
by obvious reasons. Since X has therefore a holomorphic first integral at
q1 it follows that it has a finite number of local separatrices at q1, one of
which is given by L∗qo

. Now, since there are only finitely many singularities
on C2 it follows that ∂U is a finite union of analytic curves Lqo . Therefore
U = C2−(finite union of analytic curves on C2) - because a finite union
of analytic curves is a thin set and hence does not disconnect C2-. This is
not possible by reasons of homotopy (recall that U is diffeomorphic to C2,



ON COMPLEX VECTOR FIELDS 243

and is therefore simply connected). This proves Lemma 46 and finishes the
proof of Lemma 45.

Lemma 47. Suppose X has generic orbit diffeomorphic to C∗, P1
∞ is

FX–invariant, sing(FX)∩P1
∞ is non–dicritical and consists only of gener-

alized curves. Then all the singular projective holonomy groups of FX

∣∣
P1
∞

are solvable.

Proof. According to [2] if a foliation F on CP(2) admits an entire
invariant curve ϕ:C → CP(2) which is not algebraic then F admits non–
trivial holonomy invariant measures ν with support contained in the closure
ϕ(C) ⊂ CP(2). This is certainly the case we have now. Therefore, we have
two possibilities for a generic leaf L ' C∗ of FX .

(1) The leaf L is not algebraic and there exists a holonomy invariant
measure for FX that is not supported only in P1

∞.
(2) L accumulates only at the line at the infinity or has algebraic closure

in CP(2).

Obviously, we may assume that case (2) does not occur. Using now [7]
we conclude that the singular projective holonomy groups of FX

∣∣
P1
∞

are
solvable.

Lemma 48. If X admits no meromorphic first integral and every (non–
singular) orbit of X is diffeomorphic to C∗ then X has at most two algebraic
invariant curves not contained in P1

∞. Indeed, there exists an affine change
of coordinates such that such that in the new (x, y) we one of the following
equations for the algebraic orbits of X:

(1) {y = 0},
(2) {x · y = 0} and
(3) {x = 0}, {x− a = 0}, for some a ∈ C∗.

Proof. The proof is similar to the proof of Lemma 35 and we just
have to remark that for any leaf L∗ of F∗ on C2 we have by hypothesis
π1(L∗) ≈ Z (where ≈ means group isomorphism) and on the other hand if
D ⊂ CP(1) is a finite subset with ]D ≥ 3 then π1(CP(1) \D) contains a
subgroup isomorphic to Z⊕Z and therefore any holonomy homomorphism
π1(CP(1) \D) → Z must have a non–trivial kernel. The proof follows now
as in Lemma 35.

Lemma 49. Let X be given without meromorphic first integral, every
orbit diffeomorphic to C∗ and such that F is given by a closed rational
1–form. There exists an affine change of coordinates such that F is given
by one of the forms:
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(1) dy
y + d

(P (x,y)
ym

)
= 0;

(2) dx
x + λdy

y + d
(P (x,y)

xnym

)
= 0,

(3) dx
x + λ dx

x−a + d
( P (x,y)

xn(x−a)m

)
= 0;

where a, λ ∈ C∗, n,m ∈ N, P ∈ C[x, y].

Proof. This lemma follows from Lemma 48 above as in the proof of
Lemma 37.

Proof (Proof of Theorem B). Items B.1, B.2 and B.3 (i) are now straight-
forward consequences of Proposition 41, Lemma 43, Proposition 44 and
Lemma 45. Assume now that we are in case B.3 (but not in situation
B.3 (i)) of the statement. According to Lemma 47 the singular projective
holonomy groups in the resolution of singularities of F∣∣

P1
∞

are well–defined
and solvable so that (as in the proof of Theorem A) it follows from [23]
that ω = iX(dx ∧ dy) admits a closed (rational) logarithmic derivative say
η. As in the proof of Theorem A, [23] and Claim 4 imply that FX belongs
to the list B.3 (ii). This ends the proof of Theorem B.

Motivated by the results exposed in §§ 1, 2 one may ask for the classi-
fication of the polynomial vector fields on C2 whose orbits are algebroides
and polynomial vector fields with simply connected orbits on Cn, n ≥ 3.
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plexes, Séminaire Norguet, Springer Lect. Notes, 670 (1977), 53–79.

27. M. Suzuki, Sur les opérations holomorphes de C et de C∗ sur un space de Stein,
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