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In this article we consider the action of the real affine group and time rescal-
ing on real planar quadratic differential systems. We construct a system of rep-
resentatives of the orbits of systems with at least five invariant lines, including
the line at infinity and including multiplicities. For each orbit we exhibit its
configuration. We characterize in terms of algebraic invariants and comitants
and also geometrically, using divisors of the complex projective plane, the class
of real quadratic differential systems with at least five invariant lines. These
conditions are such that no matter how a system may be presented, one can
verify by using them whether the system has or does not have at least five
invariant lines and to check to which orbit (or family of orbits) it belongs.
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invariant curve, algebraic affine invariant, configuration of invariant lines.

1. INTRODUCTION

We consider here real planar differential systems of the form

(S)
dx

dt
= p(x, y),

dy

dt
= q(x, y), (1)
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where p, q ∈ R[x, y], i.e. p, q are polynomials in x, y over R, and their
associated vector fields

D̃ = p(x, y)
∂

∂x
+ q(x, y)

∂

∂y
. (2)

Each such system generates a complex differential vector field when the
variables range over C. To the complex systems we can apply the work of
Darboux on integrability via invariant algebraic curves (cf. [6]). For a brief
introduction to the work of Darboux we refer to the survey article [22].
Some applications of the work of Darboux in connection with the problem
of the center are given in [23].

For the system (1) we can use the following definition.

Definition 1. An affine algebraic invariant curve of a polynomial sys-
tem (1) (or an algebraic particular integral) is a curve f(x, y) = 0 where
f ∈ C[x, y], deg(f) ≥ 1, such that there exists k(x, y) ∈ C[x, y] satisfying
D̃f = fk in C[x, y]. We call k the cofactor of f with respect to the system.

Poincaré was the first to appreciate the work of Darboux [6], which
he called ”admirable” (see [15]) and inspired by Darboux’s work, Poincaré
wrote two articles [16], [17] where he also stated a problem still open today.

With this brilliant work Darboux opened up a whole new area of investi-
gations where one studies how the presence of particular algebraic integrals
impacts on global properties of the systems, for example on global integra-
bility. In recent years there has been a surge in activity in this area of
research and this article is part of a growing literature in the subject. In
particular we mention here [3], [5] and the work of C. Christopher, J.V. Per-
reira and J. Llibre on the notion of multiplicity of an invariant algebraic
curve of a differential system [4].

In this article, which is based on [24], we study systematically the sim-
plest kind of such a structure, i.e. quadratic systems (1) possessing invari-
ant lines. Some references on this topic are: [1,2,7,11–13,18,21,29,30,33].

To a line f(x, y) = ux+vy+w = 0 we associate its projective completion
F (X,Y, Z) = uX + vY + wZ = 0 under the embedding C2 ↪→ P2(C),
(x, y) 7→ [x : y : 1]. The line Z = 0 is called the line at infinity of
the systems (1). It follows from the work of Darboux that each system
of differential equations of the form (1) yields a differential equation on
the complex projective plane which is the compactification of the complex
systems (1) on P2(C) (cf. Section 2). The line Z = 0 is an invariant
manifold of this complex differential equation.
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Notation 2. Let us denote by

QS =
{

(S)
∣∣∣∣
(S) is a system (1) such that gcd(p(x, y), q(x, y)) = 1
and max

(
deg(p(x, y)), deg(q(x, y))

)
= 2

}
;

QSL =
{

(S) ∈ QS
∣∣∣∣
(S) possesses at least one invariant affine line or
the line at infinity with multiplicity at least two

}
.

For the multiplicity of the line at infinity the reader is refereed to Sec-
tion 2.

We shall call degenerate quadratic differential system a system (1) with
deg gcd(p, q) ≥ 1 and max

(
deg(p), deg(q)

)
= 2.

To a system (1) in QS we can associate a point in R12, the ordered tuple
of the coefficients of p(x, y), q(x, y) and this correspondence is an injection

B : QS ↪→ R12

S 7→ a = B(S)
(3)

The topology of R12 yields an induced topology on QS.

Definition 3. We say that an invariant straight line L(x, y) = ux +
vy + w = 0, (u, v) 6= (0, 0), (u, v, w) ∈ C3 for a quadratic vector field D̃
has multiplicity m if there exists a sequence of real quadratic vector fields
D̃k converging to D̃, such that each D̃k has m distinct (complex) invariant
straight lines L1

k = 0, . . . ,Lm
k = 0, converging to L = 0 as k → ∞ (with

the topology of their coefficients), and this does not occur for m + 1.

Proposition 4 (see [2]). The maximum number of invariant lines (in-
cluding the line at infinity and including multiplicities) which a quadratic
system in QS could have is six.

Definition 5. We call configuration of invariant lines (or simply con-
figuration) of a system (S) in QSL the set of all its invariant lines (real or
complex), each endowed with its own multiplicity and together with all the
real singular points of (S) located on these lines, each one endowed with
its own multiplicity.

We associate to each system in QSL its configuration of invariant lines.
In analogous manner to how we view the phase portraits of the systems on
the Poincaré disc (see for example [10]), we can also view the configurations
of real lines on the disc. To help imagining the full configurations, we
complete the picture by drawing dashed lines whenever these are complex.

On the class of quadratic systems acts the group of real affine transforma-
tions and time rescaling. Since quadratic systems depend on 12 parameters
and since this group depends on 7 parameters, the class of quadratic sys-
tems modulo this group action actually depends on five parameters.
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It is clear that the configuration of invariant lines of a system is an affine
invariant. The notion of multiplicity defined by Definition 3 is invariant
under the group action, i.e. if a quadratic system (S) has an invariant line l
of multiplicity m, then each system (S̃) in the orbit of (S) under the group
action has an invariant line l̃ of the same multiplicity m.

In this article we shall consider the case when the system (1) has at least
five invariant lines considered with their multiplicities.

The problems which we solve in this article are the following:

I) Construct a system of representatives of the orbits of systems with
at least five invariant lines, including the line at infinity and including
multiplicities. For each orbit exhibit its configuration.

II) Characterize in terms of algebraic invariants and comitants and also
geometrically, using divisors or zero-cycles of the complex projective plane,
the class of quadratic differential systems with at least five invariant lines.
These conditions should be such that no matter how a system may be
presented to us, we should be able to verify by using them whether the
system has or does not have at least five invariant lines and to check to
which orbit or perhaps family of orbits it belongs.

Our main results are formulated in Theorems 50 and 57. Theorem 50 gives
a total of 11 distinct orbits of systems with a configuration with exactly
six invariant lines including the line at infinity and including multiplici-
ties. Theorem 57 gives a system of representatives for 19 distinct orbits
of systems with exactly five invariant lines including the line at infinity
and including multiplicities. Furthermore theorem 57 gives a complete list
of representatives of the remaining orbits which are classified in 11 one-
parameter families. We characterize each one of these 11 families in terms
of algebraic invariants and comitants and geometrically. As the calcula-
tion of invariants and comitants can be implemented on a computer, this
verification can be done by a computer.

All quadratic systems with at least five invariant lines including the line
at infinity and including multiplicities are integrable via the method of
Darboux (see [6]) and hence all of them have elementary first integrals.
The phase portraits of these systems can easily be drawn. The issues
related to integrability, as well as the drawing of the phase portraits of the
systems we consider here are done in [25] and [26].

The invariants and comitants of differential equations used in the classi-
fication theorems (Theorems 50 and 57) are obtained following the theory
established by K.Sibirsky and his disciples (cf. [27], [28], [31], [19], [20]).
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2. DIFFERENTIAL EQUATIONS IN P2(C) OF FIRST
DEGREE AND FIRST ORDER AND THEIR INVARIANT

PROJECTIVE CURVES

In [6] Darboux considered differential equations of first degree and first
order of the complex projective plane. These are equations of the form

∣∣∣∣∣∣

L M N
X Y Z
dX dY dZ

∣∣∣∣∣∣
= 0 (CF )

where L, M , N are homogeneous polynomials in X, Y , Z over C, of the
same degree m. These are called equations in Clebsch form (CF ). 1

We remark that we can have an infinity of such equations yielding the
same integral curves. Indeed, for any ordered triple L,M, N of homoge-
neous polynomials in X, Y , Z over C, of the same degree m and for any
homogeneous polynomial A of degree m−1, the (CF )-equation correspond-
ing to

L′ = L + AX, M ′ = M + AY, N ′ = N + AZ (4)

has the same integral curves as the equation (CF ). Two equations (CF )
determined by polynomials L,M,N and L′,M ′, N ′ satisfying (4) are said
to be equivalent.

Theorem 6 (see [6]). Let L, M, N be homogeneous polynomials of the
same degree m over C. Then there exists a unique A, more precisely

A = − 1
m + 2

( ∂L

∂X
+

∂M

∂Y
+

∂N

∂Z

)

such that if L′,M ′, N ′ satisfy (4) for this A then

∂L′

∂X
+

∂M ′

∂Y
+

∂N ′

∂Z
≡ 0.

Theorem 7 (see [6]). Every equation (CF) with deg(L) = deg(M) =
deg(N) = m is equivalent to an equation

AdX + B dY + C dZ = 0 (5)

where A, B, C are homogeneous polynomials in X, Y , Z over C, of degree
m + 1 subject to the identity

AX + B Y + C Z = 0. (6)

1Darboux used the notion of Clebsch connex to define them.
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We shall use the expression ”G | H” where G,H are elements in an
integral domain R whenever G divides H in R.

Definition 8. [see [6]] An algebraic invariant curve for an equation (CF )
is a projective curve F (X,Y, Z) = 0 where F is a homogeneous polynomial
over C such that F | D̂F where D̂ is the differential operator

D̂ = L
∂

∂X
+ M

∂

∂Y
+ N

∂

∂Z

i.e. ∃K ∈ C[X, Y, Z] such that D̂F = FK. K is called the cofactor of F
with respect to the equation (CF ).

We now show that this definition is in agreement with Definition 1, i.e.
it includes as a particular case Definition 1.

To a system (1) we can associate an equation (5) subject to the identity
(6). We first associate to the systems (1) the differential form

ω1 = q(x, y)dx− p(x, y)dy

and its corresponding differential equation ω1 = 0.
We consider the map j : C3 \ {Z = 0} → C2, given by j(X, Y, Z) =

(X/Z, Y/Z) = (x, y) and suppose that max
(
deg(p), deg(q)

)
= m > 0.

Since x = X/Z and y = Y/Z we have:

dx = (ZdX −XdZ)/Z2 , dy = (ZdY − Y dZ)/Z2 ,

the pull–back form j∗(ω1) has poles at Z = 0 and its associated equation
j∗(ω1) = 0 can be written as

j∗(ω1) = q(X/Z, Y/Z)(ZdX−XdZ)/Z2−p(X/Z, Y/Z)(ZdY−Y dZ)/Z2 =0.

Then the 1–form ω = Zm+2j∗(ω1) in C3 \ {Z = 0} has homogeneous
polynomial coefficients of degree m + 1, and for Z 6= 0 the equations ω = 0
and j∗(ω1) = 0 have the same solutions. Therefore the differential equation
ω = 0 can be written as (5) where

A(X,Y, Z) = ZQ(X,Y, Z) = Zm+1q(X/Z, Y/Z) ,

B(X,Y, Z) = −ZP (X,Y, Z) = −Zm+1p(X/Z, Y/Z) , (7)
C(X,Y, Z) = Y P (X,Y, Z)−XQ(X, Y, Z)

and P (X,Y, Z) = Zmp(X/Z, Y/Z), Q(X,Y, Z) = Zmq(X/Z, Y/Z). Clear-
ly A, B and C are homogeneous polynomials of degree m + 1 satisfying
(6).
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The equation (5) becomes in this case

P (Y dZ − ZdY ) + Q(ZdX −XdZ) = 0

or equivalently
∣∣∣∣∣∣

P Q 0
X Y Z
dX dY dZ

∣∣∣∣∣∣
= 0. (8)

We observe that Z = 0 is an algebraic invariant curve of this equation
according to Definition 8, with cofactor K = 0. We shall also say that
Z = 0 is an invariant line for the systems (1).

To an affine algebraic curve f(x, y) = 0, deg f = n, we can associate its
projective completion F (X, Y, Z) = 0 where F (X, Y, Z) = Znf(X/Z, Y/Z).
The next proposition follows from the correspondence indicated above be-
tween systems (1) and their associated equations (8).

Proposition 9. Let f = 0 (deg f = n) be an invariant algebraic curve
of (1) according to Definition 1, with cofactor k(x, y). Then its associated
projective completion F (X, Y, Z) = 0 where F (X,Y, Z) = Znf(X/Z, Y/Z)
is an invariant algebraic curve according to Definition 8 for the equation
(8), with cofactor K(X, Y, Z) = Zm−1k(X/Z, Y/Z).

Conversely, starting now with an equation in Clebsch form (CF ) we can
consider its restriction on the affine chart Z = 1 and associate a differential
system:
∣∣∣∣∣∣

L M N
X Y Z
dX dY dZ

∣∣∣∣∣∣
=0 → (M̂−yN̂)dx−(L̂−xN̂)dy=0 →

{
ẋ = L̂−xN̂

ẏ=M̂−yN̂,
(9)

where L̂ = L(x, y, 1), M̂ = M(x, y, 1), N̂ = N(x, y, 1). The following
proposition follows easily by using Euler’s formula XF ′X+Y F ′Y +ZF ′Z = nF
for a homogeneous polynomial F (X, Y, Z) of degree n.

Proposition 10. Let F (X, Y, Z) = 0 (deg F = n) be an invariant al-
gebraic curve (according to Definition 8) for the equation (CF ) with co-
factor K(X,Y, Z), such that Z - F . Then f(x, y) = F (x, y, 1) = 0 is
an invariant affine algebraic curve (according to Definition 1) of the dif-
ferential system in (9) corresponding to (CF ), with cofactor k(x, y) =
K(x, y, 1)− nN(x, y, 1).

Definition 11. We say that Z = 0 is an invariant line of multiplicity
m for a system (S) of the form (1) if and only if there exists a sequence of
systems (Si) of the form (1) such that (Si) tend to (S) when i →∞ and the
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systems (Si) have m−1 distinct invariant affine lines Lj
i = uj

ix+vj
i y+wj

i =
0, (uj

i , v
j
i ) 6= (0, 0), (uj

i , v
j
i , w

j
i ) ∈ C3 (j = 1, . . . , m−1) such that for every

j, lim
i→∞

(uj
i , v

j
i , w

j
i ) = (0, 0, 1) and they do not have m invariant such lines

Lj
i , j = 1, . . . ,m satisfying the above mentioned conditions.

3. DIVISORS ASSOCIATED TO INVARIANT LINES
CONFIGURATIONS

Consider real differential systems of the form:

(S)





dx

dt
= p0 + p1(x, y) + p2(x, y) ≡ p(x, y),

dx

dt
= q0 + q1(x, y) + q2(x, y) ≡ q(x, y)

(10)

with

p0 = a00, p1(x, y) = a10x + a01y, p2(x, y) = a20x
2 + 2a11xy + a02y

2,

q0 = b00, q1(x, y) = b10x + b01y, q2(x, y) = b20x
2 + 2b11xy + b02y

2.

We stress that in (10) aij are variable parameters and we denote by

a = (a00, a10, a01, a20, a11, a02, b00, b10, b01, b20, b11, b02)

the 12-tuple of the coefficients of systems (10) and denote

R[a, x, y] = R[a00, a10, a01, a20, a11, a02, b00, b10, b01, b20, b11, b02, x, y].

In what follows it is important for us to make a distinction between a
polynomial f(a, x, y) ∈ R[a, x, y] and the polynomial obtained by evaluat-
ing f(a, x, y) at the specific value a = (a00, a10, . . . , b02) ∈ R12 which is
f(a, x, y) ∈ R[x, y]

Definition 12. We consider formal expressions D =
∑

n(w)w where
either all w in D are points of P2(C) or all w in D are irreducible algebraic
curves of P2(C). Such an expression is called:

(i) a zero-cycle of P2(C) in the first case,
(ii) a divisor of P2(C) in the second case,
(iii) a divisor of an irreducible algebraic curve C in P2(C) if all w in D

belong to the curve C.

We call degree of the expression D the integer deg(D) =
∑

n(w). We call
support of D the set Supp (D) of points w such that n(w) 6= 0.

In this section we shall assume that systems (10) belong to QS.
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Notation 13. Let

P (X, Y, Z) =p0(a)Z2 + p1(a, X, Y )Z + p2(a, X, Y ) = 0;

Q(X, Y, Z) =q0(a)Z2 + q1(a, X, Y )Z + q2(a, X, Y ) = 0;
C(X, Y, Z) =Y P (X, Y, Z)−XQ(X, Y, Z);

σ(P,Q) ={w ∈ P2(C) | P (w) = Q(w) = 0};
D

S
(P,Q) =

∑

w∈σ(P,Q)

Iw(P, Q)w;

D
S
(C, Z) =

∑

w∈{Z=0}
Iw(C, Z)w if Z - C(X,Y, Z);

D
S
(P, Q;Z) =

∑

w∈{Z=0}
Iw(P, Q)w;

D̂
S
(P, Q,Z) =

∑

w∈{Z=0}

(
Iw(C, Z), Iw(P, Q)

)
w,

where Iw(F,G) is the intersection number (see [8]) of the curves defined by
homogeneous polynomials F, G ∈ C[X, Y, Z] and deg(F ), deg(G) ≥ 1.

A complex projective line uX + vY + wZ = 0 is invariant for a system
(S) if either it coincides with Z = 0 or it is the projective completion of an
invariant affine line ux + vy + w = 0.

Notation 14. Let (S) ∈ QSL. Let us denote

IL(S) =
{

l

∣∣∣∣
l is a line in P2(C) such
that l is invariant for (S)

}
;

M(l) = the multiplicity of the invariant line l of (S).

Remark 15. We note that the line l∞ : Z = 0 is included in IL(S) for
any (S) ∈ QSL.

Let li : fi(x, y) = 0, i = 1, . . . , k, be all the distinct invariant affine lines
(real or complex) of a system (S) ∈ QSL. Let l′i : Fi(X, Y, Z) = 0 be the
complex projective completion of li.
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Notation 16. We denote

G :
∏

i

Fi(X, Y, Z)Z = 0; SingG = {w ∈ G|w is a singular point ofG} ;

ν(w) =the multiplicity of the point w, as a point of G.

n
∞

R =#{w ∈ SuppD
S
(C, Z)

∣∣ w ∈ P2(R)}.
D

IL
(S) =

∑

l∈IL(S)

M(l)l, (S) ∈ QSL;

SuppD
IL

(S) ={ l | l ∈ IL(S)}.

M
IL

= deg D
IL

(S);
NC = #SuppDIL ;

NR = #{l ∈ SuppD
IL

∣∣ l ∈ P2(R)};
n
R

G, σ
= #{ω ∈ SuppD

S
(P, Q) |ω ∈ G∣∣

R2
};

d
R

G, σ
=

∑

ω∈G|R2

Iω(P, Q);

mG = max{ν(ω) |ω ∈ Sing G|C2};
m
R

G = max{ν(ω) |ω ∈ Sing G|R2}.

4. THE MAIN T -COMITANTS ASSOCIATED TO
CONFIGURATIONS OF INVARIANT LINES

On the set Q̂S of all differential systems of the form (10) acts the group
Aff(2,R) of affine transformations on the plane. Indeed for every g ∈
Aff(2,R), g : R2 −→ R2 we have:

g :
(

x̃
ỹ

)
= M

(
x
y

)
+ B; g−1 :

(
x
y

)
= M−1

(
x̃
ỹ

)
−M−1B,

where M = ||Mij || is a 2× 2 nonsingular matrix, B is a 2× 1 matrix over
R. For every (S) ∈ Q̂S we can form its transformed system S̃ = gS:

∂x̃

∂t
= p̃(x̃, ỹ),

∂ỹ

∂t
= q̃(x̃, ỹ), (S̃)

where (
p̃(x̃, ỹ)
q̃(x̃, ỹ)

)
= M

(
(p ◦ g−1)(x̃, ỹ)
(q ◦ g−1)(x̃, ỹ)

)
.
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The map

Aff(2,R)× Q̂S −→ Q̂S

(g, S) −→ S̃ = g ◦S

verifies the axioms for a left group action. For every subgroup G ⊆
Aff(2,R) we have an induced action of G on Q̂S. We can identify the
set Q̂S of systems of the form (10) with R12 via the map Q̂S −→ R12

which associates to each such system the 12-tuple a = (a00,a10 . . . , b02) of
its coefficients.

The action of Aff(2,R) on Q̂S yields an action of this group on R12.
For every g ∈ Aff(2,R) let rg : R12 −→ R12, rg(a) = ã where ã is the
12-tuple of coefficients of S̃. It is known that rg is linear and that the map
r : Aff(2,R) −→ GL(12,R) thus obtained is a group homomorphism.
For every subgroup G of Aff(2,R), r induces a representation of G onto
a subgroup G of GL(12,R).

Definition 17. A polynomial U(a , x, y) ∈ R[a, x, y] is called a comitant
of systems (10) with respect to a subgroup G of Aff(2,R), if there exists
χ ∈ Z such that for every (g, a) ∈ G × R12 and for every (x, y) ∈ R2 the
following relation holds:

U(rg(a), g(x, y) ) ≡ (det g)−χ U(a, x, y),

where det g = det M . If the polynomial U does not explicitly depend on x
and y then it is called invariant. The number χ ∈ Z is called the weight
of the comitant U(a, x, y). If G = GL(2,R) (or G = Aff(2,R) ) then
the comitant U(a, x, y) of systems (10) is called GL-comitant (respectively,
affine comitant).

Definition 18. A subset X ⊂ R12 will be called G-invariant, if for
every g ∈ G we have rg(X) ⊆ X.

Let us consider the polynomials

Ci(a, x, y) = ypi(a, x, y)− xqi(a, x, y) ∈ Q[a, x, y], i = 0, 1, 2,

Di(a, x, y) =
∂

∂x
pi(a, x, y) +

∂

∂y
qi(a, x, y) ∈ Q[a, x, y], i = 1, 2.

As it was shown in [27] the polynomials

{
C0(a, x, y), C1(a, x, y), C2(a, x, y), D1(a), D2(a, x, y)

}
(11)

of degree one in the coefficients (variable parameters) of systems (10) are
GL-comitants of these systems.
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Notation 19. Let f, g ∈ R[a, x, y] and

(f, g)(k) =
k∑

h=0

(−1)h

(
k

h

)
∂kf

∂xk−h∂yh

∂kg

∂xh∂yk−h
. (12)

(f, g)(k) ∈ R[a, x, y] is called the transvectant of index k of (f, g) (cf. [9],
[14]).

Theorem 20 (see [31]). Any GL-comitant of systems (10) can be con-
structed from the elements of the set (11) by using the operations: +, −, ×,
and by applying the differential operation (f, g)(k).

The following statements are direct consequences of the definition of a
GL-comitant (see Definition 17).

Remark 21.

(i) Every product of GL-comitants is a GL-comitant;
(ii) A linear combination of GL-comitants is a GL-comitant if and only

if all terms have the same weight.

Let T (2,R) be the subgroup of Aff(2,R) formed by translations. Con-
sider the linear representation of T (2,R) into its corresponding subgroup
T ⊂ GL(12,R), i.e. for every τ ∈ T (2,R), τ : x = x̃ + α, y = ỹ + β we
consider as above rτ : R12 −→ R12.

Definition 22. Consider a polynomial U(a, x, y)=
∑d

j=0 Ui(a)xd−jyj ∈
R[a, x, y] which is a GL-comitant of systems (10). We say that this poly-
nomial is a T -comitant of systems (10) if for every (τ, a) ∈ T (2,R) × R12

we have Uj(rτ (a)) = Uj(a), ∀ j = 0, 1, . . . , d.

Consider s polynomials Ui(a, x, y) =
∑di

j=0 Uij(a)xdi−jyj ∈ R[a, x, y],
i = 1, . . . , s and assume that the polynomials Ui are GL-comitants of
systems (10) where di denotes the degree of the binary form Ui(a, x, y) in
x and y with coefficients in R[a]. We denote by

U = {Uij(a) ∈ R[a] | i = 1, . . . , s, j = 0, 1, . . . , di }

the set of the coefficients in R[a] of the GL-comitants Ui(a, x, y), i = 1, . . . , s
and by V (U) its zero set:

V (U) =
{

a ∈ R12 | Uij(a) = 0, ∀ Uij(a) ∈ U }
.
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Definition 23. Let U1, U2, . . . , Us be GL-comitants of systems (10) and
homogeneous polynomials in the coefficients of these systems. A GL-
comitant U(a, x, y) of systems (10) is called a conditional T -comitant (or
CT -comitant) modulo 〈U1, U2, ..., Us〉 (i.e. modulo the ideal generated by
Uij(a) (i = 1, . . . , s; j = 0, 1, . . . , di) in the ring R[a]) if the following two
conditions are satisfied:

(i) The algebraic subset V (U) ⊂ R12 is Aff(2,R)-invariant (see Defin-
ition 18);

(ii) For every (τ, a) ∈ T (2,R)× V (U), U(rτ (a), x̃, ỹ) = U(a, x̃, ỹ) in
R[x̃, ỹ].

Definition 24. A polynomial U(a, x, y) ∈ R[a, x, y], homogeneous of
even degree in x, y has well determined sign on V ⊂ R12 with respect
to x, y if for every a ∈ V , the binary form u(x, y) = U(a, x, y) yields a
function of constant sign on R2 \ {u = 0}.

Remark 25. We draw the attention to the fact, that if a CT -comitant
U(a, x, y) of systems (10) of even weight is a binary form of even degree
in x and y and of even degree in a and also has well determined sign on
some Aff(2,R)-invariant algebraic subset V , then this sign is conserved
after the application of any affine transformation of the plane x, y and time
rescaling.

We now construct polynomials D(a, x, y) and H(a, x, y) which will be
shown in Lemma 62 to be T -comitants.

Notation 26. Consider the polynomial Φα,β =αP+βQ∈R[a,X,Y,Z,α,β]
where P = Z2p(X/Z, Y/Z), Q = Z2q(X/Z, Y/Z), p, q ∈ R[a, x, y] and
max(deg(x,y) p,deg(x,y) q) = 2. Then

Φα,β = c11(a, α, β)X2+2c12(a, α, β)XY +c22(a, α, β)Y 2+2c13(a, α, β)XZ

+ 2c23(a, α, β)Y Z + c33(a, α, β)Z2,

∆(a, α, β) = det ||cij(a, α, β)||i,j∈{1,2,3} , D(a, x, y) = 4∆(a, y,−x),

H(a, x, y) = 4
[
det ||cij(a, y,−x)||i,j∈{1,2}

]
.

Remark 27. The polynomials D(a, x, y) and H(a, x, y) constructed above
are GL-comitants due to the following relations and to Theorem 20 and
Remark 21 above:

H(a, x, y) =
[
(C2, C2)(2) − 8(C2, D2)(1) − 2D2

2

]
/18;

D(a, x, y) =
[
36C0H − 9C2D

2
1 − C1

(
(C1, C2)(2) − 6(C1, D2)(1)

)

+
(
(C1, C2)(1), C1

)(1) + 6D1

(
C1D2 − (C1, C2)(1)

)]
/36.
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Proposition 28. Consider m ≤ 3 distinct directions in the affine plane,
where by direction we mean a point [v : −u] ∈ P1(C). A necessary condition
to have for each one of these directions an invariant line with that direction
is that there exist m distinct common factors of the polynomials C2(a, x, y)
and D(a, x, y) over C.

Proof. Suppose that L(x, y) ≡ ux + vy + w = 0, L(x, y) ∈ C[x, y],
(u, v) 6= (0, 0) is an invariant line for a quadratic system corresponding to
a ∈ R12. Then we must have r, s, t ∈ C such that

∂L
∂x

p(x, y) +
∂L
∂y

q(x, y) = L(x, y)(rx + sy + t). (13)

Hence

up(x, y) + vq(x, y) = (ux + vy + w)(rx + sy + t).

So Φu,v(a, x, y) = 0 is a reducible conic which occurs if and only if the
respective determinant ∆(a, u, v) = 0. But D(a, v,−u) = 4∆(a, u, v) = 0.
The point at infinity of L = 0 is [v : −u : 0] and so C2(a, v,−u) = 0.
Hence, the two homogeneous polynomials of degree 3 in x, y must have the
common factor ux + vy.

Remark 29. Consider two parallel invariant affine lines Li(x, y) ≡ ux +
vy + wi = 0, (u, v) 6= (0, 0), Li(x, y) ∈ C[x, y], (i = 1, 2) of a quadratic
system (S) of coefficients a. Then H(a,−v, u)=0, i.e. the T-comitant
H(a, x, y) can be used for determining the directions of parallel invariant
lines of systems (10).

Indeed, according to (13) from the hypothesis we must have

up(x, y) + vq(x, y) = (ux + vy + w1)(ux + vy + w2).

Therefore for the quadratic form in x and y: F2(a, x, y) = up2(a, x, y) +
vq2(a, x, y) we obtain F2 = (ux + vy)2 and hence Discriminant (F2) = 0.
Then calculations yield: Discriminant (F2(a, x, y)) = −H(a,−v, u) and
hence H(a,−v, u) = 0.

We construct the following polynomials which will be shown in Lemma
62 to be T -comitants:

Notation 30.

B3(a, x, y) = (C2, D)(1) = Jacob (C2, D) ,

B2(a, x, y) = (B3, B3)
(2) − 6B3(C2, D)(3),

B1(a) = Res x (C2, D) /y9 = −2−93−8 (B2, B3)
(4)

.

(14)
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Proposition 31. Suppose d̃ = deg gcd (C2(a, x, y), D(a, x, y)). Then:

d̃ = 0 ⇔ B1(a) 6= 0;

d̃ = 1 ⇔ B1(a) = 0, B2(a, x, y) 6= 0;

d̃ = 2 ⇔ B2(a, x, y) = 0, B3(a, x, y) 6= 0;

d̃ = 3 ⇔ B3(a, x, y) = 0.

Proof. Since the polynomial B3(a, x, y) is the Jacobian of the cubic
binary forms C2(a, x, y) and D(a, x, y) we conclude that d̃ = 3 if and only
if B3(a, x, y) = 0. We assume B3(a, x, y) 6= 0 (i.e. d̃ ≤ 2) and consider the
two subcases: B2(a, x, y) = 0 and B2(a, x, y) 6= 0.

1. Assuming that B2(a, x, y) = 0 then d̃ = 2. Indeed, suppose d̃ < 2.
From (14) the condition B2 = 0 yields B1 = 0 and since the polynomial
B1(a) is the resultant of the binary forms C2(a, x, y) and D(a, x, y) we get
d̃ = 1, i.e. these polynomials have a common linear factor αx + βy. We
may assume β = 0 (the case β 6= 0 can be reduced to this one via the
transformation x1 = αx + βy, y1 = x). Then

C2 =x(a1x
2+b1xy+c1y

2)≡xÃ(x, y), D=x(a2x
2+b2xy+c2y

2)≡xB̃(x, y).

Considering (14), calculations yield B2(a, x, y) = 3x4 · Res x(Ã, B̃)/y4

and we obtain a contradiction: since B2 = 0 according to [32] (see The-
orem 10.7 on page 29 of [32]) the polynomials Ã and B̃ have a common
nonconstant factor, i.e. d̃ > 1.

Conversely, suppose that d̃ = 2. Then clearly we have

C2 = (ax + by)C̃, D = (cx + dy)C̃

and taking into account (14) calculations yield B2 = 0.
2. Let us assume now that the condition B2(a, x, y) 6= 0 holds. Then

d̃ ≤ 1 and since the polynomial B1(a) is the resultant of the binary forms
C2(a, x, y) and D(a, x, y) we get d̃ = 1 if and only if B1(a) = 0.

From the Propositions 28 and 31 the next result follows:

Corollary 32. Given a direction [v : −u], respectively two or three
distinct directions [vi : −ui], i = 1, 2 or i = 1, 2, 3 in the affine plane,
for the existence of an invariant straight line having the direction [v : −u]
respectively two or three invariant straight lines having the given directions
[vi : −ui], it is necessary that B1 = 0, respectively B2 = 0 or B3 = 0.
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Let us apply a change of variables x = x′ + x0, y = y′ + y0 to the poly-
nomials p(a, x, y), q(a, x, y) ∈ R[a, x, y]. We obtain p̃(ã(a, x0, y0), x′, y′) =
p(a, x′ + x0, y

′ + y0), q̃(ã(a, x0, y0), x′, y′) = q(a, x′ + x0, y
′ + y0). Let us

construct the following polynomials

Γi(a, x0, y0)≡Res x′
(
Ci

(
ã(a, x0, y0), x′, y′

)
, C0

(
ã(a, x0, y0), x′, y′

))
/(y′)i+1,

Γi(a, x0, y0) ∈ R[a, x0, y0], (i = 1, 2).

Notation 33.

Ẽi(a, x, y) = Γi(a, x0, y0)|{x0=x, y0=y} ∈ R[a, x, y] (i = 1, 2). (15)

Remark 34. It can easily be checked using the Definition 17 that the con-
structed polynomials Ẽ1(a, x, y) and Ẽ2(a, x, y) are affine comitants of sys-
tems (10). They are homogeneous polynomials in coefficients a00, . . . , b02

and non-homogeneous polynomials in x, y over R and

dega Ẽ1 = 3, deg(x,y) Ẽ1 = 5, dega Ẽ2 = 4, deg (x,y) Ẽ2 = 6.

Notation 35. Let Ei(a,X, Y, Z) (i = 1, 2) be the homogenization of
Ẽi(a, x, y), i.e.

E1(a,X, Y, Z) = Z5Ẽ1(a,X/Z, Y/Z), E2(a,X, Y, Z) = Z6Ẽ1(a,X/Z, Y/Z)

and H(a,X, Y, Z) = gcd
(
E1(a,X, Y, Z), E2(a,X, Y, Z)

)
.

In what follows we shall examine the geometrical meaning of these in-
variant polynomials. We shall prove the following theorem:

Theorem 36. The straight line L(x, y) ≡ ux + vy + w = 0 u, v, w ∈ C,
(u, v) 6= (0, 0) is an invariant line for a system (10) in QS corresponding
to a point a ∈ R12 if and only if the polynomial L is a common factor of
the polynomials Ẽ1(a, x, y) and Ẽ2(a, x, y) over C, i.e.

Ẽi(a, x, y) = (ux + vy + w)W̃i(x, y) ∈ C[x, y] (i = 1, 2).

To prove this Theorem we first prove the following lemma:

Lemma 37. The straight line L̃(x, y) ≡ ux + vy = 0, (u, v) ∈ C2 \ {0}
is an invariant line of a system (10) of coefficients a with a00

2 + b00
2 6= 0

if and only if C0(a,−v, u) = 0, C1(a,−v, u) = 0, and C2(a,−v, u) = 0.
These conditions are equivalent to the following ones:

Res x(C0(a, x, y), C1(a, x, y))/y2
∣∣∣
(a)

= 0,

Res x(C0(a, x, y), C2(a, x, y))/y3
∣∣∣
(a)

= 0.
(16)
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Proof. According to Definition 1 the line L̃(x, y)=0 is a particular al-
gebraic integral for a system (10) if and only if the identity (13) holds for
this system and this line. So in this case

u(p0(a) + p1(a, x, y) + p2(a, x, y)) + v(q0(a) + q1(a, x, y) + q2(a, x, y)) =
= (ux + vy)(S0 + S1(x, y)),

for some S0 ∈ C and S1 ∈ C[x, y]. Herein we obtain:

(i) up0(a) + vq0(a) = 0;
(ii) up1(a, x, y) + vq1(a, x, y) = (ux + vy)S0(a);
(iii) up2(a, x, y) + vq2(a, x, y) = (ux + vy)S1(a, x, y).

We observe that, if x = −v and y = u then the left-hand sides of (i), (ii)
and (iii) become C0(a,−v, u), C1(a,−v, u) and C2(a,−v, u), respectively.
At the same time the right-hand sides of these identities vanish. Therefore
the following equations are obtained:

C0(a,−v, u) = 0, C1(a,−v, u) = 0, C2(a,−v, u) = 0. (17)

As the degree of C0(a, x, y) is one, the relations (16) hold.

Proof (Proof of Theorem 36). Consider the straight line L(x, y) = 0.
Let (x0, y0) ∈ R2 be any fixed non-singular point of the systems (10) (i.e.
p(x0, y0)2+q(x0, y0)2 6= 0) which lies on the line L(x, y) = 0, i.e. ux0+vy0+
w = 0. Let τ0 be the translation x = x′+x0, y = y′+y0, τ0(x′, y′) = (x, y).
Then

L(x, y) = L(x′ + x0, y
′ + y0) = ux′ + vy′ ≡ L̃(x′, y′)

and consider the line ux′ + vy′ = 0. By Lemma 37 the straight line
L̃(x′, y′) = 0 will be an invariant line of systems (10τ0) if and only if
the conditions (16) are satisfied for these systems, i.e. Γ1(a, x0, y0)) =
Γ2(a, x0, y0) = 0 for each point (x0, y0) situated on the line L(x, y) ≡
ux + vy + w = 0, since the relation ux0 + vy0 + w = 0 is satisfied.

Thus we have Γi(a, x0, y0) = (ux0 + vy0 + w)W̃i(a, x0, y0) (i = 1, 2).
Taking into account the notations (15) we conclude that the statement of
Theorem 36 is true.

We now consider the possibility for a straight line to be a multiple in-
variant line.

Lemma 38. If L(x, y) ≡ ux + vy + w = 0, u, v, w ∈ C, (u, v) 6= (0, 0) is
an invariant straight line of multiplicity k for a quadratic system (10) then
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[L(x, y)]k | gcd(Ẽ1, Ẽ2), i.e. there exist Wi(a, x, y) ∈ C[x, y] (i = 1, 2) such
that

Ẽi(a, x, y) = (ux + vy + w)kWi(a, x, y), i = 1, 2. (18)

Proof. Suppose that L(x, y) ≡ ux + vy + w = 0 is an invariant line of
multiplicity k for a system (10) which corresponds to point a ∈ R12. Let
us denote by aε ∈ R12 the point corresponding to the perturbed system
(10ε), which has k distinct invariant lines: Liε(x, y) (i = 1, 2, ...k).

According to Theorem 36 for systems (10ε) the following relations are
valid:

Ẽjε(aε, x, y) = L1ε · L2ε... · LkεW̃j(aε, x, y), j = 1, 2,

and according to Definition 3 when ε → 0 then Liε(x, y) → L(x, y), ∀i =
1, ..k. At the same time Ẽjε → Ẽj = [L(x, y)]kWj , j = 1, 2.

Corollary 39. If the line l∞ : Z = 0 is of multiplicity k > 1 then
Zk−1 | gcd(E1, E2).

Proof. Indeed, suppose that the line l∞ : Z = 0 is of multiplicity
k > 1 for a system (S) which corresponds to a point a ∈ R12. Then by
Definition 11 there exists a perturbed system (Sε) corresponding to the
point aε ∈ R12 which has k − 1 distinct invariant affine straight lines:
Liε(x, y) = uiεx + viεy + wiε, (uiε, viε) 6= (0, 0), (uiε, viε, wiε) ∈ C3 (i =
1, 2, ...k − 1) such that for every i: lim

ε→0
(uiε, viε, wiε) = (0, 0, 1).

By Lemma 38 each of the k − 1 affine lines Liε must be a factor of the
polynomial H(aε, X, Y, Z) = gcd (E1(aε, X, Y, Z), E2(aε, X, Y, Z)). There-
fore we conclude that for the system (S) we have Zk−1 | H(a, X, Y, Z).

As a next step we shall determine necessary conditions for the existence
of parallel invariant lines. Let us consider the following GL-comitants of
systems (10):

Notation 40.

M(a, x, y) =2Hess
�
C2(x, y)

�
= (C2, C2)

(2),

η(a) =Discriminant
�
C2(x, y)

�
=
��

(C2, C2)
(2), C2

�(1)
, C2

�(3)

/576,

K(a, x, y) =Jacob
�
p2(x, y), q2(x, y)

�
=
�
(C2, C2)

(2)+4(C2, D2)
(1)+4D2

2

�
/18,

µ(a) =Discriminant
�
K(a, x, y)

�
= −(K, K)(2)/2,

N(a, x, y) =K(a, x, y) + H(a, x, y),

θ(a) =Discriminant
�
N(a, x, y)

�
= −(N, N)(2)/2,

the geometrical meaning of which is revealed in the next 3 lemmas below.
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Remark 41. We note that, by Discriminant (C2(x, y)) of the cubic form
C2(a, x, y), we mean the expression given in Maple program via the function
“discrim(C2, x)/y6”.

Lemma 42. Let (S) ∈ QS and let a ∈ R12 be its 12-tuple of coefficients.
The common points of P = 0 and Q = 0 on the line Z = 0 are given by
the common linear factors over C of p2 and q2. This yields the geometrical
meaning of the T-comitants µ(a) and K(a, x, y):

deg gcd(p2(x, y), q2(x, y)) =





0 iff µ(a) 6= 0;
1 iff µ(a) = 0, K(a, x, y) 6= 0;
2 iff K(a, x, y) = 0.

The proof follows from the fact that K is the Jacobian of p2(x, y) and
q2(x, y) (i.e. p2 and q2 are proportional if and only if K(a, x, y) = 0 in
R[x, y]) and µ = Res x(p2, q2)/y4.

We shall prove the following assertion:

Lemma 43. A necessary condition for the existence of one couple (re-
spectively, two couples) of parallel invariant straight lines of a system (10)
corresponding to a ∈ R12 is θ(a) = 0 (respectively, N(a, x, y)=0).

Proof. Let Li(x, y) ≡ ux + vy + wi = 0, (u, v) 6= (0, 0), (u, v, wi) ∈ C3

(i = 1, 2) be two distinct (w1 6= w2) parallel invariant lines for a quadratic
system (10). Then by (13) we have

up(x, y) + vq(x, y) = ξ(ux + vy + w1)(ux + vy + w2)

and via a time rescaling we may assume ξ= 1. Therefore for the quadratic
homogeneities we obtain

(ua20+v b20)x2+2(ua11+v b11)xy+(ua02+v b02)y2 = (ux+vy)2, (19)

and hence, for the existence of parallel invariant lines the solvability of the
following systems of quadratic equations with respect to parameters u and
v is necessary:

(A1) ua20+v b20 =u2; (A2) ua11+v b11 =uv; (A3)ua02+v b02 =v2. (20)

Without loss of generality we may consider uv 6= 0, otherwise a rotation of
phase plane can be done. We now consider vA1 − uA2 and uA3 − vA2:

vA1 − uA2 : −a11u2 + (a20 − b11)uv + b20v2 = 0,

uA3 − vA2 : a02u2 + (b02 − a11)uv − b11v2 = 0.
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Let F1(u, v) and F2(u, v) be the left hand sides of the above equations.
Clearly, for the existence of two directions (u1, v1) and (u2, v2) such that
in each of them there are two parallel invariant straight lines of a system
(10) it is necessary that the rank(U) = 1, where

U =
( −a11 a20−b11 b20

a02 b02−a11 −b11

)
.

Hence, it is necessary

Ã=
∣∣∣∣
−a11 a20−b11

a02 b02−a11

∣∣∣∣=0, B̃=
∣∣∣∣
−a11 b20

a02 −b11

∣∣∣∣=0, C̃ =
∣∣∣∣
a20−b11 b20

b02−a11 −b11

∣∣∣∣=0.

Since the resultant of the binary forms F1(u, v) and F2(u, v) is B̃2 − ÃC̃,
we conclude that for the existence of one couple of parallel invariant lines
it is necessary that B̃2 − ÃC̃ = 0. On the other hand calculations yield
N(a, x, y) = C̃x2 +2B̃xy+ Ãy2, θ = 4(B̃2− ÃC̃) and this completes
the proof of lemma.

Lemma 44. The type of the divisor DS(C, Z) for systems (10) is de-
termined by the corresponding conditions indicated in Table 1, where we
write wc

1 + wc
2 + w3 if two of the points, i.e. wc

1, w
c
2, are complex but not

real. Moreover, for each type of the divisor DS(C, Z) given by Table 1 the
quadratic systems (10) can be brought via a real linear transformation to
one of the canonical systems (SI)−(SV ) given further below, corresponding
to their behavior at infinity.

Proof. The Table 1 follows easily from the construction of η(a) and
M(a, x, y). It is well known that a cubic binary form in x, y over R can be
brought via a real linear transformation of the plane (x, y): g(x, y) = (x̃, ỹ)
to one of the following five canonical forms

I. x̃ỹ(x̃− ỹ); II. x̃(x̃2 + ỹ2); III. x̃2ỹ; IV. x̃3; V. 0. (21)

Let us consider a system (10) corresponding to a point a ∈ R12 and let us
consider the GL-comitant C2(a, x, y) = yp2(a, x, y) − xq2(a, x, y) simply
as a cubic binary form in x and y. Then the transformed binary form
gC2(a, x, y) = C2(a, g−1(x̃, ỹ)) is one of the canonical forms (21) corre-
sponding to cases indicated in Table 1.

On the other hand, according to the Definition 17 of a GL-comitant, for
C2(a, x, y) whose weight χ = −1, we have for the same linear transforma-
tion g ∈ GL(2,R)

C2(rg(a), g(x, y)) = det(g)C2(a, x, y).
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8><>:
dx

dt
= k + cx + dy + gx2 + (h− 1)xy,

dy

dt
= l + ex + fy + (g − 1)xy + hy2;

(SI)

8><>:
dx

dt
= k + cx + dy + gx2 + (h + 1)xy,

dy

dt
= l + ex + fy − x2 + gxy + hy2;

(SII)

8><>:
dx

dt
= k + cx + dy + gx2 + hxy,

dy

dt
= l + ex + fy + (g − 1)xy + hy2;

(SIII)

8><>:
dx

dt
= k + cx + dy + gx2 + hxy,

dy

dt
= l + ex + fy − x2 + gxy + hy2,

(SIV )

8><>:
dx

dt
= k + cx + dy + x2,

dy

dt
= l + ex + fy + xy.

(SV )

TABLE 1.

Case Type of DS(C, Z)
Necessary and sufficient

conditions on the comitants

1 w1 + w2 + w3 η > 0

2 wc
1 + wc

2 + w3 η < 0

3 2w1 + w2 η = 0, M 6= 0

4 3w M = 0, C2 6= 0

5 DS(C, Z) undefined C2 = 0
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Using g(x, y) = (x̃, ỹ) we obtain C2(rg(a), x̃, ỹ) = det(g)C2(a, g−1(x̃, ỹ)),
where we may assume det(g) = 1 via the rescaling: x̃ → x̃/det(g), ỹ →
ỹ/det(g) in the system transformed by g. Thus, recalling that

p2(x̃, ỹ) = ã20x̃
2 + 2ã11x̃ỹ + ã02ỹ

2, q2(x̃, ỹ) = b̃20x̃
2 + 2b̃11x̃ỹ + b̃02ỹ

2,

for the first canonical form in (21) we have

C2(ã, x̃, ỹ) = −b̃20x̃
3+(ã20−2b̃11)x̃2ỹ+(2ã11−b̃02)x̃ỹ2+ã02ỹ

3 = x̃ỹ(x̃−ỹ).

Identifying the coefficients of the above identity we get the canonical form
(SI).

Analogously for the cases II, III and IV we obtain the canonical forms
(SII), (SIII) and (SIV ) associated to the respective polynomials in (21).

Let us consider the case V , i.e. C2(a, x, y) = 0 in R[a, x, y]. Then we
obtain the systems

dx

dt
= k + cx + dy + gx2 + hxy,

dy

dt
= l + ex + fy + gxy + hy2

with g2 +h2 6= 0. By interchanging x and y we may assume g 6= 0 and then
via the linear transformation x̃ = gx + hy, ỹ = y we obtain the systems
(SV ).

In order to determine the existence of a common factor of the polynomials
E1(a, X, Y, Z) and E2(a, X, Y, Z) we shall use the notion of the resultant
of two polynomials with respect to a given indeterminate (see for instance,
[32]).

Let us consider two polynomials f, g ∈ R[x1, x2, . . . , xr] where R is a
unique factorization domain. Then we can regard the polynomials f and g
as polynomials in xr over the ring R = R[x1, x2, . . . , xr−1], i.e.

f(x1, x2, . . . , xr) = a0 + a1xr + . . . + anxn
r ,

g(x1, x2, . . . , xr) = b0 + a1xr + . . . + bmxm
r ai, bi ∈ R.

Lemma 45 (see [32]). Assuming n,m > 0, anbm 6= 0 the resultant
Res xr

(f, g) of the polynomials f and g with respect to xr is a polynomial in
R[x1, x2, . . . , . . . , xr−1] which is zero if and only if f and g have a common
factor involving xr.

We also shall use the following remark:

Remark 46. Assume s, γ ∈ R, γ > 0. Then the transformation x = γsx1,
y = γsy1 and t = γ−st1 does not change the coefficients of the quadratic
part of a quadratic system, whereas each coefficient of the linear (respec-
tively constant ) part will be multiplied by γ−s (respectively by γ−2s).
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5. THE CONFIGURATIONS OF INVARIANT LINES OF
QUADRATIC

DIFFERENTIAL SYSTEMS WITH M
IL

= 6

Notation 47. We denote by QSL6 the class of all quadratic differential
systems (10) with p, q relatively prime ((p, q) = 1), Z - C and possessing a
configuration of 6 invariant straight lines including the line at infinity and
including possible multiplicities.

Lemma 48. For a quadratic system (S) in QSL6 the conditions
N(a, x, y)=0 and B3(a, x, y) = 0 in R[x, y], are satisfied.

Proof. Indeed, if for a system (10) the condition MIL = 6 is satis-
fied, then taking into account the Definitions 3 and 11 we conclude that
there exists a perturbation of the coefficients of the system (10) within the
class of quadratic systems such that the perturbed systems has 6 distinct
invariant lines (real or complex, including the line Z = 0). Hence, the
perturbed systems must possess two couples of parallel lines with distinct
directions and an additional line in a third direction. Then, by continuity
and according to Lemma 43 and Corollary 32 we have B3(a, x, y) = 0 and
N(a, x, y) = 0.

By Theorem 36 and Lemma 38 we obtain the following result:

Lemma 49. If M
IL

= 6 then
deg gcd

(E1(a, X, Y, Z), E2(a, X, Y, Z)
)

= 5, i.e. E1 | E2.

Theorem 50.

(i) The class QSL6 splits into 11 distinct subclasses indicated in Diagram
1 with the corresponding Configurations 6.1-6.11 where the complex invari-
ant straight lines are indicated by dashed lines. If an invariant straight line
has multiplicity k > 1, then the number k appears near the corresponding
straight line and this line is in bold face. We indicate next to the singular
points their multiplicities as follows: (Iw(p, q)) if w is a real finite singular-
ity, (Iw(C, Z), Iw(P,Q)) if w is a real infinite singularity with Iw(P, Q) 6= 0
and (Iw(C, Z)) if w is a real infinite singularity with Iw(P, Q) = 0.

(ii) We consider the orbits of the class QSL6 under the action of the
real affine group and time rescaling. The systems (VI.1) up to (VI.11)
from the Table 2 form a system of representatives of these orbits under
this action. A differential system (S) in QSL6 is in the orbit of a system
belonging to (V I.i) if and only if B3(a, x, y) = 0 = N(a, x, y) and the
corresponding conditions in the middle column (where the polynomials Hi

(i = 1, 2, 3) and Nj (j = 1, . . . , 4) are CT -comitants to be introduced below)
are verified for this system (S). The conditions indicated in the middle
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column are invariant under the action of this group when jointly taken
with the conditions B3(a, x, y) = 0 = N(a, x, y).

Wherever we have a case with invariant straight lines of multiplicity greater
than one, we indicate the corresponding perturbations proving this in the
Table 3.

TABLE 2.

Orbit representative
Necessary and sufficient Configu-

conditions ration

(VI.1) : ẋ = x2 − 1, ẏ = y2 − 1 η > 0, H1 > 0 Config. 6.1

(VI.2) : ẋ = x2 + 1, ẏ = y2 + 1 η > 0, H1 < 0 Config. 6.2

(VI.3) : ẋ = 2xy, ẏ=y2−x2−1 η < 0, H1 < 0 Config. 6.3

(VI.4) : ẋ = 2xy, ẏ=y2−x2+1 η < 0, H1 > 0 Config. 6.4

(VI.5) : ẋ = x2, ẏ = y2 η > 0, H1 = 0 Config. 6.5

(VI.6) : ẋ = 2xy, ẏ = y2 − x2 η < 0, H1 = 0 Config. 6.6

(VI.7) : ẋ = x2 − 1, ẏ = 2y MD 6= 0, η=H =N1 =N2 = 0 Config. 6.7

(VI.8) : ẋ = x2 − 1, ẏ = 2xy MH 6= 0, η = H2 = 0, H3 > 0 Config. 6.8

(VI.9) : ẋ = x2 + 1, ẏ = 2xy MH 6= 0, η = H2 = 0, H3 < 0 Config. 6.9

(VI.10) : ẋ = x2, ẏ = 1 M 6=0, η=H =D=N1 =N2 =0Config. 6.10

(VI.11) : ẋ = x, ẏ = y − x2 η = M = N3 = N4 = 0 Config. 6.11

Proof of the Theorem 50. According to Table 1 we shall consider the
subcases corresponding to distinct types of the divisor DS(C,Z). Since we
only discuss the case C2 6= 0, in what follows it suffices to consider only the
canonical forms (SI) to (SI V ). The idea of the proof is to perform a case by
case discussion for each one of these canonical forms, for which according to
Lemma 48 the conditions B3 = 0 = N must be fulfilled. These conditions
yield specific conditions on the parameters. The discussion proceeds further
by breaking these cases in more subcases determined by more restrictions
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Diagram 1 (M
IL

= 6)
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TABLE 3.

Perturbations Invariant straight lines

(VI.5ε) : ẋ = x2 − ε2, ẏ = y2 − ε2 x± ε, y ± ε, x− y

(VI.6ε) : ẋ = 2xy, ẏ = ε2 − x2 + y2 x, x± iy − ε, x± iy + ε

(VI.7ε) : ẋ = −1 + x2, ẏ = 2y(εy + 1) x± 1, εy + 1, y, x− 2εy − 1

(VI.8ε) : ẋ = x2 − 1, ẏ = 2xy + εy2 y, x = ±1, x + εy ± 1

(VI.9ε) : ẋ = x2 + 1, ẏ = 2xy + εy2 y, x± i, x + εy ± i

(VI.10ε) :

�
ẋ = (1− ε)2x2 − ε2,

ẏ =
�
2 ε2y + 1

�
(2 εy + 1)

(1− ε)x± ε, 2εy + 1, 2ε2y + 1,

(ε− 1)2x− 4ε3y − ε(ε + 1)

(VI.11ε) :

�
ẋ = x + εx2,

ẏ = y − x2 − 2εxy − 2ε2y2

x, εx + 1, x + εy,

x + 2εy, εx + 2ε2y − 1

on the parameters. Finally we construct new invariants or T-comitants
which put these conditions in invariant form.

For constructing the invariant polynomials included in the statement of
Theorem 50 we shall use the T -comitants D(a, x, y) and H(a, x, y) indicated
before as well as the GL-comitants (11).

5.1. Systems with the divisor DS(C, Z) = 1 · w1 + 1 · w2 + 1 · w3

For this case we shall later need the following polynomial which is shown
to be an affine invariant in Lemma 62.

Notation 51. Let us denote H1(a) = −(
((C2, C2)(2), C2)(1), D

)(3)
.

According to Lemma 44 a system with this type of divisor can be brought
by linear transformations to the canonical form (SI) for which we have:

N(a, x, y) = (g2 − 1)x2 + 2(g − 1)(h− 1)xy + (h2 − 1)y2.

Hence the condition N = 0 yields (g−1)(h−1) = g2−1 = h2−1 = 0 and
we obtain 3 possibilities: (a) g = 1 = h; (b) g = 1 = −h; (c) g = −1 = −h.
The cases (b) and (c) can be brought by linear transformations to the case
(a). Hence the resulting polynomials are: p2(x, y) = x2 and q2(x, y) = y2.
Then the term in x of the first equation and the term in y in the second
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equation can be eliminated via a translation. Thus we obtain the systems

ẋ = k + dy + x2, ẏ = l + ex + y2 (22)

for which we have B3 = 3[−e2x4 + 2e2x3y + 4(l− k)x2y2− 2d2xy3 + d2y4].
Hence, the condition B3 = 0 yields d = e = k − l = 0 and we get the
systems of the form:

ẋ = l + x2, ẏ = l + y2. (23)

By Remark 46 ( γ = |l|, s = 1/2) for systems (23) we can consider l ∈
{−1, 0, 1}. Clearly these systems possess the invariant straight lines x =
±√−l, y = ±√−l, y = x. Therefore, we obtain Config. 6.1 (respectively,
Config. 6.2) for l < 0 (respectively, for l > 0) and Config. 6.5 for l = 0.
For systems (23) the affine invariant H1(a) = −2933l and hence sign (l) =
−sign (H1(a)).

5.2. Systems with the divisor DS(C, Z) = 1 · wc
1 + 1 · wc

2 + 1 · w3

In this case by Lemma 44 the systems (10) can be brought by linear
transformations to the canonical form (SII) for which we have:

N(a, x, y) = (g2 − 2h + 2)x2 + 2g(h + 1)xy + (h2 − 1)y2.

Hence the condition N = 0 yields g = h − 1 = 0 and we may consider
c = d = 0 due to the translation x = x1 − d/2, y = y1 − c/2. We thus
obtain the systems

ẋ = k + 2xy, ẏ = l + ex + fy − x2 + y2 (24)

for which B3 = 6
[
(ef − 2k)x4 + (f2 − e2)x3y − (4k + ef)x2y2 − 2ky4

]
.

Hence, the condition B3 = 0 yields k = e = f = 0 and we obtain the
following form

ẋ = 2xy, ẏ = l − x2 + y2 (25)

where l ∈ {−1, 0, 1} by the Remark 46 ( γ = |l|, s = 1/2). It is not difficult
to convince ourselves that these systems possess as invariant straight lines
the components over C of:

x = 0, x2 + 2 i xy − y2 − l = 0, x2 − 2 i xy − y2 − l = 0,

with the intersection points: p1,2 = (0,±√−l), p3,4 = (±
√

l, 0). On the
other hand for systems (25) we have H1 = 210 32 l. Therefore, if H1 6= 0 we
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get Config. 6.3 for H1 < 0 and Config. 6.4 for H1 > 0, whereas for H1 = 0
we obtain Config. 6.6.

5.3. Systems with the divisor DS(C, Z) = 2 · w1 + 1 · w2

For this case we shall later need the following polynomials which are
shown to be CT -comitants in Lemma 62.

Notation 52. Let us denote

H2(a, x, y) = (C1, 2H−N)(1)−2D1N, H3(a, x, y) = (C2, D)(2),

N1(a, x, y) = C1(C2, C2)(2)−2C2(C1, C2)(2),

N2(a, x, y) = D1(C1, C2)(2)−
(
(C2, C2)(2), C0

)(1)
.

We are in the case of the canonical form (SIII) for which we have:

N(a, x, y) = (g2 − 1)x2 + 2h(g − 1)xy + h2y2,

H(a, x, y) = −(g − 1)2x2 − 2h(g + 1)xy − h2y2.
(26)

The condition N = 0 yields h = g2 − 1 = 0 and we shall examine two
subcases: H(a, x, y) 6= 0 and H(a, x, y) = 0.

5.3.1. The case H(a, x, y) 6= 0

In this case for h = 0 we have H(a, x, y) = −(g − 1)2x2 6= 0 and hence
the condition N = 0 yields g = −1. Moreover, for systems (SIII) we can
consider e = f = 0 due to the translation of the origin of coordinates to
the point (f/2, e/2). Thus, the systems (SIII) can be brought to the form

ẋ = k + cx + dy − x2, ẏ = l − 2xy, (27)

for which B3 = 6x(−2lx3 + cdxy2 + d2y3). So, the condition B3 = 0
yields l = d = 0 and we obtain the systems

ẋ = k + cx− x2, ẏ = −2xy (28)

with k 6= 0 (otherwise systems (28) become degenerate).
So far we have only used the necessary conditions N = 0 and B3 = 0 for

this particular case. These are not sufficient for having 6 invariant lines.
According to Lemma 49 we must have E1 | E2. Calculations yield :

E1 = (kZ2 −X2)H, E2 = X(X2 − cXZ − kZ2)H,

H = gcd (E1, E2) = 2Y
(
kZ2 + cXZ −X2

)
.
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Since k 6= 0 according to Lemma 45 the condition Res Z(E1/H, E2/H) =
−c2kX6 ≡ 0 must hold. This yields c = 0 and the systems (28) become

ẋ = k − x2, ẏ = −2xy. (29)

By Remark 46 (γ = |k|, s = 1/2) we may assume k ∈ {−1, 1}.
For the systems (29) we have H = gcd (E1, E2) = 2Y

(
kZ2 −X2

)2 and
according to Lemma 38 each one of the two invariant lines x = ±

√
k of

the systems (29) could be of the multiplicity two. And they are indeed of
multiplicity two as it is shown by the perturbations (VI.8ε) (for k = 1) and
(VI.9ε) (for k = −1) from Table 3. Thus, we obtain Config. 6.8 for k = 1
and Config. 6.9 for k = −1.

On the other hand for the systems (29) we have H2 = 16cx2, H3 = 32kx2.

Hence the T -comitants H2 and H3 capture exactly the conditions c = 0 and
k > 0 or c = 0 and k < 0 and this leads to the corresponding conditions in
Table 2, where in the respective canonical systems we change t → −t.

5.3.2. The case H(a, x, y) = 0

According to (26) the conditions N = H = 0 yield h = 0, g = 1 and
translating the origin of coordinates to the point (−c/2, 0) the systems
(SIII) can be brought to the form

ẋ = k + dy + x2, ẏ = l + ex + fy. (30)

For these systems we have B3 = 6dxy2(fx− dy) and the condition B3 = 0
yields d = 0. So, we obtain the systems

ẋ = k + x2, ẏ = l + ex + fy (31)

for which we have D(a, x, y) = −f2x2y.

1. If D 6= 0 then f 6= 0 and by Remark 46 (γ = f/2, s = 1) we can
consider f = 2. Then via the translation we may assume l = 0 and we
obtain the systems

ẋ = k + x2, ẏ = ex + 2y, (32)

for which calculations yield

E1 =
[
4Y (X − Z) + e(X2 − 2XZ − kZ2)

]H, H=Z
(
X2+kZ2

)
,

E2 = (eX + 2Y )(X2 + kZ2)H,

Res Y (E1/H, E2/H) = −2e(X2 + kZ2)2.

(33)
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Hence for E1 | E2 the condition Res Y (E1/H, E2/H) = 0 must be fulfilled in
R[X,Z]. This yields e = 0, then we obtain Res X

(
(E1/H), (E2/H)

)|e=0 =
32(k + 1)Y 3Z2 = 0. Hence k + 1 = 0 and for e = k + 1 = 0 we obtain the
system

ẋ = x2 − 1, ẏ = 2y, (34)

for which H = gcd (E1, E2) = Y Z(X − Z)2(X + Z). This system possesses
the invariant affine lines x = ±1, y = 0. Moreover, taking into account
the polynomial H, by Lemma 38 and Corollary 39 the line x = 1 as well
as the line l∞ : Z = 0 could be of multiplicity two. This is confirmed
by the perturbations (VI.7ε) from Table 3. Since this system possesses
only two finite singularities (±1, 0) which are simple, we conclude that the
configuration of the invariant lines of the system (34) is Config. 6.7.

It remains to observe that the conditions e = 0 = k + 1 are equivalent to
N1 = N2 = 0, as for systems (32) we have N1 = 8e x4, N2 = 16(k + 1)x.

2. The condition D = 0 implies f = 0 and we obtain the systems

ẋ = k + x2, ẏ = l + ex. (35)

Calculations yield:

E1 =
[
2 lXZ + e(X2 − kZ2)

]H, E2 = (eX + lZ)(X2 + kZ2)H, (36)

where H = Z
(
X2 + kZ2

)
. Hence for E1 | E2 according to Lemma 45 at

least one of the following conditions must hold:

Res X(E1/H, E2/H) = −4 ek(e2k + l2)2Z6 = 0,

Res Z(E1/H, E2/H) = −4 ek(e2k + l2)2X6 = 0,

and we obtain that either ek = 0 or e2k + l2 = 0. Since the second case
yields a degenerate system we obtain the necessary condition ek = 0. It is
easy to observe that for e2 + k2 6= 0 we obtain E1 - E2. Therefore k = e = 0
(then l 6= 0) and via the additional rescaling y → l y we obtain the system:

ẋ = x2, ẏ = 1 (37)

for which H = gcd (E1, E2) = X3Z2. By Lemma 38 and Corollary 39 the
line x = 0 as well as the line Z = 0 could be of multiplicity three. This is
confirmed by the perturbations (VI.10ε) from Table 3. It remains to note
that for systems (35) we obtain N1 = 8e x4, N2 = 16kx and, hence in this
case we obtain Config. 6.10 if and only if N1 = 0 = N2.
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5.4. Systems with the divisor DS(C, Z) = 3 · w

For this case we shall later need the following polynomials which are
shown to be CT -comitants in Lemma 62.

Notation 53. Let us denote N3(a, x, y) = (C2, C1)
(1)

, N4(a, x, y) =
4 (C2, C0)

(1) − 3C1D1.

We are in the case of the canonical form (SIV ) for which we have:

N = (g2 − 2h)x2 + 2ghxy + h2y2.

So, the condition N = 0 yields h = g = 0 and due to the translation
x = x1 + e/2, y = y1 we may assume e = 0. Hence the systems (SIV )
become

ẋ = k + cx + dy, ẏ = l + fy − x2, (38)

for which B3 = 6dx3(fx − dy). The condition B3 = 0 yields d = 0 and
we shall examine the systems of the form

ẋ = k + cx, ẏ = l + fy − x2. (39)

Calculations yield

E1 =
[
(c + f)X2 + 2kXZ + (c− f)(fY + lZ)Z

]H,

E2 = Z(cX + kZ)2H, H = Z2(cX + kZ).
(40)

Since the polynomial E2/H depends only on X and Z for E1 | E2 the
following condition must hold: f(c − f) = 0. We claim that for f = 0 we
cannot have E1 | E2. Indeed, assuming f = 0 we obtain the quadratic form
E1/H = cX2 +2kXZ + clZ2 in X and Z, which must divide Z(cX +kZ)2.
This clearly implies that the discriminant of this form must be zero, i.e.
4(k2 − c2l) = 0. However this leads to degenerate systems.

Therefore we must have c − f = 0 and for the systems (39) with f = c

calculations yield: E1 = X H̃, E2 = Z(cX + kZ) H̃, where H̃ = Z2(cX +
kZ)2. Therefore E1 | E2 if and only if k = 0 and we obtain the systems
ẋ = cx, ẏ = l + cy − x2 with c 6= 0. We may assume c = 1 by Remark
46 ( γ = c, s = 1) and via the translation of the origin of coordinates to
the point (0,−l) we obtain l = 0. This leads to the following system

ẋ = x, ẏ = y − x2, (41)

with H = gcd (E1, E2) = X3Z2 and by Lemma 38 and Corollary 39 each
one of the invariant lines x = 0 and Z = 0 is of multiplicity 3. This is
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confirmed by the perturbed systems (VI.11ε) from Table 3. On the other
hand for systems (39) N3 = 3(c − f)x3, N4 = 3x[4kx + (f2 − c2)y]
and hence, the conditions c − f = k = 0 are equivalent to N3 = N4 = 0.
Taking into account the existence of the simple singular point (0, 0) placed
on the line x = 0 we obtain Config. 6.11.

All the cases in Theorem 50 are thus examined. To finish the proof of the
Theorem 50 it remains to show that the conditions occurring in the middle
column of Table 2, jointly taken with the conditions B3(a, x, y) = 0 =
N(a, x, y), are affinely invariant. This follows from the proof of Lemma 62.

6. THE CONFIGURATIONS OF INVARIANT LINES OF
QUADRATIC DIFFERENTIAL SYSTEMS WITH M

IL
= 5

Notation 54. We denote by QSL5 the class of all quadratic differential
systems (10) with p, q relatively prime ((p, q) = 1), Z - C(X,Y, Z) and
possessing a configuration of five invariant straight lines including the line
at infinity and including possible multiplicities.

Lemma 55. If for a quadratic system (S) M
IL

= 5, then for this system
one of the two following conditions are satisfied:

(i) N(a, x, y) = 0 = B2(a, x, y) in R[x, y];
(ii) θ(a) = 0 = B3(a, x, y) in R[x, y].

Proof. Indeed, if for a system (10) the condition M
IL

= 5 is satisfied
then taking into account the Definition 3 we conclude that there exists
a perturbation of the coefficients of the system (10) within the class of
quadratic systems such that the perturbed systems have five distinct in-
variant lines (real or imaginary, including the line Z = 0). Hence, the
perturbed systems must possess either two couples of parallel lines with
distinct directions or one couple of parallel lines and two additional lines
with distinct directions. Then, by continuity and according to Lemma 43
and Corollary 32 we respectively have either the conditions (i) or (ii).

By Theorem 36 and Lemmas 38 and 48 we obtain the following result:

Lemma 56.

(i) If for a system (S) of coefficients a ∈ R12, M
IL

= 5, then

deg gcd
(E1(a, X, Y, Z), E2(a, X, Y, Z)

)
= 4.
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(ii) If N(a, x, y) 6≡ 0 then MIL ≤ 5.

Theorem 57.

(i) The class QSL5 splits into 30 distinct subclasses indicated in Dia-
gram 2 with the corresponding Configurations 5.1-5.30 where the complex
invariant straight lines are indicated by dashed lines. Nineteen of these
subclasses are orbits under the group action and each one of the remaining
eleven subclasses is a family of orbits depending on a parameter g ∈ R \A

where A is a finite set of points. If an invariant straight line has multi-
plicity k > 1, then the number k appears near the corresponding straight
line and this line is in bold face. We indicate next to the singular points
their multiplicities as follows: (Iw(p, q)) if w is a real finite singularity,
(Iw(C, Z), Iw(P,Q)) if w is a real infinite singularity with Iw(P, Q) 6= 0
and (Iw(C, Z)) if w is a real infinite singularity with Iw(P, Q) = 0.

(ii) We consider the orbits of the class QSL5 under the action of the real
affine group and time rescaling. The systems (V.1) up to (V.30) from the
Table 4 form a system of representatives of these orbits under this action. A
differential system (S) in QSL5 is in the orbit of a system belonging to (V.i)
if and only if the corresponding conditions in the middle column (where the
polynomials Hi (i = 7, . . . , 11) and Nj (j = 5, 6) are CT -comitants to be
introduced below) are verified for this system (S). The conditions indicated
in the middle column are invariant under the action of this group when
jointly taken.

Wherever we have a case with invariant straight lines of multiplicity greater
than one, we indicate the corresponding perturbations proving this in the
Table 5.

Remark 58. We observe that in the middle column of the Table 4 (and
of the Table 2) there occur conditions of the form M(a, x, y) = 0 in R[x, y]
or of the form M(a, x, y) > 0 (or < 0), where M(a, x, y) is a homogeneous
polynomial in a and separately in x an y, which is a CT -comitant. All
polynomials occurring in conditions of the second type are of even weight,
of even degree in a00, . . . , b02 and have a well determined sign on the cor-
responding variety indicated in the Lemma 62.

Proof of Theorem 57. Since we only discuss the case C2 6= 0, in what
follows it suffices to consider only the canonical forms (SI) to (SI V ). The
idea of the proof is the same as in the proof of the Theorem 50. We shall
perform a case by case discussion for each one of these canonical forms,
for which according to Lemma 55 we must examine two subcases: (i) N =
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Diagram 2 (M
IL

= 5)
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Diagram 2 (M
IL

= 5) (continued)
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Diagram 2 (M
IL

= 5) (continued)
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TABLE 4.

Orbit representative
Necessary and sufficient Configu-

conditions ration

(V.1)

8<:ẋ = (x + 1)(gx + 1),
ẏ = (g − 1)xy + y2,

g(g2 − 1) 6= 0

η > 0, B3 = θ = 0,

N 6= 0, µ 6= 0, H1 6= 0
Config. 5.1

(V.2)

8<:ẋ = g(x2 − 4), g 6= 0
ẏ = (g2 −4)+(g2 +4)x

−x2 + gxy − y2

η < 0, B3 = θ = 0,

N 6= 0, µ 6= 0, H1 6= 0
Config. 5.2

(V.3)

�
ẋ = −1 + x2, g(g2−1) 6=0

ẏ = g(y2 − 1),

η > 0, B2 = N = 0, B3 6= 0,

H1 > 0, H4 = 0, H5 > 0
Config. 5.3

(V.4)

�
ẋ = −1 + x2,

ẏ = g(1 + y2), g 6= 0

η > 0, B2 = N = 0, B3 6= 0,

H4 = 0, H5 < 0
Config. 5.4

(V.5)

�
ẋ = 1 + x2, g(g2−1) 6=0

ẏ = g(1 + y2)

η > 0, B2 = N = 0, B3 6= 0,

H1 < 0, H4 = 0, H5 > 0
Config. 5.5

(V.6)

�
ẋ = 1 + 2xy,
ẏ = g − x2 + y2, g ∈ R η < 0, B3 6= 0, B2 = N = 0 Config. 5.6

(V.7)

�
ẋ = 1 + x,
ẏ = −xy + y2

η > 0, B3 = θ = 0,
N 6= 0, µ = H6 =0

Config. 5.7

(V.8)

�
ẋ = gx2, g(g2 − 1) 6= 0

ẏ = (g − 1)xy + y2

η > 0, B3 = θ = 0,

N 6= 0, µ 6= 0, H1 = 0
Config. 5.8

(V.9)

�
ẋ = 2x,
ẏ = 1− x2 − y2

η < 0, B3 = θ = 0,
N 6= 0, µ = H6 =0

Config. 5.9

(V.10)

�
ẋ = gx2, g 6= 0

ẏ = −x2 + gxy − y2

η < 0, B3 = θ = 0,

N 6= 0, µ 6= 0, H1 = 0
Config. 5.10

(V.11)

�
ẋ = x2 + xy,

ẏ = y + y2

η = 0, M 6= 0, B3 = θ = 0,

µ 6= 0, N 6= 0, D 6= 0
Config. 5.11

(V.12)

�
ẋ = −1 + x2,

ẏ = y2

η > 0, B2 = N = 0, B3 6= 0,

H1 > 0, H4 = H5 = 0
Config. 5.12

(V.13)

�
ẋ = g(x2 − 1),

ẏ = 2y, g(g2 − 1) 6= 0

η = 0, M 6= 0, B3 = N = 0,

H =N1 =0, N2D 6= 0, N5 > 0
Config. 5.13

(V.14)

�
ẋ = (x + 1)(gx + 1),

ẏ = (g−1)xy, g(g2−1) 6=0

η = 0, M 6= 0, B3 = θ = 0,

NK 6= 0, µ = H6 = 0
Config. 5.14

(V.15)

�
ẋ = g(x2 + 1),

ẏ = 2y, g 6= 0

η = 0, M 6= 0, B3 = N = 0,

H =N1 =0, N2D 6= 0, N5 < 0
Config. 5.15



172 D. SCHLOMIUK AND N. VULPE

Orbit representative
Necessary and sufficient Configu-

conditions ration

(V.16)

�
ẋ = 1 + x2,

ẏ = y2

η > 0, B2 = N = 0, B3 6= 0,

H1 < 0, H4 = H5 = 0
Config. 5.16

(V.17)

�
ẋ = x2,

ẏ = 2y

η = 0, M 6= 0, B3 = N = 0,

H =N1 =N5 =0, N2D 6= 0
Config. 5.17

(V.18)

�
ẋ = 1 + x,

ẏ = −xy

η = 0, M 6= 0, B3 = θ = 0,

N 6=0, µ=K =H6 =0
Config. 5.18

(V.19)

�
ẋ = x2 + xy,

ẏ = y2

η = 0, M 6= 0, B3 = θ = 0,

µ 6= 0, N 6= 0, D = 0
Config. 5.19

(V.20)

�
ẋ = −1 + x2,

ẏ = 1

η=0, M 6=0, B3 =N =H =0,

D = N1 = 0, N2 6= 0, N5 > 0
Config. 5.20

(V.21)

�
ẋ = −1 + x2,

ẏ = x + 2y

η = 0, M 6= 0, B3 = N = 0,

H =N2 =0, D 6= 0, N1 6= 0
Config. 5.21

(V.22)

�
ẋ = 1− x2,

ẏ = 1− 2xy

η = 0, M 6= 0, B2 = N = 0,

B3 6= 0, H2 = 0, H3 > 0
Config. 5.22

(V.23)

�
ẋ = −1 + x2,

ẏ = −3 + y − x2 + xy

η = M = 0, N 6= 0,

B3 = θ = N6 = 0
Config. 5.23

(V.24)

�
ẋ = 1 + x2,

ẏ = 1

η=0, M 6=0, B3 =N =H =0,

D = N1 = 0, N2 6= 0, N5 < 0
Config. 5.24

(V.25)

�
ẋ = −1− x2,

ẏ = 1− 2xy

η = 0, M 6= 0, B2 = N = 0,

B3 6= 0, H2 = 0, H3 < 0
Config. 5.25

(V.26)

�
ẋ = −x,

ẏ = y − x2

η = M = 0, N3 6= 0,

B3 = N = D1 = 0
Config. 5.26

(V.27)

�
ẋ = 1 + x,

ẏ = y − x2

η = M = 0, N4 6= 0,

B3 =N =N3 =0, D1 6= 0
Config. 5.27

(V.28)

�
ẋ = x2,

ẏ = 1 + x

η = 0, M 6= 0, B3 = N = 0,

H = D = N2 = 0, N1 6= 0
Config. 5.28

(V.29)

�
ẋ = −x2,

ẏ = 1− 2xy

η = 0, M 6= 0, B2 = N = 0,

B3 6= 0, H2 = H3 = 0
Config. 5.29

(V.30)

�
ẋ = 1,

ẏ = −x2

η = M = 0, N4 6= 0,

B3 = N = N3 = D1 = 0
Config. 5.30
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TABLE 5.

Perturbations Invariant straight lines

(V.7ε) : ẋ = (x + 1)(εx + 1), ẏ = (ε− 1)xy + y2 y, x + 1, y − x− 1, εx + 1

(V.8ε) : ẋ = (x + ε)(gx + ε), ẏ = (g − 1)xy + y2 y, x + ε, y − x− ε, gx + ε

(V.9ε) :
n ẋ = 2x(εx + 1),

ẏ = 1 + 2εx− x2 + 2εxy − y2 x, εx + 1, y ± ix + 1

(V.10ε) :
n ẋ = 4gε2 + ε(g2 + 4)x + gx2,

ẏ = ε2(4− g2)− x2 + gxy − y2

x + gε, gx + 4ε,

x + gε± i(y + 2ε)

(V.11ε) : ẋ = εx + x2 + (1 + ε)xy, ẏ = y + y2 x, y + 1, y, x + εy + ε

(V.12ε) : ẋ = x2 − 1, ẏ = y2 − ε2 x± 1, y ± ε

(V.13ε) : ẋ = g(x2 − 1), ẏ = 2y(εy + 1) y, x± 1, εy + 1

(V.14ε) : ẋ = (x+1)(gx+1), ẏ = (g−1)xy−εy2 x + 1, gx + 1, y, x + εy + 1

(V.15ε) : ẋ = g(x2 + 1), ẏ = 2y(εy + 1) y, x± i, εy + 1

(V.16ε) : ẋ = x2 + 1, ẏ = y2 − ε2 x± i, y ± ε

(V.17ε) : ẋ = x2 − ε2, ẏ = 2y(εy + 1) y, x± ε, εy + 1

(V.18ε) : ẋ = (x+1)(εx+1), ẏ = (ε−1)xy−εy2 x + 1, εx + 1, y, x + εy + 1

(V.19ε) : ẋ = ε2x + x2 + (1 + ε)xy, ẏ = εy + y2 x, y, y + ε, x + εy + ε2

(V.20ε) : ẋ = x2 − 1, ẏ = 1− ε2y2 x± 1, εy ± 1

(V.21ε) :
n ẋ = (x + 1)(x + 4εx− 1),

ẏ = (x + 2y)(1 + 4εy)

x + 1, x(1 + 4ε)− 1,

4 εy + 1, x− 8 εy − 1

(V.22ε) : ẋ = 1− x2, ẏ = 1− 2xy − εy2 x± 1, x + εy ±√1 + ε

(V.23ε) :

( ẋ = (1 + ε)(x− 1 + 2ε)(x + 1− 2ε),

ẏ = (4ε2 − 3) + (1 + 2ε)y − x2

+(1− 2ε)xy − 2ε2y2

x± (1− 2ε), x + εy − 1,

x + 2εy − 1− 2ε

(V.24ε) : ẋ = x2 + 1, ẏ = 1− ε2y2 x± i, εy ± 1

(V.25ε) : ẋ = −1− x2, ẏ = 1− 2xy − εy2 x± i, x + εy ± i
√

1− ε

(V.26ε) :

(
ẋ = −x− 2εx2,

ẏ = y − x2 + 3ε2y2

x, 3ε(x + εy) + 1,

2εx + 1, ε(x− 3εy)− 1
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Perturbations Invariant straight lines

(V.27ε) :
n ẋ = 1 + x + εx2,

ẏ = y − x2 − 2εxy − 2ε2y2

1 + x + εx2,

ε(x + 2εy)2 − (x + 2εy)− 1

(V.28ε) :

( ẋ = (ε− 1)ε2 + 2ε3x+

+(1− ε)(1− 2ε + 3ε2)x2,

ẏ = (1− ε)(2ε2y + 1)(x + 2εy + 1)

(ε− 1)x− ε, 2ε2y + 1,

(1− 2ε + 3ε2)x− ε(1− ε),

(ε− 1)2x− 4ε3y − ε(ε + 1)

(V.29ε) : ẋ = ε2 − x2, ẏ = 1− 2xy − εy2 x± ε, x + εy ±√ε2 + ε

(V.30ε) :
n ẋ = 1 + εx + ε3x2,

ẏ = εy − x2 − 2ε3xy − 2ε6y2

1 + εx + ε3x2,

ε3(x+2ε3y)2−ε(x+2ε3y)− 1

B2 = 0 and (ii) N 6= 0, θ = B3 = 0. Each one of these conditions yields
specific conditions on the parameters. The discussion proceeds further by
breaking these cases in more subcases determined by more restrictions on
the parameters. Finally we construct invariants or T-comitants which put
these conditions in invariant form.
6.1. Systems with the divisor DS(C, Z) = 1 · w1 + 1 · w2 + 1 · w3

For this case we shall later need the following polynomials which are
shown to be T -comitants in Lemma 62.

Notation 59. Let us denote

H4(a) =
(
(C2, D)(2), (C2, D2)(1)

)(2)
,

H5(a) =
(
(C2, C2)(2), (D, D)(2)

)(2) + 8
(
(C2, D)(2), (D, D2)(1)

)(2)
,

H6(a, x, y) = 16N2(C2, D)(2) + H2
2 (C2, C2)(2),

6.1.1. The case N = 0 = B2

It was shown above (see page 161) that the systems (SI) with N(a, x, y) =
0 can be brought by an affine transformation to the systems (22) for which
we have

B2 =648
[
e2(4k − 4l − e2)x4+2d2e2(2x2−3xy + 2y2)− d2(4k−4l+ d2)y4

]
.

Hence the condition B2 = 0 yields de = e(4k−4l−e2) = d(4k−4l+d2) = 0.
According to Lemma 56, in order to have M

IL
= 5 we must satisfy the

condition deg gcd(E1, E2) = 4.
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We claim, that for this it is necessary that d = e = 0. Indeed, let us
suppose, that de = 0 but d2 + e2 6= 0. Then by interchanging x and y we
may assume d = 0, e = 2 via Remark 46 (γ = e/2, s = 1). Then we obtain
the systems

ẋ = k + x2, ẏ = l + 2x + y2, (42)

for which the condition B2 = 2734(k − l − 1)x4 = 0 yields k = l + 1. Then
for the systems (42) with k = l + 1 we obtain

E1 = −2
[
Y 2 − Y Z + Z(X + Z + lZ)

]H,

E2 = −(X + Y − Z)
[
Y 2 + Z(2X + lZ)

]H,

whereH = (Y −X+Z)(X2+Z2+lZ2). Thus, degH = 3 and we shall show
that for all values given to the parameter l the degree of gcd(E1, E2) remains
three. Indeed, since the common factor of the polynomials E1/H and E2/H
must depend on Y , according to Lemma 45 it is sufficient to observe that
Res Y (E1/H, E2/H) = −8Z2[X2 + (1 + l)Z2]2 6= 0. This proves our claim
and hence, the condition d = e = 0 must hold. Since for systems (22) we
have H4 = 96(d2 + e2) this condition is equivalent to H4 = 0.

Assuming H4 = 0 (i.e. d = e = 0) the systems (22) become

ẋ = k + x2, ẏ = l + y2, (43)

and calculations yield E1 = 2(X−Y )H, E2 =
[
X2−Y 2 +(k− l)Z2

]H,

where H = (X2 + kZ)(Y 2 + lZ2). Hence by Theorem 36 each system in
the family (43) possesses four invariant affine lines which means that for
these systems M

IL
≥ 5. We observe that to have an additional common

factor of E1 and E2 it is necessary and sufficient that k − l = 0. So, to
have M

IL
= 5 the condition k − l 6= 0 must be satisfied. This condition is

equivalent to B3 6= 0, since for the systems (43) we have B3 = 4(l−k)x2y2.
Systems (43) possess the invariant lines, components of the conics: x2 +

k = 0, y2 + l = 0, and then we obtain the following configurations of
invariant straight lines (Diagram 2):
(i) Config. 5.3 for k < 0 and l < 0; (ii) Config. 5.4 for kl < 0; (iii)
Config. 5.5 for k > 0 and l > 0; (iv) Config. 5.12 for kl = 0 and k + l < 0;
(v) Config. 5.16 for kl = 0 and k + l > 0.

On the other hand for the systems (43) we have: H1 = −2732 (k + l),
H5 = 2113 kl. Herein we conclude that these two T -comitants capture in
invariant form exactly the conditions for distinguishing the Configurations
5.3–5.5, 5.12 and 5.16 as it is indicated in Table 4.
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We observe that if for the systems (43) the condition H5 ≤ 0 holds (i.e.
kl ≤ 0) then interchanging x and y we may assume l ≥ 0. Moreover, by
Remark 46 ( γ = |k|, s = 1/2) we may assume k ∈ {−1, 1}. We also note
that for l < 0 (respectively l > 0) we may set l = −g2 (respectively, l = g2)
and due to the substitution y → gy we obtain the canonical system (V.3)
(respectively (V.4) and (V.5) ) from Table 4. We note that for the systems
(V.3) (respectively, (V.5) ) we have B3 = −12g(g2 − 1)x2y2 (respectively
B3 = 12g(g2−1)x2y2) and hence in both cases the condition B3 6= 0 yields
g(g2 − 1) 6= 0 .

6.1.2. The case N 6= 0, θ = 0 = B3

For the canonical systems (SI) we calculate θ = −8(h−1)(g−1)(g+h).
Hence the condition θ = 0 yields (h − 1)(g − 1)(g + h) = 0 and without
loss of generality we can consider h = 1. Indeed, if g = 1 (respectively,
g + h = 0) we can apply the linear transformation which will replace the
straight line x = 0 with y = 0 (respectively, x = 0 with y = x) reducing
this case to h = 1. Assume h = 1. Then N = (g2 − 1)x2 6= 0 and we may
assume e = f = 0 via a translation. Thus the systems (SI) become

ẋ = k + cx + dy + gx2, ẏ = l + (g − 1)xy + y2 (44)

and calculations yield µ = 32g2 and B3 = −3l(g−1)2x4 +6l(g−1)2x3y−
6d2gxy3 + 3d2gy4 + 3

[
(4gl − k(g + 1)2 + c2 + cd− cdg

]
x2y2. The con-

dition B3=0 implies dg = 0. We shall examine two subcases: µ 6= 0 and
µ = 0.

The subcase µ 6= 0. In this case we obtain g 6= 0, and from g− 1 6= 0 the
condition B3 = 0 for the systems (44) yields d = l = c2 − k(g + 1)2 = 0.
Since N 6= 0 then g + 1 6= 0 and we may set c = u(g + 1) where u is a new
parameter. Then k = u2 and we obtain the systems

ẋ = u2 + u(g + 1)x + gx2, ẏ = (g − 1)xy + y2, (45)

for which H1 = 576u2(g − 1)2.

1. If H1 6= 0 then u 6= 0 and we may assume u = 1 via Remark 46 (γ = u,
s = 1). This leads to the systems

ẋ = (x + 1)(gx + 1), ẏ = (g − 1)xy + y2, (46)

for which g(g2 − 1) 6= 0 and calculations yield:

H = gcd (E1, E2) = Y (Y −X − Z)(X + Z)(gX + Z). (47)
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Hence degH = 4. By hypothesis N 6= 0 and hence, according to Lemma
56 for every g such that g(g2−1) 6= 0, M

IL
≤ 5. By Theorem 36, from (47)

the systems (46) possess the following four distinct invariant affine lines:
y = 0, x+1 = 0, x− y +1 = 0, gx+1 = 0. Thus we obtain the Config.
5.1.

2. For H1 = 0 we have u = 0 and the systems (45) become

ẋ = gx2, ẏ = (g − 1)xy + y2, (48)

with g(g2 − 1) 6= 0 and we calculate: H = gcd (E1, E2) = gX2Y (X − Y ).
Hence degH = 4 and we obtain M

IL
≥ 5. Since N 6= 0 by Lemma 56, M

IL

cannot be equal to 6. The systems (48) possess the invariant lines x = 0,

y = 0 and x = y. Moreover, according to Lemma 38 the line x = 0 could
be of multiplicity two and the perturbations (V.8ε) from Table 5 show this.
Hence, for H1 = 0 we obtain Config. 5.8.

The subcase µ = 0. The condition µ = 32g2 = 0 yields g = 0, and for
the systems (44) the condition B3 = 0 yields g = l = c(c + d) − k = 0.
Thus, g = l = 0, k = c(c + d) 6= 0, otherwise we get degenerate systems
(44). Hence, we may assume c = 1 via Remark 46 (γ = c, s = 1) and we
obtain the systems

ẋ = d + 1 + x + dy, ẏ = −xy + y2. (49)

Calculations yield:

E1 =
[−X2 + 2XY + d(Y + Z)2 + Z(2Y + Z)

]H,

E2 = (Y −X)(Y + Z)
[
X + Z + d(Y + Z)

]H, H=Y Z(X−Y +Z+dZ),

Res X(E1/H, E2/H) = −9d(d + 1)2(Y + Z)6.

Hence deg H = gcd (E1, E2) = 3 and the condition on the parameter d so as
to have an additional common factor of E1, E2, according to Lemma 45 is
Res X(E1/H, E2/H) ≡ 0. Since d + 1 6= 0 (otherwise we get the degenerate
system (49)) this condition yields d = 0. Then we obtain the following
system

ẋ = 1 + x, ẏ = −xy + y2 (50)

for which H = gcd (E1, E2) = Y Z(X + 1)(X − Y + Z). We observe that
this system possesses the invariant affine straight lines: y = 0, x + 1 =
0, x−y +1 = 0. Taking into account that Z | H, we have by Corollary 39
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that the line Z = 0 could be of multiplicity two. This is confirmed by the
perturbations (V.7ε) from Table 5. On the other hand for the systems (49)
calculations yields H6 = 128dx2(x2−xy + y2)(x2− 2xy− dy2). Hence, the
conditions g = 0 = d are equivalent to µ = 0 and H6 = 0. In this case we
obtain Config. 5.7.

6.2. Systems with the divisor DS(C, Z) = 1 · wc
1 + 1 · wc

2 + 1 · w3

We are in the case of the canonical form (SII).

6.2.1. The case N = 0 = B2

It was shown above (see page 161) that the systems (SII) with N(a, x, y) =
0 can be brought by an affine transformation to the systems (24) for which
we have

B2 =648
[
(8efk − (f2 + e2)2

]
x4 − 16k(e2 − f2)xy(x2 − y2)−

− 48efkx2y2 + 8efky4,

B3 =6
[
(ef − 2k)x4 + (f2 − e2)x3y − (4k + ef)x2y2 − 2ky4

]
.

If B3 = 0 then k = e = f = 0 and we obtain the systems (25) for which
M

IL
= 6 (see page 161). Hence B3 6= 0 and this implies k 6= 0, otherwise

from B2 = 0 we obtain again e = f = 0. Therefore k 6= 0 and we may
consider k > 0 via the change x → −x and by Remark 46 (γ = k, s = 1/2)
we may assume k = 1. Then the condition B2 = 0 yields e = f = 0 and
we obtain the systems

ẋ = 1 + 2xy, ẏ = l − x2 + y2 (51)

which possess the invariant lines y + ix = ±√−l − i, y − ix = ±√i− l.
This leads to the Config. 5.6.

6.2.2. The case N 6= 0, θ = B3 = 0

For the systems (SII) we calculate

θ = 8(h+1)[(h−1)2 +g2], N = (g2−2h+2)x2 +2g(h+1)xy+(h2−1)y2

and hence by N 6= 0, the condition θ = 0 yields h = −1. Then we may
assume f = 0 due to a translation and the systems (SII) become

ẋ = k + cx + dy + gx2, ẏ = l + ex− x2 + gxy − y2. (52)

For these systems calculations yield Coefficient[B3, y4] = −3d2g and µ =
32 g2. We shall examine two subcases: µ 6= 0 and µ = 0.
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The subcase µ 6= 0. This yields g 6= 0 and then the condition B3 = 0
implies d = 0. Moreover, we may assume c = 0 via the translation of the
origin of coordinates to the point (−c/(2g),−c/4). Thus, the systems (52)
become

ẋ = k + 2gx2, ẏ = l + ex− x2 + 2gxy − y2,

for which we calculate

B3 = 3
[
k(4− g2)− 4gl

]
x2(x2 − y2) + 6

[
l(4− g2) + 4gk + e2

]
x3y.

Hence, the condition B3 = 0 yields the following linear system of equations
with respect to parameters k and l:

k(4− g2)− 4gl = 0, 4gk + l(4− g2) + e2 = 0.

Setting e = u(g2+4) ( u is a new parameter) we have the following solution
of this system: k = −4gu2, l = (g2 − 4)u2. Thus we obtain the systems

ẋ = −4gu2 + gx2, ẏ = (g2 − 4)u2 + u(g2 + 4)x− x2 + gxy − y2, (53)

for which H1 = −21232u2g2.

1. If H1 6= 0 we have u 6= 0 and we can assume u = 1 via the Remark 46
(γ = u, s = 1). Hence the systems (53) become

ẋ = g(x2 − 4), ẏ = (g2 − 4) + (g2 + 4)x− x2 + gxy − y2 (54)

and calculations yield: H = g(X−2Z)(X+2Z)(X2+Y 2−4XZ+2 gY Z+
4Z2 + g2Z2). Hence, M

IL
≥ 5 and since N 6= 0 by Lemma 56 M

IL
cannot

be equal to 6. By Theorem 36 the systems (54) possess the following four
distinct invariant straight lines: y − ix + g + 2i = 0, y + ix− 2i + g = 0,

x = ±2. Thus we obtain the Config. 5.2.

2. For H1 = 0 we have u = 0 and the systems (53) become

ẋ = gx2, ẏ = −x2 + gxy − y2, (55)

with g 6= 0. We calculate H = gcd (E1, E2) = gX2(X2 + Y 2) and hence
degH = 4. Since N 6= 0 by Lemma 56 we obtain that M

IL
equals exactly 5.

The systems (55) possess the following invariant straight lines: x = 0, y =
±ix and the line x = 0 could be of multiplicity two. This is confirmed by
the perturbations (V.10ε) from Table 5. Thus we get Config. 5.10.
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The subcase µ = 0. Then we obtain g = 0 and we may assume e = 0 via
a translation. Therefore the systems (52) become ẋ = k + cx+dy, ẏ =
l−x2−y2 and we calculate B3 = 12kx4 +6(4l−c2−d2)x3y−12kx2y2.

Hence the condition B3 = 0 yields k = 4l − c2 − d2 = 0. We replace c by
2c and d by 2d and then we obtain l = c2 + d2. This leads to the systems:

ẋ = 2cx + 2dy, ẏ = c2 + d2 − x2 − y2 (56)

for which calculations yield:

E1 =
[
dX2 − 2 cXY − dY 2 + 2 (c2 + d2)XZ + d(c2 + d2)Z2

]H,

E2 = (cX + dY )[X2 + Y 2 + 2 dXZ − 2 cY Z + (c2 + d2)Z2]H,

H = 2Z[X2 + Y 2 − 2 dXZ + 2 cY Z + (c2 + d2)Z2].

Thus, degH = 3 and we need an additional common factor of E1 and E2.
Since c2 +d2 6= 0 we observe that such a common factor of the polynomials
E1/H and E2/H must depend on X. Hence, by Lemma 45 the following
condition must hold:

Res X(E1/H, E2/H) = 4 d(c2 + d2)2(Y − cZ)6 = 0.

Therefore the condition d = 0 must be satisfied and then c 6= 0 (oth-
erwise we get degenerate system from (56)). On the other hand for the
systems (56) we have H6 = −213dx3(3x2−y2)(dx2−2cxy−dy2) and hence
the condition d = 0 is are equivalent to H6 = 0. We may assume c = 1 via
the Remark 46 (γ = c, s = 1) and then we obtain the system

ẋ = 2x, ẏ = 1− x2 − y2. (57)

For this system we calculate H = gcd (E1, E2) = 4 XZ(X2+Y 2+2Y Z+Z2)
and according to Theorem 36 the system (57) possesses the invariant affine
lines: x = 0 and y±ix+1 = 0. Moreover, by Corollary 39 the line l∞ : Z = 0
could be of multiplicity two. This is confirmed by the perturbations (V.9ε)
from Table 5. Therefore we obtain the Config. 5.9.

6.3. Systems with the divisor DS(C, Z) = 2 · w1 + 1 · w2

We are in the case of the canonical form (SIII). For this case we shall
later need the following polynomial which is shown to be a CT -comitant
in Lemma 62.

Notation 60. Let us denote N5(a, x, y) =
(
(D2, C1)(1) + D1D2

)2 −
4
(
C2, C2

)(2)(
C0, D2

)(1).
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6.3.1. The case N = 0 = B2

It was previously shown (see page 162) that to examine the systems (SIII)
with N(a, x, y) = 0 we have to consider two subcases: H(a, x, y) 6= 0 and
H(a, x, y) = 0.

The subcase H(a, x, y) 6= 0. In this case the systems (SIII) with N = 0
can be brought by an affine transformation to the systems (27) (see page
162) for which we have: B2 = −648d(8clx4 + 16dlx3y + d3y4). Therefore,
the condition B2 = 0 yields d = 0 and we obtain the systems

ẋ = k + cx− x2, ẏ = l − 2xy, (58)

for which calculations yield: E1 =
[−2X2Y + Z2(2kY + clZ)

]H, H =
(kZ2 + cXZ − X2), E2 = (X2 − cXZ − kZ2)(2XY − lZ2)H. Thus,
degH = 2 and to have M

IL
= 5 the polynomials E1/H and E2/H must

have a common factor of degree two. We observe, that this common factor
necessarily depends on X and hence by Lemma 45 the following condition
must hold:

Res X(E1/H, E2/H) = −2c2Y Z6(4kY 2 + 2clY Z − l2Z2)2 ≡ 0.

Herein we obtain either c = 0 or k = l = 0, but the second case yields
degenerate systems. So, we assume c = 0 and then for the systems (58)
we obtain E1 = 2Y H, H = (kZ2 −X2)2, E2 = (−6XY + 3lZ2)H. We
observe, that deg H = 4 and that the polynomials E1 and E2 do not have an
additional common factor if and only if l 6= 0. This condition is equivalent
to B3 6= 0, since for the systems (58) we have B3 = −12lx4. As l 6= 0 we
may consider l = 1 via the rescaling y → ly and we obtain the systems

ẋ = k − x2, ẏ = 1− 2xy. (59)

Moreover, due to the rescaling x → |k|1/2x, y → |k|−1/2y and t → |k|−1/2t

(for k 6= 0) we may assume k ∈ {−1, 0, 1}. These systems possess two
invariant lines x = ±

√
k. By Lemma 38 for k 6= 0 each one of these

lines could be of multiplicity two and for k = 0 the invariant line x = 0
of the system (59) is of the multiplicity four. This is confirmed by the
perturbations (V.22ε) (respectively (V.25ε); (V.29ε)) from Table 5 for k =
1 (respectively k = −1; k = 0). Thus, we obtain Config. 5.22 (respectively,
Config. 5.25; Config. 5.29).

On the other hand for the systems (58) calculations yield: H2 = 16cx2

and H3 = 32kx2. Hence, these T -comitants capture exactly the conditions
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c = 0 and k < 0 (respectively c = 0, k = 0 or c = 0, k > 0) . It remains
to observe that the condition B3 6= 0 implies H 6= 0, since for H = 0 the
condition B2 = 0 implies B3 = 0 (see the subcase H(a, x, y) = 0 below).

The subcase H(a, x, y) = 0. It is previously shown (see page 163) that if
N = H = 0 then the systems (SIII) can be brought by an affine transfor-
mation to the systems (30). For these systems we have B2 = −648d4y4,

B3 = 6dxy2(fx− dy) and hence the condition B2 = 0 yields d = 0. There-
fore the conditions B2 = 0 and B3 = 0 are equivalent and since for any
quadratic system (10) the condition B3 = 0 implies B2 = 0 (see the formu-
las (14) on page 148), we shall use in this case the condition B3 = 0.

Assuming d = 0 we obtain the systems (31) for which D(x, y) = −f2x2y

and we shall consider two subcases: D 6= 0 and D = 0.

(1) For D 6= 0 the systems (31) can be brought by an affine transforma-
tion to the systems (32) and calculations yield the values (33) of the affine
comitants E1 and E2. We observe that deg H = 3 and taking into account
that the polynomials E1/H and E2/H cannot have the common factor Z, to
have an additional factor of these polynomials according to Lemma 45 at
least one of the following two conditions must hold: Res X(E1/H, E2/H) =
−36e(k+1)(4Y 2Z+e2kZ3)2 = 0, Res Y (E1/H, E1/H) = −6e(X2+kZ2)2 =
0. Thus we obtain either the condition e = 0 or k = −1. On the other hand
for systems (32) we obtain N1 = 8ex4 and N2 = 16(k + 1)x and we shall
consider two subcases: N1 = 0 and N1 6= 0, N2 = 0.

(1a) Assume N1 = 0. Then e = 0 and the systems (32) become

ẋ = k + x2, ẏ = 2y. (60)

Calculations yield: E1 = 2(X − Z)H, E2 = 3(X2 + kZ2)H, H =
4Y Z(kZ2 + X2), Res X(E1/H, E2/H) = 12(k + 1)Z2. Hence degH = 4
and we observe that in order not to have an additional common factor of
the polynomials E1 and E2 we must have k + 1 6= 0 (i.e. N2 6= 0). The sys-
tems (60) possess the invariant affine lines y = 0, x = ±√−k. According
to Corollary 39 the line l∞ : Z = 0 could be of multiplicity 2 and the line
x = 0 also could be of multiplicity 2 in the case when k = 0. Since for
systems (32) we have N5 = −64kx2, we obtain Config. 5.13 for N5 > 0,
Config. 5.15 for N5 < 0 and Config. 5.17 for N5 = 0.

Note that for k < 0 (respectively, k > 0) one can set k = −g2 (respectively,
k = g2) and due to the substitution x → gx we obtain the canonical
system (V.13) (respectively, (V.15)) from Table 4. It remains to observe
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that the perturbations (V.13ε), (V.15ε) and (V.17ε) from Table 5 confirm
the validity of the Config. 5.13, 5.15 and 5.17, respectively.

(1b) For N1 6= 0, N2 = 0 we have e 6= 0, k = −1 and then for the
systems (32) calculations yield: E1 = [4Y + e(X − Z)]H, E2 = (ceX +
2Y )(X + Z)H, H = Z(X + Z)(X − Z)2, Res Y (E1/H, E2/H) = −2e(X +
Z)2. Hence degH = deg gcd (E1, E2) = 4 and since N1 6= 0 (i.e. e 6= 0)
the polynomials E1 and E2 could not have an additional common factor.
Assuming e = 1 via the rescaling y → ey the systems (32) become

ẋ = −1 + x2, ẏ = x + 2y. (61)

This system possesses the invariant lines x = ±1. According to Lemma
38 and Corollary 39 the line x = 1 as well as the line Z = 0 could be
of multiplicity two. This is confirmed by the perturbations (V.21ε) from
Table 5. Thus for N1 6= 0 and N2 = 0 we obtain Config. 5.21.

(2) If D = 0 then we have f = 0 and the systems (31) become the
systems (35) (see page 164) for which calculations yield the corresponding
expressions (36) for the affine comitants E1 and E2. As deg H = 3 we need
an additional common factor of E1 and E2. Taking into account that these
polynomials depend only on X and Z, according to Lemma 45 at least one
of the following two conditions must hold:

Res X(E1/H, E2/H) = −4 ek(e2k + l2)2Z6 = 0,

Res Z(E1/H, E2/H) = −4 ek(e2k + l2)2X6 = 0.

Hence we obtain either ek = 0 or e2k + l2 = 0. Since the second condition
leads to degenerate systems, we must examine the conditions e = 0 and
k = 0. For systems (35) we have N1 = 8ex4 and N2 = 16kx and we shall
consider two subcases: N1 = 0 and N1 6= 0, N2 = 0.

(2a) Assume N1 = 0. Then e = 0 and the systems (35) become ẋ =
k + x2 ẏ = l. Calculations yield E1 = XH, E2 = (X2 + kZ2)H,

H = lZ2(X2 + kZ2), Res X(E1/H, E2/H) = 4 kZ2. Therefore deg H = 4
and the polynomials E1 and E2 could not have an additional common factor
if and only if k 6= 0 (i.e. N2 6= 0). Since l 6= 0 (otherwise we get degenerate
systems) after the rescaling x → |k|1/2x, y → l|k|−1/2y and t → |k|−1/2t

we get the systems

ẋ = k + x2, ẏ = 1 (62)

with k ∈ {−1, 1}. The systems (62) possess two invariant affine lines:
x = ±√−k which are distinct due to the condition k 6= 0. Moreover,
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by Corollary 39 the line Z = 0 could be of multiplicity three. This is
confirmed by the perturbations (V.20ε) (for k < 0) and (V.24ε) (for k > 0)
from Table 5. On the other hand for systems (62) we have N5 = −64kx2.
Therefore, for N1 = 0 and N2 6= 0 we obtain the Config. 5.20 if N5 > 0
and the Config. 5.24 if N5 < 0.

(2b) Let N1 6= 0, N2 = 0. In this case we have e 6= 0, k = 0 and systems
(35) become

ẋ = x2, ẏ = l + ex. (63)

For the systems (63) calculations yield: E1 = (eX + 2lZ)H, E2 =
X(eX + lZ)H, H = X3Z. Therefore deg H = 4 and since l 6= 0 (otherwise
we get the degenerate systems (63)) and e 6= 0 ( N1 6= 0) we conclude that
the polynomials E1 and E2 could not have an additional common factor,
i.e. each non-degenerate system of the family (63) belongs to QSL5. Via
the rescaling x → le−1x, y → e y and t → el−1t systems (63) become

ẋ = x2, ẏ = 1 + x. (64)

This system possesses the invariant line x = 0. Taking into account the
polynomial H, by Lemma 38 and Corollary 39 we obtain that the line x = 0
could be of multiplicity three whereas the line Z = 0 could be of multiplicity
two. This is confirmed by the perturbations (V.28ε) from Table 5. Thus
we obtain the Config. 5.28.

6.3.2. The case N 6= 0, θ = 0 = B3

Since for the systems (SIII) we have

θ = −8h2(g−1), µ = 32gh2, N = (g2−1)x2+2h(g−1)xy+h2y2 (65)

we shall consider two cases: µ 6= 0 and µ = 0.

The subcase µ 6= 0. Then gh 6= 0 and the condition θ = 0 yields g = 1.
Then the systems (SIII) with g = 1 by the transformation x → x− d/h,

y → (hy+2d−ch)/h2 will be brought to the systems: ẋ = k+x2 +xy, ẏ =
l + ex + fy + y2, for which B3 = −3e2x4 + (3l− 12k)x2y2 − 6kxy3. Hence
the condition B3 = 0 yields e = k = l = 0 and we obtain the systems

ẋ = x2 + xy, ẏ = fy + y2, (66)

for which we can assume f ∈ {0, 1} via Remark 46 (γ = f, s = 1). For the
systems (66) calculations yield: H = gcd (E1, E2) = X2Y (Y + fZ). Hence,
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deg H = 4, i.e MIL ≥ 5 and since N 6= 0 by Lemma 56 we have MIL < 6.
By Theorem 36 the systems (66) possess the invariant lines x = 0, y = 0
and y + f = 0. Moreover, according to Lemma 38 the line x = 0 of could
be of the multiplicity two, and the lines y = 0 and y = −f are distinct if
and only if f 6= 0. Since for the systems (66) we have D = −f2x2y, the
condition f 6= 0 can be expressed by using this T -comitant.

If D 6= 0 (then f = 1) the perturbed systems (V.11ε) from Table 5 show
that the invariant line x = 0 is double one. Thus, for D 6= 0 we obtain
Config. 5.11.

Assume D = 0. Then f = 0 and the invariant line x = 0 as well as the
line y = 0 is of multiplicity two. This is confirmed by the perturbed systems
(V.19ε) from Table 5. Therefore the case D = 0 leads to the Config. 5.19.

The subcase µ = 0. In this case from (65) we obtain h = 0 and the
condition N 6= 0 yields g2−1 6= 0. Then the systems (SIII) with h = 0 will
be brought via the translation x → x + f/(1− g), y → y + e/(1− g) to the
systems:

ẋ = k + cx + dy + gx2, ẏ = l + (g − 1)xy, (67)

for which B3 = −3 l (g − 1)2x4 − 3 c d(g − 1)x2y2 − 6 d2g xy3. Hence, as
N 6= 0 the condition B3 = 0 yields l = c d = d g = 0. We claim that if
d 6= 0 then for the systems (67) we have M

IL
< 5. Indeed, suppose d 6= 0.

Hence the condition B3 = 0 yields l = c = g = 0. Thus we obtain the
systems ẋ = k + dy, ẏ = −xy, for which calculations yield:

E1 =(−kX2+ d2Y 2 +2dkY Z + k2Z2)H, E2 =−X(dY + kZ)2H, H=Y Z2.

Thus deg H = 3 and since d 6= 0 to have an additional common factor of
E1 and E2 by Lemma 45 the following condition must hold: Res Y (E1/H,

E2/H)=d4k2X6 =0. Therefore dk=0 and since d 6=0 we obtain k=0. How-
ever this condition leads to the degenerate systems. Our claim is proved.

Let us assume d = 0. Then the condition B3 = 0 yields l = 0 and the
systems (67) become

ẋ = k + cx + gx2, ẏ = (g − 1)xy. (68)

Calculations yield: E1 = (X2 − kZ2)H, E2 = X(gX2 + cXZ + kZ2)H,

Res X(E1/H, E2/H) = k2[c2 − k(1 + g)2]Z6, where H = (g − 1)Y (gX2 +
cXZ +kZ2). Hence degH = 3 and we need an additional common factor of
E1 and E2. For this, according to Lemma 45, the condition
Res X(E1/H, E2/H) = 0 is necessary, i.e. k

[
(c2 − k(g + 1)2

]
= 0. As
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k 6= 0 (otherwise we get degenerate systems) we obtain the condition
c2 − k(g + 1)2 = 0.

Assume c2 = k(g + 1)2. Since N 6= 0 (i.e. g + 1 6= 0) we may set
c = u(g + 1), where u is a new parameter. Then k = u2 6= 0 and via the
Remark 46 (γ = u, s = 1) the systems (68) will be brought to the form:

ẋ = 1 + (g + 1)x + gx2, ẏ = (g − 1)xy. (69)

For systems (69) we obtain H = gcd (E1, E2) = 2(g−1)Y (X+Z)2(gX+Z).
Hence deg H = 4, i.e. M

IL
≥ 5 and since N 6= 0 by Lemma 56, M

IL
6= 6

for any system (69).
On the other hand the conditions d = 0 and c2 − k(g + 1)2 = 0 are

equivalent to B3 = H6 = 0. Indeed, the condition B3 = 0 implies dg = 0
for system (67) (see above) and then H6 = 64(g− 1)2x4

[
2(g− 1)2[k(g +

1)2− c2]x2− 5cdxy− 2d2y2
]
. Hence as N 6= 0 (i.e. g− 1 6= 0) the condition

H6 = 0 yields d = c2 − k(g − 1)2 = 0.
We observe that Z | H if and only if g = 0. So, since by N 6= 0 the

condition g = 0 is equivalent to K = 2g(g − 1)x2 = 0, we shall examine
two subcases: K 6= 0 and K = 0.

1. If K 6= 0 then g 6= 0 and according to Theorem 36 the systems (69)
possess the following invariant affine straight lines: y = 0, x + 1 = 0,
gx+1 = 0. By g− 1 6= 0 the invariant line gx+1 = 0 cannot coincide with
x = −1. Moreover, the line x = −1 could be of multiplicity two and this is
confirmed by the perturbations (V.14ε) from Table 5. Thus for K 6= 0 we
obtain the Config. 5.14.

2. For K = 0 we obtain g = 0 and then the line l∞ : Z = 0 appears as a
component of a conic in the pencil of conics corresponding to systems (69).
Hence, the invariant line x+1 = 0 as well as the line Z = 0 is of multiplicity
two, as is shown by the perturbations (V.18ε) from Table 5. Thus for K = 0
we obtain the Config. 5.18.

6.4. Systems with the divisor DS(C, Z) = 3 · w

We are in the case of the canonical form (SIV ) and we shall later need the
following polynomial which is shown to be a CT -comitant in Lemma 62.

Notation 61. Let us denote
N6(a, x, y) = 8D + C2

[
8(C0, D2)(1) − 3(C1, C1)(2) + 2D2

1

]
.
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6.4.1. The case N = 0 = B2

It was previously shown (see page 165) that for N(a, x, y) = 0 we have
to examine the systems (38) for which we have B2 = −648 d4x4, B3 =
6dx3(fx− dy). Thus the condition B2 = 0 is equivalent to B3 = 0 and this
yields d = 0. Then we obtain the systems (39) for which the expressions of
the affine comitants E1 and E2 are given in (40). We observe that deg H = 3
and we need to have an additional common factor of E1 and E2. Since the
polynomial E2/H does not depend of Y , to have such a common factor by
Lemma 45 at least one of two following conditions must hold:

Res X(E1/H, E2/H) = (c− f)2(c2fY − k2Z + c2lZ)2Z4 = 0;

Res Z(E1/H, E2/H) = (c− f)2(c + f)X4(k2X − c2lX + cfkY )2 = 0.

Hence we obtain either (c − f)(c + f) = 0 or k = cl = cf = 0; however
the second case leads to the degenerate systems (39). On the other hand
for systems (39) we obtain N3 = 3(c− f)x3, D1 = c + f. So, the condition
(c − f)(c + f) = 0 is equivalent to N3D1 = 0 and we shall consider two
subcases: N3 = 0 and N3 6= 0, D1 = 0.

The subcase N3 = 0. Then f = c and we get the systems:

ẋ = k + cx, ẏ = l + cy − x2 (70)

for which calculations yield: E1 = 2 XH, E2 = Z(cX + kZ)H, H =
Z2(cX + kZ)2. So deg H = 4. It is easy to observe that the polynomials
E1 and E2 do not have an additional common factor if and only if k 6= 0
and the polynomial H has a factor of multiplicity four if c = 0. On the
other hand for systems (70) D1 = 2c and N4(a, x, y) = 12kx2. Hence the
conditions c = 0 and k 6= 0 can be expressed by using the CT -comitants
D1 and N4. So, we shall consider two cases: D1 6= 0 and D1 = 0.

1. Assume D1 6= 0. Then c 6= 0 and the systems (70) can be brought by
the affine transformation x = c−1kx1, y = c−3k2y1 − c−1l, t = c−1t1
to the system

ẋ = 1 + x, ẏ = y − x2 (71)

for which H = gcd (E1, E2) = Z2(X + Z)2. By Lemma 38 and Corollary 39
the line x = −1 could be of multiplicity 2, whereas the line Z = 0 could
be of multiplicity 3. This is confirmed by the perturbations (V.27ε) from
Table 5. Thus, for N3 = 0, N4 6= 0 and D1 6= 0 we obtain the Config. 5.27.
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2. If D1 = 0 for systems (70) we have c = 0 and since k 6= 0 via the
linear transformation x1 = k−1x and y1 = k−3(−lx + ky) we obtain the
systems

ẋ = 1, ẏ = −x2. (72)

For the systems (72) we haveH = gcd (E1, E2) = Z4 and hence by Corollary
39 the line Z = 0 could be of multiplicity 5. This is confirmed by the
perturbation (V.30ε) from Table 5. Thus, we obtain the Config. 5.30.

The subcase N3 6= 0, D1 = 0. These conditions yield f = −c 6= 0 and we
may assume c = −1 via the Remark 46 (γ = −c, s = 1). Then via the
affine transformation x1 = x − k, y1 = −kx + y + l systems (39) will be
brought to the systems:

ẋ = −x, ẏ = y − x2. (73)

For system (6.32) we calculate: H = −XZ3, i.e. deg H = 4. By Corollary
39 the line Z = 0 could be of multiplicity four. This is confirmed by the
perturbations (V.26ε)from Table 5. Thus, for D1 = 0 and N3 6= 0 we
obtain the Config. 5.26.

6.4.2. The case N 6= 0, θ = 0 = B3

For the systems (SIV ) we calculate: θ = 8h3, N = (g2−2h)x2+2ghxy+
h2y2. From θ = 0, N 6= 0 we obtain h = 0, g 6= 0 and we may assume g = 1
via the rescaling x → g−1x, y → g−2y. Then the systems (SIV ) with h = 0
and g = 1 will be brought by the translation x → x− c/2, y → y − (c + e)
to the systems: ẋ = k + dy + x2, ẏ = l + fy − x2 + xy. For these
systems we have B3 = 3(2df −k−f2)x4−6d(d−4f)x3y−9d2x2y2. Hence
the condition B3 = 0 yields d = 0, k = −f2 and we obtain the systems

ẋ = −f2 + x2, ẏ = l + fy − x2 + xy, (74)

for which calculations yield: E1 = (X2 + 2fXZ + lZ2)H, E2 = 3(X −
fZ)(X + fZ)2H, where H = 2(X − fZ)2(X + fZ). Hence deg H = 3 and
to have an additional common factor of E1 and E2, according to Lemma 45,
the condition Res X(E1/H, E2/H) = 9(f2− l)2(3f2 + l)Z6 = 0 must hold.
We observe that for l = f2 the systems (74) become degenerate. Therefore
l = −3f2 and since f 6= 0 (otherwise we get the degenerate system) we
may assume f = 1 via Remark 46 (γ = f , s = 1). Thus we obtain the
canonical system:

ẋ = −1 + x2, ẏ = −3 + y − x2 + xy (75)
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and calculations yield H = gcd (E1, E2) = 2(X − Z)3(X + Z). Therefore,
according to Theorem 36, the system (75) possesses the invariant straight
lines x = 1 and x = −1 and the line x = 1 could be of multiplicity three.
This is confirmed by the perturbations (V.23ε) from Table 5. Thus we
obtain Config. 5.23. Since for systems (74) we have N6 = 8(l+3f2)x3, the
condition l + 3f2 = 0 is equivalent to N6 = 0.

All the cases in Theorem 57 are thus examined. To finish the proof of the
Theorem 57 it remains to show that the conditions occurring in the middle
column of Table 4 are affinely invariant. This follows from the proof of
Lemma 62.

Lemma 62. The polynomials which are used in Theorems 50 or 57 have
the properties indicated in the Table 6. In the last column are indicated the
algebraic sets on which the GL-comitants on the left are CT -comitants.

Proof. Firstly we draw attention to the fact that all polynomials in the
second column of Table 6 are GL-comitants in view of their definition (see
Notations 26, 53, 30, 40, 51, 52, 59, 60, 61), of Theorem 20 and of Remark
21.

I. Cases 1,. . . ,14. Let us consider the action of the translation group
T (2,R) on systems in Q̂S. If τ ∈ T (2,R), i.e. τ : x = x̃ + x0, y = ỹ + y0

and Sa is a system in Q̂S of coefficients a ∈ R12, then applying this action
to Sa we obtain the system Sã of coefficients ã ∈ R12, i.e.

Sã :
{ ˙̃x = P (a, x0, y0) + Px(a, x0, y0)x̃ + Py(a, x0, y0)ỹ + p2(a, x̃, ỹ),

˙̃y = Q(a, x0, y0) + Qx(a, x0, y0)x̃ + Qy(a, x0, y0)ỹ + q2(a, x̃, ỹ).

Then calculations yield:

U(ã) = U(a) for each U ∈ {η, µ, θ,B1,H1, H4,H5},
W (ã, x̃, ỹ) = W (a, x̃, ỹ) for each

W ∈ {C2, K, H,M, N, D,B2, B3,H2, H3,H6}.

Since this holds for every a ∈ R12, according to Definition 22 we con-
clude that the GL- comitants indicated in the lines 1–14 of Table 6 are
T -comitants for systems (10).

II. Cases 15,. . . ,21. 1. We consider firstly N1(a, x, y), N2(a, x, y),
N5(a, x, y), the GL-comitants which according to Tables 2 and 4 were used
only when the conditions η = 0 = H are satisfied. According to Lemma 44
for η = 0 there correspond three canonical forms: (SII), (SIII) and (SV ).
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TABLE 6.

Case GL-comitants
Degree in

Weight
Algebraic

a x and y subset V (∗)
1 η(a), µ(a), θ(a) 4 0 2 V (0)

2 C2(a, x, y) 1 3 −1 V (0)

3 H(a, x, y), K(a, x, y) 2 2 0 V (0)

4 M(a, x, y), N(a, x, y) 2 2 0 V (0)

5 D(a, x, y) 3 3 −1 V (0)

6 B1(a) 12 0 3 V (0)

7 B2(a, x, y) 8 4 0 V (0)

8 B3(a, x, y) 4 4 −1 V (0)

9 H1(a) 6 0 2 V (0)

10 H2(a, x, y)) 3 2 0 V (0)

11 H3(a, x, y) 4 2 0 V (0)

12 H4(a) 6 0 2 V (0)

13 H5(a) 8 0 2 V (0)

14 H6(a, x, y)) 8 6 0 V (0)

15 N1(a, x, y) 3 4 −1 V (η, H)

16 N2(a, x, y) 3 1 0 V (η, H, B3)

17 N3(a, x, y) 2 3 −1 V (M, N)

18 N4(a, x, y) 2 2 −1 V (M, N, N3)

19 N5(a, x, y) 4 2 0 V (η, H, B3)

20 N6(a, x, y) 3 3 −1 V (M, θ, B3)

21 D1(a) 1 0 0 V (M, N)
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Since for the systems (SV ) we have H = −x2 6= 0, we need to consider the
following cases: (i) η = 0 and M 6= 0; (ii) η = 0 and M = 0 and C2 6= 0.

(i) For η = 0 and M 6= 0 we are in the class of systems (SIII),
for which the condition H = −(g − 1)2x2 − 2h(g + 1)xy − hy2 = 0 yields
h = g − 1 = 0 and this leads to systems (30) (see page 163). On the other
hand for any system corresponding to a point ã ∈ R12 in the orbit under
the translation group action of a system (30) calculations yield:

N1(ã, x̃, ỹ) = 8x̃2(ex̃2 − 2dỹ2), B3(ã, x̃, ỹ) = 6dx̃ỹ2(fx̃− dỹ)

N2(ã, x̃, ỹ) = 4(f2 + 4k)x̃ + 4dfỹ + 8d(x0ỹ + 2y0x̃),

N5(ã, x̃, ỹ) = −16(4kx̃2 − d2ỹ2) + 64dx̃(x0ỹ − y0x̃).

Hence the value of N1 does not depend of the vector defining the translation
and for B3 = 0 the same occurs for N2 and N5. Therefore we conclude that
for M 6= 0 the polynomial N1 is a CT -comitant modulo 〈η, H〉, whereas
the polynomials N2 and N5 are CT -comitants modulo 〈η,H, B3〉.

(ii) Assume now that M = 0 and C2 6= 0. Then we are in the class
of systems (SIV ), for which the condition H = −(g2+4h)x2−2ghxy−hy2 =
0 yields g = h = 0. In this case using an additional translation (see
page 165) we obtain the systems (38). Then for any system corresponding
to a point ã ∈ R12 in the orbit under the translation group action of
a system (38) calculations yield: N1(ã, x̃, ỹ) = −24dx̃4, N2(ã, x̃, ỹ) =
12d(c + f)x̃, N5(ã, x̃, ỹ) = 0. Since the condition M = 0 implies η = 0,
considering the case (i) above we conclude that independently of either
M 6= 0 or M = 0, the GL-comitant N1 is a CT -comitant modulo 〈η,H〉
and N2 and N5 are CT -comitants modulo 〈η, H, B3〉.

2. Let us now consider the GL-comitants D1(a), N3(a, x, y), N4(a, x, y)
and N6(a, x, y). According to Tables 2 and 4 the polynomials N3, N4 and
D1 (respectively N6) were used only when the conditions M = N = 0
(respectively M = θ = 0, N 6= 0) are satisfied. In both cases we are in the
class of systems (SIV ) and we shall consider the two subcases: N = 0 and
N 6= 0, θ = 0.

(i) If for the system (SIV ) the condition N = 0 is fulfilled then as
it was shown on the page 165 we obtain systems (38). Then for any system
corresponding to a point ã ∈ R12 in the orbit under the translation group
action of a system (38) calculations yield:

N3(ã, x̃, ỹ) = 3(c− f)x̃3 + 2dx̃2ỹ, B3(ã, x̃, ỹ) = 6dx̃3(fx̃− dỹ),

N4(ã, x̃, ỹ) = 12kx̃2 + 3(f2− c2)x̃ỹ − 3d(c + f)ỹ2 + 6x̃2[(c−f)x0 + 2dy0],

N6(ã, x̃, ỹ) = 8c(c− f)x̃3 + 16dfx̃2ỹ − 8d2x̃ỹ2 − 48dx0x̃
3, D1(ã) = c + f.



192 D. SCHLOMIUK AND N. VULPE

These relations show us that: (α) the GL-comitants N3 and D1 are CT -
comitants modulo 〈M, N〉; (β) the GL-comitant N4 is a CT -comitant
modulo 〈M, N, N3〉; (γ) the GL-comitant N6 is a CT -comitant modulo
〈M,N,B3〉.

(ii) Assume that for the system (SIV ) the conditions θ = 0 and
N 6= 0 are fulfilled. As it was shown on the page 188 for B3 = 0 we
obtain systems (74). For any system corresponding to a point ã ∈ R12

in the orbit under the translation group action of a system (74) we have
N6(ã, x̃, ỹ) = 8(l + 3f2)x̃3. Therefore, since the condition N = 0 implies
θ = 0, considering the case (i) above we conclude that independently of
either N 6= 0 or N = 0, the GL-comitant N6 is a CT -comitant modulo
〈M, θ, B3〉.

The Table 6 shows us that all the conditions indicated in the middle
column of Tables 2 and 4 are affinely invariant. Indeed, the CT -comitants
Ni, i = 1, . . . , ..., 6 and D1 are used in Tables 2 and 4 only for the varieties
indicated in the last column of Table 6.

This completes the proof of the Theorems 50 and 57.
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