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We study in this note some dynamical properties of F (z) = z2 − 2z,
F : C → C . Let K = K (F ) denote the set of all points whose orbit is
bounded. We prove that F restricted to C \ K behaves as ϕ (z) = z2 does
in the complement of the unit disk; K has positive area; F restricted to K is
transitive; the set of periodic points of F is dense in K and the topological
entropy of F |K is positive.
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1. INTRODUCTION

The dynamical study of quadratic transformations of the plane has been
indeed a very popular one; it includes such examples as the Henon maps
or the most famous holomorphic family z → z2 + c (see also [1], [8], [7]).

The problem of whether or not it is possible to provide a certain clas-
sification of these maps according to its dynamical behaviour was raised
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in [8]. A partial answer was given there, establishing equivalence classes
of these maps not in the dynamical sense (conjugation classes) but, we
could say, in a geometrical sense (Whitney’s equivalence). This work can
be considered as a useful starting point for the above mentioned classifi-
cation problem. One of those (Whitney’s) equivalence classes contains the
non-holomorphic (nor antiholomorphic) family z → z2 + 2az, where a is a
complex parameter.

It was pointed out then (ibid.) that this family is an interesting example
to study for several reasons, all of them related to the fact that as a varies,
a fairly wide range of very different dynamical phenomena occur. In [11]
it was shown that when the parameter a is a real number, the set Ka

of bounded orbits is connected if, and only if, the critical point of the
map restricted to R has a bounded orbit, which, in turn, happens when
a ∈ [−1, 2].

This resembles the well known Julia-Fatou result for the holomorphic
case, but when a ∈ C − R the resemblence ends, due to the fact that the
singular set of the map is not a finite set of points, but a whole circunfer-
ence!

Some time later, I. Petersen, J. C. Alexander, J. Yorke and others, es-
tablished the surprising existence of a very simple attractor (in fact there
were three attractors made of straight lines that formed sort of a trian-
gle) appearing in maps with “very simple equations” but with incredibly
involved basins of attraction (“thoroughly intermingled basins” they said;
see [2], [1], [10]). It turns out that the maps were members of the family in
question when the parameter a is of the form 1 + iλ with λ in the vecinity
of certain specific value. This sort of things encouraged the authors of the
present paper to study this family of maps having by now arrived to several
partial conclusions (see [9]) while work is still in progress.

The aim of this paper is to describe the dynamics that take place for the
specific parameter a = −1. This case is special because it is the only one
for which the set of bounded orbits has a very simple geometrical shape and
its border is the set of critical values of the map. It becomes possible, then,
to make a (simpler) geometrical model of the map which, in turn, renders
as absolutely obvious its complicated dynamical properties. It is also an
important bifurcation parameter because as a ∈ R crosses −1 and becomes
less than −1, the set Ka sort of ”explodes” and from being connected
becomes disconnected with infinite components (most surely a Cantor set).
Finally, we believe that, aside from the research problem itsef, specially
the geometrical model is an example that can be used in a classroom to
illustrate, in a simple way, difficult dynamical concepts.
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2. PRELIMINARY DEFINITIONS

The family of mappings Fa : C→ C, Fa (z) = z2 + 2az, a ∈ C, has been
recently studied (see [1], [8] and [11]). We present here some properties of
the discrete dynamical system generated by one member of this family, the
one corresponding to a = −1, F−1 (z) = z2 − 2z.

The study of dynamics of rational mappings on the Riemann Sphere is
an important area in dynamical systems. The concepts of Julia Set and
Fatou Set are basic in this theory. Here we are interested in the study of
such equivalent sets for non holomorphic maps such as F−1 (z).

A main difference between real dynamics in two variables and holomor-
phic dynamics in one variable occurs in the singular set. In the first case
it can be a collection of curves while in the second case it consists of a
discrete set of points. For the family Fa (z), a 6= 0, it is easily seen that
the singular set

{
z ∈ C : det

(
DFa(z)

)
= 0

}
is the circle |z| = |a|, (see [8]

or [11]).
One of the results of this paper is that the mapping F−1 (z) exhibits

a filled “Julia Set” which has nonempty interior without being the whole
space C. This is not the case for rational maps.

From here on we denote with F the mapping F (z) = z2−2z, F : C→ C.
We define F 1 = F and Fn = F ◦Fn−1 for each n ≥ 2. Let z ∈ C, the orbit
of z under F is the set

{
z, F (z) , F 2 (z) , . . .

}
and it is denoted by o (z, F ) .

If there is a positive integer, n ∈ N, such that Fn (z) = z it is said that
z is a periodic point of F. In such a case, the period of z is the smallest
n for which Fn (z) = z. Let Per (F ) denote the set of all periodic points
of F. If z ∈ Per (F ) is of period n we say that z is expansive provided
that |λ1| > 1 and |λ2| > 1, where λ1 and λ2 are the eigenvalues of the
Jacobian matrix of Fn in z = (x, y) , DFn

(x,y). Given z ∈ C and ε > 0, let
Bε (z) denote the set {ω ∈ C : |ω − z| < ε}. Given a subset of C, E ⊂ C,
int (E) , ∂E and cl (E) denote the interior, the boundary and the closure
of E respectively. An orbit o (z, F ) is bounded if there exists M > 0 such
that o (z, F ) ⊂ BM (0) . Let K = K (F ) be the set of points whose orbit is
bounded. As in holomorphic dynamics we call K the filled Julia set of F.
It follows that F (K) = K and F (C \K) = C \K. In fact, C \K is the
basin of atraction of infinity, i.e. C \K = {z : |Fn (z)| → ∞} . We denote
this basin by B (∞) . Our goal is to describe the set K, the dynamics of
F restricted to K, F |K : K → K, and the dynamics of F restricted to
C \K = B (∞).

Let A and B be two metric spaces, and let f : A → A and g : B → B be
continuous mappings. It is said that f and g are conjugate provided that
there exists a one to one and onto continuous mapping h : A → B such
that the following diagram commutes:
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A f−→ A

h ↓ ↓ h
B g−→ B

That is, h ◦ f = g ◦ h.
In section 4 we prove the following: If ϕ : C→ C denotes the map ϕ (z) =

z2 and D the unit disk, then F
∣∣C\int(K) and ϕ

∣∣C\int(D) are conjugate.
Let A be a metric space, and let f : A → A be a continuous mapping. It

is said that f is transitive in A provided that for every pair of nonempty
open subsets of A, say U and W, there exists a point x in U , and a positive
integer, n, such that fn (x) ∈ W.

In section 5 we produce a piecewise linear mapping wich we will see is
conjugate to F |K . It allows us to prove, in section 6, that F |K is transitive
in K and Per (F |K ) is a dense set in K. Note that these two conditions
imply that F |K is chaotic in K in the sense proposed by R. Devaney (see
[3] and [6]). We also show that if z is a periodic point of F and z ∈ int (K) ,
then it is expansive.

We recall the definition of topological entropy in section 5. In section 6
we prove that the topological entropy of F |K is positive, and furthermore,
that it equals log (4) .

3. AN INVARIANT FAMILY OF CURVES

The mapping F (z) = z2 − 2z can be represented as a function of R2:

F (x, y) =
(
x2 − y2 − 2x, 2xy + 2y

)
,

where z is represented by the point (x, y) .
It is said that (u, v) is a critical point of F provided that the determinant

of DF(u,v) is zero. It is immediate that the set of all critical points of F is
the unit circle, S1 = {z ∈ C : |z| = 1} .

The point (s, t) is a critical value of F if (s, t) = F (u, v) and (u, v) is
a critical point. Given θ ∈ [0, 2π] , z = eiθ is a critical point of F. Since
F

(
eiθ

)
= ei2θ − 2e−iθ it follows that the set of all critical values is a

hypocycloid (see figure 1).
Let us denote the set of critical values with Λ,

Λ =
{
w = ei2θ − 2e−iθ : θ ∈ [0, 2π]

}
.

Proposition 1. The set Λ is invariant under F, F (Λ) = Λ.

Proof. Let ei2θ − 2e−iθ ∈ Λ.
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FIG. 1.

F
(
ei2θ − 2e−iθ

)
= ei4θ − 4eiθ + 4e−i2θ − 2e−i2θ + 4eiθ

= ei4θ + 2e−i2θ.

Taking γ = 2θ + π, we have

F
(
ei2θ − 2e−iθ

)
= ei2(γ−π) + 2e−i(γ−π)

= ei2γ − 2e−iγ .

Thus, F (Λ) = Λ.

Note that while θ goes from zero to 2π, z = ei2θ − 2e−iθ goes around Λ
once and F (z) goes around Λ twice.

For each r in the real line, r ∈ R, consider the curve

Λr =
{
z = reiθ + e−i2θ : θ ∈ [0, 2π]

}
.

Clearly for each r ∈ R, Λ−r = Λr. Also Λ = Λ2 and S1 = Λ0. Let
Γ = {Λr |r ∈ R}. We say that the family of curves Γ is invariant under F
provided that for each s ∈ R, there exists t ∈ R such that F (Λs) = Λt.

Proposition 2. The family Γ is invariant under F.

Proof. Let s ∈ R, and consider Λs ∈ Γ. Take θ ∈ [0, 2π] . Then

F
(
seiθ + e−i2θ

)
= s2ei2θ + 2se−iθ + e−i4θ − 2se−iθ − 2ei2θ

=
(
s2 − 2

)
ei2θ + e−i4θ.

Taking γ = 2θ and t = s2 − 2, we have

F
(
seiθ + e−i2θ

)
= teiγ + e−i2γ .
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Thus, F (Λs) = Λt.

We present below some elements Λr of the family Γ, corresponding to
r = 3, 2, 1.5, 1, 0.5 and 0 (see figures 2, 3 and 4).

FIG. 2.

FIG. 3.

FIG. 4.

Note that all points of the plane belong to Λs for some s.
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Since F (Λs) = Λs2−2, if z ∈ Λs with −2 ≤ s ≤ 2, then F (z) lies in
Λt with −2 ≤ t ≤ 2. Also, by proposition 2, if z ∈ Λs with s /∈ [−2, 2],
F (z) ∈ Λt with t = s2 − 2 > |s|. Writing φ(s) = s2 − 2, we have that
Fn(z) ∈ Λφn(s) and |Fn(z)| ≥ φn(s)− 1. Therefore limn→∞ |Fn (z)| = ∞.
It follows that given a point z ∈ C, o (z, F ) is bounded if and only if there
exists s ∈ [−2, 2] with z ∈ Λs.

It is not difficult to see that Λs is a simple closed curve whenever s ≥ 2.
Also, if 2 ≤ s < t, then Λs ∩ Λt = φ.

Let C be the bounded component of C \ Λ. Note that C ∪ Λ = cl (C) ,
and z ∈ cl (C) if and only if z ∈ Λs for some s ∈ [−2, 2] . It follows that
cl (C) = K, the set of all points z ∈ C with bounded orbit under F .

4. THE QUADRATIC MAPPING

Let ϕ : C → C, given by ϕ (z) = z2, and let D be the unit disk. In this
section we prove that ϕ

∣∣C\int(D) and F
∣∣C\int(K) are conjugate.

First note that the interval [3,∞) ⊂ R is invariant under F an that the
interval [1,∞) ⊂ R is invariant under ϕ. Also, F

∣∣
[3,∞) : [3,∞) → [3,∞)

is a homeomorphism, F
∣∣
[3,∞) (x) = x2 − 2x, F

∣∣
[3,∞) (3) = 3, and given

x > 3,

lim
n→∞

(
F

∣∣
[3,∞)

)n (x) = ∞ and lim
n→∞

(
F

∣∣
[3,∞)

)−n (x) = 3.

The following lemma shows that the behaviour of F
∣∣
[3,∞) in [3,∞) is,

essentially, the same as the behaviour of ϕ restricted to [1,∞). The proof
follows a standard procedure (see page 55 of [6]), so we leave it to the
reader.

Lemma 3. There exists a homeomorphism h : [1,∞) → [3,∞) such that
the following diagram commutes:

[1,∞) ϕ
∣∣
[1,∞)−−−−−→

[1,∞)

h ↓ ↓ h
[3,∞) F

∣∣
[3,∞)−−−−−→

[3,∞)
.

That is, for each x ∈ [1,∞) , h
(
x2

)
= (h (x))2 − 2h (x) .

With h at hand we define a mapping

H : C \ int (D) → C \ int (K)

in this way: Take z = ρeiθ, ρ ≥ 1, θ ∈ [0, 2π] , let
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H
(
ρeiθ

)
= (h (ρ)− 1) eiθ + e−i2θ.

Another way to represent H is the following:

H (z) = (h (|z|)− 1)
z

|z| +
z

z
.

Notice that H maps circles onto members of family Γ. In particular,
H

(
S1

)
= Λ. Since h (ρ)− 1 ≥ 2, it follows that the image of the circle ρeiθ

under H (i.e., the curve Λh(ρ)−1) is a simple closed curve, hence H is one
to one. It is not difficult to see that H is continuous and onto as well.

Proposition 4. The following diagram commutes:

C \ int (D) ϕ−→ C \ int (D)

H ↓ ↓ H
C \ int (K) F−→ C \ int (K)

.

Proof. Let z be a point in C such that |z| ≥ 1.

H (ϕ (z)) = H
(
z2

)
=

(
h

(∣∣z2
∣∣)− 1

) z2

|z2| +
z2

z2

=
(
h

(
|z|2

)
− 1

) z2

|z|2 +
(

z

z

)2

=
(
(h (|z|))2 − 2h (|z|)− 1

) z2

|z|2 +
(

z

z

)2

.

On the other hand we have:

F (H (z)) = F

�
(h (|z|)− 1)

z

|z| +
z

z

�
=

(h (|z|)− 1)2
z2

|z|2 + 2 (h (|z|)− 1)
z

|z|
z

z
+

�
z

z

�2

− 2

�
(h (|z|)− 1)

z

|z| +
z

z

�
=

(h (|z|)− 1)2
z2

|z|2 +

�
z

z

�2

− 2
z

z
=�

(h (|z|))2 − 2h (|z|) + 1
� z2

|z|2 +

�
z

z

�2

− 2
z

z
=�

(h (|z|))2 − 2h (|z|)− 1
� z2

|z|2 +

�
z

z

�2

.
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Therefore ϕ in C \ int (D) is conjugate with F in C \ int (K). Also, note
that ϕ in S1 is conjugate with F in Λ.

It remains only to study the dynamics of F in K.

5. A PIECEWISE LINEAR MAPPING

In this section we produce an auxiliary piecewise linear mapping defined
in an equilateral triangle ∆ ⊂ R2, G : ∆ → ∆. We present some dynamical
properties of G. Then, in the next section, we show that G in ∆ and F in
K are conjugate.

Let

∆ =
{

(x, y) : x ∈ [−1, 2] ,
√

3
3

(x− 2) ≤ y ≤
√

3
3

(2− x)
}

.

We subdivide ∆ in the following four equilateral triangles (see figure 5).

FIG. 5.

∆0 =
{

(x, y) : x ∈
[
−1,

1
2

]
,−
√

3
3

(x + 1) ≤ y ≤
√

3
3

(x + 1)
}

,

∆1 =
{

(x, y) : x ∈
[
1
2
, 2

]
,

√
3

3
(x− 2) ≤ y ≤

√
3

3
(2− x)

}
,

∆2 =
{

(x, y) : x ∈
[
−1,

1
2

]
,

√
3

3
(x + 1) ≤ y ≤

√
3

3
(2− x)

}
,

∆3 =
{

(x, y) : x ∈
[
−1,

1
2

]
,

√
3

3
(x− 2) ≤ y ≤ −

√
3

3
(x + 1)

}
.
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Before we give the definition of G in detail let us describe its action on
∆. First, for i = 1, 2, 3, fold the triangle ∆i onto ∆0 leaving the segment
∆i ∩∆0 fixed. Denote by G1 this piecewise folding of the three triangles
∆i. Second, reflect ∆0 = G1 (∆i) about the y−axis. Denote this reflection
by G2. Finally, linearly expand the reflected triangle by a factor of 2. The
mapping G : ∆ → ∆ is then given by G = G3 ◦ G2 ◦ G1, where G3 is the
linear expansion just mentioned (see figure 6).

Take (x, y) ∈ ∆. Let G : ∆ → ∆ be the piecewise linear mapping defined
by

G (x, y) =





(−2x, 2y) if (x, y) ∈ ∆0

(2x− 2, 2y) if (x, y) ∈ ∆1(
1− x−√3y,

√
3 +

√
3x− y

)
if (x, y) ∈ ∆2(

1− x +
√

3y,
√

3 +
√

3x + y
)

if (x, y) ∈ ∆3

.

FIG. 6.

Remark 5. It is a fact that the above “folding”, “reflection” and “ex-
pansion” produce the exact same result when performed in any order what-
soever, so there are other ways to describe the action of the mapping G.

Proposition 6. The set Per (G) is dense in ∆.

Proof. In ∆ we have four equilateral triangles, ∆0, ∆1, ∆2 and ∆3,
such that ∆ = ∪3

i=0∆i, and G (∆i) = ∆, i = 0, 1, 2, 3. For each i fixed
there exist four equilateral triangles, ∆0,i, ∆1,i, ∆2,i and ∆3,i, such that
∆j,i ⊂ ∆j and G (∆j,i) = ∆i. Now, for each pair j, i fixed there exist four
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equilateral triangles, ∆0,j,i, ∆1,j,i, ∆2,j,i and ∆3,j,i, such that ∆k,j,i ⊂ ∆k

and G (∆k,j,i) = ∆j,i and G2 (∆k,j,i) = ∆i. This procedure leads us to the
following: Given n ∈ N consider the set

Ψn = {w = (w1, w2, . . . , wn) : wi ∈ {0, 1, 2, 3}} .

For each w = (w1, w2, . . . , wn) in Ψn, there exists an equilateral triangle
in ∆, namely ∆w = ∆w1,w2,...,wn

⊂ ∆w1,w2,...,wn−1 , such that

Gj (∆w1,w2,...,wn
) = ∆wj+1,...,wn

, 1 ≤ j ≤ n− 1,

and Gn (∆w) = ∆.
Notice that each Gj

∣∣
∆w : ∆w → ∆wj+1,...,wn , 1 ≤ j ≤ n, is a homeomor-

phism that enlarges the distance between any two points by a factor of 2j ,
the length of the sides of the triangle ∆w is 1

2n

(
2
√

3
)
, the area of ∆w is

a
4n where a is the area of ∆, and ∆ = ∪w∈Ψn∆w.

Given (x, y) ∈ ∆ and ε > 0, there exist n ∈ N and w ∈ Ψn such that
∆w ⊂ Bε (x, y) ∩∆. Since Gn : ∆w → ∆ is a homeomorphism, there is a
point (u, v) ∈ ∆w with Gn (u, v) = (u, v) .

Remark 7. Note that the boundary of ∆ is invariant under G, G (∂∆) =
∂∆. Take (x, y) ∈ Per (G) ∩ int (∆) of period n. Then,

o ((x, y) , G) ⊂ int (∆) \G−1 (∂∆) .

Since in int (∆) \ G−1 (∂∆) the mapping G is a linear expansion by a
factor of 2, then G is differentiable in each point of o ((x, y) , G) and the
eigenvalues of DGn

(x,y), λ1 and λ2, satisfy |λ1| = 2n = |λ2| . Therefore each
periodic point of G that lies in int (∆) is expansive, also commonly known
as a repellor.

In fact, if (x, y) ∈ Per (G) ∩ int (∆) , then, for every n ∈ N, (x, y) /∈
G−n (∂∆) ; that is,

(x, y) ∈ ∆ \G−n (∂∆) = Un.

Note that Un is open and dense in ∆ for every n ∈ N and that the whole
orbit of the periodic point (x, y) lies in the set

U∞ = ∩∞n=1Un,

which, according to Baire’s theorem, is dense in ∆. Also, U∞ is invariant
under G, G (U∞) = U∞.
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Proposition 8. G is transitive in ∆.

Proof. Let U and W be two nonempty open subsets of ∆. Then there
exist n ∈ N and w ∈ Ψn, as in proposition 6, such that ∆w ⊂ U. It follows
that Gn (U) = ∆ and, therefore, there exists (u, v) ∈ U with Gn (u, v) ∈
W.

Let Σ be the following set:

Σ =
{
t̂ = (t1, t2, . . .) : ti ∈ {0, 1, 2, 3} , i ∈ N}

.

Given t̂ = (t1, t2, . . .) and ŝ = (s1, s2, . . .) in Σ define

d
(
t̂, ŝ

)
= Σ∞i=1

|ti − si|
2i

.

It is known that (Σ, d) is a compact metric space. Let σ : Σ → Σ be the
shift mapping, σ (t1, t2, . . .) = (t2, t3, . . .). The dynamics of mappings like
σ are well known (see [4] and [12]). In particular we are interested in the
topological entropy of σ.

Definition 9. Let X be a compact topological space and f : X → X a
continuous map. If α is an open cover of X, let N (α) denote the number
of sets in a finite subcover of α with smallest cardinality. If α and β are
two open covers of X, let α ∨ β = {A ∩B |A ∈ α,B ∈ β } and f−1 (α) ={
f−1 (A) |A ∈ α

}
. For an open cover α and n ∈ N let

∨n−1
i=0 f−i (α) = α ∨ f−1 (α) ∨ f−2 (α) ∨ · · · ∨ f−(n−1) (α)

and

ent (f, α) = lim
n→∞

1
n

log N
(∨n−1

i=0 f−i (α)
)
.

The topological entropy of f is defined by

ent (f) = sup {ent (f, α) |α is an open cover of X } .

The following two propositions are results already known. We refer the
reader to [4] and [12] for detailed proofs. For the second part of proposition
11 see also theorem 17 in [5].

Proposition 10. ent(σ) = log (4) .
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Proposition 11. Let f : X → X and g : Y → Y be two mappings
defined on compact topological spaces. Let h : X → Y be a surjective
mapping. If the following diagram commutes

X f−→ X

h ↓ ↓ h
Y g−→ Y

,

then ent (f) ≥ ent (g) . Furtheremore, if there exists M such that for each
y ∈ Y , #

(
h−1 (y)

) ≤ M , then ent (f) = ent (g).

Let k : Σ → ∆ be the following mapping: For each t̂ = (t1, t2, . . .) ∈ Σ
the set ∩∞n=1∆t1,t2,...,tn

is just one point in ∆. For the sides of the triangle
∆t1,t2,...,tn

have length 1
2n

(
2
√

3
)
. Define

k
(
t̂
)

= ∩∞n=1∆t1,t2,...,tn .

Let (x, y) be a point in ∆. For each k ≥ 1 choose wk ∈ {0, 1, 2, 3} ac-
cording to the following rule: Let wk = min

{
s : Gk−1 (x, y) ∈ ∆s

}
. Hence

(x, y) ∈ ∆w1,w2,...,wn
for each n. Let

t̂ = (w1, w2, . . . , wn, . . .) ∈ Σ.

Let us call t̂ = (w1, w2, . . . , wn, . . .) an itinerary of (x, y). It follows that
k

(
t̂
)

= (x, y) . Thus k : Σ → ∆ is a surjective mapping.

Remark 12. Notice that given (x, y) in ∆ the following three conditions
hold:

1. For each k ∈ N, #
{
s : Gk−1 (x, y) ∈ ∆s

} ≤ 3.

2. If for some k, #
{
s : Gk−1 (x, y) ∈ ∆s

}
= 3, then Gk−1 (x, y) ∈ ∂∆

and for each n > k, #
{
s : Gn−1 (x, y) ∈ ∆s

}
= 1.

3. If for some k,#
{
s : Gk−1 (x, y) ∈ ∆s

}
= 2, then Gk−1(x, y) ∈ G−1(∂∆)

and for each n > k, #
{
s : Gn−1 (x, y) ∈ ∆s

}
= 1 with, at most, one ex-

ception m > k where the cardinality of
{
s : Gm−1 (x, y) ∈ ∆s

}
could be

3.

Thus the cardinality of
{
t̂ ∈ Σ : k

(
t̂
)

= (x, y)
}

is at most 6.

The next proposition contains two other properties of k. The proofs are
not difficult, so we leave them to the reader.
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Proposition 13. The mapping k : Σ → ∆ is continuous. Furtheremore,
the following diagram commutes:

Σ σ−→ Σ
k ↓ ↓ k
∆ G−→ ∆

.

Corollary 14. The entropy of σ is equal to the entropy of G.

Proof. It follows immediately from propositions 11 and 13, and the
remark following proposition 11.

6. G IN ∆ AND F IN K ARE CONJUGATE

The interval [−1, 2] ⊂ R is invariant under G. Let us denote G
∣∣
[−1,2]

with g. Then for each x in [−1, 2] ,

g (x) =
{ −2x if x ∈ [−1, 1

2

]
2x− 2 if x ∈ [

1
2 , 2

] .

The graph of g resembles the graph of a very well known function defined
in the interval [0, 1]: the tent map.

T (x) =
{

2x if x ∈ [
0, 1

2

]
2− 2x if x ∈ [

1
2 , 1

] .

Lemma 15. The functions g and T are conjugate.

Proof. Consider l : [−1, 2] → [0, 1] given by l (x) = 2
3 − 1

3x. It is easy to
see that l ◦ g = T ◦ l.

The interval [−1, 3] ⊂ R is invariant under F. Let us denote F
∣∣
[−1,3] with

f. That is, f (x) = x2 − 2x. Let L : [0, 1] → [0, 1] be the logistic function,
L (x) = 4x (1− x) .

Lemma 16. The functions L and f are conjugate.

Proof. Consider k : [0, 1] → [−1, 3] given by k (x) = 3 − 4x. It readily
follows that k ◦ L = f ◦ k.

Remark 17. It is known that T and L are conjugated via the homeo-
morphism

j (x) = sin2
(πx

2

)
.
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That is, the diagram

[0, 1] T−→ [0, 1]
j ↓ ↓ j

[0, 1] L−→ [0, 1]

commutes.

The homeomorphisms l, k and j allows us to see that g and f are con-
jugate. That is, restricted to the intervals [−1, 2] and [−1, 3] our piecewise
linear model G and F have essentialy equal behaviour.

Proposition 18. Let h : [−1, 2] → [−1, 3] given by h = k ◦ j ◦ l. That
is, for each x ∈ [−1, 2] ,

h (x) = −4 sin2

(
π

2

(
2
3
− 1

3
x

))
+ 3.

Then for each x ∈ [−1, 2], h ◦ g (x) = f ◦ h (x) .

Proof. It follows from lemmas 15 and 16, and the remark following
lemma 16.

Now we extend h in order to produce a homeomorphism from ∆ onto
K which allows us to show that G and F are conjugate. Consider the
mapping H : ∆ → H (∆) given by

H (x, y) = (h (x)− 1) e
i πy

3
√

3 + e
−i 2πy

3
√

3 .

Note the following:

1. H is continuous, and H (x, 0) = h (x) . Since x ∈ [−1, 2], H (x, 0) ∈
[−1, 3] .

2. For each x ∈ [−1, 2] fixed, (x, y) ∈ ∆ lies in a vertical segment and
H (x, y) lies in a subarc of a member of the family Γ, H (x, y) ∈ Λh(x)−1.

That is, H maps the interval {x}×
[√

3
3 (x− 2) ,

√
3

3 (2− x)
]

onto the subarc

of Λh(x)−1 that goes from the point 2ei 2π
9 (x−2) + e−i2 2π

9 (x−2) to the point
2ei 2π

9 (x−2) + e−i2 2π
9 (x−2). These two points lie in the boundary of K. It

follows that H is one to one and H (∆) = K (see figure 7).
3. Replacing h (x) in the formula of H (x, y) we have that

H (x, y) = 2 cos
(π

3
(2− x)

)
e
i πy

3
√

3 + e
−i 2πy

3
√

3 .

It follows that in each point of int (∆) the mapping H is a local diffeomor-
phism.
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FIG. 7.

Proposition 19. The diagram

∆ G−→ ∆
H ↓ ↓ H
K F−→ K

commutes.

Due to the way G is defined we divide the proof of this proposition in
several steps, according to whether the point (x, y) is in one triangle ∆i

or another. We warn the reader that, although somehow elementary, the
details of this proof can become highly cumbersome. For the sake of clarity
we postpone this proof till the end of this section.

Corollary 20. The entropy of F |K is log (4) .

Proof. It follows immediately from corollary 14 and proposition 19

Corollary 21. Each periodic point of F that lies in int (K) is expan-
sive.

Proof. Let (x, y) ∈ Per (F )∩ int (K) of period n. Since H ◦G = F ◦H,
H ◦Gn ◦H−1 = Fn.

Note that H−1 (x, y) is a periodic point of G of period n. Also

o
(
H−1 (x, y) , G

) ⊂ int (∆) .

We already know that every periodic point of G that lies in int (∆) is
expansive. Since H is a local diffeomorphism in each point of the orbit
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o
(
H−1 (x, y) , G

)
,

the eigenvalues of DFn in (x, y) are the same as the eigenvalues of DGn in
H−1 (x, y) .

Proof (Proof of Proposition 19).

Step 1. Let (x, y) ∈ ∆0. Then

H ◦G (x, y) = H (−2x, 2y)

= (h (−2x)− 1) e
i 2yπ

3
√

3 + e
−i 4yπ

3
√

3 .

On the other hand.

F ◦H (x, y) = F
(
(h (x)− 1) e

i yπ

3
√

3 + e
−i2 yπ

3
√

3

)

=
(
h (x)2 − 2h (x) + 1

)
e
i 2yπ

3
√

3 + 2 (h (x)− 1) e
−i yπ

3
√

3

+ e
−i4 yπ

3
√

3 − 2 (h (x)− 1) e
−i yπ

3
√

3 − 2e
i2 yπ

3
√

3 .

Since x ∈ [−1, 1
2

]
, h (x)2 − 2h (x) = h (−2x) . Hence

F ◦H (x, y) = (h (−2x) + 1) e
i 2yπ

3
√

3 − 2e
i2 yπ

3
√

3 + e
−i4 yπ

3
√

3

= (h (−2x)− 1) e
i 2yπ

3
√

3 + e
−i 4yπ

3
√

3 .

Step 2. Let (x, y) ∈ ∆1. Then

F ◦H (x, y) = F
(
(h (x)− 1) e

i yπ

3
√

3 + e
−i2 yπ

3
√

3

)

=
(
h (x)2 − 2h (x) + 1

)
e
i 2yπ

3
√

3 + e
−i4 yπ

3
√

3 − 2e
i2 yπ

3
√

3 .

Since x ∈ [
1
2 , 2

]
, h (x)2 − 2h (x) = h (2x− 2) . Hence

F ◦H (x, y) = (h (2x− 2)− 1) e
i 2yπ

3
√

3 + e
−i4 yπ

3
√

3

= H ◦G (x, y) .
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Step 3. Let (x, y) ∈ ∆2. Also, let

α =
π

3

(
1 + x− y√

3

)

and

β =
π

3

(
1 + x +

√
3y

)
.

By definition of H and G,

H ◦G (x, y) = 2 cos
(π

3

(
2−

(
1− x−

√
3y

)))
eiα + e−i2α

= 2 cos (β) (cos (α) + i sin (α)) + cos (2α) + i sin (−2α)
= 2 cos (β) cos (α) + cos (2α) + i (2 cos (β) sin (α)− sin (2α))
= cos (β + α) + cos (β − α) + cos (2α)
+ i (sin (β + α) + sin (− (β + α))− sin (2α)) .

Now, noticing that β + α = 2π
3

(
1 + x + y√

3

)
and writing a = 2π

3 (1 + x) ,

b = π
3

(
y√
3

)
, we have

H ◦G (x, y) = cos (a + b) + cos (2b) + cos (a− b)
+ i (sin (a + b) + sin (−2b)− sin (a− b))
= 2 cos (a) cos (b) + cos (2b)
+ i (2 sin (b) cos (a) + sin (−2b))

= 2 cos (a) eib + e−i2b.

On the other hand,

G ◦H (x, y) =
(
(h (x))2 − 2h (x)− 1

)
eib + e−i2b.

Since x ∈ [−1, 1
2

]
, replaicing h (x) by its value and using again an obvious

trigonometrical identity,

(h (x))2 − 2h (x)− 1 = h (−2x)− 1 = 2 cos
(π

3
(2 + 2x)

)
.
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Thus,

G ◦H (x, y) = 2 cos (a) eib + e−i2b.

Step 4. Let (x, y) ∈ ∆3. Let γ be the map given by γ (x, y) = (x,−y) .
It is easy to see that the following diagram commutes:

∆3 G−→ ∆3

γ ↓ ↓ γ
∆2 G−→ ∆2

.

Also, in K, γ ◦F = F ◦ γ, and in ∆, γ ◦H ◦ γ = H. Then given (x, y) ∈ ∆3

we have the following:

H ◦G (x, y) = γ ◦H ◦ γ ◦G (x, y) = γ ◦H ◦G ◦ γ (x, y) .

Since γ (x, y) ∈ ∆2,

H ◦G (x, y) = γ ◦H ◦G ◦ γ (x, y)
= γ ◦ F ◦H ◦ γ (x, y)
= F ◦ γ ◦H ◦ γ (x, y)
= F ◦H (x, y) .
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