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In this article we prove the existence of a countable number of ejection–
collision orbits for the symmetric collinear four body problem with negative
energy. These orbits come out from total collision, pass through a finite se-
quence of binary and/or simultaneous binary collisions and finally end in total
collision. The existence of this family of orbits relies on the existence of the
homothetic orbit joining the pair of hyperbolic equilibrium points lying on the
total collision manifold and on the knowledge of the flow on the total collision
manifold.
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1. INTRODUCTION

We study a two degrees of freedom problem in celestial mechanics, the
collinear symmetric four body problem, which depends on one positive
parameter given in terms of the masses of the particles. In [5], Lacomba
and Simó introduced this problem and obtained valuable information about
the nature of the flow on the total collision manifold M , the flow varies
according the value of the parameter and for values of the parameter in
some open intervals the obtained flow on the total collision manifold turned
out to be very symmetric as we can see in Figure 2. The branches of the
unstable manifold associated to the equilibrium point c restricted to M
act as separatrices and escape through different upper arms of M after
giving the same number of turns around it. This feature and the existence
of the homothetic orbit are fundamental for proving the existence of the
desired family of orbits. For values of the parameter outside the considered
intervals the flow may not be symmetric and we can not use the developed
methods to assure the existence of the family of orbits.
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FIG. 1. Symmetric Collinear Four–Body Configuration.

2. STATEMENT OF THE PROBLEM

Consider four particles forming a collinear configuration, placed sym-
metrically by pairs, respect to the center of mass, which is the origin, see
Figure 1. Assume that each one of the particles of the inner pair have mass
1 and each particle of the exterior pair have mass α. Initial conditions for
the set of masses are such that the symmetric configuration is preserved as
the full system evolves under newtonian attraction.

Let m1 = m2 = 1, m3 = m4 = α be the masses of the particles and
x,−x, y/

√
α,−y/

√
α be their coordinates.

The configuration space is given by the subset of the first quadrant de-
fined by

Q = {(x, y) ∈ R2 | x, y > 0 and
√

αx < y}.
Observe that the set of points q = (0, y) with y 6= 0 correspond to binary

collisions of the inner pair of particles; while the set of points q = (x, y)
with y =

√
αx 6= 0 correspond to symmetric binary collisions and the point

q = (x, y) = (0, 0) corresponds to total collision of the four particles.
We write down the Lagrangian of the system

L = T + U,

where T (x, y) = ẋ2 + ẏ2

α is the kinetic energy and U(x, y) = 1
2x + α5/2

2y +
2α3/2

y−√αx
+ 2α3/2

y+
√

αx
= 1

2x + α5/2

2y + 4α3/2y
y2−αx2 is the potential energy .

The generalized momenta are given by

px =
∂L

∂ẋ
= 2ẋ, py =

∂L

∂ẏ
=

2ẏ

α
, (1)

where ˙= d
dt .

By denoting p = (px py)t, q = (x y)t y q̇ = (ẋ ẏ)t, the Hamiltonian
is

H = ptq̇− L(q, q̇)

=
1
4
(p2

x + αp2
y)− 1

2x
− α5/2

2y
− 2α3/2

y −√αx
− 2α3/2

y +
√

αx
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=
1
4
(p2

x + αp2
y)− U(x, y),

and the equations of motion are

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
, (2)

which are written as

ẋ = px

2 , ṗx = − 1
2x2 + 8α5/2xy

(y2−αx2)2 ,

ẏ = α
py

2 , ṗy = −α5/2

2y2 − 4α3/2 y2+αx2

(y2−αx2)2 .
(3)

Next, by using the blow-up technique introduced by McGehee [4], we can
describe the total collision manifold and the flow on this invariant mani-
fold. Using this information of the flow on the total collision manifold it is
possible to give a description of the flow near the total collision manifold.

Let I = qtq be the moment of inertia. We define the blow-up of the
origin by the following change of coordinates,

r = I
1
2 , s = r−1q

where r measures the size of the system and s is the configuration or shape
of the system. S = {q ∈ Q | r = 1} is a unit sphere in Q. Coordinates (r,q)
represent a polar-like system of coordinates for the configuration space. It
is clear that sts = 1.

If u and v are the (rescaled) tangential and radial components of the
momentum given by

u =
√

rp− (pts)s, v =
√

rpts

with the time reparametrization

dt

dτ
= r

3
2 ,

the equations of motion become

ṙ = rv,

v̇ = utu +
v2

2
+ U(s),

ṡ = u,

u̇ = −1
2
vu− (utu)s + Grad U(s),
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and the energy relation H = h is rewritten as

1
2
(utu + v2) = U(s) + rh.

As we have a two degree of freedom problem, we use canonical polar
coordinates to work with: θ is the usual angular coordinate and the com-
ponent of the rescaled velocity in the angular direction, which we shall
denote by u, through the change

s = (cos θ sin θ)t, u = u(cos θ sin θ)t.

In coordinates (r, v, θ, u, τ), the equations of motion are expressed by

r′ = rv,

v′ = u2 +
v2

2
− U(θ), (4)

θ′ = u,

u′ = −1
2
vu +

dU(θ)
dθ

,

where ′ = d
dτ . In the same way, the energy relation is transformed into

1
2
(u2 + v2) = U(θ) + rh,

where U(θ) = 1
2 cos θ + α5/2

2 sin θ + 4α3/2 sin θ
sin2 θ−α cos2 θ

, θ ∈ (θα, π/2).
Our equations still have singularities when the particles of the inner pair

collide or when we have symmetric simultaneous binary collisions, that is,
when θ = π/2 or θ = θα, where tan θα =

√
α.

In order to simultaneously regularize these singularities, consider the
function W (θ) = U(θ) cos θ(sin θ −√α cos θ), a new variable

w =
cos θ(sin θ −√α cos θ)

2
√

W (θ)
u,

with the time rescaling

dτ

ds
=

cos θ(sin θ −√α cos θ)
2
√

W (θ)
.

The equations of motion and the energy relation become
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dr

ds
= rv

cos θ(sin θ −√α cos θ)
2
√

W (θ)
,

dv

ds
=

√
W (θ)
2

{(2rh− 1
2
v2)

cos θ(sin θ −√α cos θ)√
W (θ)

+ 1},

dθ

ds
= w,

dw

ds
= (cos θ(sin θ −√α cos θ)− w2)

dW
dθ

2W (θ)
− vw cos θ(sin θ −√α cos θ)

2
√

2W (θ)

+
(cos(2θ) +

√
α sin(2θ))

2
{3 +

2rh− v2

W (θ)
cos θ(sin θ −√α cos θ)}

and

w2 =
cos2 θ(sin θ −√α cos θ)2

4W (θ)
(2rh− v2) +

cos θ(sin θ −√α cos θ)
2

,

respectively. Taking r = 0 in last equation, this can be rewritten as

w2 =
cos θ(sin θ −√α cos θ)

2
− v2 cos2 θ(sin θ −√α cos θ)2

4W (θ)
. (5)

In this way we have extended the vector field to the components deter-
mined by binary and simultaneous binary collisions. We define the total
collision manifold as the set

M = {(r, v, θ, w) | r = 0, equation (5) holds, and θα ≤ θ ≤ π/2}.

3. DESCRIPTION OF THE FLOW ON THE TOTAL
COLLISION MANIFOLD

Next we give some features of the flow on the total collision manifold
obtained by using the blow up technique.

For a value of the parameter α, the equilibrium points are (r = 0, v =

±
√

U(θ̃α), θ = θ̃α, w = 0), which lie on the total collision manifold M .
All equilibrium points are hyperbolic. Also, the flow on the total collision
manifold is almost gradient with respect to v. In Figure 2 we show the flow
on the total collision manifold for different values of α as obtained in [5].
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FIG. 2. Flow on the total collision manifold, (a) 0 < α < α1, (b) α2 < α < α3 and
(c) α3 < α < α4.

TABLE 1.

Dimensions of invariant manifolds for the equilibrium points in M

Invariant Manifolds

W
u
(d) W

s
(d) W

u
(c) W

s
(c)

Dimension 2 1 1 2

W u(d) W s(d) W u(c) W s(c)

Dimension 1 1 1 1

For each value of α there are two hyperbolic equilibrium points, one of
them corresponds to a positive value of v, while the other corresponds to
a negative value of v.

We denote by W
s,u

the stable and unstable manifolds associated to an
equilibrium point, for a negative value of energy h. W s,u = W

s,u ∩M will
denote the intersection of the stable and unstable manifolds of equilibrium
points with the total collision manifold.

Dimensions of the invariant manifolds associated to each hyperbolic point
c and d on M are given in Table 1. Notice that all the Wu,s are one
dimensional, so they act as separatrices of the flow on M .

We are interested in values of the parameter contained in some open
intervals for which the flow on the total collision manifold is symmetric
as in Figure 2. We exclude other values of the parameter as those given
for bifurcation values and some open intervals, since in these cases there
are two situations where we can not apply the ideas we develop in the
symmetric cases: (i) one or both of the separatrices Wu(c) coincide with one
or both separatrices W s(d) or (ii) both separatrices Wu(c) escape through
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the same upper arm of M . In [5] page 61, the authors obtained several
bifurcation values for α, (αk, αi < αi+1), and in consequence, intervals
defined by these parameter values. The intervals we are interested in are
intervals like (0, α1), (α2, α3) and (α3, α4). For values in these intervals the
corresponding flow is as given in Figure 2, rather symmetric.

4. EXISTENCE OF THE HOMOTHETIC ORBIT

For negative values of the energy h we shall prove the existence of a
homothetic orbit contained in W

s
(c) ∩ W

u
(d), located outside the total

collision manifold and joining the equilibrium points c and d. This ho-
mothetic orbit will be of great importance in order to give the desired
description of the family of orbits which come out from total collision, pass
through a sequence of binary collisions of the particles of the inner pair
and/or simultaneous binary collisions, and finally end in total collision.

Recall that homothetic solutions are characterized by the fact that θ ≡
θ̃α, where U ′(θ̃α) = 0. By using system (4) of equations, we can obtain
a parametric representation of the homothetic orbit. When θ ≡ θ̃α, then
u = 0 and, in consequence we have equations

dr

dτ
= rv,

dv

dτ
=

v2

2
− U(θ̃α),

so,

dv

2U(θ̃α)− v2
=

dτ

−2
,

taking vα =
√

2U(θ̃α), we get

tanh−1(
v

vα
) = −τvα

2
,

that is

v(τ) = −vα tanh(τvα/2).

Using the expression for v(τ), we obtain

r(τ) = − U(θ̃α)
h cosh2(τvα/2)

.

Also, we can give a geometrical description of the homothetic orbits. In
system (4), by using the energy relation 1

2 (u2+v2) = U(θ)+rh, with u = 0,
we obtain
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FIG. 3. Homothetic orbits in the plane u = 0, θ = θ̃α.

dr

dτ
= rv,

dv

dτ
= rh.

By solving this system of differential equations, we get

v2 = 2rh + m.

These solutions can be seen as restrictions of the energy relation to the
plane u = 0, θ = θ̃α; that is v2

2 = rh + U(θ̃α), so we have m = 2U(θ̃α).
For each negative value of h, we have an orbit coming out from one of the
equilibrium points and ending at the other equilibrium point, as seen in
Figure 3.

Definition 1. We say that an orbit having c as ω-limit is an orbit
which ends in total collision or a total collision orbit and an orbit having
d as α-limit is an ejection orbit or an orbit coming out from total collision.

In this way, all orbits contained in W
u
(d) are ejection orbits and those

contained in W
s
(c) are total collision orbits. Orbits contained in W

s
(c) ∩

W
u
(d) will be called ejection-collision orbits.

5. POINCARÉ-SECTION AND BASIC RESULTS

We proceed to construct a Poincaré-section for the flow in order to an-
alyze how an orbit can pass through binary collision of the inner pair or
through a simultaneous binary collision. It is important to have in mind
that coordinate w must be equal to zero.

We define the set
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FIG. 4. Section of binary and simultaneous binary collisions

Γ = {(r, v, θ, w) | r ≥ 0, θ = θα, π/2, w = 0},
which is the union of two half-planes,

ΓL = {(r, v, θ, w) | r ≥ 0, θ = θα, w = 0},

and

ΓR = {(r, v, θ, w) | r ≥ 0, θ = π/2, w = 0},
that are parametrized by coordinates (r, v) ∈ [0,∞)×R. See Figure 4.

Observe that lines l1 and l2 in Figure 4 correspond to lines r = 0 con-
tained in the half-planes ΓL and ΓR, respectively.

Now, we obtain the first intersection in positive time of W
u
(d) with Γ

following ideas contained in [2] and [3].

Proposition 2. The first intersection in positive time of W
u
(d) and

Γ contains two arcs σR,L, contained in ΓR,L and with extremes on the
boundaries of ΓR,L (lines l1 and l2 respectively).

Proof. Let dR∗ be the first point in positive time in one of the branches
of the one-dimensional invariant manifold Wu(d) which is contained in ΓR.
In the same way, define dL∗ ∈ ΓL as the corresponding point contained in
the other branch of Wu(d). On the other hand, let cR∗ and cL∗ be the
first points of the unstable branches of Wu(c) contained in ΓR and ΓL after
ejection of the four particles.

Consider an arc σ of initial conditions near d, contained in W
u
(d), home-

omorphic to a semicircle parametrized by angle φ ∈ [0, π], in such a way
that φ = 0 corresponds to a point p of the unstable branch of Wu(d) which
contains point dR∗; φ = π

2 corresponds to a point q in the homothetic orbit,
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FIG. 5. First intersection in positive time of W
u
(d) with ΓR.

and φ = π corresponds to a point t in the branch of the unstable branch
of Wu(d) containing dL∗.

In order to find the first intersection point of W
u
(d), in positive time,

with Γ, we follow the semicircle σ of initial conditions under the flow. First,
we consider the segment of the semicircle parametrized by φ ∈ [0, π/2], so,
point p goes, under the flow, to point dR∗ ∈ ΓR and points in this subarc,
near p go to points in ΓR, near dR∗; on the other hand, points near q go
near c and, then, continuing near the unstable branch of c, pass close to
cR∗. The subarc of σ, parametrized by [0, π/2], being a continuous arc, its
image under the flow must be a continuous arc which we denote by σR, and
is contained in ΓR. Its extremes are denoted by dR∗ and cR∗, as shown in
Figure 5. In an analogous way, the image of the subarc parametrized by
[π/2, π] is also a continuous arc σL, contained in ΓL, with extremes dL∗
and cL∗ in line {r = 0} ∩ ΓL.

Let R∗d and L∗d be those points on the stable branches of W s(d), con-
tained in ΓR and ΓL that go to d, but such that no other point in their
positive time orbits are contained in ΓR or ΓL. In the same way we define
points R∗c ∈ ΓR and L∗c ∈ ΓL as those points in W s(c), so that their
positive time orbits do not intersect ΓR nor ΓL.

Proposition 3. The last intersection, in positive time of W
s
(c) with Γ

is given by two arcs γR,L, contained in ΓR,L, whose extremes (of the arcs)
given by R∗d, R∗c and L∗d, L∗c are contained on the boundary of ΓR,L

(lines l1 and l2, respectively).

Proof. Using the symmetry given by the reversibility of the original
Hamiltonian system for the symmetric collinear four body problem and
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FIG. 6. Point of intersection corresponding to an ejection-collision orbit.

which, when restricted to Γ, is represented by

(r, v, t) −→ (r,−v,−t),

we obtain that, the set of initial conditions in W
s
(c), whose positive orbits

do not intersect Γ is given by the reflection of σR,L in Γ, with respect to the
half lines v = 0, obtaining arcs γR,L ⊂ ΓR,L, which have extremes given by
points R∗d, R∗c and L∗d, L∗c, respectively, as shown in Figure 6.

Denote arc σR by ER∗, this notation means that all points on this arc
come out from total collision and then intersect ΓR. Their trajectories eject
away from total collapse and then reach a right binary collision, i.e. of the
inner pair. In a similar way, we shall denote arc σL by EL∗, obtaining
trajectories that eject from total collision and then they pass through a left
or simultaneous binary collision. Also, arc γR, obtained in last proposi-
tion, will be denoted by R∗C, since orbits through these points intersect
ΓR transversally, passing through a right binary collision and finally reach-
ing total collision, without having another binary or simultaneous binary
collision. Analogously, arc γL shall be denoted by L∗C. In general, if an
orbit intersects ΓR or ΓL, we will say that at the time the orbit intersects
these sets the orbit passes through a right–binary collision (right–BC) or a
left–simultaneous binary collision (left–SBC).

In this way, it can be shown that the pair σR, γR ⊂ ΓR intersect, at
least in one point, as we see in Figure 6, contained in W

u
(d) ∩ W

s
(c).

To these points correspond ejection-collision orbits having a right binary
collision (right–BC). A similar argument shows that to points contained in
the intersection σL ∩ γL correspond trajectories having a left simultaneous
binary collision (left–SBC).
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To each one of these ejection-collision orbits having a right–BC (left–
SBC) we associate a sequence of symbols of the form ERC (ELC), which
means that these orbits eject from total collision, pass through a right–BC
(left–SBC) and then go directly to total collision without having another
binary or simultaneous binary collision.

Next, we characterize the pullbacks of W
s
(c)∩Γ under the Poincaré map

P : Γ −→ Γ

also known as the first return map which is defined as follows. Let p a point
in Γ so that its positive orbit φ(t, p) intersects Γ transversally at time T
and φ(t, p), for t ∈ (0, T ), does not intersect Γ; for points in Γ near p their
trajectories return to Γ in time close to T . The map associates to points x
in Γ near p their points of first return to Γ. To be more precise, for x in Γ
close to p

P (x) = φ(τ(x), x)

where τ(x) is the time of first return of the orbit through point x to Γ.
The following results will be of fundamental importance for characteriz-

ing all orbits passing through binary or simultaneous binary collisions.

Proposition 4.

1.If σ is a subsegment in W
s
(c) ∩ Γ, having points A and B on {r = 0}

as extremes, in such a way that it does not intersect W
u
(d), then P−1(σ)

is an arc contained in Γ with extreme points P−1(A) and P−1(B) on M .
2.If σ is a subsegment in W

s
(c) ∩ Γ, with ends A and B on {r = 0}

such that it intersects W
u
(d), then the pullback of subsegment σ̃ on σ that

lies between point A and the first intersection point of σ with W
u
(d) is a

segment contained in Γ, that has as extreme points P−1(A) and R∗d or
L∗d depending on which half-plane of Γ lies point P−1(A).

3.If γ is an arc in W
s
(c) ∩ Γ that contains a subarc γ̃, with ends on

W
u
(d) and such that no other point on this subarc lies on W

u
(d), then the

pullback of γ̃ is a loop on Γ with extremes on (i) L∗d if segment γ̃ pulls
back to ΓR, or (ii) R∗d if segment γ̃ pulls back to ΓL.

Proof.

1. Consider arc σ with points A and B on {r = 0} as extremes, and
denote the pullbacks of these extremes by P−1(A) and P−1(B). By con-
tinuity, points contained in σ near A, under the flow, go to points near
P−1(A). There is a problem if there exists a point on σ ∩W

u
(d), because

in this case, this point would correspond to a ejection point, but this is
not the case by hypothesis. So, P−1(σ) is a subarc contained in Γ with
extreme points given by P−1(A) y P−1(B). See Figure 7.
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FIG. 7. Pullback of an arc segment in Proposition 4, case 1.
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FIG. 8. Pullback of an arc segment in Proposition 4, case 3.

2. Let σ be a segment in W
s
(c) ∩ Γ with extreme points A and B on

{r = 0}, such that it intersects W
u
(d) and let σ̃ ⊂ σ be an arc with A

as one extreme and the other extreme given by the first intersection of σ
with W

u
(d). Point A pulls back to P−1(A) and points on σ̃ near A, pull

back to points near P−1(A); we continue pulling back points in σ̃ until we
are near the intersection of σ̃ with Wu(d); under the flow in negative time,
they must be close enough to the equilibrium point d, so they must pass
through Γ near L∗d or R∗d. Therefore, P−1(σ̃) in an arc contained in Γ
joining points P−1(A) and R∗d or L∗d, depending on which half plane of
Γ the point P−1(A) lies.

3. By continuity, the pullback of the whole arc γ̃, must be completely
contained in one of the half planes ΓR or ΓL. By a similar argument to
the one given in last paragraph, following under the flow in negative time
points on γ̃ near W

u
(d), we get close to d, so their orbits intersect Γ in
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FIG. 9. Pullback of an arc segment in Corollary 5, case (2).

points near the stable branches of d contained in M ; that is, must pass
close to R∗d or L∗d. But the pullback of γ̃ is entirely contained in the
same half plane, so the pullback is a loop with extremes in R∗d or L∗d as
we can see in Figure 8.

Corollary 5. Let ζ be an arc contained in W
s
(c)∩ΓR with point R∗d

and arc ER∗ as extremes, so that no other point in the arc is contained in
ER∗. Then,

1.For 0 < α < α1, P−2(ζ) is an arc in ΓR with extremes P−1(L∗d) and
P−2(R∗d) which intersects ER∗, but P−1(ζ) does not intersect EL∗.

2.For α2 < α < α3, P−3(ζ) is an arc in ΓL with extremes P−2(L∗d) and
P−3(R∗d) which intersects EL∗, but P−1(ζ) and P−2(ζ) do not intersect
EL∗ or ER∗, respectively.

3.For α3 < α, P−4(ζ) is an arc in ΓR with extremes P−3(L∗d) and
P−4(R∗d) which intersects ER∗, but P−j(ζ), j = 1, 2, 3 do not intersect
ER∗ nor EL∗.

Similar results hold for an arc ζ in ΓL with one extreme at L∗d and the
other extreme point on EL∗, such that no other point in the arc is contained
in EL∗

Proof. Since all proofs are similar we will only provide the proof for
case 2.

Consider an arc ζ contained in W
s
(c)∩ΓR with point R∗d and arc ER∗

as extremes, so that no other point in the arc is contained in ER∗. By the
previous proposition, pullback P−1(ζ) must be a continuous arc contained
in ΓL, with extremes P−1(R∗d) and L∗d, which does not intersect EL∗.
Pulling back this arc, we obtain a new arc P−1(P−1(ζ)) = P−2(ζ) in ΓR
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with extremes P−2(R∗d) and P−1(L∗d) that does not intersect ER∗; by
pulling back arc P−2(ζ), we obtain arc P−3(ζ) in ΓL, with ends P−3(R∗d)
and P−2(L∗d). Since EL∗ is a continuous arc with extremes cL∗ and dL∗,
and point cL∗ lies between points P−3(R∗d) and P−2(L∗d), then P−3(ζ)
must intersect EL∗. See Figure 9.

In order to describe an ejection-collision orbit which passes through a fi-
nite sequence of binary or simultaneous binary collisions, we use a sequence
of symbols of the form ERLRC, that we read as a trajectory that ejects
from total collision has a right–BC, a left–SBC, then another right–BC and
finally goes directly to total collision.

6. MAIN RESULTS

To obtain a description of the orbits to which we associate a sequence of
symbols as given in last paragraph, we define some segments contained in
W

s
(c) ∩ Γ, which we will call prototype segments.

Recall that arcs ER∗ and EL∗ divide half planes ΓR and ΓL respectively,
in two regions, one being bounded, while the other is unbounded. Let us
denote by ΓR

1 and ΓL
1 the bounded components of ΓR and ΓL determined

by ER∗ and EL∗, respectively; and let ΓR
2 and ΓL

2 be the unbounded
components.

Definition 6. We say that a point of the form P−j(R∗d),P−j(L∗d),
P−j(R∗c),or P−j(L∗c) with j ≥ 0 is an exterior point if it belongs to the
complement of the closure of ΓR

1 ∪ ΓL
1 .

Let

J = max{n ≥ 1 | P−n(R∗d) ∈ ΓR
1 ∪ ΓL

1 }
and

K = max{n ≥ 1 | P−n(L∗d) ∈ ΓR
1 ∪ ΓL

1 }
Observe that J = K; this follows from the symmetry of the flow on the
total collision manifold.

Definition 7.

1. A segment contained in W
s
(c) ∩ ΓR having extremes on R∗d and

ER∗ so that no other point lies on ER∗, is said to belong to the class of
prototype–1 segments.

2. A segment contained in W
s
(c) ∩ ΓR one of whose extremes is an ex-

terior point and the other one lies on ER∗ so that no intermediate point is
contained on ER∗, is said to belong to the class of prototype–2 segments.

3. A segment contained in W
s
(c) ∩ ΓR is said to belong to the class of

prototype–3 segments if one of its extremes is contained in ER∗ and the
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other is given by P−J (R∗d) or P−J(L∗d), depending on which of them is
contained in the bounded component in ΓR determined by ER∗.

4. A segment in W
s
(c) ∩ ΓL is called to belong to the the class of

prototype–4 segments if one of the extremes is L∗d and the other extreme
lies on EL∗, so that no other point of the segment is contained on EL∗.

5. A segment contained in W
s
(c) ∩ ΓL so that one of its extremes is an

exterior point and the other extreme lies on EL∗ so that no other point of
the segment is contained on EL∗, is said to belong to the class of prototype–
5 segments.

6. A segment contained in W
s
(c) ∩ ΓL is said to belong to the class of

prototype–6 segments if one of its extremes is contained in EL∗ and the
other one is given by P−J (R∗d) or P−J(L∗d), depending on which of them
is contained in the bounded component in ΓL determined by EL∗.

Remark 8. A segment belonging to the class of prototype-i segments
will be said to belong to Prot(i) and will be denoted by Prot(i). Segments
Prot(2) and Prot(5) are contained in the unbounded components, while
all the others are contained in the bounded ones.

By using Proposition 3 and its Corollary 1 we obtain the existence of an
infinite number of segments contained in W

s
(c) ∩ ΓR,L and belonging to

each one of the above defined six classes of prototype-i segments. Observe
that segments belonging to the three first classes are subsets of ΓR and
those belonging to the other three classes are subsets of ΓL. All of this
reflects the geometric symmetries of the symmetric collinear four body
problem and the symmetry due to the reversibility of the problem.

Now, we show some examples of segments contained in W
s
(c) and be-

longing to each one of the classes of prototype segments.

Example 9. For examples in classes Prot(i), i = 1, 2 we refer to Figures
6 and 12. Segment γR

1 contained in γR, having one extreme at R∗d and
the other extreme on ER∗, so that no other point is contained in ER∗ is a
segment in the class of prototype–1 segments. Segment γR

2 contained in γR,
with one extreme at R∗c and the other extreme on ER∗ so that no other
point in γR

2 is contained in ER∗ is a segment in the class of prototype–2
segments. In order to obtain an example of a prototype–3 segment consider
P−(J+1)(γR

1 ); we know by Corollary 1 that this arc intersects ER∗, the
example we are looking for is defined by the subsegment of P−(J+1)(γR

1 )
with one end given by P−J (R∗d) or P−J (L∗d) depending on which of
these points lies on the bounded component determined by ER∗ while the
other end is the first intersection of P−(J+1)(γR

1 ) with ER∗ and no other
point in the considered segment is contained in ER∗. For a graphical
representation in case α2 < α < α3, see Figure 9, and replace segment ζ
by segment γR

1 already defined. Next, examples for Prot(i),i = 4, 5, 6 are
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TABLE 2.

Generation of prototype segments for α ∈ (0, α1) ∪ (α3, α4)

generated segments

Generator segments Prot(1) Prot(2) Prot(3) Prot(4) Prot(5) Prot(6)

Prot(1) 0 1 1 0 0 0

Prot(2) 1 1 0 0 0 0

Prot(3) 0 0 0 1 1 0

Prot(4) 0 0 0 0 1 1

Prot(5) 0 0 0 1 1 0

Prot(6) 1 1 0 0 0 0

defined in a symmetric way as those for i = 1, 2, 3. Segment γL
1 contained

in γL, with one extreme at L∗d and the second extreme on EL∗ so that
no other point in γL

1 is contained in EL∗, is an example of a segment in
the class of prototype–4 segments. Segment γL

2 contained in γL with one
extreme at L∗c and the other at the first intersection of γL with EL∗, from
point L∗c, belongs to the class of prototype–5 segments. In order to obtain
an example of a prototype–6 segment consider P−(J+1)(γL

1 ), we know by
Corollary 5 that this arc intersects EL∗. The example we are looking
for is defined by the subsegment of P−(J+1)(γL

1 ) with one end given by
P−J(R∗d) or P−J (L∗d), depending on which of these points lies on the
bounded component determined by EL∗ while the other end is the first
intersection of P−(J+1)(γL

1 ) with EL∗, and no other point in the considered
segment is contained in EL∗.

Theorem 10. Pullbacks of segments contained in W
s
(c)∩Γ which belong

to any of the prototype classes defined by the Poincaré Map are generated
according to Tables 2 and 3 where we show how prototypes are generated
when considering their inverse images, iterating P−1 until obtaining non
empty intersection with W

u
(d). Values given on the Tables depend strongly

on the dynamics of the flow for different values of the parameter.
We obtain the same Table for values of the parameter α4 > α > α3, as

the one obtained for α1 > α > 0, but the difference lies on the fact that we
need P−1 or P−4 in order to obtain non empty intersection with W

u
(d),

in the first case, while we need P−1 or P−2 for the second one.
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TABLE 3.

Generation of prototype segments for α ∈ (α2, α3)

Generated segments

Generator segments Prot(1) Prot(2) Prot(3) Prot(4) Prot(5) Prot(6)

Prot(1) 0 0 0 0 1 1

Prot(2) 1 1 0 0 0 0

Prot(3) 0 0 0 0 1 1

Prot(4) 0 1 1 0 0 0

Prot(5) 0 0 0 1 1 0

Prot(6) 1 1 0 0 0 0

Observe that a prototype–i segment generates two segments, belonging
to different prototype classes. In the table, we associate 1 or 0 to the row
Prot(i), in the column Prot(k), meaning that it generates or not a segment
in the class Prot(k).

Proof. We will prove only some cases, since the other ones can be proved
in a similar way.

1. Case α2 < α < α3: Let Prot(1) be an arc belonging to the class
of prototype–1 segments, contained in ΓR ∩ W

s
(c) with one extreme at

R∗d and the other on ER∗ so that no other point is contained in ER∗.
Observe that P−j(Prot(1)), j = 1, 2 do not intersect ER∗ ∪ EL∗, but
P−3(Prot(1)) does intersect EL∗ and by Proposition 4, is an arc with
extremes at P−2(L∗d) and P−3(R∗d). As a consequence, P−3(Prot(1)) in-
tersects EL∗ in one point and therefore generates one prototype–5 segment
and a prototype–6 segment.

2. The argument we give for prototype–2 is valid for every mass para-
meter. If we consider a Prot(2), which is an arc in ΓR ∩W

s
(c) with one

extreme at an exterior point, say A and the other extreme on ER∗ so that
no other point is contained in ER∗, by Proposition 4, P−1(Prot(2)) is an
arc in ΓR joining P−1(A) and R∗d, so it must intersect arc ER∗. So we
have generated a prototype–2 segment and a prototype–1 segment, since
the intersection P−1(Prot(2))∩ER∗ is assumed to contain only one point.

3. Case α2 < α < α3: Let Prot(3) be a prototype–3 segment which joins
P−2(R∗d) and a point in ER∗, so that no other point of the segment is
contained in ER∗. According to Proposition 4, P−1(Prot(3)) is an arc
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FIG. 10. Points having the same sequence of BC.

joining P−1(P−2(R∗d)) = P−3(R∗d), that is an exterior point lying in ΓL,
and L∗d. So, P−1(Prot(3)) must intersect EL∗ in one point, generating in
this way one prototype–5 segment and one prototype–4 segment.

We must observe that while for any value of the parameter, segments in
classes 2, 3, 5 and 6 only need one application of P−1 to obtain a non empty
intersection with ER∗ or EL∗, the number of applications of P−1 needed
for segments in classes 1 and 4 to intersect ER∗ or EL∗ depend on the
values of the parameter. If α1 < α < α2 then prototype–1,4 segments need
two applications of P−1. If α2 < α < α3 then prototype–1,4 segments need
three applications of P−1 and in the case α3 < α, prototype–1,4 segments
need four applications of P−1.

It may happen that the cardinality of the number of points in the in-
tersection P−j(Prot(k))∩ER∗ or P−j(Prot(k))∩EL∗ is bigger than one.
In this case, orbits corresponding to each one of these points have asso-
ciated the same sequence of symbols R and L between ejection and total
collision. Assuming that m points are contained in the intersection, we ob-
tain m− 1 different segments in P−j(Prot(k)) whose extremes lie in ER∗
or EL∗; and the pullback of each of these segments transforms them in
loops with extremes on R∗d or L∗d, and the pullbacks of these loops do
not generate new intersections with ER∗ neither with EL∗. That is why
we can assume, without loss of generality that pullbacks of P−j(Prot(k))
only intersect ER∗ or EL∗ in one point, since no new sequence of symbols
is obtained. See Figure 10.

Definition 11. A point p ∈ W
s
(c) ∩ W

u
(d) ∩ Γ is said to be a first

ejection-collision point if the orbit through this point comes directly from
total collision without experiencing a binary or a simultaneous binary col-
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lision in between. In the same way, a point p ∈ W
s
(c)∩W

u
(d)∩Γ is called

a last ejection-collision point if the orbit through this point goes directly
to total collision without experiencing a binary or a simultaneous binary
collision in between.

Next, we show how to use Tables 2 and 3 given in Theorem 10 to generate
a family of ejection–collision orbits that have a finite sequence of binary or
simultaneous binary collisions. In order to do this, we begin by analyzing
the pullbacks of prototype segments contained in γR and γL. We describe
now families of ejection-collision orbits that show distinct dynamics.

The following result shows the existence of a family of ejection–collision
orbits having n–binary collisions or n–simultaneous binary collisions for
n ≥ 1. It is clear that they are different from the homothetic orbit, which
is free from collisions.

Proposition 12. For any value of the parameter α, for each n ≥ 1,
there exist a type ERnC orbit, and a type ELnC orbit.

Proof. We will prove the existence of the family of orbits having related
sequences given by ERnC, since the existence of the other family is proved
in a symmetric way.

We know that points contained in γR ∩ σR are first and last ejection–
collision points, so their orbits have associated sequences of the form ERC.
When considering subsegment γR

2 of γR, its pullback P−1(γR
2 ) intersects

ER∗, and generates two segments, one of prototype–1, and one of prototype–
2; through the point of intersection of P−1(γR

2 ) with ER∗ (remember we
are assuming there is only one intersection point) passes an orbit with as-
sociated sequence ERRC. According to Theorem 10, the new prototype–2
segment, under P−1 intersects ER∗ and generates another prototype–1
segment and a prototype–2 segment, and to the common point of these
two resulting segments corresponds an orbit with a sequence of the form
ERRRC. Continuing this process of iterating all prototype–2 segments
obtained at each step, it is possible to construct the desired family of or-
bits.

Proposition 13. For 0 < α < α1, there are ejection-collision orbits
which perform a sequence of n (n ≥ 1) binary and/or simultaneous binary
collisions.

Proof. As we know, arcs γR and σR in ΓR, contained in W
s
(c) and

W
u
(d), respectively, intersect, generating two segments, one prototype–1

segment and one prototype–2 segment: γR
1 and γR

2 , which are subsegments
of γR and their common point, which is unique by assumption, is a first and
last ejection-collision point. By Theorem 10, by iterating these two proto-
type segments under P−1, we obtain according to Table 2, four prototype
segments : say, one Prot(2) and one Prot(3) for γR

1 and, one Prot(1) and
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Prot(2) for γR
2 and two first and last ejection-collision points, given by the

common point of each one of the pairs of the given prototype segments, as
two ejection-collision orbits having three and two binary and simultaneous
binary collisions, respectively. This way, we can continue this process of
iteration of P−1 for each one of the obtained four prototype segments. This
is possible due to Theorem 10. Each of the four segments need to be iter-
ated, under P−1, once or twice in order to obtain a non empty intersection
with ER∗ or EL∗.

So, we can assume that we have an orbit with associated sequence given
by EQ1Q2 . . . QnC, where Qi ∈ {R, L}; moreover, the last symbol Qn

before total collision was obtained through two prototype segments, say
Prot(k) and Prot(j). Iterating one of these two prototype segments we
can obtain a new trajectory having one or two last new symbols Qn+1,
or Qn+1Qn+2. This depends on whether we require one or two iterations
under P−1 of the given prototype segments, in order to obtain a non empty
intersection with ER∗ or EL∗. Then we have obtained an orbit with asso-
ciated sequence of symbols given by

EQ1Q2 . . . QnQn+1C or EQ1Q2 . . . QnQn+1Qn+2C.

Corollary 14. For 0 < α < α1, there are ejection-collision orbits
of the type ERLRC. By symmetry, orbits of the type are ELRLC are
obtained .

Proof. Consider the segment γR
1 contained in γR. By Theorem 10,

its pullback P−1(γR
1 ), does not intersect ER∗ nor EL∗, but P−2(γR

1 ) does
intersect ER∗, obtaining a prototype–2 and a prototype–3 segment, and the
common point is a first ejection-collision point. Iterating this point under
P , we have that the first iteration is a point in ΓL and the second one is
a point in ΓR, which is a last ejection-collision point. So, to these three
points corresponds an orbit with associated sequence given by ERLRC.

Corollary 15. The following statements hold.

1.For α2 < α < α3, there are ejection-collision trajectories with ELR
LRC as associated sequence, and by symmetry, trajectories with sequences
ERLRLC are obtained.

2.For α3 < α, there are ejection-collision trajectories with associated se-
quences ERLRLRC, and by symmetry, trajectories with sequences ELRL
RLC are obtained.
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Proof.

1. Consider segment γR
1 ; contained in γR, according to Table 2, the

pullbacks P−1(γR
1 ), and P−2(γR

1 ) do not intersect neither ER∗ nor EL∗,
but P−3(γR

1 ) does intersect EL∗, obtaining a prototype–5 and a prototype–
6 segment and a first ejection–collision point p. Iterating this first ejection–
collision point under P we obtain that its first iteration give us a point in
ΓR; the second iteration of the point lies in ΓL and the third iteration gives
us a last ejection–collision point contained in ΓR. So, we can associate a
sequence of the form ELRLRC to point p. The existence of the other orbit
with associated sequence ERLRLC is obtained by symmetry.

2. The proof of this part is completely similar to the above one.

In order to end this section, we give an interpretation to sequences of
symbols of the form EQ1Q2 . . . Qj . . . QmC, with Qj ∈ {R, L}, which are
associated to ejection-collision trajectories having a finite set of binary or
simultaneous binary collision in terms of the original coordinates x, y for
the symmetric collinear four body problem.

Recall that binary and simultaneous binary collisions correspond to x =
0, y 6= 0 and y =

√
αx 6= 0, respectively. Under the McGehee transfor-

mation these singularities correspond to values of θ given by θ = π/2 and
θ = θα, respectively. So, when in McGehee coordinates θ = π/2, we have a
binary collision of the inner pair of the collinear configuration, while having
θ = θα means that we have a simultaneous binary collision. Observe that
we did not consider the case x = y = 0, because in this case total collision
occurs.

Taking into account this information, and the fact that to symbol L
corresponds a point in ΓL, then an orbit where a symbol Qj = L appears
in its associated sequence EQ1Q2 . . . Qj . . . QmC, performs a simultaneous
binary collision when crossing ΓL. In the case symbol Qj = R appears in
the sequence, then a binary collision of the inner pair occurs at the time
the orbit crosses ΓR.

In this way, sequences ERnC and ELnC obtained in Proposition 12 for
any value of α, are associated to ejection-collision orbits that either have
a sequence of n simultaneous binary collisions or a sequence of n binary
collisions of the inner pair, respectively. A similar interpretation of the
sequences ERLRC and ELRLC obtained in Corollary 14, can be given,
as we see in Figure 11.

Next, we give a description of orbits, not necessarily ejection-collision
orbits which pass through a sequence of binary or simultaneous binary col-
lisions. In order to do this, we shall study iterations, under the inverse P−1

of the Poincaré Map of regions, instead of segments, as done in [3] and [1].
The regions are contained in Γ = ΓR ∪ ΓL, which has been our convenient
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FIG. 11. Ejection-collision orbits : (a) EL3C y (b) ELRLC.

Poincaré section. The Poincaré map will give us global information about
possible sequences of binary or simultaneous binary collisions an orbit can
have.

We will define a finite set of regions Ri, i = 1, . . . , 2N (N = 4 for 0 <
α < α1, N = 5 for α2 < α < α3 and N = 6 for α3 < α < α4) ; all of them,
but two, are contained in ΓR

1 ∪ ΓL
1 . The remaining two regions will be the

unbounded regions ΓR
2 and ΓL

2 .
Define N first regions Ri, i = 1, . . . , N in ΓR. The other N regions Ri,

i = N + 1, . . . , 2N in ΓL will be defined by symmetry. The first N − 1
regions in ΓR are contained in ΓR

1 , while last region RN in ΓR is just ΓR
2 ,

the unbounded part of ΓR determined by ER∗, and R2N is the unbounded
region ΓL

2 .
Region R1 is the region in ΓR

1 , bounded by ER∗, line segment in r = 0
between points dR∗ and R∗d, and the segment γR

1 ; region RN+1 is the
region in ΓL

1 , bounded by EL∗, the line segment in {r = 0}, between points
dL∗ and L∗d and the segment γL

1 . To define regions Ri, i = 2 . . . N − 2, we
shall consider a finite set of pullbacks of segments γR

1 ⊂ γR and γL
1 ⊂ γL.

We define regions R2 to RN−2 and RN+2 to R2N−2 for each one of the
intervals where parameter α is contained. We make use of Corollary 5
and the symmetry of the flow in the considered cases for the values of the
parameter.

1. For 0 < α < α1(i.e N = 4). Observe P−1(γL
1 ) ⊂ ΓR

1 does not intersect
ER∗, but P−2(γL

1 ) does intersect ER∗. So, we define region R2 as the
region in ΓR

1 bounded by P−1(γL
1 ) and the segment in {r = 0} between

points R∗d and P−1(L∗d); region RN+2 = R6 is the region symmetric
to R2, contained in ΓR

1 ; that is, the region bounded by P−1(γR
1 ) and the

segment in r = 0 between points L∗d and P−1(R∗d).
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FIG. 12. Basic regions Ri, i = 1 . . . 10, in ΓR for α2 < α < α3.

2. For α2 < α < α3, (i.e. N = 5). Define regions R2, RN+2 in the same
way as we did in last case. Observe that P−2(γR

1 ) ⊂ ΓR
1 and P−2(γR

1 ) does
not intersect ER∗; in the same way, P−2(γL

1 ) ⊂ ΓL
1 and P−2(γL

1 ) does not
intersect EL∗. But P−3(γR

1 ) intersects EL∗ and P−3(γL
1 ) intersects ER∗.

So, we define region R3 as the region bounded by P−2(γR
1 ) and {r = 0}

and region RN+3 = R8 as the region bounded by P−2(γL
1 ) and {r = 0}.

See Figure 12.
3. For α3 < α < α4 (i.e. N = 6 ), Define R2, R3 and RN+2, RN+3 as

we did in the previous case. Observe that P−3(γR
1 ) does not intersect EL∗

nor P−3(γL
1 ) intersects ER∗; but P−4(γR

1 ) intersects ER∗ and P−4(γL
1 )

intersects EL∗. So we define region R4 in ΓR
1 as the region bounded by

P−3(γL
1 ) and the line {r = 0} and region RN+4 = R10 is defined as the

region in ΓL
1 bounded by P−3(γR

1 ) and the line {r = 0}.
Region RN−1 is given by the complement of

⋃
j=1,...,N−2 Rj in ΓR

1 and
region R2N−1 is the complement of

⋃
j=N+1,...,2N−2 Rj in ΓL

1 . See Figure
12 for case N = 5. As it was established, those N regions in ΓL are defined
in a symmetric way as regions in ΓR were defined.

We study how these regions are mapped one to another under P−1. To
do this consider an alphabet A = {Ri}i=1,...,2N of 2N symbols, to each
one of them corresponds one of the 2N regions Ri, i = 1, . . . , 2N , already
defined. We shall study how the dynamics among these regions under P−1

works.

Definition 16. A transition matrix is a matrix A = (aij) ∈ M2N×2N ,
so that aij = 1 if region Ri is mapped to region Rj under P−1, and aij = 0,
otherwise.

Transition matrices determine all admissible transitions between symbols
Ri.
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Definition 17. The transition graph GA, associated to a transition
matrix A is the directed graph with 2N different vertices, which by sim-
plicity are denoted by i, i = 1, . . . , 2N and some directed arrows. We have
a directed arrow from vertex i to vertex j if aij = 1; in case aij = 0, there
is no connection from vertex i to vertex j.

Our objective is to determine a transition matrix A, which describes the
dynamics of the regions Ri, for a given range of values of the parameter
and its associated transition graph. This permits to know the dynamics of
the orbit beginning in a given region in terms of its sequence of binary and
simultaneous binary collisions. We will use all of the previously obtained
information

Theorem 18. Transition matrices for the symmetric collinear four body
problem are given by matrices of the form

A =
(

C D
D C

)
∈ M2N×2N ,

where

C =




0 . . . 0 0 0
...

. . . 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 . . . 0 1




, D =




0 1 0 . . . 0
... 0

. . . 0 0
... 0 0 1 1
0 0 0 1 1
0 . . . . . . 0 0



∈ MN×N

and N = 4 corresponds to 0 < α < α1, N = 5 corresponds to α2 < α < α3

and N = 6 corresponds to α3 < α < α4.

Proof. The pullback of region RN is obtained as follows. The argument
for any of the three cases is the same. So we consider any of N = 4, 5, or
6. All considered points lie in RN . The pullback of a point in RN near
cR∗ pass near R∗c and the pullback of a point in the region, close to ER∗,
must be close to R∗d. Analogously, points close to dR∗, under P−1, go to
points near R∗d. So, P−1(RN ) intersects R1 and RN . Pullbacks for the
others regions are determined in a similar way.

Corollary 19. Transition graphs between regions are given in Figure
13.

The proof follows from Theorem 18 and is omitted.
Observe that symmetries appearing in all transition matrices and their

associated transition graphs reflect the geometric symmetries of the colli-
near configuration.
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