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1. INTRODUCTION

In this paper, we note a connection between number theory and dynam-
ical systems, in that we will show an object which is associated to a given
family of analytic maps also has an interesting number theoretic property.
It was shown in [5] that there is a set of irrational numbers which are asso-
ciated with the complex exponential family λez. We will show below that
this set is closely related to the Brjuno numbers.

The Brjuno numbers are a set of irrational numbers defined in the fol-
lowing manner: Given an irrational α, generate the continued fraction
convergents to α, denoted by pn

qn
. The sequence {qn} is well-defined and

unique. Then we say that α is a Brjuno number if

∑
n

log qn+1

qn
< ∞.
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For more detail on the continued fraction expansion, see Section 3.
The Brjuno numbers have previously arisen in the context of “small divi-

sor” problems. One question in complex dynamical systems is the following:
Let f be a holomorphic function with a fixed point at the origin, so that
f(0) = 0 and f ′(0) = λ. When is f conjugate to its linear part, i.e. when
can we find an biholomorphism h so that

h−1 ◦ f ◦ h = fL(z),

with fL(z) = λz? If we can find such an h, we say that f is linearizable.
It was known classically that if |λ| 6= 1, then one can always find an h.

The case where |λ| = 1, but λ is a root of unity, was also understood (see
[11]), although in this case, the answer is sometimes negative.

The difficult case is then when λ = e2πiα with α irrational. The reason
that this is a “small divisor” problem is that one can always formally find
the power series expansion of h =

∑
hkzk by the above functional equation,

and when one writes down a formula for hk, one finds that there is a factor
of λk−1− 1 in the denominator. Since the powers of λ form a dense subset
of the unit circle, there will be k such that λk−1 − 1 is arbitrarily close to
0, which will make the hk large. Clearly, if this is true for “many” hk, then
the power series will not converge. Thus, the convergence of the power
series for h depends upon how often the number λk is close to 1 as it winds
around the unit circle. If α were rational (and thus λ a root of unity),
then λk would be exactly 1 for infinitely many k. Since α is irrational, the
λk will wind around the unit circle densely and never be exactly equal to
1, but the better one can approximate α with rational numbers, the more
often the λk’s will visit a small neighborhood of 1, making more hk’s large.
Thus it is perhaps not surprising that the convergence of the power series
of h depends on the continued fraction expansion of α.

In 1942, Siegel [11] showed that f is linearizable if α satisfies a Diophan-
tine condition of the form

∣∣∣∣α−
p

q

∣∣∣∣ >
γ

qδ
, for all q,

for some positive γ and δ. Siegel’s result is the first time that a small
divisor problem was solved [14]. It was also then known that sometimes
one could not linearize such an f , i.e. that for some irrational α, there are
functions f(z) = e2πiαz +O(z2) which are not linearizable.

Brjuno improved Siegel’s result (see [4]) and showed that as long as α is
a Brjuno number, then all f ’s with f ′(0) = e2πiα are linearizable. It was
not known at the time whether this set of Brjuno numbers was the optimal
solution to the problem. Yoccoz, in [14], completely solved the problem,
and showed the Brjuno condition is sharp, i.e. if α is not a Brjuno number,
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there there is at least one f(z) with f ′(0) = e2πiα which is not linearizable.
For more details on this linearization question and its history, see [9],[13],
[12],[10].

In [5], we studied the symbolic dynamics of the complex exponential
family Eλ(z) = λez. Since this map takes horizontal strips of height 2π
and maps them over the plane, it is natural to think of these strips as
“fundamental domains” of the map. Given a z ∈ C, we call the itinerary
of z to be the integer sequence given by the sequence of strips the point
visits.

It was first shown in [7] that if one chooses λ so that Eλ has an attracting
fixed point, then the Julia set of Eλ is a disjoint union of “hairs”, sets
homeomorphic to the closed half-line. Each hair is invariant, and is made
up of the points with a given itinerary. The hairs are indexed by the
itineraries, so that the set of all points in the Julia set with a given itinerary
lie on one hair. See also [1] for more details of this case. For the case where
λ is chosen so that Eλ has an attracting cycle, the hairs are no longer
disjoint, but can intersect in a more complicated manner. This has been
studied in [6], [2], and [3], although there are still some interesting open
questions for even this case. In any case, the symbolic dynamics of the
complex exponential are quite useful in understanding the structure of,
and the induced dynamics on, the Julia set of Eλ.

For any λ, we define the set of allowable itineraries as those integer
sequences which are obtained as the itinerary of a point under application
of the map Eλ. We showed in [5] that this set of allowable itineraries
is independent of λ. Furthermore, it was shown that the itineraries for
the map ep(z), where p is any nonconstant polynomial, is independent of
p. Thus there is some set of integer sequences which is universal for the
complex exponential map.

We can think of a sequence of integers as the coefficients of the continued
fraction expansion of an irrational number, and can thus consider this set of
allowable itineraries as a subset of the irrational numbers. It turns out that
this set is related to the Brjuno numbers in a nice way. What we will show
is that if one takes the sequences which correspond to Brjuno numbers, and
append every sequence which is majorized by the Brjuno sequences (in a
sense to be made precise below) then one obtains the allowable itineraries
of the complex exponential.

Another connection between complex dynamical systems and the Brjuno
numbers which we would like to mention is [9]. Here, the Brjuno numbers
are embedded into the plane in a natural way, and the topology of this
embedded set is characterized.

In Section 2 we will define more precisely this set of allowable itineraries.
In Section 3 we will define precisely the continued fraction expansion and
discuss some of its properties. In Section 4 we will define the Brjuno num-
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bers and describe the asymptotic behavior of the continued fraction ex-
pansions of Brjuno numbers. Finally, in Section 5 we will prove the main
result of the paper.

2. THE ALLOWABLE ITINERARIES FOR THE COMPLEX
EXPONENTIAL

Let us denote E(x) = exp(x). We define a set of integer sequences A,
such that s = {sj} ∈ A if there is a real number x

|sj | ≤ Ej(x),

where Ej means the map E iterated j times.
We colloquially say that A contains those sequences which grow no more

quickly than an iterated exponential. One can define, more generally, those
sequences which do not grow more quickly than the iterates of eλx for
λ > 0. It was shown in [5] that this set is independent of λ. For example,
any bounded sequence is in A, and, in fact, any unbounded sequence which
does not grow too quickly lies in A.

We also denote Ep(x) = ep(x), where p is a polynomial in x. We define
the set of itineraries of order p(x) to be the set of sequences

Ap = {s | there is an x > 0 such that |sj | ≤ Ej
p(x)}. (1)

One of the results of [5] which has already been quoted is that Aλx is
independent of λ. In fact, more was shown there; in Section 5 of that paper
it is shown that Ap(x) is independent of the polynomial p.

The main part of the argument was to show that Axn ⊂ Ax (the converse
inclusion is clear). To show this, it is sufficient to show that for any x, there
is a y such that

Ej
xn(x) ≤ Ej(y).

By taking j logarithms on each side, one sees that this condition is equiv-
alent to

1 + log n + nxn ≤ y,

and for fixed n and x, one can choose a y to satisfy this. Thus any sequence
which grows more slowly than an iterated exponentiated polynomial will
be in A. On the other hand, not all integer sequences are in A. For an
example, consider the sequence with

aj = bE2j(1)c.
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where bxc denotes the greatest integer contained in x. If we assume that
there is a fixed x∗ with

|aj | ≤ Ej(x∗)

or

bE2j(1)c ≤ Ej(x∗),

then

E2j(1) ≤ Ej(x∗) + 1 ≤ Ej(x∗ + 1)

Ej(1) ≤ x∗ + 1,

which is a contradiction.

3. THE CONTINUED FRACTION EXPANSION

The classical continued fraction expansion, which we will describe below,
takes an irrational number and gives a sequence of positive integers. Our
set A has both positive and negative entries. There is a continued fraction
algorithm (see for example [13]) which allows for negative entries. However,
in the interests of simplicity and familiarity, we want to use the classical
expansion. So we are going to consider the set of all positive integer se-
quences {tn} that have the property that there is an x∗ with tj ≤ Ej(x∗).
Let us call this set Ã.

We should note that we can get Ã simply by relabelling the elements of
A. Define the map on integer sequences by n → 2n if n is positive and
n → −2n + 1 if n is negative. Then if s ∈ A, we have

|sj | ≤ Ej(x∗).

But then tj ≤ 2 |sj |+ 1, so that we have

tj ≤ Ej(2x∗ + 1).

We will actually abuse notation by also calling this new set A. So, in
short, we are now considering the set A of positive integer sequences which
grow no more quickly than an iterated exponential.

Consider the map φ from infinite positive integer sequences to irrational
numbers as follows:

φ({a0, a1, . . . }) = a0 +
1

a1 +
1

a2 +
1

a3 +
.. .
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It is a classical fact of number theory [8] that this map is one-to-one and
onto from the set of infinite integer sequences to the irrationals. (An anal-
ogous map exists from the set of finite integer sequences to the rationals,
but it is two-to-one.)

The question we are concerned with in this paper is: What is φ(A), and
how does it relate to the Brjuno numbers?

4. THE BRJUNO NUMBERS

Consider an infinite integer sequence {a0, a1, . . . }, α = φ({a0, a1, . . . }).
Given a finite subsequence {a0, a1, . . . , an}, let us denote

〈a0, a1, . . . , an〉 = a0 +
1

a1 +
1

a2 +
1

a3 +
.. .

+
1
an

,

which is a rational number, as pn/qn.
The number pn/qn is known as the n-th convergent of α. Classical theory

(again see [8]) has much to say about these numbers. For example, pn/qn →
α, and, moreover, this is the sequence of rationals which converges to α
most quickly, by which we mean that pn/qn is closer to α than any other
rational number with the same or smaller denominator. It can also be
calculated that

p0 = a0 p1 = a0a1 + 1 pn = anpn−1 + pn−2

q0 = 1 q1 = a1 qn = anqn−1 + qn−2.

It should be noted from this recursive formula that, given an infinite
integer sequence {an}, the two sequences {pn} and {qn} can be generated
without referring to the continued fraction expansion at all.

Definition 1. The Brjuno sum of a number α 6∈ Q is

B(α) :=
∑

n

log qn+1

qn
, (2)

and the Brjuno numbers are the irrational numbers for which this sum is
finite. We denote the set of Brjuno numbers by B. We will abuse notation
by saying that an infinite integer sequence {an} is Brjuno if φ({an}) is a
Brjuno number.
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The main theorem of this section is

Theorem 2. Let α be irrational. If the corresponding an satisfy the
inequality

an+1 < aρan
n , with some ρ < 1,

except for finitely many n, then α ∈ B. If the corresponding an satisfy

an+1 > aσan
n , with some σ > 1,

except for finitely many n, then α 6∈ B.

We note that this theorem could be strengthened; as one will see in the
proof, the statement could be much sharper. For the purposes of this paper,
this theorem is sufficient. To prove this theorem, we need a few lemmas:

Lemma 3.

log
(

an +
1

an−1

)
< log(an) + 1.

Proof. Observe that log(x + 1) < log(x) + 1, if x > 1/(e− 1).

Lemma 4. For any choice of the sequence {an},

qn ≥
(√

2
)(n−1)

,

with the inequality strict for n ≥ 2.

Proof. We will show the theorem for the choice of all an = 1. This
clearly suffices, since if we increase any of the an, all subsequent qn also
increase.

Then we have q0 = 1 > 1/
√

2, q1 = 1, q2 = 2 >
√

2. Assume the
conclusion is true for qi with i ≤ n. Then

qn+1 = an+1qn + qn−1 >
(√

2
)n−1

+
(√

2
)n−2

=
(√

2
)n−2 (√

2 + 1
)

>
(√

2
)n

.

Lemma 5. The sum
∑

n

(
log qn+1

qn

)
converges iff

∑
n

(
log an+1

qn

)
con-

verges.
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Proof. One direction is trivial since qn > an, so we will prove only the
other direction. Since qn+1 > an+1qn, we have

qn+1 =
(

an+1 +
qn−1

qn

)
qn <

(
an+1 +

1
an

)
qn

Using Lemma 3, we have that

∑
n

log(qn+1)
qn

<
∑

n

log
(
an+1 + 1

an

)
+ log(qn)

qn

<
∑

n

(
log(an+1)

qn
+

1
qn

+
log(qn)

qn

)
.

Since everything is positive, we have that

∑
n

(
log(an+1)

qn
+

1
qn

+
log(qn)

qn

)
=

∑
n

log(an+1)
qn

+
∑

n

1
qn

+
∑

n

log(qn)
qn

.

and using Lemma 4, and the fact that log(x)/x is monotone decreasing for
x large, we have

∑
n

1
qn

<
∑

n

log(qn)
qn

<
∑

n

(n− 1) log
√

2
(√

2
)(n−1)

< ∞.

Remark 6. We have shown that a number α ∈ B if and only if the sum

∑
n

log an+1

qn
< ∞, (3)

so this could be the definition. It turns out that while this is more conve-
nient for our purposes, the classical definition is more natural and makes
more sense from the perspective of the linearization question.

Proof (Proof of Theorem 2). First, let us assume that an+1 < aρan
n ,

for ρ < 1, except for finitely many n. We will check Equation 3 using the
Ratio Test. As long as our hypothesis holds,

log(an+1)
qn

qn−1

log(an)
<

ρan log(an)qn−1

qn log(an)

= ρan
qn−1

qn
< ρ < 1.

(4)
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Since our hypothesis (and thus Equation 4) holds in all but a finite number
of cases, it holds in the limit.

Now, assume that an+1 > aσan
n , with σ > 1. Then using the Ratio Test,

we have

log an+1

qn

qn−1

log an
>

σan log(an)qn−1

log(an)qn

> σan
qn−1

qn
= σ

(
1− qn−2

qn

)
.

(5)

Clearly qn > anan−1qn−2. Since the an are growing quickly, the last
line of Equation 5) gets as close to σ as needed, so is larger than 1 in the
limit.

5. THE CHARACTERIZATION OF φ(A)

We want to characterize φ(A) as a set of irrational numbers. In view
of Theorem 2, a first guess would be that the set φ(A) is equal to the
Brjuno numbers, since both of these sets have the property that they grow
(almost) like an iterated exponential map. We will compare A and φ−1(B)
below. We will abuse terminology by referring to an integer sequence being
Brjuno if the associated irrational number is, and also denoting φ−1(B) as
B, and the context will make it clear which we mean. In short, B can mean
the Brjuno numbers or the set of sequences which give rise to the Brjuno
numbers.

Let us put a partial ordering on integer sequences as follows: If a = {an}
and b = {bn}, then we say a ¹ b if

|an| ≤ |bn| for all n.

Definition 7. We say a set C of infinite integer sequences is full if,
whenever a ∈ C, then b ∈ C for all b ¹ a.

Theorem 8. B is not full.

Proof. We denote dxe to be the smallest integer greater than or equal
to x. From Theorem 2, we know that if we have a sequence {an} with the
recursive relation

an+1 = dea2
ne,

then {an} 6∈ B. Since {an} ∈ Ax2 = Ax/2, so that there is an x∗ such that

|an| ≤ En
x/2(x

∗).
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Assume without loss of generality that x∗ > 1, and define b = {bn} by

bn = bEn
x/2(x

∗ + 1)c.

It is easy to see that (En
x/2(x

∗ + 1)− En
x/2(x

∗)) ≥ 1, and thus bn ≥ an for
any n. From the definition of bn, bn+1 ≤ exp(bn/2), so that by Theorem 2,
the sequence {bn} is a Brjuno sequence.

In summary, we have a ¹ b, but a 6∈ B and b ∈ B.

Since it is obvious by definition that A is full, we see that A 6= B. But
the next best thing is true: A is equal to the smallest full set of sequences
which contains B, which we call Bfull.

Theorem 9. Bfull = A.

Proof. ⊇: Let us assume that {an} ∈ A. Then there is an x∗ > 1 with

|an| ≤ En
x/2(x

∗).

Define αn = dEn
x/2(x

∗)e. Clearly, {an} ¹ {αn}. Also

αn+1 ≤ deαn/2e ≤ eαn/2 + 1 < ααn/2
n

for αn > 2e2. This is certainly true for n large enough, and then

αn+1 ≤ ααn/2
n

for all but finitely many n, and thus {αn} ∈ B. Since {an} ¹ {αn}, we
have {an} ∈ Bfull.
⊆: We assume that {an} ∈ Bfull, or that there is an integer sequence

{bn} º {an} with {bn} ∈ B. This means that (see Theorem 2) that

bn+1 ≤ b2bn
n (6)

for all but a finite number of n. Stated another way, there is an N such
that for all n ≥ N , Equation 6 is true. Define cn = bN+n. First, we show
that {cn} ∈ A. It is clear that for all n,

cn+1 ≤ c2cn
n = E2x(cn),

so that {cn} ∈ A2x = A. There is an x∗ > 1 such that

|cn| ≤ En(x∗),

but then

|bn+N | = |cn| ≤ En(x∗) < En+N (x∗),
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so that {bn} ∈ A. Then, since A is full and a ¹ b, we have that {an} ∈
A.

We can think of A as being a sort of star-shaped hull of B, in the sense
that A is the smallest star-shaped set which contains B. This is because
we can connect any element in B to the origin by decreasing entries, and
all of these intermediate sequences are elements of A.

6. CONCLUSIONS

We have described the connection between the Brjuno numbers and the
itineraries of the complex exponential. One question which can be posed is
whether this connection has any implications for the study of the dynamics
of the complex exponential map, and unfortunately, we do not see any at
this time. Nonetheless, this is another interesting connection between the
dynamics of complex analytic maps and number theory.
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