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We investigate the break up of the last invariant curve for analytic families
of standard mappings

Sλ :

{
y′ = λg(x) + y,
x′ = x + y′ mod 1,

where g : S1 →IR is an analytic function such that
∫

S1g(x)dx = 0. Our main

result is another evidence of how hard this problem is. We give an example
of a particular function g as above such that the mapping Sλ associated to it
has a “pathological” behavior, namely the set of parameters λ for which the
mapping has at least one rotational invariant curve does not “seem” to be an
interval.

Key Words: twist mappings, rotational invariant curves, topological methods,
vertical rotation number, piecewise linear standard mappings.

1. INTRODUCTION AND STATEMENT OF THE MAIN
RESULT

In this paper, we investigate the following problem:
Let g̃ :IR→IR be an analytic, non-zero, periodic function, g̃(x+1) = g̃(x),

such that
∫ 1

0
g̃(x)dx = 0. We define the following one parameter family (λ)

of analytic diffeomorphisms of the annulus:

Sλ :
{

y′ = λg(x) + y,
x′ = x + y′ mod 1,

(1)

where g : S1 →IR is the map induced by g̃.
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For all λ ∈IR, Sλ is an area-preserving twist mapping, because ∂yx′ = 1,
for any (x, y) ∈ S1×IR=(IR/ZZ)×IR and det[DSλ] = 1. Also, the fact that∫ 1

0
g̃(x)dx = 0 implies that Sλ is an exact mapping, which means that given

any homotopically non-trivial simple closed curve C ⊂ S1 × IR, the area
above C and below Sλ(C) is equal the area below C and above Sλ(C).
Another obvious fact about this family is that S0 is an integrable mapping,
that is, the cylinder is foliated by invariant curves y = y0.

So, KAM theory applies to Sλ and we can prove that there is a parameter
λ0 > 0, such that for any λ ∈ [0, λ0] Sλ has at least one rotational invariant
curve. On the other hand, if we choose x0 ∈ S1 such that g(x) ≤ g(x0) for
all x ∈ S1, we get that Sλ does not have rotational invariant curves for all
λ ≥λ∗ = 1

g(x0)
> 0. The proof of this classical fact is very simple, so we

present it here:
Given λ ≥ λ∗, choose xλ ∈ S1 such that λ= 1

g(xλ) . A computation shows
that Sn

λ (xλ, 0) = (xλ, n), for all n ∈ ZZ. So there can be no rotational
invariant curves.

A result due to Birkhoff implies that the set

Ag = {λ ≥ 0 : Sλ has at least one rotational invariant curve} (2)

is closed. So a very “natural” conjecture would be the following (see [5]):

Conjecture 1. Ag = [0, λcr], for some λcr > 0.

Another interesting one parameter family is the following:

Tλ :
{

y′ = g(x) + y + λ
x′ = x + y′ mod 1 (3)

Of course Tλ is also an area-preserving twist mapping, the difference is
that it is exact if and only if λ = 0, so when λ 6= 0 there is no rotational
invariant curve.

It can be proved (see section 2) that there is a closed interval, called
vertical rotation interval, ρV =[ρmin

V , ρmax
V ] associated to Sλ (and to Tλ)

with the following property: Given ω ∈ ρV , there is a point X ∈ S1 × IR
such that as n →∞

lim
p2 ◦ Sn

λ (X)− p2(X)
n

= ω,

where p1(x, y) = x and p2(x, y) = y. From the exactness of Sλ we get that
0 ∈ ρV (Sλ) for all λ ∈IR, something that may not hold for Tλ.

In section 3 we prove a result which implies that ρmax
V and ρmin

V are
continuous functions of the parameter λ. A first difference between Sλ

and Tλ is that ρmax
V (Sλ) = 0 for any λ ∈ [0, λ0] while ρmax

V (Tλ) 6= 0 for
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all λ 6= 0. In fact, in a certain sense, the behavior of the function λ →
ρmax

V (Tλ) is similar to the one of the rotation number of certain families of
homeomorphisms of the circle.

Given a circle homeomorphism f : S1 → S1, a well studied family (see
for instance [6]) is the one given by translations of f :

x′ = fλ(x) = f(x) + λ

In this case it is easy to prove that the rotation number of fλ is a non-
decreasing function of the parameter. We have a similar result for Tλ:

Lemma 2. ρmax
V (Tλ) is a non-decreasing function of λ.

As the proof will show, this fact is an easy consequence of proposition 3,
page 466 of [9].

If we had a similar result for Sλ, then Conjecture 1 would trivially be
true, because Ag = (ρmax

V )−1(0) (see Theorem 4) and this set is an interval
if ρmax

V (Sλ) is a non-decreasing function.
The main result of this note goes in the opposite direction; we present an

example in the analytic topology such that we do not know whether or not
Ag is a closed interval (although we believe it is not), but for this example
ρmax

V (Sλ) is not a non-decreasing function of λ. More precisely, we have:

Theorem 3. There exists an analytic function g∗ as above such that
ρmax

V (Sλ) is not a non-decreasing function of λ.

The proof of the theorem implies that we can choose

g∗(x) =
∑

an. cos(2πnx), for n = 1 to some N.

Although this choice of g∗ is a finite sum of cosines obtained as the trunca-
tion of a certain Fourier series of a continuous function, it is still possible
that for gS(x) = cos(2πx), ρmax

V (Sλ) is in fact a non-decreasing function,
as numerical experiments suggest. Nevertheless, this shows how subtle the
problem is. Moreover, the proof of the main theorem shows that a lot of
pathological families can be constructed. We just have to take any analytic
function g, which is periodic, has zero mean and is sufficiently C0 close to
the example that appears in [4].

The proof of this theorem is based on a result previously obtained by
the author, on a paper due to S.Bullett [4] on piecewise linear standard
mappings and on some consequences of results from [9].

2. BASIC TOOLS

First we present a theorem which is a consequence of some results from
[1]. Before we need to introduce some definitions:
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1) D0(T2) is the set of torus homeomorphisms T : T2 → T2 of the fol-
lowing form:

T :
{

y′ = g(x) + y mod 1
x′ = x + y′ mod 1 , (4)

where g : S1 → IR is a Lipschitz function such that
∫

S1g(x)dx = 0.

2) D0(S1× IR) is the set of lifts to the cylinder of elements from D0(T2),
the same for D0(IR2). Given T ∈ D0(T2) as in (4), its lifts T̂ ∈ D0(S1× IR)
and T̃ ∈ D0(IR2) write as (g̃ is a lift of g)

T̂ :
{

y′ = g(x) + y
x′ = x + y′ mod 1 and T̃ :

{
y′ = g̃(x) + y
x′ = x + y′

3) We say that T ∈ D0(T2) has a p
q -vertical periodic orbit (set) if there

is a point A ∈ S1 × IR such that T̂ q(A) = A + (0, p). It is clear that
T q(π2(A)) = π2(A), where π2 : S1 × IR → T2 is given by π2(x, y) = (x, y
mod 1). The periodic orbit that contains π2(A) is said to have vertical
rotation number ρV = p

q .

4) Given an irrational number ω, we say that T ∈ D0(T2) has a ω-
vertical quasi-periodic set if there is a compact T -invariant set Xω ⊂ T2,
such that for any X ∈ Xω and any Z ∈ π−1

2 (X),

ρV (Xω) = lim
p2 ◦ T̂n(Z)− p2(Z)

n
= ω, as n →∞

5) We say that T ∈ D0(T2) has a rotational invariant curve if there is
a homotopically non-trivial simple closed curve γ ⊂ S1 × IR, such that
T̂ (γ) = γ.

Now we have the following:

Theorem 4. Given T ∈ D0(T2), there exists a closed interval 0 ∈
[ρmin

V , ρmax
V ] such that for any ω ∈]ρmin

V , ρmax
V [, there is a periodic orbit or

quasi-periodic set Xω with ρV (Xω) = ω, depending on whether ω is ratio-
nal or not. Moreover, ρmin

V < 0 < ρmax
V if and only if, T does not have any

rotational invariant curve.

When ω ∈ {ρmin
V , ρmax

V } a standard argument in ergodic theory (see the
discussion below) proves that there is an orbit with that rotation number.
In fact, much more can be said, see [3].
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Following Misiurewicz and Ziemann [10], we can define another set that
is equal to the limit of all the convergent sequences

{
p2 ◦ T̂ni(Zi)− p2(Zi)

ni
, Zi ∈ S1 ×R, ni →∞

}
,

which we call ρV (T )∗. In the following we present a sketch of the proof that
ρV (T ) = ρV (T )∗.

First note that the definition of ρV (T )∗ implies ρV (T ) ⊆ ρV (T )∗. Now
if we define ω− = inf ρV (T )∗ and ω+ = sup ρV (T )∗, Theorem 2.4 of [10]
gives two ergodic T -invariant measures µ− and µ+ with vertical rotation
numbers ω− and ω+, respectively. This means that

∫

T2
[p2 ◦ T (X)− p2(X)] dµ−(+) = ω−(+).

Therefore from the Birkhoff ergodic theorem, there are points Z+ and Z−

with ρV (Z+) = ω+ and ρV (Z−) = ω−. Finally, applying Theorem 6 of the
appendix of [2], we get that [ω−, ω+] ⊆ ρV (T ), so ρV (T ) = ρV (T )∗.

In the following we recall some topological results for twist mappings
essentially due to Le Calvez (see [7] and [8] for proofs), that are used in some
proofs contained in this paper. Let T̂ : S1×IR ←↩ be a twist diffeomorphism
and T̃ : IR2 ←↩ be one of its lifts. We are not assuming area-preservation or
any other hypothesis, besides the twist condition, which can be expressed
as ∂yp1 ◦ T̂ ≥ K > 0, for some K > 0.

For every pair (s, q), s ∈ ZZ and q ∈ IN∗ we define the following sets:

K̃(s, q) =
{

(x, y) ∈ IR2: p1 ◦ T̃ q(x, y) = x + s
}

and
K(s, q) = π1 ◦ K̃(s, q),

(5)

where π1 : IR2 → S1 × IR is given by π1(x, y) = (x mod 1, y).
Then we have the following:

Lemma 5. For every s ∈ ZZ and q ∈ IN∗, K(s, q) ⊃ C(s, q), which is a
connected compact set that separates the cylinder.

Now let us define the following functions on S1:

µ−(x) = min{p2(Q): Q ∈ K(s, q) and p1(Q) = x}
µ+(x) = max{p2(Q): Q ∈ K(s, q) and p1(Q) = x}



6 S ADDAS–ZANATA

We also have have similar functions for T̂ q(K(s, q)):

ν−(x) = min{p2(Q): Q ∈ T̂ q ◦K(s, q) and p1(Q) = x},
ν+(x) = max{p2(Q): Q ∈ T̂ q ◦K(s, q) and p1(Q) = x}.

The following are important results:

Lemma 6. Defining Graph{µ±}={(x, µ±(x)) : x ∈ S1} we have:

Graph{µ−} ∪Graph{µ+} ⊂ C(s, q).

So for all x ∈ S1 we have (x, µ±(x)) ∈ C(s, q).

Lemma 7. T̂ q(x, µ−(x)) = (x, ν+(x)) and T̂ q(x, µ+(x)) = (x, ν−(x)).

Now we remember some ideas and results from [9]. In the following, T̂

and T̃ are lifts of a torus twist map which is homotopic to the Dehn twist
(φ, I) → (φ + I mod 1, I mod 1).

Given a triplet (s, p, q) ∈ ZZ2 × IN∗, if there is no point (x, y) ∈ IR2 such
that T̃ q(x, y) = (x + s, y + p), it can be proved that the sets T̂ q ◦K(s, q)
and K(s, q)+(0, p) can be separated by the graph of a continuous function
from S1 to IR, essentially because from all the previous results, either one
of the following inequalities must hold:

ν−(x)− µ+(x) > p (6)
ν+(x)− µ−(x) < p (7)

for all x ∈ S1, where ν+, ν−, µ+, µ− are associated to K(s, q).
Following Le Calvez [9], we say that the triplet (s, p, q) is positive (resp.

negative) for T̃ if T̂ q ◦ K(s, q) is above (6) (resp. below (7)) the graph.
Given T̃ ∈ D0(IR2), we have:

T̃ (x, y) = (x′, y′) ⇔ y = m(x, x′) and y′ = m′(x, x′),

where m and m′ are continuous maps from IR2 to IR with some especial
properties. In particular, if T̂ is area-preserving then there exists a function
h(x, x′) (called generating function) which satisfies:

m(x, x′) = −∂xh(x, x′) and m′(x, x′) = ∂x′h(x, x′).

For Sλ we get the following:

m(x, x′) = x′ − x− λg(x) and m′(x, x′) = x′ − x.



A STANDARD FAMILY OF TWIST MAPPINGS 7

If T̃ , T̃ ∗ are lifts to IR2 of two twist mappings of the torus, both homotopic
to Dehn twists, we say that T̃ ≤ T̃ ∗ if m∗ ≤ m and m′ ≤ m∗′, where (m,m′)
is associated to T̃ and (m∗,m∗′) to T̃ ∗.

Proposition 8. If (s, p, q) is a positive (resp. negative) triplet of T̃ and
if T̃ ≤ T̃ ∗ (resp. T̃ ≥ T̃ ∗), then (s, p, q) is a positive (resp. negative) triplet
of T̃ ∗.

Now we present an amazing example of a twist homeomorphism from
D0(T2). First, let g′ : S1 → IR be given by g′(x) =

∣∣x− 1
2

∣∣− 1
4 and so the

lift g̃′ : IR → IR is continuous, g̃′(x+1) = g̃′(x),
∫ 1

0
g̃′(x)dx = 0, Lip(g̃′) = 1

and g̃′(x) = g̃′(−x). Also, g̃′ is differentiable everywhere, except at points
of the form n

2 , n ∈ ZZ. The one parameter family S′λ ∈ D0(T2) is given by:

S′λ :
{

y′ = λg′(x) + y mod 1,
x′ = x + y′ mod 1.

(8)

In [4] this family is studied in detail and among other things, the following
theorem is proved:

Theorem 9. There are no rotational invariant curves for S′λ when
λ ∈ ]0.918, 1[

⋃
]4/3,∞[ and for λ = 4/3 there are “lots” of rotational

invariant curves.

3. PROOFS

3.1. Preliminary results

Proof (Proof of Lemma 2). This result is a trivial consequence of Propo-
sition 8. Given λ1 < λ2, we get from expression (3) that T̃λ1 ≤ T̃λ2 . So
if ρmax

V (Tλ2) < p/q < ρmax
V (Tλ1) for a certain rational number p/q, then

for any s ∈ ZZ the triplet (s, p, q) is negative for T̃λ2 , which implies by
Proposition 8 that it is also negative for T̃λ1 , which contradicts the fact
that ρmax

V (Tλ1) > p/q.

Now we prove the following theorem that has its own interest. It is easy
to see from the proof that it is valid in a more general context.

Theorem 10. The functions ρmax
V , ρmin

V : D0(T2) → IR are continuous.

Remark 11. The proofs are analogous, so we do it only for ρmax
V .

Proof. Suppose that there is a T0 ∈ D0(T2) such that ρmax
V is not

continuous at T0. This means that there is an ε > 0 and a sequence
D0(T2) 3Tn

n→∞→ T0 in the C0 topology, such that either:
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1) ρmax
V (Tn) > ρmax

V (T0) + ε, for all n, or
2) ρmax

V (Tn) < ρmax
V (T0)− ε, for all n.

The first possibility means that there exists a rational number p/q such
that ρmax

V (Tn) > p/q > ρmax
V (T0). This implies that for any s ∈ ZZ, the

triplet (s, p, q) is non-negative for T̃n (as the value of s is irrelevant in this
setting, we fix s = 0). But as ρmax

V (T0) < p/q, (0, p, q) is negative for T̃0.

As Tn
n→∞→ T0, we get from the upper semi-continuity in the Hausdorff

topology of the maps

T → K(0, q) and T → T̂ q(K(0, q)) (9)

that (0, p, q) is a negative triplet for all mappings sufficiently close to T̃0,
which is a contradiction.

In the same way, the second possibility means that there exists a rational
number p/q such that ρmax

V (Tn) < p/q < ρmax
V (T0). This implies that there

exists Q ∈ C(0, q) such that

p2 ◦ T̂0

q
(Q)− p2(Q) > p. (10)

Now we prove the following claim, which implies the theorem:

Claim 12. Any mapping T ∈ D0(T2) sufficiently close to T0 will satisfy
an inequality similar to (10).

Proof. First of all, let us define P0 = (xQ, µ−(xQ)), where xQ = p1(Q).
From lemma 7 and the definition of µ− and ν+, we get that ν+(xQ) =
p2 ◦ T̂0

q
(P0) > p2(P0) + p = µ−(xQ) + p. So there exists δ > 0 such that

for any Z ∈ Bδ(P0) we have

p2 ◦ T̂0

q
(Z) > p2(Z) + p.

Therefore, there exists a neighborhood T0 ∈ U ⊂ D0(T2) in the C0 topology
such that for any T ∈ U , we get p2 ◦ T̂ q(Z) > p2(Z)+p, for all Z ∈ Bδ(P0).
Now defining AB = {xQ × IR}∩Bδ(P0), lemma 6 implies that if we choose
a sufficiently small neighborhood V of C(0, q), then for all homotopically
non-trivial simple closed curves γ ⊂ V, we get that γ ∩ AB 6= ∅. By the
upper semi-continuity in the Hausdorff topology of the maps in (9), if we
choose a sufficiently small sub-neighborhood U ′ ⊂U we get for any T ∈ U ′
that the set C(0, q) associated to T is also contained in V. Therefore it
must cross AB.

So given any mapping T ∈ U ′⊂U , there is a point Q′ ∈ C(0, q) ∩ AB

which therefore satisfies p2 ◦ T̂ q(Q′) > p2(Q′) + p.
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Finally, the above claim implies that ρmax
V (Tn) ≥ p/q for sufficiently large

n, which is a contradiction.

3.2. Main theorem
In this section we prove Theorem 3.

First of all we note that from Theorem 9, the mapping S′λ ∈ D0(T2)
(see (8)) has no rotational invariant curve for λ = 0.95 and has “lots”
of rotational invariant curves for λ = 4/3 . Using Theorem 4 one gets
that ρmax

V (S′0.95) = ε > 0 and ρmax
V (S′4/3) = 0. A classical result in Fourier

analysis implies that the Fourier series g̃′N (x) =
∑

an cos(2πnx), n going
from 1 to some N , converges uniformly to g̃′, as N →∞. So if we choose
N > 0 sufficiently large, we get from Theorem 10 that ρmax

V (S′N,0.95) > ε/2
and ρmax

V (S′N,4/3) < ε/10, where S′N,λ is the twist mapping associated to
g′N .
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morphisme de l’anneau déviant la verticale, C. R. Acad. Sci. Paris, 321 (1995),
463-468.

10. M. Misiurewicz and K. Ziemian, Rotation Sets for Maps of Tori, J. London Math.
Soc. (2) 40 (1989), 490-506.




