A Note on a Standard Family of Twist Mappings

Salvador Addas-Zanata*
Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, Cidade Universitária, 05508-090 SãoPaulo, SP, Brazil.
E-mail: sazanata@ime.usp.br

We investigate the break up of the last invariant curve for analytic families of standard mappings

$$
S_{\lambda}:\left\{\begin{array}{l}
y^{\prime}=\lambda g(x)+y \\
x^{\prime}=x+y^{\prime} \bmod 1
\end{array}\right.
$$

where $g: S^{1} \rightarrow \mathbb{R}$ is an analytic function such that $\int_{S^{1}} g(x) d x=0$. Our main result is another evidence of how hard this problem is. We give an example of a particular function g as above such that the mapping S_{λ} associated to it has a "pathological" behavior, namely the set of parameters λ for which the mapping has at least one rotational invariant curve does not "seem" to be an interval.

Key Words: twist mappings, rotational invariant curves, topological methods, vertical rotation number, piecewise linear standard mappings.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

In this paper, we investigate the following problem:
Let $\widetilde{g}: \mathbb{R} \rightarrow \mathbb{R}$ be an analytic, non-zero, periodic function, $\widetilde{g}(x+1)=\widetilde{g}(x)$, such that $\int_{0}^{1} \widetilde{g}(x) d x=0$. We define the following one parameter family (λ) of analytic diffeomorphisms of the annulus:

$$
S_{\lambda}:\left\{\begin{array}{l}
y^{\prime}=\lambda g(x)+y \tag{1}\\
x^{\prime}=x+y^{\prime} \bmod 1
\end{array}\right.
$$

where $g: S^{1} \rightarrow \mathbb{R}$ is the map induced by \widetilde{g}.

[^0]For all $\lambda \in \mathbb{R}, S_{\lambda}$ is an area-preserving twist mapping, because $\partial_{y} x^{\prime}=1$, for any $(x, y) \in S^{1} \times \mathbb{R}=(\mathbb{R} / \mathbb{Z}) \times \mathbb{R}$ and $\operatorname{det}\left[D S_{\lambda}\right]=1$. Also, the fact that $\int_{0}^{1} \widetilde{g}(x) d x=0$ implies that S_{λ} is an exact mapping, which means that given any homotopically non-trivial simple closed curve $C \subset S^{1} \times \mathbb{R}$, the area above C and below $S_{\lambda}(C)$ is equal the area below C and above $S_{\lambda}(C)$. Another obvious fact about this family is that S_{0} is an integrable mapping, that is, the cylinder is foliated by invariant curves $y=y_{0}$.

So, KAM theory applies to S_{λ} and we can prove that there is a parameter $\lambda_{0}>0$, such that for any $\lambda \in\left[0, \lambda_{0}\right] S_{\lambda}$ has at least one rotational invariant curve. On the other hand, if we choose $x_{0} \in S^{1}$ such that $g(x) \leq g\left(x_{0}\right)$ for all $x \in S^{1}$, we get that S_{λ} does not have rotational invariant curves for all $\lambda \geq \lambda^{*}=\frac{1}{g\left(x_{0}\right)}>0$. The proof of this classical fact is very simple, so we present it here:

Given $\lambda \geq \lambda^{*}$, choose $x_{\lambda} \in S^{1}$ such that $\lambda=\frac{1}{g\left(x_{\lambda}\right)}$. A computation shows that $S_{\lambda}^{n}\left(x_{\lambda}, 0\right)=\left(x_{\lambda}, n\right)$, for all $n \in \mathbb{Z}$. So there can be no rotational invariant curves.

A result due to Birkhoff implies that the set

$$
\begin{equation*}
A_{g}=\left\{\lambda \geq 0: S_{\lambda} \text { has at least one rotational invariant curve }\right\} \tag{2}
\end{equation*}
$$

is closed. So a very "natural" conjecture would be the following (see [5]):
Conjecture 1. $A_{g}=\left[0, \lambda_{c r}\right]$, for some $\lambda_{c r}>0$.
Another interesting one parameter family is the following:

$$
T_{\lambda}:\left\{\begin{array}{l}
y^{\prime}=g(x)+y+\lambda \tag{3}\\
x^{\prime}=x+y^{\prime} \bmod 1
\end{array}\right.
$$

Of course T_{λ} is also an area-preserving twist mapping, the difference is that it is exact if and only if $\lambda=0$, so when $\lambda \neq 0$ there is no rotational invariant curve.

It can be proved (see section 2) that there is a closed interval, called vertical rotation interval, $\rho_{V}=\left[\rho_{V}^{\min }, \rho_{V}^{\max }\right]$ associated to S_{λ} (and to T_{λ}) with the following property: Given $\omega \in \rho_{V}$, there is a point $X \in S_{1} \times \mathbb{R}$ such that as $n \rightarrow \infty$

$$
\lim \frac{p_{2} \circ S_{\lambda}^{n}(X)-p_{2}(X)}{n}=\omega
$$

where $p_{1}(x, y)=x$ and $p_{2}(x, y)=y$. From the exactness of S_{λ} we get that $0 \in \rho_{V}\left(S_{\lambda}\right)$ for all $\lambda \in \mathbb{R}$, something that may not hold for T_{λ}.

In section 3 we prove a result which implies that $\rho_{V}^{\max }$ and $\rho_{V}^{\min }$ are continuous functions of the parameter λ. A first difference between S_{λ} and T_{λ} is that $\rho_{V}^{\max }\left(S_{\lambda}\right)=0$ for any $\lambda \in\left[0, \lambda_{0}\right]$ while $\rho_{V}^{\max }\left(T_{\lambda}\right) \neq 0$ for
all $\lambda \neq 0$. In fact, in a certain sense, the behavior of the function $\lambda \rightarrow$ $\rho_{V}^{\max }\left(T_{\lambda}\right)$ is similar to the one of the rotation number of certain families of homeomorphisms of the circle.

Given a circle homeomorphism $f: S^{1} \rightarrow S^{1}$, a well studied family (see for instance [6]) is the one given by translations of f :

$$
x^{\prime}=f_{\lambda}(x)=f(x)+\lambda
$$

In this case it is easy to prove that the rotation number of f_{λ} is a nondecreasing function of the parameter. We have a similar result for T_{λ} :

Lemma 2. $\quad \rho_{V}^{\max }\left(T_{\lambda}\right)$ is a non-decreasing function of λ.
As the proof will show, this fact is an easy consequence of proposition 3, page 466 of [9].

If we had a similar result for S_{λ}, then Conjecture 1 would trivially be true, because $A_{g}=\left(\rho_{V}^{\max }\right)^{-1}(0)$ (see Theorem 4) and this set is an interval if $\rho_{V}^{\max }\left(S_{\lambda}\right)$ is a non-decreasing function.

The main result of this note goes in the opposite direction; we present an example in the analytic topology such that we do not know whether or not A_{g} is a closed interval (although we believe it is not), but for this example $\rho_{V}^{\max }\left(S_{\lambda}\right)$ is not a non-decreasing function of λ. More precisely, we have:

Theorem 3. There exists an analytic function g^{*} as above such that $\rho_{V}^{\max }\left(S_{\lambda}\right)$ is not a non-decreasing function of λ.

The proof of the theorem implies that we can choose

$$
g^{*}(x)=\sum a_{n} \cdot \cos (2 \pi n x), \text { for } n=1 \text { to some } N
$$

Although this choice of g^{*} is a finite sum of cosines obtained as the truncation of a certain Fourier series of a continuous function, it is still possible that for $g_{S}(x)=\cos (2 \pi x), \rho_{V}^{\max }\left(S_{\lambda}\right)$ is in fact a non-decreasing function, as numerical experiments suggest. Nevertheless, this shows how subtle the problem is. Moreover, the proof of the main theorem shows that a lot of pathological families can be constructed. We just have to take any analytic function g, which is periodic, has zero mean and is sufficiently C^{0} close to the example that appears in [4].

The proof of this theorem is based on a result previously obtained by the author, on a paper due to S.Bullett [4] on piecewise linear standard mappings and on some consequences of results from [9].

2. BASIC TOOLS

First we present a theorem which is a consequence of some results from [1]. Before we need to introduce some definitions:

1) $D_{0}\left(\mathrm{~T}^{2}\right)$ is the set of torus homeomorphisms $T: \mathrm{T}^{2} \rightarrow \mathrm{~T}^{2}$ of the following form:

$$
T:\left\{\begin{array}{l}
y^{\prime}=g(x)+y \bmod 1 \tag{4}\\
x^{\prime}=x+y^{\prime} \bmod 1
\end{array}\right.
$$

where $g: S^{1} \rightarrow \mathbb{R}$ is a Lipschitz function such that $\int_{S^{1}} g(x) d x=0$.
2) $D_{0}\left(S^{1} \times \mathbb{R}\right)$ is the set of lifts to the cylinder of elements from $D_{0}\left(\mathrm{~T}^{2}\right)$, the same for $D_{0}\left(\mathbb{R}^{2}\right)$. Given $T \in D_{0}\left(\mathrm{~T}^{2}\right)$ as in (4), its lifts $\widehat{T} \in D_{0}\left(S^{1} \times \mathbb{R}\right)$ and $\widetilde{T} \in D_{0}\left(\mathbb{R}^{2}\right)$ write as (\widetilde{g} is a lift of g)

$$
\widehat{T}:\left\{\begin{array}{l}
y^{\prime}=g(x)+y \\
x^{\prime}=x+y^{\prime} \bmod 1
\end{array} \text { and } \widetilde{T}:\left\{\begin{array}{l}
y^{\prime}=\widetilde{g}(x)+y \\
x^{\prime}=x+y^{\prime}
\end{array}\right.\right.
$$

3) We say that $T \in D_{0}\left(\mathrm{~T}^{2}\right)$ has a $\frac{p}{q}$-vertical periodic orbit (set) if there is a point $A \in S^{1} \times \mathbb{R}$ such that $\widehat{\widehat{T}}^{q}(A)=A+(0, p)$. It is clear that $T^{q}\left(\pi_{2}(A)\right)=\pi_{2}(A)$, where $\pi_{2}: S^{1} \times \mathbb{R} \rightarrow \mathrm{T}^{2}$ is given by $\pi_{2}(x, y)=(x, y$ $\bmod 1)$. The periodic orbit that contains $\pi_{2}(A)$ is said to have vertical rotation number $\rho_{V}=\frac{p}{q}$.
4) Given an irrational number ω, we say that $T \in D_{0}\left(T^{2}\right)$ has a ω vertical quasi-periodic set if there is a compact T-invariant set $X_{\omega} \subset \mathrm{T}^{2}$, such that for any $X \in X_{\omega}$ and any $Z \in \pi_{2}^{-1}(X)$,

$$
\rho_{V}\left(X_{\omega}\right)=\lim \frac{p_{2} \circ \widehat{T}^{n}(Z)-p_{2}(Z)}{n}=\omega, \text { as } n \rightarrow \infty
$$

5) We say that $T \in D_{0}\left(\mathrm{~T}^{2}\right)$ has a rotational invariant curve if there is a homotopically non-trivial simple closed curve $\gamma \subset S^{1} \times \mathbb{R}$, such that $\widehat{T}(\gamma)=\gamma$.

Now we have the following:
Theorem 4. Given $T \in D_{0}\left(\mathrm{~T}^{2}\right)$, there exists a closed interval $0 \in$ $\left[\rho_{V}^{\min }, \rho_{V}^{\max }\right]$ such that for any $\left.\omega \in\right] \rho_{V}^{\min }, \rho_{V}^{\max }[$, there is a periodic orbit or quasi-periodic set X_{ω} with $\rho_{V}\left(X_{\omega}\right)=\omega$, depending on whether ω is rational or not. Moreover, $\rho_{V}^{\min }<0<\rho_{V}^{\max }$ if and only if, T does not have any rotational invariant curve.

When $\omega \in\left\{\rho_{V}^{\min }, \rho_{V}^{\max }\right\}$ a standard argument in ergodic theory (see the discussion below) proves that there is an orbit with that rotation number. In fact, much more can be said, see [3].

Following Misiurewicz and Ziemann [10], we can define another set that is equal to the limit of all the convergent sequences

$$
\left\{\frac{p_{2} \circ \widehat{T}^{n_{i}}\left(Z_{i}\right)-p_{2}\left(Z_{i}\right)}{n_{i}}, Z_{i} \in S^{1} \times \mathrm{R}, n_{i} \rightarrow \infty\right\}
$$

which we call $\rho_{V}(T)^{*}$. In the following we present a sketch of the proof that $\rho_{V}(T)=\rho_{V}(T)^{*}$.

First note that the definition of $\rho_{V}(T)^{*}$ implies $\rho_{V}(T) \subseteq \rho_{V}(T)^{*}$. Now if we define $\omega^{-}=\inf \rho_{V}(T)^{*}$ and $\omega^{+}=\sup \rho_{V}(T)^{*}$, Theorem 2.4 of [10] gives two ergodic T-invariant measures μ_{-}and μ_{+}with vertical rotation numbers ω^{-}and ω^{+}, respectively. This means that

$$
\int_{\mathrm{T}^{2}}\left[p_{2} \circ T(X)-p_{2}(X)\right] d \mu_{-(+)}=\omega^{-(+)} .
$$

Therefore from the Birkhoff ergodic theorem, there are points Z^{+}and Z^{-} with $\rho_{V}\left(Z^{+}\right)=\omega^{+}$and $\rho_{V}\left(Z^{-}\right)=\omega^{-}$. Finally, applying Theorem 6 of the appendix of $[2]$, we get that $\left[\omega^{-}, \omega^{+}\right] \subseteq \rho_{V}(T)$, so $\rho_{V}(T)=\rho_{V}(T)^{*}$.

In the following we recall some topological results for twist mappings essentially due to Le Calvez (see [7] and [8] for proofs), that are used in some proofs contained in this paper. Let $\widehat{T}: S^{1} \times \mathbb{R} \hookleftarrow$ be a twist diffeomorphism and $\widetilde{T}: \mathbb{R}^{2} \hookleftarrow$ be one of its lifts. We are not assuming area-preservation or any other hypothesis, besides the twist condition, which can be expressed as $\partial_{y} p_{1} \circ \widehat{T} \geq K>0$, for some $K>0$.

For every pair $(s, q), s \in \mathbb{Z}$ and $q \in \mathbb{N}^{*}$ we define the following sets:

$$
\begin{gather*}
\widetilde{K}(s, q)=\left\{(x, y) \in \mathbb{R}^{2}: p_{1} \circ \widetilde{T}^{q}(x, y)=x+s\right\} \\
\quad \text { and } \tag{5}\\
K(s, q)=\pi_{1} \circ \widetilde{K}(s, q),
\end{gather*}
$$

where $\pi_{1}: \mathbb{R}^{2} \rightarrow \mathrm{~S}^{1} \times \mathbb{R}$ is given by $\pi_{1}(x, y)=(x \bmod 1, y)$.
Then we have the following:
Lemma 5. For every $s \in \mathbb{Z}$ and $q \in \mathbb{N}^{*}, K(s, q) \supset C(s, q)$, which is a connected compact set that separates the cylinder.

Now let us define the following functions on S^{1} :

$$
\begin{aligned}
& \mu^{-}(x)=\min \left\{p_{2}(Q): Q \in K(s, q) \text { and } p_{1}(Q)=x\right\} \\
& \mu^{+}(x)=\max \left\{p_{2}(Q): Q \in K(s, q) \text { and } p_{1}(Q)=x\right\}
\end{aligned}
$$

We also have have similar functions for $\widehat{T}^{q}(K(s, q))$:

$$
\begin{aligned}
\nu^{-}(x) & =\min \left\{p_{2}(Q): Q \in \widehat{T}^{q} \circ K(s, q) \text { and } p_{1}(Q)=x\right\} \\
\nu^{+}(x) & =\max \left\{p_{2}(Q): Q \in \widehat{T}^{q} \circ K(s, q) \text { and } p_{1}(Q)=x\right\} .
\end{aligned}
$$

The following are important results:
Lemma 6. Defining Graph $\left\{\mu^{ \pm}\right\}=\left\{\left(x, \mu^{ \pm}(x)\right): x \in S^{1}\right\}$ we have:

$$
\operatorname{Graph}\left\{\mu^{-}\right\} \cup \operatorname{Graph}\left\{\mu^{+}\right\} \subset C(s, q)
$$

So for all $x \in S^{1}$ we have $\left(x, \mu^{ \pm}(x)\right) \in C(s, q)$.
Lemma 7. $\widehat{T}^{q}\left(x, \mu^{-}(x)\right)=\left(x, \nu^{+}(x)\right)$ and $\widehat{T}^{q}\left(x, \mu^{+}(x)\right)=\left(x, \nu^{-}(x)\right)$.
Now we remember some ideas and results from [9]. In the following, \widehat{T} and \widetilde{T} are lifts of a torus twist map which is homotopic to the Dehn twist $(\phi, I) \rightarrow(\phi+I \bmod 1, I \bmod 1)$.

Given a triplet $(s, p, q) \in \mathbb{Z}^{2} \times \mathbb{N}^{*}$, if there is no point $(x, y) \in \mathbb{R}^{2}$ such that $\widetilde{T}^{q}(x, y)=(x+s, y+p)$, it can be proved that the sets $\widehat{T}^{q} \circ K(s, q)$ and $K(s, q)+(0, p)$ can be separated by the graph of a continuous function from S^{1} to \mathbb{R}, essentially because from all the previous results, either one of the following inequalities must hold:

$$
\begin{align*}
& \nu^{-}(x)-\mu^{+}(x)>p \tag{6}\\
& \nu^{+}(x)-\mu^{-}(x)<p \tag{7}
\end{align*}
$$

for all $x \in S^{1}$, where $\nu^{+}, \nu^{-}, \mu^{+}, \mu^{-}$are associated to $K(s, q)$.
Following Le Calvez [9], we say that the triplet (s, p, q) is positive (resp. negative) for \widetilde{T} if $\widehat{T}^{q} \circ K(s, q)$ is above (6) (resp. below (7)) the graph. Given $\widetilde{T} \in D_{0}\left(\mathbb{R}^{2}\right)$, we have:

$$
\widetilde{T}(x, y)=\left(x^{\prime}, y^{\prime}\right) \Leftrightarrow y=m\left(x, x^{\prime}\right) \text { and } y^{\prime}=m^{\prime}\left(x, x^{\prime}\right)
$$

where m and m^{\prime} are continuous maps from \mathbb{R}^{2} to \mathbb{R} with some especial properties. In particular, if \widehat{T} is area-preserving then there exists a function $h\left(x, x^{\prime}\right)$ (called generating function) which satisfies:

$$
m\left(x, x^{\prime}\right)=-\partial_{x} h\left(x, x^{\prime}\right) \text { and } m^{\prime}\left(x, x^{\prime}\right)=\partial_{x^{\prime}} h\left(x, x^{\prime}\right)
$$

For S_{λ} we get the following:

$$
m\left(x, x^{\prime}\right)=x^{\prime}-x-\lambda g(x) \text { and } m^{\prime}\left(x, x^{\prime}\right)=x^{\prime}-x
$$

If $\widetilde{T}, \widetilde{T^{*}}$ are lifts to \mathbb{R}^{2} of two twist mappings of the torus, both homotopic to Dehn twists, we say that $\widetilde{T} \leq \widetilde{T^{*}}$ if $m^{*} \leq m$ and $m^{\prime} \leq m^{* \prime}$, where (m, m^{\prime}) is associated to \widetilde{T} and $\left(m^{*}, m^{* \prime}\right)$ to $\widetilde{T^{*}}$.

Proposition 8. If (s, p, q) is a positive (resp. negative) triplet of \widetilde{T} and if $\widetilde{T} \leq \widetilde{T^{*}}\left(\right.$ resp. $\left.\widetilde{T} \geq \widetilde{T^{*}}\right)$, then (s, p, q) is a positive (resp. negative) triplet of $\widetilde{T^{*}}$.

Now we present an amazing example of a twist homeomorphism from $D_{0}\left(\mathrm{~T}^{2}\right)$. First, let $g^{\prime}: S^{1} \rightarrow \mathbb{R}$ be given by $g^{\prime}(x)=\left|x-\frac{1}{2}\right|-\frac{1}{4}$ and so the lift $\widetilde{g}^{\prime}: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, $\widetilde{g}^{\prime}(x+1)=\widetilde{g}^{\prime}(x), \int_{0}^{1} \widetilde{g}^{\prime}(x) d x=0, \operatorname{Lip}\left(\widetilde{g}^{\prime}\right)=1$ and $\widetilde{g}^{\prime}(x)=\tilde{g}^{\prime}(-x)$. Also, \widetilde{g}^{\prime} is differentiable everywhere, except at points of the form $\frac{n}{2}, n \in \mathbb{Z}$. The one parameter family $S_{\lambda}^{\prime} \in D_{0}\left(\mathrm{~T}^{2}\right)$ is given by:

$$
S_{\lambda}^{\prime}:\left\{\begin{array}{l}
y^{\prime}=\lambda g^{\prime}(x)+y \bmod 1 \tag{8}\\
x^{\prime}=x+y^{\prime} \bmod 1
\end{array}\right.
$$

In [4] this family is studied in detail and among other things, the following theorem is proved:

Theorem 9. There are no rotational invariant curves for S_{λ}^{\prime} when
$\lambda \in] 0.918,1[\bigcup] 4 / 3, \infty[$ and for $\lambda=4 / 3$ there are "lots" of rotational invariant curves.

3. PROOFS

3.1. Preliminary results

Proof (Proof of Lemma 2). This result is a trivial consequence of Proposition 8. Given $\lambda_{1}<\lambda_{2}$, we get from expression (3) that $\widetilde{T}_{\lambda_{1}} \leq \widetilde{T}_{\lambda_{2}}$. So if $\rho_{V}^{\max }\left(T_{\lambda_{2}}\right)<p / q<\rho_{V}^{\max }\left(T_{\lambda_{1}}\right)$ for a certain rational number p / q, then for any $s \in \mathbb{Z}$ the triplet (s, p, q) is negative for $\widetilde{T}_{\lambda_{2}}$, which implies by Proposition 8 that it is also negative for $\widetilde{T}_{\lambda_{1}}$, which contradicts the fact that $\rho_{V}^{\max }\left(T_{\lambda_{1}}\right)>p / q$.

Now we prove the following theorem that has its own interest. It is easy to see from the proof that it is valid in a more general context.

Theorem 10. The functions $\rho_{V}^{\max }, \rho_{V}^{\min }: D_{0}\left(\mathrm{~T}^{2}\right) \rightarrow \mathbb{R}$ are continuous.
Remark 11. The proofs are analogous, so we do it only for $\rho_{V}^{\max }$.
Proof. Suppose that there is a $T_{0} \in D_{0}\left(\mathrm{~T}^{2}\right)$ such that $\rho_{V}^{\max }$ is not continuous at T_{0}. This means that there is an $\epsilon>0$ and a sequence $D_{0}\left(\mathrm{~T}^{2}\right) \ni T_{n} \xrightarrow{n \rightarrow \infty} T_{0}$ in the C^{0} topology, such that either:

1) $\rho_{V}^{\max }\left(T_{n}\right)>\rho_{V}^{\max }\left(T_{0}\right)+\epsilon$, for all n, or
2) $\rho_{V}^{\max }\left(T_{n}\right)<\rho_{V}^{\max }\left(T_{0}\right)-\epsilon$, for all n.

The first possibility means that there exists a rational number p / q such that $\rho_{V}^{\max }\left(T_{n}\right)>p / q>\rho_{V}^{\max }\left(T_{0}\right)$. This implies that for any $s \in \mathbb{Z}$, the triplet (s, p, q) is non-negative for \widetilde{T}_{n} (as the value of s is irrelevant in this setting, we fix $s=0)$. But as $\rho_{V}^{\max }\left(T_{0}\right)<p / q,(0, p, q)$ is negative for \widetilde{T}_{0}. As $T_{n} \xrightarrow{n \rightarrow \infty} T_{0}$, we get from the upper semi-continuity in the Hausdorff topology of the maps

$$
\begin{equation*}
T \rightarrow K(0, q) \text { and } T \rightarrow \widehat{T}^{q}(K(0, q)) \tag{9}
\end{equation*}
$$

that $(0, p, q)$ is a negative triplet for all mappings sufficiently close to \widetilde{T}_{0}, which is a contradiction.

In the same way, the second possibility means that there exists a rational number p / q such that $\rho_{V}^{\max }\left(T_{n}\right)<p / q<\rho_{V}^{\max }\left(T_{0}\right)$. This implies that there exists $Q \in C(0, q)$ such that

$$
\begin{equation*}
p_{2} \circ{\widehat{T_{0}}}^{q}(Q)-p_{2}(Q)>p \tag{10}
\end{equation*}
$$

Now we prove the following claim, which implies the theorem:
Claim 12. Any mapping $T \in D_{0}\left(\mathrm{~T}^{2}\right)$ sufficiently close to T_{0} will satisfy an inequality similar to (10).

Proof. First of all, let us define $P_{0}=\left(x_{Q}, \mu^{-}\left(x_{Q}\right)\right)$, where $x_{Q}=p_{1}(Q)$. From lemma 7 and the definition of μ^{-}and ν^{+}, we get that $\nu^{+}\left(x_{Q}\right)=$ $p_{2} \circ{\widehat{T_{0}}}^{q}\left(P_{0}\right)>p_{2}\left(P_{0}\right)+p=\mu^{-}\left(x_{Q}\right)+p$. So there exists $\delta>0$ such that for any $Z \in \overline{B_{\delta}\left(P_{0}\right)}$ we have

$$
p_{2} \circ{\widehat{T_{0}}}^{q}(Z)>p_{2}(Z)+p
$$

Therefore, there exists a neighborhood $T_{0} \in \mathcal{U} \subset D_{0}\left(\mathrm{~T}^{2}\right)$ in the C^{0} topology such that for any $T \in \mathcal{U}$, we get $p_{2} \circ \widehat{T}^{q}(Z)>p_{2}(Z)+p$, for all $Z \in B_{\delta}\left(P_{0}\right)$. Now defining $\overline{A B}=\left\{x_{Q} \times \mathbb{R}\right\} \cap B_{\delta}\left(P_{0}\right)$, lemma 6 implies that if we choose a sufficiently small neighborhood V of $C(0, q)$, then for all homotopically non-trivial simple closed curves $\gamma \subset V$, we get that $\gamma \cap \overline{A B} \neq \emptyset$. By the upper semi-continuity in the Hausdorff topology of the maps in (9), if we choose a sufficiently small sub-neighborhood $\mathcal{U}^{\prime} \subset \mathcal{U}$ we get for any $T \in \mathcal{U}^{\prime}$ that the set $C(0, q)$ associated to T is also contained in V. Therefore it must cross $\overline{A B}$.

So given any mapping $T \in \mathcal{U}^{\prime} \subset \mathcal{U}$, there is a point $Q^{\prime} \in C(0, q) \cap \overline{A B}$ which therefore satisfies $p_{2} \circ \widehat{T}^{q}\left(Q^{\prime}\right)>p_{2}\left(Q^{\prime}\right)+p$.

Finally, the above claim implies that $\rho_{V}^{\max }\left(T_{n}\right) \geq p / q$ for sufficiently large n, which is a contradiction.

3.2. Main theorem

In this section we prove Theorem 3.
First of all we note that from Theorem 9, the mapping $S_{\lambda}^{\prime} \in D_{0}\left(\mathrm{~T}^{2}\right)$ (see (8)) has no rotational invariant curve for $\lambda=0.95$ and has "lots" of rotational invariant curves for $\lambda=4 / 3$. Using Theorem 4 one gets that $\rho_{V}^{\max }\left(S_{0.95}^{\prime}\right)=\epsilon>0$ and $\rho_{V}^{\max }\left(S_{4 / 3}^{\prime}\right)=0$. A classical result in Fourier analysis implies that the Fourier series $\widetilde{g}_{N}^{\prime}(x)=\sum a_{n} \cos (2 \pi n x)$, n going from 1 to some N, converges uniformly to \widetilde{g}^{\prime}, as $N \rightarrow \infty$. So if we choose $N>0$ sufficiently large, we get from Theorem 10 that $\rho_{V}^{\max }\left(S_{N, 0.95}^{\prime}\right)>\epsilon / 2$ and $\rho_{V}^{\max }\left(S_{N, 4 / 3}^{\prime}\right)<\epsilon / 10$, where $S_{N, \lambda}^{\prime}$ is the twist mapping associated to g_{N}^{\prime}.

ACKNOWLEDGMENT

I am very grateful to the referee for a careful reading of the paper and for many valuables suggestions.

REFERENCES

1. S. Addas-Zanata, On the existence of a new type of periodic and quasi-periodic orbits for twist maps of the torus, Nonlinearity 15 (5) (2002), 1399-1416.
2. S. Addas-Zanata and C. Grotta-Ragazzo, On the stability of some periodic orbits of a new type for twist maps, Nonlinearity 15 (5) (2002), 1385-1398.
3. S. Addas-Zanata, On properties of the vertical rotation interval for twist mappings, Erg. Th. \& Dyn. Sys. 25 (2005), 641-660
4. S. Bullett, Invariant Circles for the Piecewise Linear Standard Map, Comm. Math. Phys. 107 (1986), 241-262.
5. G. Hall, Some problems on dynamics of annulus maps, Contemporary Mathematics 81 (1988), 135-151.
6. M. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à une rotation, Publ. Math. I.H.E.S. 49 (1979), 5-234.
7. P. Le Calvez, Existence d'orbites quasi-périodiques dans les attracteurs de Birkhoff, Comm. Math. Phys. 106 (1986), 383-394.
8. P. Le Calvez, Propriétés Dynamiques des Difféomorphismes de L'Anneau et du Tore, Astérisque 204 (1991).
9. P. Le Calvez, Construction d'orbites périodiques par perturbation d'un difféomorphisme de l'anneau déviant la verticale, C. R. Acad. Sci. Paris, 321 (1995), 463-468.
10. M. Misiurewicz and K. Ziemian, Rotation Sets for Maps of Tori, J. London Math. Soc. (2) 40 (1989), 490-506.

[^0]: * Partially supported by CNPq, grant: 301485/03-8 and FAPESP, grant: 01/12449-5.

