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A phase portrait of a vector field on a plane is called completely symmet-
ric if it is invariant with respect to the group consisting of four involutions
i1, i2, i1i2, id. The simplest example is a local center defined by the germ of
an analytic vector field with a non-degenerate linear approximation. By the
Poincare-Lyapunov theorem such a center is diffeomorphic to the center de-
fined by the vector field ẋ1 = x2, ẋ2 = −x1 and consequently it is is completely
symmetric. The paper is devoted to the classification of completely symmetric
centers defined by germs of vector fields with a nilpotent linear approximation
and by germs of vector fields with zero 2-jet and generic 3-jet.
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1. INTRODUCTION AND MAIN RESULTS

In the sequel all objects are germs at 0 ∈ R2 and belong to a fixed
category which is either C∞ or Cω (real analytic).

By a phase portrait of a vector field on the plane will be understood the
non-oriented phase portraits, i.e., the foliation of the plane by the phase
curves of the vector field.

An involution of the plane is a local diffeomorphism i : (R2, 0) → (R2, 0)
such that i2 = id. Simplest examples of involutions:

i1 : (x1, x2) → (−x1, x2), i2 : (x1, x2) → (x1,−x2). (1)

* This research was supported by the Fund for the Promotion of Research at the
Technion. I am thankful to A. Davydov, M.A. Teixeira and S. Yakovenko for discussing
local classification problems involving involutions. This paper would never have been
written if J. Llibre did not explain me the world of centers and various approaches for
their analysis.
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Note that the composition of two involutions is as involution if and only
if these involutions commute. The involutions i1 and i2 commute, and their
composition is the involution (x1, x2) → (−x1,−x2) preserving orientation
of the plane. The involutions i1 and i2 are orientation-reversing.

Note also that if i is an involution and φ is a local diffeomorphism then
φ−1 ◦ i ◦ φ is also an involution (conjugate to i), therefore an involution
does not need to be linear.

A phase portrait is symmetric with respect to an involution i if the i-
image of any phase curve is also a phase curve.

Definition 1. A phase portrait will be called completely symmetric
if it is symmetric with respect to a group consisting of four involutions
(including id).

The explanation of this definition is as follows: any group of involutions
of the plane consists either of two or of four involutions (including id). This
is a corollary of the following classical Bochner theorem.

Theorem 2. (Bochner, see [5].) Let G be a group consisting of a fi-
nite number of local diffeomorphisms φ1, . . . φp of Rn. There exists a local
coordinate system x = (x1, . . . , xn) in which each of the diffeomorphisms
φi ∈ G is linear: φi(x) = Aix, i = 1, . . . , p, where Ai are matrices.

In the case n = 2 this theorem implies the following corollary which will
be used throughout the paper.

Theorem 3. (corollary of Theorem 2). Any group G 6= {id} of invo-
lutions of the plane consists either of two involutions i, id or of four com-
muting involutions. In the latter case there exists a local coordinate system
(x1, x2) such that G = {i1, i2, i1i2, id}, where i1 and i2 have form (1).

Within phase portraits defined by linear vector fields ẋ = Ax with a non-
degenerate matrix A the saddle, the node with different eigenvalues, and
the center are completely symmetric. In fact, in these cases a linear change
of coordinates brings the vector field to the form X : ẋ1 = λ1x1, ẋ2 = λ2x2

or X : ẋ1 = −λx2, ẋ2 = λx1. In the first case (i1)∗X = (i2)∗X = X and
in the second case (i1)∗X = (i2)∗X = −X. In both cases the involutions
(1) preserve the phase portrait of X. The phase portrait of the vector
field ẋ1 = λx1, ẋ2 = λx2 is of course also completely symmetric. It is
easy to see that in all other cases (focus and non-diagonalizable node) the
phase portrait of a linear vector field with a non-degenerate matrix A is
not completely symmetric.

It follows that in the C∞ category the phase portrait of a vector field
X on the plane with the linear approximation ẋ = Ax at the singular
point 0 ∈ R2 is completely symmetric provided that the eigenvalues of A
are real and different and there are no resonant relations (in this case X
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reduces to its linear part by a change of coordinates, see [1]). In the Cω

category the same is true under additional assumption that there are no
”small denominators” (Siegel or Brjuno condition, see [1]).

Another case where one has a complete symmetry is the case of a Cω non-
degenerate center (center defined by a vector field X with a non-degenerate
linear approximation, i.e., with pure imaginary eigenvalues at the singular
point.) In this case X is in general not linearizable by a change of co-
ordinates, but by the classical Poincare-Lyapunov theorem (see [7] and
references there) it is orbitally equivalent to its linear approximation. By
definition two vector fields are orbitally equivalent if one of them can be
brought to the other by a local diffeomorphism (change of coordinates) and
multiplication by a non-vanishing function. The multiplication of a vector
field by a non-vanishing function Q does not change its phase portrait (re-
mind that we consider non-oriented phase portraits, the oriented phase
portrait will be the same only if Q > 0). Therefore the Poincare-Lyapunov
theorem implies the following corollary.

Theorem 4. (corollary of Poincare-Lyapunov theorem). In the Cω cat-
egory any non-degenerate center is completely symmetric and diffeomorphic
to the center given by the vector field ẋ1 = x2, ẋ2 = −x1.

Completely symmetric centers are not exhausted by non-degenerate cen-
ters. For example, the phase portrait of any vector field which is orbitally
equivalent to the Hamiltonian vector field:

ẋ1 =
∂H

∂x2
, ẋ2 = − ∂H

∂x1
, H(x1, x2) = x2

2 + x2m
1 , m ≥ 2 (2)

is a completely symmetric center: involutions (1) preserve the phase por-
trait {H(x1, x2) = const}. Another example is any vector field which is
orbitally equivalent to

X : ẋ1 = (λ + µ)x2
1x2 + x3

2, ẋ2 = −x3
1 + λx1x

2
2, µ > −2. (3)

The phase portrait is completely symmetric since (3) is reversible with
respect to involutions (1) (a vector field X is reversible with respect an
involution i if i∗X = −X). One of the ways to check that the phase portrait
of (3) is a center is to pass to polar coordinates (r, θ) and to check that the
assumption µ > −2 guarantees that dθ

dt 6= 0 for any trajectory (r(t), θ(t)).
This and the reversibility implies that any phase curve is closed.

In the present paper the ”unfolding” techniques for studying degener-
ate completely symmetric centers (and other completely symmetric phase
portraits) is developed.
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The first step is the reduction of the classification of completely symmet-
ric centers to the orbital classification of completely reversible vector fields
(section 2).

The second step is the extension of the approach of M.A. Teixeira [10, 11]
from topological to C∞ and Cω category. The orbital classification of com-
pletely reversible vector fields is reduced to the classification of triples con-
sisting of unfolded vector field and two transversal regular curves (section
3). This reduction is a sort of ”inverting” the method of studying the con-
strained system of ODE’s developed by J. Sotomayor and the author in
[9, 12]. The advantage of the reduction to the triples is that the unfolded
vector field has much simpler singularity than the original vector field.

The beginning of the classification of the triples is given in section 4
(Theorems 15-17), where the techniques developed in [9] are used. A part
of results of section 4 can be deduced from a table of normal forms obtained
by R. Bogdanov in [3], but the approach in section 4 is different. The
starting point is the classification of generic couples (vector field,involution)
obtained by A. Davydov in [4], and the main tool is the definition of the
order of tangency between a curve in the plane and a foliation of the plane
by curves (including singular foliations), comparable with the multiplicity
of a singular point of a function. Theorems 15 and 16 are easy, Theorem
17 requires using the homotopy method, it is proved in section 6.

The unfolding approach gives a number of smooth normal forms. As
an illustration, I present the simplest ones, classifying the first two occur-
ring singularities of completely symmetric centers - completely symmetric
centers defined by vector fields with a nilpotent linear approximation (i.e.,
vector fields ẋ = Ax+ · · ·, where A is a non-zero matrix with zero eigenval-
ues) and completely symmetric centers defined by vector fields with zero
2-jet and generic terms of order 3.

Theorem 5. Any completely symmetric center defined by a vector field
with a nilpotent linear approximation at an algebraically isolated singular
point 0 ∈ R2 is diffeomorphic to the center defined by vector field (2) for
some m ≥ 2.

I show in section 5 that this theorem and Theorem 6 below follow im-
mediately form the results in sections 2-4.

It was proved in [6] that the phase portrait of a vector field with zero
1-jet and non-zero 2-jet cannot be the center. Therefore Theorem 4 and
Theorem 5 give a complete classification of all completely symmetric centers
defined by vector fields with non-zero 2-jet. Completely symmetric centers
defined by a vector field with zero 2-jet and generic terms of order 3 are
described by the following theorem.
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In what follows the assumption ”no small denominators” means the
Siegel or (weaker) Brjuno condition on the tuple of eigenvalues of a matrix
A under which any vector field of the form ẋ = Ax + · · · is linearizable in
the Cω category, see [1].

Theorem 6. Assume that F is a completely symmetric center defined
by a vector field X with zero 2-jet at at an algebraically isolated singular
point 0 ∈ R2. Then in suitable coordinates the 3-jet of X has the form

ẋ1 = a1,1x
2
1x2 + a1,2x

3
2, ẋ2 = a2,1x

3
1 + a2,2x1x

2
2. (4)

If a1,2 6= 0, a2,1 6= 0 and the tuple of eigenvalues of the matrix A = (aij) is
non-resonant then in the C∞ category the phase portrait F is diffeomorphic
to the phase portrait defined by a vector field of the form (3). The same
is true in the Cω category under additional assumption that there are no
small denominators.

In sections 3-4 all the assumption of this theorem are explained. Our
techniques also allow to obtain normal forms in the case where some of
these assumptions are violated, see section 7.

In view of Theorems 5 and 6 it is natural to ask what is the place of
completely symmetric centers in the set of all degenerate centers of a cer-
tain class (defined by vector fields with a nilpotent linear approximation,
homogeneous degree 3 vector fields, a vector field with zero 2-jet).

Given a set W of vector fields with an algebraic isolated singularity
at the singular point 0 ∈ R2 denote by C(W ), SC(W ), CSC(W ) the
subset of W consisting of vector fields whose phase portrait is respectively
a center, symmetric center, completely symmetric center. Here symmetric
center means a center which is symmetric with respect to one non-trivial
involution. Then the following statements hold.

1. Let W be the set of vector fields with non-degenerate linear ap-
proximation. By Theorem 4 in the analytic category C(W ) = SC(W ) =
CSC(W ).

2. Let W is the set of vector fields with nilpotent linear approximation
at the algebraically isolated singular point 0 ∈ R2. Berthier and Moussu
proved in [2] that in this case in the analytic category C(W ) = SC(W ).
Nevertheless, CSC(W ) is a subset of C(W ) of infinite codimension. The
latter will be explained below.

3. If W is the set of homogeneous degree 3 vector fields then SC(W ) =
CSC(W ) because the phase portrait of any vector field in W is symmetric
with respect to the involution (x1, x2) → (−x1,−x2). But SC(W ) 6=
C(W ). It is well known that C(W ) is a codimension 1 subset of W , and
one can prove that SC(W ) = CSC(W ) is a codimension 2 subset of W .
Consequently SC(W ) = CSC(W ) is a codimension 1 subset of C(W ).
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4. If W is the set of all vector fields with zero 2-jet then one can prove
that any inclusion in the chain CSC(W ) ⊂ SC(W ) ⊂ C(W ) ⊂ W has
infinite codimension.

A complete proof of these and related results will be published elsewhere,
in this paper I will explain why in the case 2 (nilpotent centers) the set
CSC(W ) has infinite codimension in SC(W ). It was proved in [2] that any
vector field in C(W ) is formally orbitally equivalent to a vector field of the
form

ẋ1 = x2 + F (x2
1), ẋ2 = −(2m)x2m−1

1 , n ≥ 2, (5)

where F is a function of one variable, F (0) = 0. The symmetry is given
by the involution i1 : x1 → −x1, x2 → x2. One can prove that (5)
defines a completely symmetric center if and only if F (z) has the form
a1z

m + a2z
2m + a3z

3m + · · ·. For example, any vector field of the family

ẋ1 = x2 + ax2
1 + bx4

1, ẋ2 = −4x3
1, a, b ∈ R

defines a symmetric center, but this center is completely symmetric if and
only if a = 0. The family of vector fields

ẋ1 = x2 + bx4
1, ẋ2 = −4x3

1

is an example of a family of vector fields defining a completely symmetric
center for any value of the parameter b. By Theorem 5 all these centers are
diffeomorphic to a single center given by the same vector field with b = 0.

2. REDUCTION TO REVERSIBLE VECTOR FIELDS.

A vector field which is reversible with respect to involutions i1 and i2
has the form

ẋ1 = x2U1(x2
1, x

2
2), ẋ1 = x1U2(x2

1, x
2
2). (6)

Proposition 7. If a vector field X has an algebraically isolated singular
point 0 ∈ R2 and the phase portrait of X is a completely symmetric center
then X is orbitally equivalent to a vector field of the form (6).

Of course, not any vector field (6) defines a center (see section 3), but
if (6) defines a center then this center is completely-symmetric. The fam-
ily (6), parameterized by functions U1 and U2 can be considered as the
universal family satisfying this condition.

Proof. By Theorem 3 we may assume that the phase portrait of X is
symmetric with respect to the involutions i1 and i2. It follows that

(i1)∗X ∧X ≡ (i2)∗X ∧X ≡ 0, (7)
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where the relation X ∧ Y ≡ 0 between vector fields X and Y means that
the vectors X(p) and Y (p) are linearly dependent at any point p. One of
the simplest division properties (see, for example [8]) states that if X has
an algebraically isolated singular point and X ∧ Y ≡ 0 then Y = QX for
some function Q. Since the vector field X and consequently the vector
fields (i1)∗X and (i2)∗X have algebraically isolated singularity at 0 then
by this division property

(i1)∗X = Q1X, (i2)∗X = Q2X, (8)

where Q1 and Q2 are non-vanishing functions.
Let p be a point on the line of fixed points of i1 (the x2-axis), and let

X(p) = a ∂
∂x1

+ b ∂
∂x2

. Then ((i1)∗X)(p) = −a ∂
∂x1

+ b ∂
∂x2

. If Q1 > 0 then
we obtain that a = 0, and it follows that the x2-axes is an invariant line
of the vector field X. This contradicts to the assumption that the phase
portrait of X is a center. Therefore Q1 < 0. Similarly Q2 < 0.

Let X̂ = (1−Q1)X. Since Q1 < 0 then 1−Q1 is a non-vanishing function
and therefore X̂ is orbitally equivalent to X. Since i21 = id then the first
relation in (8) implies that (i1)∗(Q1X) = X. Consequently

(i1)∗X̂ = −X̂, (i2)∗X̂ = Q̂2X̂, (9)

where Q̂2 < 0. Let X̃ = (1 − Q̂2)X̂. Then X̃ is orbitally equivalent to X,
and the same arguments as above allow to deduce from the second relation
in (9) that (i2)∗X̃ = −X̃.

Note now that (9) implies the relations

(i2)∗((i1)∗X̂) = −(i2)∗X̂ = −Q̂2X̂

(i1)∗((i2)∗X̂) = ((i1)∗Q̂2) · (i1)∗X̂ = −((i1)∗Q̂2)X̂.

Since i1i2 = i2i1 it follows that (i1)∗Q̂2 = Q2. This and the first relation
in (9) imply that (i1)∗X̃ = −X̃. We have proved that X̃ is reversible with
respect to involutions i1 and i2. Therefore X̃ has form (6).

Remark 8. Proposition 7 remains true if one replaces the assumption
that the phase portrait of X is a completely symmetric center by a weaker
assumption that it is completely symmetric with respect to a group of invo-
lutions i1, i2, i1i2, id such that the fixed curves of the orientation-reversing
involutions i1, i2 are not X-invariant. The proof remains the same.

3. REDUCTION TO UNFOLDED VECTOR FIELD

Proposition 7 reduces the classification of completely symmetric centers
to the orbital classification of vector fields X of the form (6). Of course,
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not any vector field (6) defines a center. To study topological properties of
the phase portraits of vector fields (6) (in particular to distinguish centers)
it is natural to make ”unfolding”

u1 = x2
1, u2 = x2

2 (10)

which is a diffeomorphism from the domain {x1 > 0, x2 > 0} of the plane
R2(x1, x2) to the domain {u1 > 0, u2 > 0} of the plane R2(u1, u2). Let U
be the vector field obtained by the unfolding (10). Due to the symmetries,
in most cases the topological properties of the phase portrait of (6) in the
whole plane R2(x1, x2) are determined by the phase portrait of U in the
domain {u1 > 0, u2 > 0}, see [11].

Considering u1 and u2 as functions of time t and differentiating them
along a vector field X of the form (6) we obtain

du1

dt
= 2x1(t)x2(t)U1(u1(t), u2(t)), (11)

du2

dt
= 2x1(t)x2(t)U2(u1(t), u2(t)).

Let t → (x1(t), x2(t)), t ∈ I be any trajectory of X defined on on open
interval I such that x1(t) > 0, x2(t) > 0 for any t ∈ I. Then the image of
the corresponding trajectory t → (u1(t), u2(t)), t ∈ I of the system (11) is
a phase curve of the vector field

u̇1 = U1(u1, u2), u̇2 = U2(u1, u2) (12)

in the domain {u1 > 0, u2 > 0}. To study smooth or analytic properties of
X one has to consider the vector field (12) in the whole neighborhood of
the origin of the plane R2(u1, u2), not only in the domain {u1 > 0, u2 > 0}.

Definition 9. Given a vector field of form (6) we will say that the
vector field (12) defined on the whole neighborhood of the origin of the
plane R2(u1, u2) is the unfolded vector field corresponding to (6).

Proposition 10. Let X and X̃ be vector fields of the form (6), and let
U and Ũ be corresponding unfolded vector fields. Assume that U and Ũ are
orbitally equivalent via a local diffeomorphism of the form

ψ : (u1, u2) → (u1ψ1(u1, u2), u2ψ2(u1, u2)) , ψ1(0) = ψ2(0) = 1, (13)

i.e., via a local diffeomorphism preserving the u1-axes, the u2-axes and
having identity linear approximation. Then the vector fields X and X̃ are
orbitally equivalent.
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Proof. We will show that the local diffeomorphism

φ : (x1, x2) →
(

x1

√
ψ1(x2

1, x
2
2), x2

√
ψ2(x2

1, x
2
2)

)
(14)

brings X to X̃ multiplied by a non-vanishing function.
Let us pass from vector fields to 1-forms. Given a vector field X :

A(x1, x2) ∂
∂x1

+ B(x1, x2) ∂
∂x2

one can associate to it a differential 1-form
ω such that Ω(X, Y ) = ω(Y ) for any vector field Y , where Ω is a volume
form. If, for example, Ω = dx1∧dx2 then ω = A(x1, x2)dx2−B(x1, x2)dx1.
Let X, X̃ be vector fields on the plane, and let ω, ω̃ be corresponding 1-
forms defined via the same volume form. We will use a simple fact that X
and X̃ are orbitally equivalent via a local diffeomorphism φ if and only if
φ∗ω = Qω̃, where Q is a non-vanishing function.

Consider the 1-forms

θ = U1(u1, u2)du2 − U2(u1, u2)du1, θ̃ = Ũ1(u1, u2)du2 − Ũ2(u1, u2)du1

corresponding to the unfolded vector fields U and Ũ via the volume form
du1 ∧ du2. Consider also the 1-forms

ω = x2U1(x2
1, x

2
2)dx2 − x1U2(x2

1, x
2
2)dx1,

ω̃ = x2Ũ1(x2
1, x

2
2)dx2 − x1Ũ2(x2

1, x
2
2)dx1

corresponding to X and X̃ via the volume form dx1∧dx2. Denote by i the
map from R2(x1, x2) to R2(u1, u2) defined by (10). Then

i∗θ1 = 2ω1, i∗θ2 = 2ω2, (15)

where i∗ is the pullback. The orbital equivalence of U1 and U2 implies that

ψ∗θ̃ = Qθ, (16)

where Q is a non-vanishing function and ψ is the local diffeomorphism (13)
of the plane R2(u1, u2). Note now that

i(φ(p)) = ψ(i(p)), p ∈ R2(x1, x2), (17)

where φ is the local diffeomorphism (14) of the plane R2(x1, x2). Relations
(15) - (17) imply

φ∗ω̃ =
1
2
φ∗(i∗θ̃) =

1
2
i∗(ψ∗θ̃) =

1
2
i∗(Qθ) = Q̃ω,



464 M. ZHITOMIRSKII

where Q̃ = i∗Q. Therefore the diffeomorphism φ brings ω̃ to ω multiplied
by a non-vanishing function and consequently the vector fields X and X̃
are orbitally equivalent.

4. CLASSIFICATION OF TRIPLES CONSISTING OF A
VECTOR FIELD AND TWO TRANSVERSAL CURVES

Proposition 10 reduces the classification of completely symmetric cen-
ters to the orbital classification of vector fields with respect to local diffeo-
morphisms preserving two fixed transversal lines. The latter classification
problem coincides with the classification of triples consisting of a vector
field, defined up to multiplication by a non-vanishing function, and two
transversal curves with respect to the group of all local diffeomorphisms.
In this section we present the beginning of this classification. In what fol-
lows by a regular curve we mean a curve given by equation f(x1, x2) = 0,
where f(0) = 0, df(0) 6= 0.

Definition 11. The order of tangency of a vector field U on R2(u1, u2)
and a regular curve γ = {f(u1, u2) = 0} is the dimension of the factor-
space R[[u1, u2]]/(f, U(f)), where R[[u1, u2]] is the ring of all formal series,
U(f) is the Lie derivative of f along U , and (f, U(f)) is the ideal generated
by the formal series of the functions f and U(f).

Example 12. If U(0) 6= 0 then in suitable coordinates U = ∂
∂u1

. Let,
in the same coordinates, γ = {f(u1, u2) = u2 + g(u1) = 0}. Assume that
g(u1) = cum

1 + · · · , c 6= 0. Then U(f) = g′(u1) = mcum−1
1 . Therefore

the ideal (f, U(f)) coincides with the ideal (u2, u
m−1
1 ), and the order of

tangency of U and γ is equal to m− 1.

Note that if the order of tangency of U and γ = {f = 0} is equal to
zero then (U(f))(0) 6= 0. Therefore the zero order of tangency means that
U(0) 6= 0 and U is transversal to γ.

Note also that if U(0) 6= 0 then an equivalent definition of the order of
tangency is as follows: the order of tangency is equal to m−1 if (U(f))(0) =
(U2(f))(0) = · · · = (Um−1(f))(0) = 0, (Um(f))(0) 6= 0. Here U i(f) is
defined by induction: U i(f) = U(U i−1(f)).

Example 13. If U(0) = 0 then the minimal possible order of tangency of
U and any regular curve γ = {f = 0} is equal to 1 since f(0) = (U(f))(0) =
0. The order of tangency is equal to 1 if and only if no eigenvector of the
linear approximation of U is tangent to γ. To check this take local coordi-
nates such that f = u1 and j1U = (a11u1+a12u2) ∂

∂u1
+(a21u1+a22u2) ∂

∂u2
.

Then (f, U(f)) = (u1, a11u1 + a12u2 + · · ·). The order of tangency is equal
to 1 if and only if this ideal is maximal, i.e., contains all formal series with
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zero free term. This is so if and only if a12 6= 0. The latter is equivalent to
the condition that j1U has no eigenvectors tangent to γ = {u1 = 0}.

Example 14. Let U = λ1u1
∂

∂u1
+ λ2u2

∂
∂u2

. Then U has tangency of
order 1 with the curve au1 + bu2 = 0 provided that λ1 6= λ2 and ab 6= 0.
If one of these conditions is violated then the order of tangency is ∞.
Let now γ = {f(u1, u2) = u1 + um

2 + o(um
2 ) = 0}. Then (f, U(f)) =

(u1 + um
2 + o(um

2 ), λ1u1 + mλ2u
m
2 + o(um

2 )). Changing the coordinate u1

to ũ1 = u1+um
2 +o(um

2 ) we reduce this ideal to (ũ1, (mλ2 − λ1)um
2 + o(um

2 )).
Therefore the order of tangency of U with γ is equal to m provided that
λ1 6= mλ2.

Theorem 15. Let γ1, γ2 be regular curves in the plane and let U be a
vector field which is transversal to γ1 and has tangency of order m ≥ 0
with γ2. Then in suitable coordinate system

U = Q
∂

u1
, γ1 = {u1 = 0}, γ2 = {u2 − um+1

1 = 0},

where Q is a non-vanishing function.

Proof. Since U is transversal to γ1 then U(0) 6= 0 and in suitable coordi-
nates U = ∂

∂u1
and γ1 = {f(u1, u2) = 0}, where ∂f

∂u1
(0) 6= 0. Changing the

coordinate u1 by ũ1 = f(u1, u2) we bring γ1 to the form u1 = 0 preserving
U up to multiplication by a function. The curve γ2 is transversal to γ1,
therefore it can be given by the equation u2 = g(u1). The Taylor series of
the function g(u1) starts with terms of order m + 1 since the order of tan-
gency of U and γ2 is equal to m (see Example 12). A local diffeomorphism
(u1, u2) → (φ(u1), δu2) with a suitable φ(u1) and δ ∈ {1,−1} brings γ2 to
{u2 − um+1

1 = 0}. Such a local difeomorphism preserves the curve γ1 and,
up to multiplication by a function, the vector field U .

Theorem 16. Let U be a vector field transversal to the u1-axes and
having tangency of order m with the u2-axes. There exists a local diffeo-
morphism with identity linear approximation which preserves the u1-axes
and the u2-axes and brings U to the form

a
∂

∂u1
+ bum

1

∂

∂u2

up to multiplication by a non-vanishing function.

Proof. Apply Theorem 15 with γ1 and γ2 being the u1-axes and the
u2-axes, and make a change of coordinates (u1, u2) → (u1, u2 − um+1

1 ). It
brings U to the form U0 = ∂

∂u1
− (m+1)um

1
∂

∂u2
. It follows that there exists

a local diffeomorphism preserving the u1-axes and the u2-axes and bringing
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U to U0 up to multiplication by a non-vanishing function. The composition
of this diffeomorphism and a scale transformation (u1, u2) → (k1u1, k2u2)
with suitable non-zero k1, k2 is the required local diffeomorphism with iden-
tity linear approximation.

Theorem 17. Let γ1, γ2 be regular transversal curves in the plane. Let
U be a vector field vanishing at 0 and having the minimal possible order 1
of tangency with γ1 and with γ2. Let the straight lines l1, l2 be the linear ap-
proximations of γ1, γ2. There exists a local diffeomorphism with the identity
linear approximation preserving U up to multiplication by a non-vanishing
function and bringing γ1, γ2 to l1, l2 respectively.

This theorem is proved by the homotopy method in section 6.

5. PROOFS OF THEOREMS 5 AND 6

Theorems 5 and 6 are almost immediate corollaries of the results in
sections 2-4.

Proof of Theorem 5. By Proposition 7 the vector field X is orbitally
equivalent to a vector field U of the form (6). Since the linear approxima-
tion of X is nilpotent then U(0) 6= 0, U is transversal to one of the axes
{u1 = 0}, {u2 = 0} and is tangent to the other axes. The order of tangency
is finite, this follows form the assumption that 0 is an algebraically isolated
singular point of X. By Proposition 10 and Theorem 16 X is orbitally
equivalent to a vector field of the form ẋ1 = ax2, ẋ2 = bx2m+1

1 , where
a, b 6= 0. A scale transformation reduces a to 2 and b to ±(2m + 2).
Therefore X is orbitally equivalent to a vector field ẋ1 = ∂H

∂x2
, ẋ2 =

− ∂H
∂x1

, H(x1, x2) = x2
2 ± x2m+2

1 . Since the phase portrait of X is a center
then one has the sign +.

Proof of Theorem 6. By Proposition 7 X is orbitally equivalent to a
vector field of the form (6). The unfolded vector field U has linear ap-
proximation with the matrix A, therefore it can be brought to its linear
part by a local diffeomorphism with the identity linear approximation. The
assumptions a12 6= 0 and a21 6= 0 imply that U has tangency of minimal
possible order 1 with the lines {u1 = 0} and {u2 = 0} (see Example 13).
By Proposition 10 and Theorem 17 (with with γ1 and γ2 being the u1-axes
and the u2-axes) X is orbitally equivalent to a vector field of form (4).
A scale transformation reduces a12 to 1 and a21 to ±1. Passing to polar
coordinates it it easy to check that the phase portrait of this vector field is
a center if and only if a21 = −1 and a11 − a22 > 2.
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6. PROOF OF THEOREM 17

Let

γ1 = {A1 + a1 = 0}, γ2 = {A2 + a2 = 0},
where A1, A2 are linear functions and a1, a2 are functions with zero 1-jet.
We use the homotopy method, like in [9]. Let Ai,t = Ai+t(ai−Ai), i = 1, 2.
In what follows t is a parameter varying on [0, 1]. To prove Theorem 17 it
suffices to solve the system

htU(Ai,t) + qi,tAi,t = −ai, i = 1, 2 (18)

with respect to families of functions ht, q1,t, q2,t such that ht(0) = 0. If
(ht, q1,t, q2,t) is a solution then the family of local diffeomorphisms φt de-
fined by the system of ODE’s dφt

dt = (htU)(φt) (where a point of R2 is a
parameter) and the initial condition φ0 = id brings the family of curves
{Ai,t = 0} to the curve {Ai = 0}, i = 1, 2. The construction of φt im-
plies that this family preserves U up to multiplication by a non-vanishing
function. Since ht(0) = 0 then the vector fields htU have zero 1-jet and it
follows that the diffeomorphisms φt have the identity linear approximation.

The first equation of the system (18) (with i = 1) can be solved due to
the assumption that U has tangency of order 1 with γ1. This assumption
implies that the functions A1,t and U(A1,t) are differentially independent
for any t ∈ [0, 1] and it follows that the first equation has a solution ht, q1,t

such that ht(0) = 0.
Since the system (18) is linear and the first equation is solvable then to

prove the solvability of (18) there is no loss of generality to assume that
a1 ≡ 0. Then for any family of functions rt the families ht = rtA1,t, q1,t =
−rtU(At) give a solution of the first equation of the system such that
ht(0) = 0. The second equation reduces to the equation

rtA1,tU(A2,t) + q2,tA2,t = −a2 (19)

with respect to the families rt and q1,t. The transversality of the curves γ1

and γ2 implies that there exists a coordinate system, depending on t, such
that A1,t = u1, A2,t = u2. Let U = (a11u1 + a12u2 + · · ·) ∂

∂u1
+ (a21u1 +

a22u2+ · · ·) ∂
∂u2

, where the dots denote non-linear terms. The equation (19)
takes the form

rtu1(a21u1 + a22u2 + · · ·) + q2,tu2 = ft(u1, u2), (20)

where ft is a family of functions with zero 1-jet. Since any function with
zero 1-jet belongs to the ideal generated by u2 and u2

1 then (20) is solvable



468 M. ZHITOMIRSKII

provided that a21 6= 0. The latter follows from the assumption that U has
tangency of order 1 with the curve γ2.

7. FURTHER CLASSIFICATION RESULTS

The developed techniques leads to many other classification results. Con-
sider, for example, the case where a completely symmetric center is defined
by a vector field X with the 3-jet (4) at the algebraically isolated singular
point 0 ∈ R2, such that a12 6= 0, a21 6= 0, and there is a resonant relation
λ2 = pλ1, p ≥ 2 between the eigenvalues of the matrix A = (aij). To
obtain an orbital normal form for X one has to construct an orbital nor-
mal form for the class of vector fields u̇ = Au + · · · , u ∈ R2 with respect
to changes of coordinates with identity linear approximation. Using the
orbital classification of vector fields on R2 with respect to complete group
of changes of coordinates (see, for example, [1]), one can obtain a normal
form u̇ = Au + (cup

1, 0)t, c ∈ R. Together with the results of sections
2-4 (Propositions 7, 10 and Theorem 17) it leads to the following orbital
normal form for X:

ẋ1 = (λ + µ)x2
1x2 + x3

2 + cx2p
1 x2, ẋ2 = −x3

1 + λx1x
2
2, µ > −2.

Of course, normal forms for other types of resonant relations also can be
constructed using Theorem 17 provided a12 6= 0, a21 6= 0. If one of these
numbers is equal to zero then we need further classification results for the
triples consisting of a vector field and two curves. One of results in this
direction is as follows.

Theorem 18. Let U be a vector field on the plane R2(u1, u2) such that
U(0) = 0. Assume that the eigenvalues of the linear approximation of U
are different and that there are no resonant relations. In the Cω category
we additionally assume that there are no small denominators. Let γ1 and
γ2 be regular transversal curves. If U has tangency of order 1 with γ1 and
tangency of order m ≥ 2 with γ2 then in suitable coordinates

U = Q

(
λ1u1

∂

∂u1
+ λ2u2

∂

∂u2

)
, γ1 = {u1+u2 = 0}, γ2 = {u2+um

1 = 0},

where Q is a non-vanishing function.

Proof. Since the order of tangency of U with γ2 is bigger than 1 then the
eigenvalues are real (see Example 13.) By the assumption of the theorem,
U is linearizable, therefore we can assume that U = U0 = λ1u1

∂
∂u1

+
λ2u2

∂
∂u2

, λ1 6= λ2. Let γ1 = {au1 + bu2 + f(u1, u2) = 0}, j1f = 0.
Since U has minimal order 1 of tangency with γ1 then ab 6= 0. We can
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reduce a and b to 1 by scaling the coordinates (preserving U0). Applying
Theorem 17 with γ2 replaced by any regular curve having tangency of order
1 with U we reduce f to 0. Now U = QU0 and γ1 : {u1 + u2 = 0}, Q is
a non-vanishing function. In these coordinates γ2 can be described by the
equation γ2 = {u2 − g(u1) = 0}. Since the order of tangency of U and
γ2 is equal to m and there are no resonant relation λ2 = pλ1 with any
p ≥ 1 then, by Example 14, g(u1) = cum

1 + h(u1), c 6= 0, h(u1) = o(um
1 ).

The coefficient c can be reduced to 1. Using the homotopy method like in
section 6 one can reduce h(u1) to 0.

Using Theorem 18 and Propositions 7 and 10 it is easy to obtain the
following corollary.

Theorem 19. Assume that a completely symmetric phase portrait is de-
fined by a vector field with an algebraically isolated singular point at the ori-
gin and the 3-jet (4), where a2,1 = 0, a1,2 6= 0. If the eigenvalues a1,1, a2,2

of the matrix A = (aij) are different, there are no resonant relations and
in the Cω category there are no small denominators then the phase portrait
is diffeomorphic to the phase portrait of the vector field

ẋ1 = x2(x2
1 + δ1x

2
2), ẋ2 = x1(λx2

2 + δ2x
2m
1 ),

where δ1, δ2 ∈ {1,−1}, λ ∈ R, m ≥ 2.
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