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We give a simple necessary and sufficient condition for a non-regular en-
ergy level of a Hamiltonian system to be strictly convex. We suppose that
the Hamiltonian function is given by kinetic plus potential energy. We also
show that this condition holds for several Hamiltonian functions, including the
Hénon-Heiles one.
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1. INTRODUCTION

An important theorem due to Hofer, Zehnder and Wysocki [11] for
Hamiltonian systems with two degrees of freedom states that a strictly
convex energy level diffeomorphic to S3 always has a periodic orbit which
is the boundary of a global surface of section of disk-type. Moreover, this
implies the existence of 2 or infinitely many periodic orbits in that en-
ergy level. This geometric property turns out to be of great importance to
understand the topological structure of its orbits.

When the Hamiltonian function is of the form p2
x+p2

y

2 + V (x, y) then the
conditions of convexity can be expressed in terms of the potential function
V . In this paper, we give these geometric conditions in the regular case
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and in the case where the energy level has a singularity. The main result
of this paper is the following theorem

Theorem 1. Let H : IR4 → IR be a Hamiltonian function given by

H(x, y, px, py) = p2
x+p2

y

2 + V (x, y) where V : IR2 → IR is a Ck≥2 function.
Suppose that S ⊂ H−1(E) is homeomorphic to S3, invariant by the flow

and has at most one singularity pc. Let B
def
= π(S) be the disk given by

the canonical projection of the surface S on the plane (x, y). Then S is a
strictly convex hypersurface in IR4 if and only if

2(E − V )(VxxVyy − V 2
xy) + VxxV 2

y + VyyV 2
x − 2VxVyVxy > 0 (1)

for all points in B\π(pc).

The inequality (1) represents the curvature of the hypersurface. Notice
that an analogous result is false in the plane. There are closed curves with
positive curvature except at one singular point such that the domain it
bounds is non-convex (See Figure 1).

This paper is organized as follows. In section 2 we give some definitions
and facts related to convex hypersurfaces in IR4. In section 3 we prove
the global convexity property for hypersurfaces homeomorphic to S3 with
positive curvature and one singularity. In section 4 we express the condi-
tion for an energy level to have positive curvature in terms of the potential
function V and prove Theorem 1. Finally, in section 5 we give some exam-
ples where the convexity hypothesis is satisfied, including the Hénon-Heiles
Hamiltonian.

2. REGULAR STRICTLY CONVEX HYPERSURFACES IN
IR4

Definition 2. We say that a non-empty set K ⊂ IR4 is convex if given
x, y ∈ K, then (1− t)x + ty ∈ K for t ∈ [0, 1].

Definition 3. A hypersurface S ⊂ IR4, Ck≥2, has contact of order 1
with the hyperplane F at p ∈ S if given a C2 curve α : (−ε, ε) → S with
α(0) = p and α′(0) 6= 0, then 〈α′(0), NF 〉 = 0 and 〈α′′(0), NF 〉 6= 0 where
NF is a normal vector to F .

Definition 4. A hyperplane F is a non-singular support hyperplane of
S if F ∩ S = {p}, where p ∈ S, and S has contact of order 1 with F at p.

Definition 5. A hypersurface S ⊂ IR4, Ck≥2, is strictly convex if all
the hyperplanes tangent to S are non-singular support hyperplanes of S.

Given a regular strictly convex hypersurface S ⊂ IR4, a point p ∈ S
and a curve α : (−ε, ε) → S, with α(0) = p and α′(0) 6= 0, we have
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〈α′′(0), N(p)〉 = −〈dN(p)α′(0), α′(0)〉 6= 0 where dN(p) is the differential
at p of the Gauss map N : S → S3. It follows that dN(p) is definite (i.e.,
the quadratic form associated to dN(p) is definite) and its sign depends on
the orientation N .

If a hypersurface S is given by S = H−1(c) where H : IR4 → IR is a

Ck≥2 function and c a regular value, then N(p)
def
= Hx(p)

‖Hx(p)‖ is a unitary
normal vector to S at p. For v ∈ TpS (v ⊥ Hx(p)), we have

〈dN(p)v, v〉 =
1

‖Hx(p)‖ 〈Hxx(p)v, v〉

It follows that a necessary condition for a regular hypersurface S =
H−1(c) to be strictly convex is that the Hessian of H for all p ∈ S must be
definite when restricted to TpS. When the hypersurface S is diffeomorphic
to S3, then this necessary condition is also sufficient and S is called an
ovaloid (see [15]). In the next section, we show an analogous result for
non-regular hypersurfaces in IR4.

More about convex sets and strictly convex hypersurfaces can be seen in
[2], [6] and [7].

3. NON-REGULAR STRICTLY CONVEX HYPERSURFACES
IN IR4

Let H : IR4 → IR be a Ck≥2 function. In this section we consider hyper-
surfaces S ⊂ H−1(a), a ∈ Im(H), satisfying the following hypotheses:

(H1) S is homeomorphic to S3, i.e, there exists a homeomorphism h of
IR4 such that h(S) = S3;

(H2) there exists only one singular point pc ∈ S (Hx(pc) = 0), i.e., q ∈ S
is a regular point of S if q 6= pc;

(H3) for all regular points q ∈ S, we have 〈Hxx(q)v, v〉 > 0 for all v ∈ TqS;

By assumption, S0
def
= S\{pc} is a regular hypersurface in IR4.

Definition 6. Let S be a hypersurface satisfying the hypotheses (H1)
and (H2). We say that the non-regular hypersurface S is a strictly convex
hypersurface in IR4 if: (i) S is the boundary of a convex set in IR4; (ii) All
the hyperplanes tangent to S0 are non-singular support hyperplanes of S0.

We will show that the local hypothesis (H3) is necessary and sufficient
for S to be a strictly convex hypersurface in IR4. See Figure 1 for a counter-
example in IR2.

We know that a hypersurface S, homeomorphic to S3, divides IR4 into
two disjoint subsets: (i) BS , which is closed and bounded (∂BS = S ⊂ BS);
and (ii) CS , which is open and unbounded (∂CS = S). See Figure 2.
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We set an orientation N : S0 → NS0 to S0 given by N(p) = Hx(p)
‖Hx(p)‖ and

define an orthonormal moving frame to S0 (i.e, regular orthonormal vector
fields Xi : S0 → TS0, i = 1, 2, 3 which spam TS0) by the following way
(See [3]):

Let I =
(

1 0
0 1

)
, J =

(
0 1
−1 0

)
and 0 =

(
0 0
0 0

)
. Now define the 4×4

matrices given by:

A0 =
(

I 0
0 I

)
A1 =

(
0 J
J 0

)
A2 =

(
J 0
0 −J

)
A3 =

(
0 I
−I 0

)
(2)

For each x ∈ S let

X0(p)
def
= N(p)

and

Xi(p)
def
= AiX0(p) (3)

for i ∈ {1, 2, 3}. Then we have 〈Xi(p), Xj(p)〉 = δij , 0 ≤ i, j ≤ 3 and,
therefore, the vectors X1(p), X2(p) and X3(p) define an orthonormal basis
for TpS.

Lemma 7 (Local representation of S0). For all p ∈ S0, there exists a
neighborhood Up of p in S0 and a rectangular coordinate system (x1, x2, x3, x4)
such that Up is the graph of a function fp : W ⊂ IR3 → IR, x4 =
fp(x1, x2, x3) where fp(0) = 0, fp

x(0) = 0, fp(x) > 0 if x 6= 0 and the
Hessian fp

xx(x) of fp is positive-definite for all x ∈ W . (See Figure 3)

Proof. The vectors X1(p), X2(p), X3(p) and N(p) given by (3) define
an orthonormal basis to IR4. For all z ∈ IR4 we have z = p + x1X1(p) +
x2X2(p)+x3X3(p)−x4N(p) . If z ∈ S0, then H(p+x1X1 +x2X2 +x3X3−
x4N) = a. As 〈Hx(p), N(p)〉 > 0, then by the Implicit Function Theorem,
there exists a function fp : W0 ⊂ IR3 → IR defined in a neighborhood
W0 of 0 such that x4 = fp(x1, x2, x3) and H(p + x1X2 + x2X2 + x3X3 −
fp(x1, x2, x3)N) = a. So, the graph of fp represents S in a neighborhood
of p in S0. For i ∈ {1, 2, 3} we have

〈
Hx(p), Xi(p)− fp

xi
(0)N(p)

〉
= 0 =⇒ fp

xi
(0) = 0

and it is also easy to see that

fp
xixj

(0) =
〈Hxx(p)Xi, Xj〉

‖Hx(p)‖ (4)

for 1 ≤ i, j ≤ 3 and, therefore, the Hessian of fp is positive-definite in a
neighborhood W ⊂ W0 of 0. So fp > 0 in W\{0}.
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We will need the following global Lemma

Lemma 8. For p ∈ S0, let Op : IR4 → IR4 be the affine map given by

Op(x1, x2, x3, x4) = p + x1X2(p) + x2X2(p) + x3X3(p)− x4N(p)

Let fp be the function given by Lemma 7. Then the following holds:

x4 = fp(x1, x2, x3) ⇒ Op(x1,x2, x3, x4) ∈ S

x4 > fp(x1, x2, x3) ⇒ Op(x1,x2, x3, x4) ∈ BS (5)
x4 < fp(x1, x2, x3) ⇒ Op(x1,x2, x3, x4) ∈ CS

for all (x1, x2, x3, x4) in a neighborhood of 0.

Proof. Take a large sphere B which contains S in its interior. As S has
only one singularity and has positive curvature in all of its regular points,
we can translate B to touch S in only one regular point q ∈ S such that B
and S are tangent at q. Then Oq must satisfies (5) in a neighborhood of
0. Since S0 is connected then, by continuous dependence of fp with p, Op

satisfies (5) for all p ∈ S0.

See Figure 4 for a counter-example of this Lemma for curves in IR2 with
more than one singularity.

Lemma 9. Let s be a line segment through p ∈ S0 such that p is not in
the boundary of s. Then s ∩ CS 6= ∅.

Proof. Consider the function fp given by Lemma 7. By Lemma 8, the
set CS satisfies x4 < fp(x1, x2, x3). In these coordinates, if there exists a
point in s such that x4 > 0, then, as s contains the origin, there exists a
point in s such that x4 < 0 and it follows that s ∩ CS 6= ∅. If points of s
satisfy x4 = 0, then for b = (x1, x2, x3, 0) ∈ s, where (x1, x2, x3) 6= (0, 0, 0),
we have b ∈ CS .

Lemma 10. The set BS is convex in IR4 and if p ∈ S0, then Rp∩S = {p}
where Rp is the hyperplane tangent to S0 at p.

Proof. To show that BS is a convex set, it is enough to prove that given
x, y ∈ S, x 6= y, then the line segment xy joining the points x and y is
contained in BS .

Let x and y be two distinct points in S such that x 6= pc and y 6= pc.
We know that the Hessian of H in x is definite, and this implies that S has
positive curvature in x. Using Lemmas 7 and 8, we can represent S in a
neighborhood Ux of x as a graph x4 = fx(x1, x2, x3), where fx is a positive
strictly convex function. The set BS satisfies, in these coordinates, x4 ≥
fx(x1, x2, x3). Therefore, if w ∈ Cx, then the line segment xw ⊂ BS .
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Let γxy : [0, 1] → S be a continuous curve in S such that γxy(0) = x,
γxy(1) = y and γxy(t) 6= pc for all t ∈ [0, 1]. The curve γxy can be chosen
such that for all t ∈ [0, 1] the segment xγxy(t) satisfies xγxy(t) ∩ {pc} = ∅.
This is because the line rx through x and pc intersects S0 in at most a
discrete set accumulating in pc and it is enough to require that γxy avoids
this set.

If t is sufficiently small, then γxy(t) ∈ Ux and so the segment xγxy(t) ⊂
BS and is transversal to S in x and in γxy(t). Let F

def
= {t ∈ (0, 1)|xγxy(t)∩

CS 6= ∅}. Suppose that F 6= ∅ and let
∼
t

def
= inf F > 0. Then we have:

(i) xγxy(
∼
t ) ∩ CS = ∅ because, otherwise, by continuity of xγxy(t) and

openness of CS , xγxy(t) ∩ CS 6= ∅ for t <
∼
t , a contradiction. So xγxy(

∼
t ) ⊂

BS .
(ii) The segment xγxy(

∼
t ) is transversal to S in x and in γxy(

∼
t ), because

if it was tangent to S in any of these two points, there would be points of
the segment xγxy(

∼
t ) in CS , a contradiction to (i).

(iii) Suppose that there exists w ∈ xγxy(
∼
t ), w /∈ {x, γxy(

∼
t )} such that

w ∈ S. But, by Lemma 9, the segment xγxy(
∼
t ) contains points of CS , a

contradiction with (i).
(iv) It follows that xγxy(

∼
t ) ∩ S = {x, γxy(

∼
t )} and by (ii), we have that

for all t near
∼
t , xγxy(t) is also transversal to S in x and in γxy(t). So, by

continuity of γxy(t), we have xγxy(t) ⊂ BS for all t near
∼
t , contradicting

the assumption on
∼
t .

We conclude that F = ∅ and, by continuity of xγxy(t) and compacity of
BS the segment xy ⊂ BS .

If y = pc, then let γxy : [0, 1] → S be a continuous curve in S such that
γxy(0) = x, γxy(1) = pc and γxy(t) 6= pc for all t ∈ [0, 1). The segment
xγxy(t) ∈ BS for all t ∈ (0, 1) and, again by continuity of xγxy(t) and
compacity of BS we conclude that the segment xpc ⊂ BS . This finishes
the proof that BS is a convex subset of IR4.

Suppose that there exists a regular point p ∈ S0 and a hyperplane Rp

tangent to S0 in p such that Rp ∩ S ⊃ {p, z}, z 6= p. As BS is convex, the
segment pz ⊂ BS . But pz ⊂ Rp and therefore pz must intersect CS near
p, a contradiction.

Remark 11. This result is also valid in IRn, n > 2, with S having finitely
many singularities. See Figures 1 and 4 for counter-examples in IR2.

Corollary 12. The regular hypersurface S0 is strictly convex.

Proof. We know that S0 has contact of order 1 with any hyperplane
Rp tangent to S0 in p ∈ S0. By Lemma 10 we have Rp ∩ S0 = {p} and,
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therefore, Rp is a non-singular support hyperplane of S, concluding that
S0 is strictly convex.

Theorem 13. Let S be a hypersurface satisfying the hypotheses (H1),
(H2) and (H3). Then the non-regular hypersurface S is strictly convex.

Proof. By Lemma 10, S is the boundary of the convex set BS in IR4

and all tangent hyperplanes of S0 = S\{pc} are non-singular support hy-
perplanes of S0.

4. POSITIVE-DEFINITE QUADRATIC FORMS IN IR4

When a hypersurface S is given as the pre-image of a regular value of
a Ck≥2 function H : IR4 → IR, its convexity depends on the Hessian of
H. Precisely, a necessary condition for S to be strictly convex is that the
Hessian Hxx(p) is definite in TpS for all p ∈ S.

Without loss of generality, we can assume that Hxx(p) is positive-definite
in TpS, i.e., for all v ∈ TpS, v 6= 0, 〈Hxx(p)v, v〉 > 0. It may happen that
Hxx(p) is not definite in TpIR4 ' IR4.

Let L : IR4 → IR4 be a self-adjoint linear operator and Q : IR4×IR4 → IR
be its associated quadratic form defined by Q(v) = 〈Lv, v〉. Let E be a
3-dimensional subspace of IR4 and {Xi, i = 1, 2, 3} a basis of E. We define
the 3× 3 symmetric matrix W by

W = (〈LXi, Xj〉)1≤i,j≤3 (6)

Then we have the following easy properties
Property 1. The quadratic form Q is positive-definite in E if and only

if all the eigenvalues of W are positive.

Proof. See [13] for a proof.

Property 2. Let W = (wij)1≤i,j≤3 be a 3× 3 symmetric matrix. Then
all of its eigenvalues are positive if and only if the following conditions are
satisfied

det W > 0
trW > 0
DW > 0

where DW = w11w22 − w2
12 + w11w33 − w2

13 + w22w33 − w2
23.

Proof. Its is imediate from its characteristic polynomial.
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4.1. Hamiltonians of type
p2

x+p2
y

2 + V (x, y)

Let H be an Hamiltonian function H(x, y, px, py) = p2
x+p2

y

2 + V (x, y),
where V : IR2 → IR is a Ck≥2 function, known as the potential function.
Let z = (x, y, px, py) be the coordinates of IR4 and π : IR4 → IR2 the
canonical projection on the plane (x, y). Suppose that S ⊂ H−1(E) is a
compact hypersurface, homeomorphic to S3, invariant by the Hamiltonian
flow, with at most one singularity pc which corresponds to an equilibrium
point of the Hamiltonian vector field XH , i.e., π(pc) is a critical point of

V (x, y). The set B
def
= π(S) is, therefore, homeomorphic to D2, and its

boundary is given by ∂B = {π(z), z ∈ S, z = (x, y, 0, 0)} with a singularity

at π(pc). The interior of B is given by
◦
B

def
= {π(z), z ∈ S, p2

x + p2
y 6= 0} and

if (x, y) ∈ ◦
B then V (x, y) < E. Let S0

def
= S\{pc}. We have

Hx(z) = (Vx, Vy, px, py)

Hxx(z) =




Vxx Vxy 0 0
Vxy Vyy 0 0
0 0 1 0
0 0 0 1




Let z ∈ S0 be a point satisfying p2
x + p2

y 6= 0, i.e., π(z) ∈ ◦
B. A basis for

TzS0 = [Hx(z)]⊥ is given by

X1 = (0, 0,−py, px)
X2 = (px, py,−Vx,−Vy)
X3 = (py,−px, Vy,−Vx)

because Xi, i = 1, 2 and 3, are L.I. and orthogonal to Hx. We want to
verify local convexity of S0 at z (or positive curvature of S0 at z). Observe
that since Hxx(z) has two eigenvalues equal to 1, then Hxx(z) is definite
in TzS0 if and only if it is positive-definite in TzS0. The matrix W defined
in (6) is given by

Wz =




p2
1 + p2

2 p2Vx − p1Vy −p2Vy − p1Vx

p2Vx − p1Vy f1 f2

−p2Vy − p1Vx f3 f4


 (7)

where L = Hxx and f1, f2, f3 and f4 are given by

f1 = Vxxp2
1 + 2p1p2Vxy + Vyyp2

2 + V 2
x + V 2

y

f2 = p1p2(Vxx − Vyy) + (p2
2 − p2

1)V
2
xy
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f3 = p1p2(Vxx − Vyy) + (p2
2 − p2

1)V
2
xy

f4 = Vxxp2
2 + 2p1p2Vxy + Vyyp2

1 + V 2
x + V 2

y

Then we have

detWz = 4(E − V )2(2(E − V )(VxxVyy − V 2
xy) +

VxxV 2
y + VyyV 2

x − 2VxVyVxy)

trWz = 2(E − V )(1 + Vxx + Vyy) + 2(V 2
x + V 2

y )

DWz
= 4(E − V )2(Vxx + Vyy + VxxVyy) +

2(E − V )(1 + Vxx + Vyy)(V 2
x + V 2

y ) + (V 2
x + V 2

y )2 (8)

Now we consider points z ∈ S0 such that px = py = 0, i.e., π(z) ∈
∂B\π(pc). We can use the following vector as a basis for TzS0

X1 = (0, 0, 1, 0)
X2 = (0, 0, 0, 1)
X3 = (Vy,−Vx, 0, 0)

and the matrix Wz defined in (6) is given by

Wz =




1 0 0
0 1 0
0 0 VxxV 2

y + VyyV 2
x − 2VxVyVxy




So we have

det Wz = VxxV 2
y + VyyV 2

x − 2VxVyVxy

trWz = 2 + VxxV 2
y + VyyV 2

x − 2VxVyVxy = 2 + det W (9)

DWz = 1 + 2(VxxV 2
y + VyyV 2

x − 2VxVyVxy) = 1 + 2det W

Proposition 14. Wz is positive-definite for all z ∈ S0 if and only if

TWz

def
= 2(E − V )(VxxVyy − V 2

xy) + VxxV 2
y + VyyV 2

x − 2VxVyVxy > 0

for all (x, y) ∈ B\π(pc).

Proof. Suppose that TWz > 0 for points in B\π(pc). Then, by (8) and
(9), det Wz > 0 if π(z) ∈ B\π(pc). This is a sufficient condition for Wz

to be positive-definite for all z ∈ S0 such that π(z) ∈ ∂B\π(pc) because
V = E in ∂B.
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If z ∈ S0 and π(z) ∈ ◦
B is sufficiently close to ∂B\π(pc), then, by (8),

we have trW > 0 and DW > 0 because V
(x,y)→∂B−→ E and V 2

x + V 2
y > 0

in ∂B\π(pc). Then W is positive-definite in z. As
◦
B is connected and

det Wz > 0 in
◦
B, then no eigenvalue of Wz can change its signal in

◦
B

and, therefore, they must be positive for all points in
◦
B. Then Wz is

positive-definite for all z ∈ S0 such that π(z) ∈ ◦
B. We conclude that Wz is

positive-definite for all z ∈ S0. The ”only if” part is imediate.

Proof. [Theorem 1] By Proposition 14, the inequality (1) is equivalent
to positive curvature of regular points of S. If S is regular then a well-know
result states that hypersurfaces diffeomorphic to S3 with positive curvature
are strictly convex (see [15]). If S has one singularity, then it satisfies the
hypotheses (H1), (H2) and (H3). The Theorem 13 finishes the proof in this
case.

We now give a geometric interpretation for the condition (1). Let R :
B → IR be a function given by R(x, y) =

√
E − V (x, y). Then R|∂B = 0

and R| ◦
B

> 0. The curve ∂B is a Jordan curve which is Ck≥2 at all points

but π(pc).

Proposition 15. TWz > 0 for all z ∈ S0 if and only if the curve
∂B\π(pc) has non-zero curvature and the function R is C2 strictly con-

cave in
◦
B.

Proof. The function R is C2 strictly concave in
◦
B if and only if the

matrix
∼
W

def
=

(
Rxx Rxy

Rxy Ryy

)

is negative-definite. Then we have

∼
W= − 1

4(E − V )
3
2

(
2Vxx(E − V ) + V 2

x 2Vxy(E − V ) + VxVy

2Vxy(E − V ) + VxVy 2Vyy(E − V ) + V 2
y

)

and, therefore,
∼
W is negative-definite if and only if det

∼
W> 0 and tr

∼
W< 0,

i.e.,

det
∼
W =

2(E − V )(VxxVyy − V 2
xy) + VxxV 2

y + VyyV 2
x − 2VxVyVxy

16(E − V )3
> 0

−tr
∼
W =

2(E − V )(Vxx + Vyy) + V 2
x + V 2

y

4(E − V )
3
2

> 0
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It follows that
∼
W is negative-definite if and only if det

∼
W> 0 in

◦
B because

−tr
∼
W> 0 for all points sufficiently close to ∂B\π(pc). We conclude that

TWz
> 0 for all z ∈ S0 such that π(z) ∈ ◦

B if and only if R is C2 strictly

concave in
◦
B.

The points of the regular curve ∂B\π(pc) satisfy the equation V (x, y) =
E and its curvature is given by

k(x, y) =

∣∣VxxV 2
y − 2VxyVxVy + VyyV 2

x

∣∣
(V 2

x + V 2
y )

3
2

Therefore, k(x, y) is positive if and only if TWz
> 0 for all z ∈ S0 such

that π(z) ∈ ∂B\π(pc).

5. EXAMPLES

5.1. The Hénon-Heiles Hamiltonian
We now consider the Hamiltonian H : IR4 → IR given by

H(x, y, px, py) =
p2

x + p2
y

2
+ V (x, y)

where V (x, y) = x2+y2

2 + bx2y − y3

3 and b is a positive parameter. When
b = 1, this is the Hénon-Heiles potential. It was first presented in [10] as a
model for chaotic star motions in a galaxy with an axes of symmetry.

The point (0, 1) is always a saddle of the potential function V and, for
px = py = 0, it corresponds to an equilibrium of saddle-center type for
the Hamiltonian flow associated to the function H. For a more detailed
description of the Hamiltonian flow near a saddle-center, see [1], [12], [14],

[8] and [9]. The saddle-center pc = (0, 1, 0, 0) is in the energy level Mb
def
=

{H = 1
6}. The energy level Mb depends on the parameter b. Let π :

IR4 → IR2 be the canonical projection given by π(x, y, px, py) = (x, y). If
0 < b < 1, then π(Mb) has a component Cb which is homeomorphic to D2

and contains π(pc). The boundary of Cb is a closed curve, which is regular
except at π(pc). For all points (x, y) ∈ Cb, we have − 1

2 ≤ y ≤ 1 and
x2 ≤ 1−3y2+2y3

3+6by . The points (x, y) ∈ ∂Cb satisfy V (x, y) = 1
6 (See Figure

5).

Let Sb
def
= π−1(C) ∩ Mb. The hypersurface Sb is homeomorphic to S3

and is regular except at pc.

Lemma 16. If (y, b) ∈ D
def
= (− 1

2 , 0) × (0, 1) and 8b2y3 + 12by2 + 6y +
4b2 − 3 > 0 then 4by2 + 3y + by + b > 0.
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Proof. We will show that 8by2 + 6y + 2by + 2b > 0 in D. We have

8by2 + 6y > 3− 4b2 − 4by2 − 8b2y3

Then

8by2 + 6y + 2by + 2b > −4by2 − 8b2y3 + 3− 4b2 + 2by + 2b

Now we have to show that

R(y, b)
def
= −4by2 − 8b2y3 + 3− 4b2 + 2by + 2b > 0

in D. In ∂D, we have R(− 1
2 , b) = −3b2 + 3 > 0 (except if b = 1), R(0, b) =

3 − 4b2 + 2b = (1 − b)(4b + 3) + b > 0, R(y, 0) = 3 > 0 and R(y, 1) =
−8y3 − 4y2 + 2y + 1.

Moreover, ∂R(y,1)
∂y = −24y2−8y +2 and it is easy to see that ∂R(y,1)

∂y > 0
for − 1

2 < y ≤ 0. Then R(y, 1) > 0 for all − 1
2 < y ≤ 0. We conclude that

R(y, b) is a positive function in ∂D except at the point (− 1
2 , 1) where it is

equal to zero. To show that R > 0 in D it is enough to prove that R(y, b)
has no critical points in D, i.e, the solutions of

(−8by − 24b2y2 + 2b,−4y2 − 8b− 18by3 + 2y + 2) = (0, 0)

are not in D. But if −8by − 24b2y2 + 2b = 0, b 6= 0, then

y± =
−1±√1 + 3b

6b

If 0 < b < 1, then y+ > 0 and y− < − 1
2 because

9b(b− 1) < 0 ⇔ 9b2 − 6b + 1 < 3b + 1 ⇔ (3b− 1)2 < 3b + 1

⇒ 3b− 1 <
√

1 + 3b ⇒ −1−√1 + 3b

6b
< −1

2

Therefore, there are no critical points of R(y, b) in D concluding that
R(y, b) > 0 in D.

Proposition 17. For all 0 < b < 1, Sb is a strictly convex hypersurface
in IR4.

Remark 18. This proposition is also valid for the regular energy levels
inside Sb.

Proof. By Theorem 1, it is now sufficient to show that

2(VxxVyy − V 2
xy)(

1
6
− V ) + V 2

x Vyy + V 2
y Vxx − 2VxVyVxy > 0
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for all (x, y) ∈ Cb\π(pc). It is equivalent to show that

N(y, b) + F (y, b)x2 + G(y, b)x4 > 0 (10)

where N(y, b)
def
= (1+ y)(1− y)3(1+2by), F (y, b)

def
= 2b(y− 1)(2by2 +3y +

2by + 2b) and G(y, b)
def
= 3b2(1 + 2by). Let B = (− 1

2 , 1)× (0, 1).
Solving the following equation for x2

N(y, b) + F (y, b)x2 + G(y, b)x4 = 0

we have

x2
± =

−K1(y, b)±
√

K2(y, b)
b(3 + 6by)

where

K1(y, b) = 3y2 + 2by3 − 3y − 2b

K2(y, b) = (1 + 2y)(1− y)2(8b2y3 + 12by2 + 6y + 4b2 − 3)

As N(y, b) > 0 and G(y, b) > 0 in B, we consider only the case K2(y, b) >
0 (x2

± real) because otherwise the equation (10) is trivially true. In B,
K2(y, b) > 0 is equivalent to 8b2y3 + 12by2 + 6y + 4b2 − 3 > 0.

Supposing that K2(y, b) > 0, we will show now that x2 < x2
− for all

(x, y) ∈ Cb\π(pc). To see this, it is enough to prove that 1−3y2+2y3

3+6by < x2
−

in B. And in B we have

1− 3y2 + 2y3

3 + 6by
< x2

− ⇔
√

(1 + 2y)(8b2y3 + 12by2 + 6y + 4b2 − 3) < 4by2 + 3y + by + b

(11)

and therefore by Lemma 16 we can square both sides of the last inequality
of (11) to get

1− 3y2 + 2y3

3 + 6by
< x2

− ⇔ 3by + y + b + 1 > 0

and it is imediate to verify that 3by + y + b + 1 > 0 in B.

Remark 19. Considering the Hénon-Heiles case (b = 1) and using the
same steps of the proof of Proposition 17, it is possible to prove that the
component Sc diffeomorphic to S3, which is in the energy level {H = c}
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for 0 < c < 1/6, is also strictly convex. It follows that in Sc there exists a
periodic orbit Pc for the Hamiltonian flow which bounds a global surface of
section of disk-type. It also implies the existence of infinitely many periodic
orbits in Sc as there are more than 2 periodic orbits in Sc. See [11] and [4].

5.2. An integrable example
The Hamiltonian H : IR4 → IR given by

H(x, y, px, py) =
p2

x + p2
y

2
+ V (x, y)

where V (x, y) = x2+ky2

2 + 1
2 (x2 + y2)2 is integrable where the the second

integral F is given by the following function

F (x, y, px, py) = − (xpy − pxy)2

2(k − 1)
+ p2

y + ky2 +
1
2
y2(x2 + y2)

For k > 0, the Hamiltonian function is convex and provides an example
of a system with two degrees of freedom with non-recurrent solutions. See
[17] for more details.

We will consider only the case when the parameter k is negative. It
follows that the origin is a saddle of the potential function V . The point
pc

def
= (0, 0, 0, 0) corresponds to a saddle-center equilibrium for the Hamil-

tonian flow associated to H and is in the energy level Mk
def
= {H = 0}.

Let π : IR4 → IR2 be the canonical projection given by π(x, y, px, py) =
(x, y). Then π(Mk) is symmetric related to the axes x and y. For y ≥ 0,
π(Mk) has a component Ck which is homeomorphic to D2 with a boundary
∂Ck which is regular except at the origin. The points of the boundary are
given by ∂Ck = {(x, y)|y ≥ 0, V (x, y) = 0}. Let Sk

def
= π−1(Ck)∩Mk. The

hypersurface Sk is homeomorphic to S3 and regular except at pc.

Proposition 20. For all k < 0, Sk is a strictly convex hypersurface in
IR4, homeomorphic to S3, regular at all points except at pc.

Proof. Using Theorem 1, it is enough to show that

2(VxxVyy − V 2
xy)(E − V ) + V 2

x Vyy + V 2
y Vxx − 2VxVyVxy > 0

for all (x, y) ∈ Ck\{(0, 0)}. It is equivalent to show that

K
def
= 4(x2 + y2)2 + 6(x2 + ky2) + 2(x2k + y2) + 3k < 0

in Ck\{(0, 0)}. We know that in Ck\{(0, 0}, V (x, y) ≤ 0, i.e.,

(x2 + y2)2 + x2 + ky2 ≤ 0
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or

x2 + y2 + k ≤ −x2

y2
(x2 + y2 + 1)

Then we have

K = 4(x2 + y2)2 + 4(x2 + ky2) + 2(x2 + ky2) + 2(x2k + y2) + 3k

≤ 2k(x2 + y2) + 2(x2 + y2 + k) + k

< −2x2

y2
(x2 + y2 + 1) ≤ 0

We conclude that K < 0 in Ck\{(0, 0)}.
Remark 21. Each connected component Sc of the energy level {H = c},

c < 0, diffeomorphic to S3, is also strictly convex implying the existence of
a periodic orbit Pc which bounds a global surface of section of disk-type.
See [11].
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(a) (b)

FIG. 1. A planar closed curve in IR2 with positive curvature and one singularity
may be the boundary of: (a) a non-convex domain and (b) a convex domain.

S

S

C

B

S

FIG. 2. Hypersurfaces in IR4 homeomorphic to S3 separate IR4 in 2 sets: one
bounded set BS and one unbounded set CS .
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p

p S p

f

T

FIG. 3. The local representation fp of S in a neighborhood of a point p with positive
curvature is a strictly convex function.

S
S

C
B

FIG. 4. The local representation fp of a regular point p of a curve in IR2 with three
singularities may not satisfies the (analogous to IR2) properties given by Lemma 8.
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FIG. 5. The boundary of Cb is a simple closed curve, regular and with positive
curvature in all points but π(pc).


