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1. INTRODUCTION

This paper is a collection of results about the geometry of certain plane
distributions related to the dynamics of two degree of freedom Hamiltonian
systems. The following example illustrates and motivates the problem. Let
(q1, q2, p1, p2)

def= x be Cartesian coordinates in R4 and ω = dqi ∧ dpi = dλ
(the sum convention over repeated indices will be used throughout the
paper) be the canonical symplectic form where λ = (qidpi − pidqi)/2. Let
H be a real valued function in R4 and S be its level set H = 1 supposed
regular. The Hamiltonian vector-field XH associated to H is defined by
the equation dH = ω(XH , ·). Notice that if Y is any vector tangent to S
then dH(Y ) = 0 = ω(XH , Y ), namely XH is contained in the kernel of ω|S
(the restriction of ω to S). The non-degeneracy of ω implies that kerω|S
is one dimensional. Therefore the direction of XH is uniquely determined
by the condition XH ∈ kerω|S = ker dλ|S . The restriction of λ to S
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also defines a plane distribution on S, given by ξ = kerλ|S , with possible
singularities at the origin of R4 or at points where S is tangent to ker λ.
So, the one form λ associates to each regular hypersurface S in R4 two
distinct distributions: a direction field ker dλ|S (which contains the original
Hamiltonian vector filed) and a plane field kerλ. If for all points of S
this direction field is transversal to this plane distribution, then the plane
distribution is necessarily regular and it is named “contact distribution”.
In this case λ|S is called contact form and the vector field X, uniquely
determined by dλ(X, ·) = 0, λ(X) = 1, is called characteristic vector field
or Reeb vector field. Notice that XH and X possibly differ only by the
time parameterization. This paper is about topological properties of this
and related plane fields.

Contact distributions appear not only in the study of Hamiltonian sys-
tems. They are central objects in many different subjects in mathemat-
ics like symplectic topology, sub-Riemannian geometry, Cauchy-Riemann
(CR) structures in complex geometry, non-holonomic mechanics, control
theory, etc. In different areas distinct aspects of contact distributions, or
even the same aspects, are studied using different methods. During some
time I superficially explored many of these areas having as a main motiva-
tion future applications in the study of two degrees of freedom Hamiltonian
systems. This paper is an overview of part of this investigation. Most of
the material here presented is not new, except for some examples, counter-
examples, and a result on canonical trivializations of certain plane fields
presented in section 4.

This paper is subdivided as follow. Section 2 contains some impor-
tant and well-known results on the topology of contact distributions on
3-manifolds. Section 3 is a study of contact distributions and related plane
fields which appear on hypersurfaces in symplectic 4-manifolds (as in the
example above). The plane fields in section 3 are transverse to their as-
sociated Hamiltonian vector fields. Section 4 is dedicated to the study of
plane fields on hypersurfaces which are tangent to such Hamiltonian vector
fields.

In this paper unless explicitly mentioned all functions, manifolds, dis-
tributions, etc, are supposed to be C∞. The manifolds are supposed to
be compact and boundary-less, that is closed, and three-dimensional. Of
course many of the results presented below hold under more general hy-
potheses.

2. CONTACT STRUCTURES

As general references to this section see: [19] section 4, [11], [2] appendix
4, [6], and, specially, [30].
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Definition 1. [Contact Distribution] Let ξ be a plane distribution on
a three-dimensional manifold M . This distribution is called non-singular
if each point p ∈ M has a neighborhood U in which ξ is the kernel of a
non vanishing one-form θ. It is called a contact distribution or contact
structure if any local defining one-form θ satisfies θ∧ dθ 6= 0 at every point
in U . The pair (M, ξ) is called contact manifold.

Notice that a contact distribution satisfies a condition of maximal non-
integrability θ ∧ dθ 6= 0 (Frobenius theorem) and it does not admit any
local integral surface (see [2] appendix 4). The condition θ ∧ dθ 6= 0 does
not depend on the local form used to define ξ. If θ and σ are two local
non-vanishing forms such that ξ = ker θ = kerσ then there exists a non-
vanishing real function f such that σ = fθ, which implies that σ ∧ dσ =
fθ ∧ d(fθ) = f2θ ∧ dθ. This fact and the following argument imply that
a contact structure determines an orientation on M . Let U, V, . . . be a
finite open cover of M such that each of the sets U, V, . . . admits a one-
form θU , θV , . . ., respectively, which defines locally the contact structure.
Then in the intersection of U and V these forms satisfy θU = fθV for
some non-vanishing function f . So, θU ∧ dθU = f2θV ∧ dθV and the local
signed volume forms θU ∧ dθU and θV ∧ dθV have the same sign in U ∩ V .
Therefore, using a partition of unity these local volume forms can be glued
to define a global signed volume form.

Definition 2. [Orientation] If M is a priori oriented and the sign of
the above signed volume form associated to ξ is positive then the contact
structure ξ is called positive, otherwise it is called negative.

Definition 3. [Co-orientation] A contact structure ξ is called co-orientable
if there exists a global one-form θ, called contact form, such that ξ = ker θ.
In this case ξ is also said transversally orientable, in the sense that there
exists a globally defined nonsingular vector field transverse to ξ. Let the
orientation of M be fixed. Then ξ is positive if θ ∧ dθ > 0 and negative if
θ ∧ dθ < 0.

Let us see some examples of contact structures (see [2] appendix 4).

Example 4. [The one-jet space or the standard contact structure of R3.]
Let z = f(x) be a real-valued function on R and let x → (f ′(x), z) ∈ R2

be its one-jet extension. Let (x, y, z) be Cartesian coordinates on R3 and
consider the one-form θ = dz − ydx. Notice that θ ∧ dθ = dx ∧ dy ∧ dz,
namely θ is a contact form and ξ = ker θ is a co-oriented contact structure
on R3 (with its usual orientation). A curve γ : x → (y, z) is the one-jet
extension of some function z = f(x) if, and only if, γ is an integral curve
of ξ, that means γ is tangent to ξ at every point.
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Example 5. [The space of oriented contact elements or oriented tangent
lines (co-orientable).] Let Q be a two dimensional surface and TQ∗ be
its cotangent bundle. Each non-null covector p of TqQ

∗ defines a line in
TqQ given by ker p. Any other covector αp, with α 6= 0, defines the same
line. For each q ∈ Q let SqQ be the circle obtained from TqQ

∗ − {0} by
its quotient under the equivalence relation p ∼ αp, α > 0. The union of
Sq for all q ∈ Q defines SQ∗, a circle bundle over Q called the bundle of
oriented lines of Q (or the oriented projectivization of TQ∗ or the bundle
of oriented contact elements). This bundle has a natural contact structure.
Let π : SQ∗ → Q be the bundle projection. Each point z ∈ SQ∗ is
associated to an oriented line lz in TπzQ. Let ξz ∈ TzSQ∗ be the pull-back
of lz under π, namely Z ∈ ξz if π∗Z ∈ lz, where π∗ is the tangent map
of π. The plane field ξ is a negative co-oriented contact distribution with
respect to a natural orientation of SQ∗ and with an associated contact
form θ constructed in the following way. Let us set a Riemannian metric
on Q. Then the bundle SQ∗ can be identified with the unit circle bundle
of TQ∗, that is SQ∗ can be considered as a submanifold of TQ∗ given by
the set of covectors z of Q with ||z|| = 1. Let θ be the canonical one-form
(or Liouville form) on SQ∗ which for z ∈ SQ∗ and Z ∈ TzSQ∗ has value
θz(Z) = z(π∗Z), namely θ = π∗z. Clearly ker θ = ξ. In order to show that
θ ∧ dθ < 0 let us choose a coordinate system (x1, x2) in a neighborhood
U of q ∈ Q such that: q → (0, 0), {dx1, dx2} is positively oriented and
orthonormal at q. Let {σ1, σ2} be an orthonormal reference coframe in U
such that

σ1 = dx1 + a1
1(x)dx1 + a1

2(x)dx2, σ2 = dx2 + a2
1(x)dx1 + a2

2(x)dx2

with ai
j = O(x). Then the function (x, φ) → z = cos(φ)σ1 + sin(φ)σ2,

where (x, φ) ∈ V ⊂ R3 and z ∈ π−1U , defines a local parameterization of
π−1U . In these coordinates θ is also given by cos(φ)σ1 + sin(φ)σ2 (with
the usual ambiguity of the notation), where σ1, σ2 are given above. Then

dθ = − sin(φ)dφ ∧ dx1 + cos(φ)dφ ∧ dx2 + cdx1 ∧ dx2 +O(x)

where c is some constant. Therefore at x = (0, 0) we obtain θ ∧ dθ =
−dx1 ∧ dx2 ∧ dφ.

Example 6. [The space of contact elements or tangent lines (non co-
orientable).] Let SQ∗ be the bundle of oriented lines defined above, iden-
tified with the unit circle bundle in TQ∗. Let A : SQ∗ → SQ∗ be the fiber
preserving antipodal map A(z) = −z and PQ∗ be the manifold obtained
from SQ∗ under the identification of z with A(z) = −z. Notice that z and
−z have the same kernel, so they are associated to the same non-oriented
line element in Tπ(z)Q. The manifold PQ∗ is called the bundle of tangent
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lines, or the bundle of contact elements, or the projectivized cotangent
bundle. If θ is the contact one-form in SQ∗ defined in example 5 then
A∗θz(Z) = θA(z)(A∗Z) = −z(π∗A∗Z) = −θz(Z) where we used π ◦A = π.
Therefore A∗θ = −θ which implies that the contact structure ξ = ker θ of
SQ∗ remains invariant under the action of A but not the contact form. So
PQ∗ enherits the contact structure of SQ∗ but this contact structure is
not co-orientable. More precisely, let ρ : SQ∗ → PQ∗ be the double cover
projection associated to the quotient SQ∗/A. Let z ∈ SQ∗ be one of the
preimages of y ∈ PQ∗ under ρ. Then in a neighborhood of z the map ρ is
invertible and ρ−1∗θ = µ defines a local contact form in a neighborhhod of
y. If instead of z we have used A(z) in this construction then we would ob-
tain the local contact form ρ−1∗θ = −µ. The kernel of both forms generate
the same contact distribution in PQ∗ which we denote by η. Now suppose
that there is a global contact form µ on PQ∗ that generates η. Then ρ∗µ is
a global contact form on SQ∗ defining ξ and ρ∗µ has to be invariant under
A because A∗ρ∗µ = (ρ ◦ A)∗µ = ρ∗µ. Moreover, ρ∗µ = fθ with f every-
where different from zero, because all contact forms associated to ξ are of
this form. Then A∗ρ∗µ = ρ∗µ and A∗θ = −θ imply that f(z) = −f(−z)
for all z ∈ SQ∗, which is impossible because f cannot be zero anywhere.
Therefore we conclude that η is a non co-orientable contact structure on
PQ∗.

After the definition of contact structure two natural questions are about
the existence and classification of such structures. The following existence
result give a definite answer to the first question.

Theorem 7 (Existence of contact forms). Let M be any closed ori-
ented 3-manifold. Then:

a)M admits a contact structure (this was first proven by Martinet [25],
see also [23] [24] [32]).

b)M has a contact structure in every homotopy class of non-singular
plane distributions (a result essentially due to Lutz, see the previous refer-
ences and [9]).

c)M has a parallelization by three contact forms θj, j = 1, 2, 3, and each
contact distribution ker θj, considered as a plane bundle, is trivial [18].

d)M admits contact circles realizing any of the two orientations, where
a contact circle is a pair of contact forms θ1, θ2 such that any linear com-
bination a1θ

1 + a2θ
2 with constant coefficients a1, a2, a2

1 + a2
2 = 1, is also

a contact form. [17].

The question about local classification of contact structures is completely
solved by the following important theorem of Darboux (see [2] appendix
4).
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Theorem 8 (Darboux). There is a C∞ coordinate system (x, y, z) in
a sufficiently small neighborhood V of any point in a contact manifold such
that in V the contact structure is given by the kernel of the standard contact
form dz − ydx.

So, from a topological point of view all contact structures look locally the
same and their possible non-trivial topological properties must be global.
A first result about global topology of contact structures is Gray stability
theorem ([15], see also [26] chapter 3, [30]).

Theorem 9 (Gray). Given a one-parameter family of contact forms
θt (or in the non-co-orientable case contact structures ξt) on M there exist
one-parameter families of diffeomorphisms ψt and real functions ft > 0
such that ftθt = ψ∗t θ0 (or ξt = ψ∗t ξ0).

Therefore two contact structures that are homotopic through contact
structures are isotopic. Important topological properties of contact mani-
folds are related to the way the contact structure intersect embedded sur-
faces. Recall that a plane distribution is integrable if and only if it is locally
given by the kernel of a one-form θ that satisfies θ∧dθ = 0 (Frobenius the-
orem). So, a contact distribution does not admit any integral surface.

Definition 10. [Characteristic directions on a surface] Let ξ be a non-
singular plane distribution on a manifold M and Q be a surface embedded
in M . A point of intersection of the tangent plane field of Q and ξ is called
regular if the intersection is tranversal and is called singular otherwise. The
direction defined by the intersection at a regular point is called character-
istic direction and the set of all characteristic directions plus the singular
points is called characteristic field of Q.

Let M be a co-oriented contact manifold with contact form θ and X be
the characteristic field of a surface Q embedded in M . A singular point
of X is always isolated from closed orbits of X (it cannot be like a center
of a Hamiltonian vector field in the plane). Indeed, let D ⊂ Q be a disk
containing a singular point p of X such that γ = ∂D is a closed orbit of
X. The integral of θ over X is zero because X ⊂ ker θ. Then, by Stokes
theorem, the integral of dθ over D is also zero. But in a sufficiently small
neighborhood of p the integral of dθ over D has to be non-null, because
at the singular point p the tangent space of Q is generated by two vectors
V1, V2 contained in the kernel of θ and if V3 is a third linear independent
vector then θ ∧ dθ(V1, V2, V3) 6= 0 implies dθ(V1, V2) 6= 0. So, γ cannot
be too close to p. Moreover, for the integral of dθ over D to vanish it is
necessary that the contact planes turn (or twist) sufficiently, with respect
to the tangent planes of Q, in order to i∗dθ (i : D → M is the inclusion
map) to change sign in D. It is quite interesting that in some sense this
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local property of non-existence of closed characteristic orbits near a singular
point hold globally for certain types of contact structures.

Definition 11. [Overtwisted×Tight] A contact structure ξ in M is called
overtwisted if there exists an embedded 2-disk in M such that ∂D is tangent
to ξ (a curve tangent to ξ is called Legendrian curve) and ∂D does not
contain singularities of the characteristic field, namely the tangent planes
to D at ∂D are transverse to ξ. A contact structure ξ is called tight if it is
not overtwisted.

Examples of overtwisted contact structures can be constructed as in the
following (see [9], [5],[30]). Let us start with the standard contact structure
in R3 (example 4) and change variables as x =

√
2x′, y =

√
2y′, z = z′+x′y′

to get (the prime will be omitted in the new variables) dz + xdy − ydx.
This form written in cylindrical coordinates becomes dz + r2dφ. Notice
that along the rays z = 0, φ = constant the contact planes dz + r2dφ = 0
rotate around the r-rays from angle 0 to π/2 as r goes from 0 to ∞. Note
that no disk in the plane z = 0 centered at the origin has a boundary which
is a Legendrian curve. The idea to turn the boundary of a disk like this into
a Legendrian curve is to twist the contact planes of the previous structure
along the r-rays. So, consider the one-form σ = cos rdz + r sin rdφ. Note
that σ ∧ dσ > 0 and that the planes σ = 0 turn infinitely many times
around an r-axis as r-increases. The boundary of the disk {r ≤ π, z = 0}
is a Legendrian curve but the disk is tangent to the contact structure at
it. The disk D = {r ≤ π, z = (π2 − r2)} satisfies the hypotheses required
in definition 11, so σ is an overtwisted structure in R3. It is not easy to
show that a given contact structure is tight. A first proof that the standard
contact structure in R3 is tight was given by Bennequin [5]. A main result
on the classification of overtwisted contact structures on closed 3-manifolds
is the following [9] (see also [11]).

Theorem 12 (Eliashberg). Two overtwisted co-orientable contact struc-
tures are homotopic as contact structures (therefore isotopic by Gray theo-
rem) if and only if they are homotopic as plane fields.

Any contact structure can be made overtwisted through a surgery of the
structure called Lutz twisting which does not change the homotopy type
of the plane field (see [5], [9], [30]). The existence theorems 7 of Martinet
and Lutz say that there exists a contact structure in every homotopy class
of plane fields and therefore there exists an overtwisted co-oriented contact
structure in every homotopy class of co-oriented plane fields (which are
plane fields given by global non-vanishing one-forms). So, there are as
many isotopy classes of overtwisted co-oriented contact forms as homotopy
classes of co-oriented plane fields (see [16] for a characterization of these
homotopy classes). A closed orientable 3-manifold M has a trivial co-
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tangent bundle (theorem 7 c)). Choose a trivialization of the cotangent
bundle of M and consider the unit sphere bundle associated to it. Then to
each oriented plane in TpM corresponds a unique covector in this sphere
bundle. This implies that the space of co-oriented plane fields in M is in
one-to-one correspondence with the space of mappings from M to S2 and
therefore, the homotopy classes of co-oriented planes in M are in one-to-one
correspondence to the homotopy classes of mappings from M to S2. For
instance, for M = S3 these homotopy classes, denoted as π3(S2), are in one-
to-one correspondence with the set Z, which implies that there are infinitely
many different homotopic classes of overtwisted co-orientable structures in
S3. Tight contact structures are much more rigid then the overtwisted.
For example, in S3 there is a unique tight contact structure up to isotopy
[10], [11]. Moreover, there exists an oriented closed 3-manifold which does
not admit any tight contact structure with oposite orientation [13]. More
results about the topological classification of tight contact structures are
given in [11].

3. FIELDS OF PLANES TRANSVERSE TO HAMILTONIAN
VECTOR FIELDS

Let N be a 4-dimension manifold and ω be a symplectic form on N . The
pair (N,ω) is called symplectic manifold. The main example is R4 with
cartesian coordinates (q1, q2, p1, p2) and ω = dqi ∧ dpi. A hypersurface M
in N is a connected closed 3-manifold which can be described as the preim-
age of a regular value of some function H : N → R called Hamiltonian
function. A triple (N, ω, H) is called Hamiltonian system. Let i be the
inclusion map of M into N and i∗ω be the pull-back of ω by i. The fact
that ω is nondegenerate implies that the kernel of i∗ω is one-dimensional.
The direction field given by the kernel of i∗ω is called the characteristic
field of the hypersurface M contained (N,ω). Let (N, ω,H) be a Hamil-
tonian system. The vector field XH in N given by dH = ω(XH , ·) is
called Hamiltonian vector field. Notice that the form dH = ω(XH , ·) re-
stricted to M = H−1(c) is null which implies that XH |M is contained
in the characteristic field of M . A Hamiltonian system (N,ω, H) induces
not only a vector-field in M = H−1(c) but also a volume form, which is
preserved by the flow of XH |M . This volume form is constructed in the
following way. Let ρ = (1/2)ω ∧ ω be a volume form in N and X be the
Hamiltonian vector field associated to H. Since LXω = iXdω + diXω = 0
the flow of X preserves ρ. Let Y be any vector field defined in a neigh-
borhood U of M such that Y is transverse to the level sets of H and
dH(Y ) = −1. For instance, if we set a Riemannian metric on U then Y
can be chosen as −∇H/||∇H||2. Let π : TU → TU be the projection onto
the level sets of H given by π(V ) = V + Y dH(V ) and σ be the three-
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form in U given by σ(V1, V2, V3) = (1/2)ω ∧ω(Y, πV1, πV2, πV3). Note that
ρ = σ ∧ dH. To verify this identity it is enough to check that at each
point of U the identity is true for a linearly independent quadruple of vec-
tors (Y, V1, V2, V3) where (V1, V2, V3) are tangent to the level sets of H. In-
deed, σ∧dH(Y, V1, V2, V3) = −dH(Y )σ(V1, V2, V3) = ω∧ω(Y, V1, V2, V3)/2.
Now, let µ = σ|M be the three-form in M obtained from the restric-
tion of σ to M . The form µ is also preserved by the flow of X because
0 = LX(ω ∧ω) = LXσ ∧ dH + σ ∧LXdH = LXσ ∧ dH, which implies that
LXσ|M = 0. The form µ does not depend on the vector field Y used in the
costruction of σ. In fact, let Ỹ be a second vector field in U with the same
properties and σ̃ be its associated three-form. If (V1, V2, V3) are tangent to
M then

(µ− µ̃)(V1, V2, V3) = (σ − σ̃)(V1, V2, V3) =
1
2
ω ∧ ω(Y − Ỹ , V1, V2, V3) = 0

because dH(Y − Ỹ ) = 0 implies that Y − Ỹ ∈ TM . Notice that µ may
not be the unique invariant volume form under the flow of X (excluding
multiplication by a constant). If X has a nontrivial positive first inte-
gral f : M → R then fµ is also invariant under the flow of X because
LX(fµ) = (LXf)µ + fLXµ = 0. In this sense the uniqueness part of the
following proposition, which is a consequence of the above argument, is
quite interesting.

Proposition 13 (Invariant volume form). Let (N, ω,H) be a Hamil-
tonian system of class Ck, for any k = 1, . . . ,∞, analytic (this means that
N , ω and H are Ck) and M = H−1(c) be a compact regular hypersurface.
Given any vector field Y : M → TN of class C1, transverse to M , and
such that dH(Y ) = −1, let µ be the three-form in M given by:

µ(V1, V2, V3) =
1
2
iY (ω ∧ ω)|M

Then:

a)µ is unique in the sense that it does not depend on the choice of the
vector-field Y . This, in particular, implies that µ is as regular as the Hamil-
tonian system (N, ω,H).

b)µ is a volume form (if V1, V2, V3 are positively oriented on M then
Y, V1, V2, V3 are positively oriented on N).

c)µ is invariant under the flow of the Hamiltonian vector of (N,ω, H)
restricted to M .

Although the existence of an X-invariant volume form (usually called Liou-
ville form) on M is stated in almost every text book on classical mechanics,
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in most of them the question of its uniqueness is not even mentioned. An
exception is the book by Abraham and Marsden (see [1] section 3.4) where
some type of uniqueness is cited. Notice that the regularity statement a) in
the proposition is a consequence of the non-dependence of µ on the choice
of Y , the explicit construction of σ, and the fact that Y can always be
chosen as regular as (N, ω, H). In the real analytic case such result could
not be obtained using a partition of unit argument like, for instance, the
one used in [1]. There are certain vector fields Y transverse to M which
play a crucial role in the construction of contact forms on M . This is the
content of the next proposition which establishes a link between contact
manifolds and hypersurfaces of symplectic manifolds. The statement below
was adapted from [26] (section 3.4) where the reader also finds its proof.

Proposition 14 (Hypersurfaces of contact type). Let (N, ω) be a sym-
plectic manifold. A vector field Y in N is called a Liouville vector field if
LY ω = ω. Let M be a compact hypersurface in N . Then the following are
equivalent.

a)There exists a contact form θ on M such that dθ = ω|M .
b)There exists a Liouville vector field Y : U → TM , defined in a neigh-

borhood U of M , which is transverse to M .

If these conditions are satisfied then M is said of contact type. Moreover
the contact form θ in a) can be chosen as θ = iY ω|M where Y is the
vector-field in b).

The proof that b) implies a) is easy. If θ = iY ω|M then dθ = −iY dω +
LY ω = LY ω = ω and

θ ∧ dθ = iY ω ∧ diY ω|M = iY ω ∧ (−iY dω + LY ω)|M
= iY ω ∧ ω|M =

1
2
iY (ω ∧ ω)|M . (1)

implies that θ ∧ dθ is a volume form on M .

Definition 15. [Reeb vector field] Let (M, θ) be a contact manifold.
The vector field X in M uniquely determined by the conditions iXdθ = 0
and θ(X) = 1 is called Reeb vector field.

Notice that if M is a hypersurface of contact type in (N, ω) then there
exists infinitely many contact forms θ such that θ = dω (just take a par-
ticular θ and add a sufficiently small closed one-form to it). If Y is a Liou-
ville vector field transverse to M then there exists a function H such that
H−1(c) = M and dH(Y ) = −1. Indeed, let h be any function defined in
a neighborhood of M such that h(x) = 0 and dh(x) 6= 0 for x ∈ M . Then
H(x) = −h(x)/[dh(x)Y (x)] satisfies dH(x)Y (x) = −1 for x ∈ M . Let
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θ = iY ω|M be the contact form given in proposition 14. The Hamiltonian
vector field of (N,ω, H) restricted to M coincides with the Reeb vector field
of θ because iXdθ = iXω = 0 and θ(X) = ω(Y, X) = −dH(Y ) = 1 (here
is the reason for the minus sign appearing in the condition dH(Y ) = −1
of proposition 13). Moreover, the volume form associated to θ satisfies
equation (1) which implies that it is equal to the volume form µ defined
in proposition 13. This shows that if M is a hypersurface of contact type
in (N, ω) associated to the Liouville vector field Y then its Reeb vector
field coincides with the Hamiltonian vector field of (N,ω, H) restricted to
M , where dH(Y )|M = −1, and its contact volume form coincides with the
volume form given in proposition 13. So, a natural question is whether
any hypersurface M is of contact type. An answer to it is provided by the
following list of examples.

Example 16. [Star-shaped hypersurfaces in R4.] Consider R4 with its
standard symplectic form ω. Let (q1, q2, p1, p2)

def= x be cartesian coordi-
nates in R4 and λ be the one-form λ = (qidpi − pidqi)/2 which satisfies
ω = dλ. If M is a star-shaped hypersurface with respect to the origin
then λ|M is a contact form and M is of contact type. One way to ver-
ify this is to notice that Y (x) = x/2 (the radial vector field) satisfies
iY ω = λ and LY ω = iY dω + diY ω = dλ = ω, which implies that Y is
a Liouville vector-field transverse to M . Therefore, proposition 14 im-
plies that λ|M = θ = iY ω is a contact form. The form θ generates a
contact structure on M which is diffeomorphic to the “standard contact
structure” of S3 ⊂ R4. This fact, which is interesting from a computa-
tional point of view, is discussed in the following (see [20] section 4). Let
h : R4 − {0} → R be the function that to each x ∈ R4 − {0} associates
a positive number h(x) such that xh(x) ∈ M . If x = sx̃ for some positive
number s then xh(x) = x̃h(x̃) = sxh(sx) implies that h is homogeneous
of degree −1. Now, if H(x) = 1/h2(x) then H is homogeneous of degree
two, M = H−1(1), and 2H(x) = dH(x)x implies that dH(x)Y (x) = 1 for
x ∈ M . Note that the Hamiltonian vector field of H is minus the Reeb
vector field of θ. Let Φ : S3 → M be the mapping Φ(x) = h(x)x where
||x|| = 1. If v ∈ TxS3 is written as a vector in R4 such that (v, x) = 0 then,
using the explicit expression for λ in coordinates,

Φ∗θv = Φ∗λ|Mv = λ(xh(x))Φ∗v = h(x)λ(x)[h(x)v+(dh(x)v)x] = h2(x)λ(x)v

which implies that Φ∗θ = h2λ|S3
def= h2θ0. The one form θ0 is called the

“standard contact form” of S3 and it generates the same contact structure
ξ as the form Φ∗θ. The Reeb vector field of Φ∗θ, which corresponds to
the pull-back of the Hamiltonian vector field of −H restricted to M , is
transverse to the contact structure ξ. Therefore, any Hamiltonian vector
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field associated to a star-shaped hypersurface in R4 has a pull-back to S3

which is transverse to the standard contact structure of S3.

Definition 17. [Restricted contact type] A hypersurface M in a sym-
plectic manifold (N, ω) is of restricted contact type if there exists a one-form
λ in N such that dλ = ω, and λ|M is a contact form on M .

If M is of restricted contact type then it is of contact type. All the
star-shaped hypersurfaces of example 16 are of restricted contact type.
Moreover, a hypersurface M in (R4, dqi ∧ dpi), with trivial first de Rham
cohomology H1(M) = 0, is of restricted contact type if, and only if, it is of
contact type. This is not true if H1(M) 6= 0 as shown in the next example.

Example 18. [A 3-torus in (R4, dqi ∧ dpi) which is of contact type
but not of restricted contact type.] Consider the following Hamiltonian
function in (R4, dqi ∧ dpi):

H =
{

2− (q2
1 + p2

1)
2

}2

+
{

2− (q2
2 + p2

2)
2

}2

Any one-form λ in R4 such that dλ = ω must be of the form λ = λ0 + df
where λ0 = (qidpi − pidqi)/2 is the one-form used in example 16 and f :
R4 → R. Let us define new coordinates in R4 − {q1 = p1 = 0} ∪ {q2 =
p2 = 0}

q1 =
√

2(I1 + 2) sin θ1, q2 =
√

2(I2 + 2) sin θ2,

p1 =
√

2(I1 + 2) cos θ1, p2 =
√

2(I2 + 2) cos θ2

where θi are angular coordinates and Ii > −2. In these new coordinates:

λ = λ0 +df = −Iidθi−2dθ1−2dθ2 +df, ω = dθi∧dIi, H = I2
1 +I2

2

The hypersurface M = H−1(1) is a three-torus which can be parameterized
by the three angles θ1, θ2, φ, where φ is given by

I1 = cos φ, I2 = sin φ

Note that a necessary condition for λ restricted to M to be a contact
form is that λ(X) 6= 0 for any nonsingular vector field in M such that
dλ(X, ·) = ω(X, ·) = 0. In particular let X be the Hamiltonian vector field
associated to H restricted to M

θ̇1 = 2I1 = 2 cos φ, θ̇2 = 2I2 = 2 sin φ, İ1 = İ2 = φ̇ = 0.

Then

λ(X) = −2[1 + 2
√

2 sin
(
φ +

π

4

)
] + df(X)
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The vector field X has two closed orbits γ1 = {φ = π/2, θ1 = 0, θ2 =
2t, t ∈ [0, π]} and γ2 = {φ = π, θ1 = −2t, θ2 = 0, t ∈ [0, π]} on which
λ|γ1 = −6 + df(X) and λ|γ2 = 2 + df(X). This implies that for any choice
of function f the integrals

∫
γ1

λ < 0 and
∫

γ2
λ > 0 which is impossible

because λ(X) must have the same sign all over M . Although M is not of
restricted contact type it is of contact type. Let us add to λ0|M the closed
form 2dθ1 + 2dθ2 to obtain the one-form in M

θ = −Iidθi = − cosφdθ1 − sin φdθ2 (2)

Note that dθ = ω|M and θ ∧ dθ = −dθ1 ∧ dθ2 ∧ dφ which shows that θ is a
contact form and M is of contact type.

Example 19. [A hypersurface which is not of contact type.] The fol-
lowing example satisfies the conditions given in [8] (theorem 1) for a hyper-
surface to be not of contact type. As in example 18 consider a Hamiltonian
function in R4 given by

H = h(I1, I2), where I1 =
(q2

1 + p2
1)

2
, I2 =

(q2
2 + p2

2)
2

and

h(I1, I2) = φ(I1 + I2) + φ(I1 − I2) + 0.01(I2
1 − I2

2 )2,
where φ(z) = z2(z2 − 1)2 (3)

Let M be the hypersurface in R4 that corresponds to the connected com-
ponent of the level curve h = 0.15 shown in figure 1. The hypersurface M
is algebraic and is diffeomorphic to S3 (the level curve shown in figure 1
is diffeomorphic to I1 + I2 = 1 which is the standard sphere in S3). Let
a and c be the points on the plane {I1, I2} shown in figure 1 which sat-
isfy ∂I2h(a) = ∂I2h(c) = 0, ∂I1h(a) < 0, and ∂I1h(c) > 0. Using polar
coordinates

q1 =
√

2I1 sin θ1, q2 =
√

2I2 sin θ2, p1 =
√

2I1 cos θ1, p2 =
√

2I2 cos θ2,

with Ii > 0, we verify that there exists two periodic orbits γa and γc which
satisfy γa = {(I1, I2) = a, θ̇1 < 0, θ̇2 = 0} and γc = {(I1, I2) = c, θ̇1 >
0, θ̇2 = 0}. Now, since M is diffeomorphic to S3, any one-form θ on M
which verifies dθ = ω|M must also satisfy θ = λ0|M + df where f is a real
valued function on M and λ0 = (qidpi − pidqi)/2 = −Iidθi. This implies
that

∫
γa

θ > 0 and
∫

γc
θ < 0, for any choice of f . So, by the same argument

as in example 18, namely, that necessarily θ(X) 6= 0 over M , we conclude
that M is not of contact type.
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FIG. 1. Figure showing a connected component of the level curve h = 0.15 of
function h defined in equation 3. The function h decreases as the level curve is crossed
from the outside to the inside (by inside I mean the bounded region encircled by the
level curve). The points a, b, and c are such that ∂I2h(a) = ∂I2h(b) = ∂I2h(c) = 0,
∂I1h(a) < 0, ∂I1h(b) < 0 and ∂I1h(c) > 0.

Example 20. [The unit sphere bundle of a Riemannian surface is of
restricted contact type.]

Let Q be a surface with a given Riemannian metric and λ be the usual
Liouville form defined on TQ∗ (if σ is a one form on Q then π∗σ = λ(σ)
where π : TQ∗ → Q is the canonical projection). Here we follow the
notation of example 5. The form ω = −dλ is a symplectic form on TQ∗.
If (q, pdq) are coordinates in TQ∗ then λ = pdq and ω = dq ∧ dp. Let
SQ∗ = {z ∈ TQ∗ : ||z|| = 1} be the co-unit circle bundle of Q and θ
be the one-form on SQ∗, defined in example 5, which satisfies θ = λ|SQ∗ .
It was shown in example 5 that θ is a contact form, so (SQ∗,−θ) is a
submanifold of restricted contact type of (TQ∗, ω). If H : TQ∗ → R is the
function H(z) = ||z||2/2 then SQ∗ = H−1(1/2). It is easy to show that
the unit speed geodesic flow of Q when mapped to the cotangent bundle of
Q (through the natural isomorphism TQ → TQ∗, v →< v, · >= z), is the
flow of the Hamiltonian vector field X of (TQ∗, ω, H) restricted to SQ∗.
If γ : [0, 1] → Q is a unit speed geodesic and (q, pdq) are coordinates in
TQ∗ then [0, 1] → (q(t), p(t)) is an integral curve of X where q(t) = γ(t)
and p(t)dq =< γ̇, · >. This implies that X restricted to SQ∗ satisfies
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θ(q, p)X = pdq(X) =< γ̇, γ̇ >= 1. So, the Reeb vector field of (SQ∗, θ) is
the geodesic vector field X restricted to SQ∗.

Consider for instance the two-torus R2/(2πZ2) with coordinates
(θ1, θ2)mod(2π, 2π) and Riemannian metric dθ2

1 + dθ2
2. In this case λ =

pidθi, H = (p2
1 + p2

2)/2, and SQ∗ = {(θ1, θ2, p1, p2) : H = 1/2}. SQ∗ is
diffeomorphic to a three-torus and it can be parameterized by (θ1, θ2, φ)
with p1 = cos φ and p2 = sin φ. The contact form θ = λ|SQ∗ = cos φdθ1 +
sin φdθ2 is, except for a minus sign, the same as the one in equation (2).
Notice that as contact manifolds the torus in this paragraph and that in
example 18 are the same. Nevertheless the one appearing here is a sub-
manifold of restricted contact type of (TQ∗, ω) while that in example 18 is
not a submanifold of restricted contact type of (R4, dqi ∧ dpi).

Example 19 shows that there is a hypersurface M ' S3 in R4 which do
not admit a contact form θ such that dθ = ω|M . In principle it could be
possible that M would admit a contact form θ such that dθ = fω|M where
f would be a non-vanishing real function on M . This would imply that the
Reeb vector field of θ would coincide with some Hamiltonian vector field
on M . The next proposition shows that this is impossible.

Proposition 21. The algebraic hypersurface M ⊂ (R4, ω) of example
19 does not admit any contact form θ such that dθ = fω, where f is a real
function on M which is different from zero everywhere.

Proof. Suppose that there exists a form θ as in the proposition. Let
X be its Reeb vector field and (θ1, I1, θ2, I2) be the coordinates given in
example 19. Since X must have the same direction of the Hamiltonian
vector field of example 19 then X has three orbits (see figure 1) γa, γb, and
γc which satisfy, possibly after multiplication of θ by −1,

γa = {(I1, I2) = a, θ̇1 < 0, θ̇2 = 0},
γb = {(I1, I2) = b, θ̇1 < 0, θ̇2 = 0},
γc = {(I1, I2) = c, θ̇1 > 0, θ̇2 = 0}.

As in example 19 we will show that two of the integrals
∫

γa
θ,

∫
γb

θ, and∫
γc

θ have opposite signs, which is impossible since θ(X) = 1.
The hypothesis dθ = fω|M implies that df ∧ ω|M = 0 which when eval-

uated at three linear independent vectors (X, V2, V3) implies df(X) = 0.
Let λ be the canonical one-form in R4, λ = −Ijdθj , with dλ = ω. Then
from d(df ∧ λ|M ) = 0 results that there exists a one-form ν on M ' S3

such that dν = df ∧λ|M which implies that d(θ− fλ|M + ν) = 0. So, there
exists a function g on M such that θ = fλ|M − ν +dg. In the following the
function g can be neglected because

∫
γi

(θ − dg) =
∫

γi
θ, for i = a, b, c. Let

I1a, I1b, I1c be the three values of I1 shown in figure 1. Let ya : I1 → I2,
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I1 ∈ [0, I1a]; yb : I1 → I2, I1 ∈ [I1a, I1b], and yc : I1 → I2, I1 ∈ [I1b, I1c],
be the three branches of I1 → I2 that solves h(I1, I2) = 0.15. Consider the
three two-cells (with (∂s, ∂t) positively oriented):

Ca = {θ1 = t, I1 = s, I2 = ya(s), θ2 = 0 : s ∈ [0+, I1a], t ∈ [0, 2π]}
Cb = {θ1 = t, I1 = s, I2 = yb(s), θ2 = 0 : s ∈ [I1a, I1b], t ∈ [0, 2π]}
Cc = {θ1 = t, I1 = s, I2 = yc(s), θ2 = 0 : s ∈ [I1b, I1c], t ∈ [0, 2π]}

where 0+ in the definition of Ca means that Ca is the right limit, as ε → 0,
of cells Caε, with s ∈ [ε, I1a], ε > 0. Let us show that on the part Pa of M
given by

Pa = {(θ1, θ2, I1 = s, I2 = ya(s)) : θ1 ∈ [0, 2π], θ2 ∈ [0, 2π], s ∈ [0+, I1a]}
the function f depends only on I1 and I2. It will be denoted as f =
f(I1, I2) = f(s, ya(s)) def= fa(s). The Hamiltonian vector field associated
to h is integrable with first integrals I1 and I2. All of its orbits in Pa are
contained in invariant tori {I1 = s, I2 = ya(s)} labeled by s and parame-
terized by (θ1, θ2). Every orbit on the torus s is dense if and only if the
ratio

θ̇1

θ̇2

=
∂I1h

∂I2h
= −dya

ds
(s) = y′a(s)

is irrational. But ya is real analytic in (0+, I1a) and it is not a linear func-
tion, therefore y′a is irrational almost everywhere on the interval (0+, I1a).
Since f is constant along flow lines and the flow lines are dense in each
“irrational torus”, f does not depend on θ1 and θ2 on the set of irra-
tional tori. Using that the irrational tori are dense in Pa we conclude that
f does not depend on θ1 and θ2 at all. The same argument holds for
f over analogous sets Pb and Pc. Then, ∂(Ca + Cb + Cc) = γc, Stokes
theorem, and integration by parts, imply (the following notation will be
used: fa(s) = f(s, ya(s)), f ′a(s) = ∂I1f(s, ya(s)) + ∂I2f(s, ya(s))y′a(s),∫ I1a

0
fa(s)ds = A, fb(s) = f(s, yb(s)),

∫ I1b

I1a
fb(s)ds = B, etc)

∫

γc

ν =
∫

Ca+Cb+Cc

dν =
∫

Ca+Cb+Cc

df ∧ λ|M

=
∫ I1a

0

∫ 2π

0

f ′a(s)(−s)dtds +
∫ I1b

I1a

∫ 2π

0

f ′b(s)(−s)dtds

+
∫ I1c

I1b

∫ 2π

0

f ′c(s)(−s)dtds

= 2π

{
−I1afa(I1a) +

∫ I1a

0

fa(s)ds

}
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+2π

{
−I1bfb(I1b) + I1afb(I1a) +

∫ I1b

I1a

fb(s)ds

}

+2π

{
−I1cfc(I1c) + I1bfc(I1b) +

∫ I1c

I1b

fc(s)ds

}

= −2πI1cfc(I1c) + 2π(A + B + C)

where it was used that fa(I1a) = fb(I1a) and fb(I1b) = fc(I1b). Therefore,
using df(X) = 0, one gets

∫

γc

θ =
∫

γc

fλ|M −
∫

γc

ν = fc(I1c)
∫

γc

λ|M −
∫

γc

ν

= −2πI1cfc(I1c)−
∫

γc

ν

= −2π(A + B + C)

The same reasoning and ∂Ca = −γa, ∂(Ca + Cb) = −γb give
∫

γa

θ = +2πA and
∫

γb

θ = +2π(A + B)

The inequalities I1b < I1a < I1c and the fact that f does not change sign
imply that AB < 0, BC < 0, and AC > 0. Now, if

∫
γa

θ
∫

γb
θ ≤ 0 then the

proof is over. If
∫

γa
θ
∫

γb
θ > 0 then A(A + B) > 0 and

∫

γa

θ

∫

γc

θ = −4π2A(A + B + C) = −4π2[A(A + B) + AC] < 0,

which finishes the proof.

Conversely to proposition 21, a Reeb vector field on a contact manifold
(M, θ) is always the restriction of a Hamiltonian vector field. Indeed, let
N = M ×R be a four-manifold and λ = eaθ be a one-form in N where a
is a coordinate on the R factor of N . Then ω = dλ is a symplectic form
and (N, ω) is a symplectic manifold. If H : N → R given by H = −a is a
Hamiltonian function, then M × {0} = H−1(0) and X is the Hamiltonian
vector field of H restricted to M × {0}. This shows that for closed three-
manifolds the set of Reeb vector fields is a subset of the set of restrictions of
Hamiltonian vector fields. Since restrictions of regular Hamiltonian vector
fields to closed 3-manifolds are always volume preserving (Proposition 13)
a natural question is: Is a volume preserving flow in a closed three-manifold
always the restriction of a Hamiltonian vector field? The next proposition,
which I learned in [19], answers this question.
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Proposition 22. A regular vector field X on a closed three-manifold M
which preserves a volume form on M is always the restriction of the Hamil-
tonian vector field of a Hamiltonian system (N, ω, H) to M = H−1(0).

Proof. Let Ω be a volume form in M which is invariant under the flow
of X. Then LXΩ = 0 implies that µ = iXΩ is closed, dµ = LXΩ− iXdΩ =
0. Let λ be a one-form in M such that λ(X) = 1 (put, for instance, a
Riemannian metric in M such that ||X|| = 1 and take λ as the projection
onto X). Let N = M × (−ε, ε) be a four-manifold, ε > 0, and consider
the two-form ω = d(aλ) + µ on N , where a is a coordinate on the factor
(−ε, ε) of N . If ε is sufficiently small then ω is non-degenerate. Therefore,
for ε > 0 small, (N,ω) is a symplectic manifold. Let H : N → R be a
Hamiltonian function given by H = −a. Then H−1(0) = M and X is the
Hamiltonian vector field of (N,ω, H).

Now, let us discuss the behavior of Reeb vector fields under reparame-
terization. The restriction of a Hamiltonian vector field to a hypersurface
multiplied by any positive function is still the restriction of a Hamiltonian
vector field, in general for a different Hamiltonian function. Let θ be a con-
tact form. Then if ν is a sufficiently small closed one-form then σ = θ + ν
is also a contact form and dσ = dθ implies that the Reeb vector fields of σ
and θ coincide up to multiplication by a positive function. Is it true that
a Reeb vector field multiplied by any positive function is always a Reeb
vector field of some contact form? Locally the answer to this question is
yes. Globally it is no.

Proposition 23. There exists a Reeb vector field X on a closed three-
manifold M and a strictly positive function h : M → R such that X/h is
not the Reeb vector field of any contact form in M .

Proof. Let Q be a surface obtained as the quotient of the Poincaré hy-
perbolic disc D by the discontinuos action of a discrete group Γ of isometries
which fundamental domain is a regular octagon on D (see [22], section 5.4,
in particular figure 5.4.3, or [4], chapter IV). Q is a compact surface of
genus two with a Riemannian metric of constant negative curvature −1. It
was shown in example 20 that the unit speed geodesic vector field mapped
to SQ∗ = M by the natural isomorphism v →< v, · > is the Reeb vector
field X of a contact form θ. The unit cotangent bundle SD∗ of D is trivial
SD∗ ' D × S1 and can be covered by D ×R which is globally parameter-
ized by (x, y, φ), where (x, y) ∈ R2, x2 + y2 < 1, are Cartesian coordinates
on D and φ is a coordinate on R. The horizontal diameter of D corre-
sponds to two geodesics: γ = {x = 0, y = y(t), φ = 0 : t ∈ (−∞,∞)}
and −γ = {x = 0, y = y(−t), φ = π : t ∈ (−∞,∞)}, for some func-
tion y : R → R. The group of isometries Γ can be chosen such that γ
and −γ correspont to two closed geodesics of Q which will be denoted
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as γa and γb, respectively (see [4], in particular figures 12 and 19). Let
h : M → R be a strictly positive function and suppose that there exists a
contact form σ on M such that Y = X/h is its Reeb vector field. Then
ker dσ = ker dθ which implies that there exists a non-vanishing function
f such that dθ = fdσ. As in the proof of proposition 21 f must satisfy
df(X) = 0, namely f must be constant along the orbits of X. But, in this
case X has a dense orbit in M (see [22], section 5.4) which implies that
f is constant on the whole M . So, dθ = fdσ implies that θ = fσ + ν
where ν is a closed form. The normalizations θ(X) = 1, σ(Y ) = 1, and
Y = X/h imply ν(X) = 1 − fh. Let C be the cell in SD∗ given by
(s, t) → (x = 0, y = y(t), φ = s) : s ∈ [0, π], t ∈ (−∞,∞)}. The quotient
of C by the lift of the action of the group Γ to SD∗, C = C/Γ, defines a
cell in M which boundary is ∂C = γa + γb. This and ν(X) = 1− fh imply
that (2l is the length of γa and γb)

0 =
∫

C

dν =
∫

γa

ν +
∫

γb

ν =
∫ l

−l

[1− fh(γa(t))]dt +
∫ −l

l

[1− fh(γb(t))]dt

= −f

∫ l

−l

[h(γa(t))− h(γb(−t))]dt.

Since f 6= 0 this identity is verified only for very special functions h. If
for instance h is constant equal to 1 over γa and constant equal to 2 over
γb then one gets a contradiction.

As it is clear from the discussion and examples above many hypersur-
faces in a symplectic manifold carry a contact form with a Reeb vector field
which has the direction of the characteristic field induced by the symplec-
tic structure. So, all the topological information about the characteristic
direction field is encoded in this contact form which additionally defines a
contact structure on the hypersurface. Nevertheless, not all hypersurfaces
carry such form. In the following, weaker structures that always exist on a
hypersurface will be briefly discussed. In order to set a time parameteriza-
tion for the characteristic vector field, let M = H−1(0) be a hypersurface
in a Hamiltonian system (N, ω, H) and X be the Hamiltonian vector field
restricted to M . Three structures are naturally induced on M by (N, ω, H):
the closed two form ω|M , the vector field X, and the volume form Ω given in
Proposition 13. On three-manifolds these three structures are not indepen-
dent, given two of them the third is determined. In the following definition
the two-form and the vector field were chosen as primary structures on M .

Definition 24. [Hamiltonian Structure] A Hamiltonian structure on a
manifold M of odd dimension is a pair (ω,X) where ω is a closed two-form
of maximal rank and X is a vector field such that iXω = 0. The triple
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(M,ω, X) will be called Hamiltonian manifold. The pair (ω, X) will be
called a regular Hamiltonian structure if X does not have critical points.

Notice that ω is invariant under the flow of X, LXω = iXdω+diXω = 0.
A volume form Ω invariant under the flow of X is intrinsically associated
to a regular Hamiltonian structure. Let θ be any one-form on M such
that θ(X) = 1 and Ω = θ ∧ ω. Then Ω does not depend on the choice
of θ. If σ is another one form with σ(X) = 1 and (X,V2, V3) are three
linear independent vectors at some point of M then σ ∧ ω(X, V2, V3) =
σ(X)ω(V2, V3) = θ∧ω(X,V2, V3). Moreover, the form Ω is invariant under
the flow of X because LXΩ = iXdΩ + diXΩ = dω = 0. In fact to each
choice of one-form θ such that θ(X) = 1 it is associated an “almost contact
structure” on M .

Definition 25. [Almost contact structure] An almost contact structure
on a three-manifold M is a pair (ω, θ) where ω is a two-form and θ is a
one-form such that θ ∧ ω 6= 0. The triple (M,ω, θ) is called an almost
contact manifold. (see [6], chapter 3)

Notice that in general the plane field defined by ker θ is not invariant
under the flow of X. Indeed, if there is a transversal plane field which is
invariant under the flow of X then θ satisfies the following.

Proposition 26. Let (M, ω, X) be a Hamiltonian manifold and ξ be a
regular plane field on M which is transverse to X and is invariant under
the flow of X. Let θ be a one-form on M such that ξ = ker θ and θ(X) = 1.
Then dθ = fω where f is a real valued first integral of X, namely df(X) =
0. If f is strictly positive or negative then X is the Reeb vector field of θ.
Moreover there exists Hamiltonian manifolds (M, ω, X) which do not admit
any non singular plane field transverse to X which is invariant under the
flow of X.

Proof. Let V2, V3 be two vectors in ker θ. Then the hypothesis that ker θ
is invariant under the flow of X implies that (LXθ)(Vj) = 0, for j = 1, 2.
But, LXθ = iXdθ + diXθ = iXdθ implies that (LXθ)(X) = 0. Therefore,
LXθ = 0, θ is invariant under the flow of X, and iXdθ = 0. This last
equation implies that dθ = fω for some function f and, as in the proof
of proposition 21, df(X) = 0. If f is strictly positive or negative then
θ ∧ dθ 6= 0 and θ is a contact form. Finally, (M, ω, X/h) is a Hamiltonian
manifold for any strictly positive function h. Let (M, ω, X) and h be those
considered in the proof of proposition 23. Then df(X) = 0 implies that f is
constant. Let θ be such that θ(X/h) = 1 and ker θ be invariant under the
flow of X/h. Then dθ = fω with f constant. If f 6= 0 then θ is a contact
form and X/h is its Reeb vector field which contradits what was proved
in proposition 23. If f = 0 then θ is a closed form and θ(X) = h. Let C,
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∂C = γa + γb, be the cell defined in the proof of proposition 23. Then

0 =
∫

C

dθ =
∫

γa

θ +
∫

γb

θ =
∫ l

−l

h(γa(t))dt +
∫ −l

l

h(γb(t))dt

= −
∫ l

−l

[h(γa(t))− h(γb(−t))]dt.

As in the proof of proposition 23 if h is constant equal to 1 over γa and
constant equal to 2 over γb then one gets a contradiction.

To finish this section let us present an invariant of certain Hamiltonian
manifolds (M, ω, X) introduced by V. I. Arnold [3]. This invariant is related
to a phase space average of a sort of linking number (“asymptotic linking
number”) between pair of orbits, see [3] for details.

Definition 27. [Arnold invariant] Let (M, ω, X) be a closed Hamilto-
nian manifold such that ω is exact. Let λ be any one-form in M such that
dλ = ω. The Arnold invariant of (M, ω, X) is the real number:

I =

∫
M

λ ∧ ω∫
M

Ω

Notice that the form λ is determined up to the addition of a closed form
ν. However, replacing λ by λ+ν does not change I because ν∧ω = ν∧dλ =
−d(ν ∧ λ) and Stokes theorem imply that

∫
M

ν ∧ ω = 0. The hypothesis
ω is closed is always verified if M is a hypersurface in an exact symplectic
manifold, namely a manifold where the symplectic form is the derivative
of a one-form as, for instance, the cotangent bundle of a surface with its
canonical symplectic form (example 20). If X is the Reeb vector field of a
contact form λ then I = 1.

4. FIELDS OF PLANES TANGENT TO HAMILTONIAN
VECTOR FIELDS

In the last section we mostly studied properties of fields of planes trans-
verse to a given Hamiltonian vector-field. Special emphasis was given to
contact distributions which are transverse to and invariant under the flow
of their Reeb vector fields. In this section we will study non singular fields
of planes that are tangent to Hamiltonian vector fields. The following in-
teresting example was taken from [7].

Example 28. [Hypersurfaces in R4.] Let I and J be the 2× 2 matrices

I =
(

1 0
0 1

)
J =

(
0 −1
1 0

)
,
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and A0, A1, A2, A3 be the 4× 4 matrices

A0 =
(

I 0
0 I

)
, A1 =

(
J 0
0 −J

)
, A2 =

(
0 J
J 0

)
, A3 =

(
0 −I
I 0

)
,

(4)

The matrices Ai, i = 1, 2, 3, are anti-symmetric and multiply like the
unit quaternions: A1A1 = A2A2 = A3A3 = −A0, A1A2 = −A2A1 =
A3,A2A3 = −A3A2 = A1, A3A1 = −A1A3 = A2. Let ω = dqi ∧ dpi

be the standard symplectic form in R4, with its usual Euclidean struc-
ture (·, ·) and coordinates (q1, q2, p1, p2) = x. Let H be a Hamiltonian
function in R4 and M = H−1(0) be a regular hypersurface. If V0(x) =
−gradH(x)/||gradH(x)|| denotes the normal field to M then Vi = AiV0,
i = 1, 2, 3, form an orthonormal frame on M . The vector field V3 is the
Hamiltonian vector field of H normalized to have Euclidean norm one.
Therefore the plane field {V1, V2} is transverse to V3 and the plane fields
{V2, V3} and {V1, V3} are tangent to V3.

Plane fields tangent to vector fields naturally appear in several questions
related to Hamiltonian dynamics. In the following we present some of
them. If a regular vector field X on M admits a nontrivial global first
integral f : M → R then ker df defines a field of planes (with singularities)
tangent to X. In this direction the following proposition holds (compare
to proposition 26).

Proposition 29 ([12] lemma 2.2.2 and [30] lemma 0.4.3). Let X be a
vector field on a 3-manifold M and ξ be a C1 regular plane field tangent to
X. Suppose the flow of X preserves ξ. Then ξ is integrable, namely it is
the tangent plane field of a foliation of M .

Proof. Let θ be a local one-form such that ξ = ker θ. The invariance of
ξ implies LXθ = hθ, for some real valued function h. Then

iXθ ∧ dθ = (iXθ)dθ − θ ∧ iXdθ = −θ ∧ LXθ = −hθ ∧ θ = 0

Therefore θ ∧ dθ = 0 and by Frobenius theorem ξ is integrable.

For instance, an Anosov flow preserves two plane fields tangent to its vector
field. These plane fields integrate to give the stable and unstable foliations
of the flow [22]. Anosov flows are also related to other interesting tangent
plane fields. Suppose that a vector field X of a Hamiltonian manifold
(M,ω, X) admits a pair of tangent plane fields given by ker θ1 and ker θ2

(in example 28 θ1 = (·, V1) and θ2 = (·, V2)). A theorem of Mitsumatsu
[29] (proposition 3) and Eliashberg and Thurston [12] (proposition 2.2.6)
plus conservation of volume by the flow of X imply that if θ1 and θ2 are
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contact forms with opposite orientations (for instance θ1 ∧ dθ1 > 0 and
θ2 ∧ dθ2 < 0, see definitions 2 and 3) then X is an Anosov vector field.
Conversely, if X is an Anosov vector field then there exists a pair of plane
fields tangent to X which define a pair of contact structures with opposite
orientations ([29] proposition 2 and [12] proposition 2.2.4).

Another subject where tangent plane fields appear is the following. The
existence of two plane fields (always assumed to be regular) tangent to
a vector field X is equivalent to the trivialization of any plane bundle
transverse to X. The existence of this trivialization plays a central role in
the next definition.

Definition 30. [Rotation number] Let (M, ω, X) be a Hamiltonian man-
ifold. Given a one form θ with θ(X) = 1, suppose that the field of planes
ξ = ker θ admits a trivialization {V1, V2} such that {V1, V2, X} are posi-
tively oriented with respect to the orientation of M . Let P : TM → ξ be
the projection onto ξ given by PY = Y − θ(Y )X and φt : M → M be the
flow of X. Given a vector Y ∈ ξx let a(t, x, Y ) be the angle of rotation of
Pφt∗Y with respect to V1(φt(x)), measured continuously from t = 0. If the
limit

lim
t→∞

1
t
a(t, x, Y )

exists then it is independent of the vector Y and it is called the rotation
number r(x) of x.

It is possible to prove (see [31] and [14] for details) that for almost all
x, with respect to the measure defined by the volume form Ω, the limit
above exists and the function x → r(x) is integrable. The integral of r
over M is called “Ruelle invariant” [14]. It measures the average angle of
rotation of vectors transverse to X under the action of the tangent map of
the flow. The dependence of this number on the choice of the trivialization
is discussed in [14]. Also in this reference, the Arnold invariant, the Ruelle
invariant, and the so called “Calabi invariant”, are simultaneously discussed
and compared.

Cotangent bundles are the most important symplectic manifolds of clas-
sical mechanics. The next example is a generalization of example 28 to
cotangent bundles.

Example 31. [Cotangent bundles of oriented Riemannian surfaces.] Let
Q be an oriented Riemannian surface with Riemannian metric g. Let∇ and
J : TQ → TQ be the Levi-Civita connection and the complex structure as-
sociated to g, respectively (J rotates vectors counter-clockwise by π/2 with
respect to a fixed orientation). The complex structure J∗ : TQ∗ → TQ∗

is defined by θ → θ ◦ J . Notice that if {V1, V2} is an oriented orthonor-
mal frame at TxQ and {θ1, θ2} is the dual frame at TxQ∗ then JV1 = V2



376 C. GROTTA RAGAZZO

and J∗θ1 = −θ2, so J∗ rotates covectors clockwise. Let π : TQ∗ → Q
be the cotangent bundle projection and π∗ : TTQ∗ → TQ its tangent
map. The vector bundle P : TTQ∗ → TQ∗ has a natural “vertical sub-
bundle” Y ⊂ TTQ∗ defined by the kernel of π∗, namely v ∈ TθTQ∗

is in Yθ if and only if π∗v = 0. Now, the Riemannian metric will be
used to define a complementary “horizontal bundle” to Y . A differen-
tiable curve t → δ(t) ∈ TQ∗ is called adapted to a vector v ∈ TθTQ∗

if δ(0) = θ and δ̇(0) = v. Note that the curve t → δ(t) ∈ TQ∗ de-
fines a covector field along its projection γ(t) = πδ(t) (if γ(t) = b is a
single point for all t then t → δ(t) ∈ TbQ

∗ is a curve of covectors over
b). The covariant derivative of a covector field δ along a curve t → γ(t)
in Q is defined by D∗δ/dt = (Dδ]/dt)[, where D/dt is the usual covari-
ant derivative along curves (see [27] chapter 2) and ] : TQ∗ → TQ and
[ : TQ → TQ∗ are given by g(θ], ·) = θ and X[ = g(X, ·), respectively.
Let K : TTQ∗ → TQ∗ be a bundle map defined as: given v ∈ TθTQ∗

let δ be a curve adapted to it and K(v) = (D∗δ/dt)t=0. Note that
πθ = πK(v), so K maps the fiber over θ to the fiber over πθ. Moreover, K
projects Vθ isomorphically on TQ∗ since for a vertical vector v ∈ TθTQ∗

an adapted curve δ can be chosen such that πδ(t) = πθ and in this case
the covariant derivative D∗/dt acts just as the ordinary derivative. The
sub-bundle W ⊂ TTQ∗ defined by the kernel of K is called horizontal
sub-bundle. Thus TTQ∗ = W ⊕ Y where P |W → TQ∗ and P |Y → TQ∗

are bundles over TQ∗ and ⊕ denote the Whitney sum of these bundles,
namely the set of all pairs (w, y) ∈ W × Y such that P |W w = P |Y y.
The bundle map π∗ ⊕ K : TTQ∗ = W ⊕ Y → TQ ⊕ TQ∗, given by
π∗ ⊕K(w, y) = (π∗w, Ky) ∈ TQ⊕ TQ∗, is a fiber isomorphism and maps
the base manifold TQ∗ of TTQ∗ onto the base manifold Q of TQ ⊕ TQ∗,
if P (v) = P (w, y) = θ and πθ = b, then π∗ ⊕ K(v) ∈ TbQ ⊕ TbQ

∗. So,
TTQ∗ = W ⊕Y is isomorphic to the pull back π∗(TQ⊕TQ∗) of TQ⊕TQ∗

by π (if π : E → B, is a vector bundle and f : M → B then the pull back
of E by f is the set of all pairs (v, x) ∈ E × M such that π(v) = f(x),
the projection f∗E → M is (v, x) → x , see [28] section 3 for details).
There are several canonical structures defined on TQ ⊕ TQ∗: a Rieman-
nian metric < ·, · >∼ given by < (u1, u2), (v1, v2) >∼= g(u1, v1)+g(u]

2, v
]
2),

a symplectic structure ω̃ given by ω̃((u1, u2), (v1, v2)) = v2(u1) − u2(v1),
and a complex structure J̃1 given by J̃1(u1, u2) = (Ju1, J

∗u2). These
structures canonically define two more complex structures on TQ ⊕ TQ∗,
denoted as J̃2 and J̃3, given by < J̃3u, v >∼= ω̃(u, v) and J̃2 = J̃3 ◦ J̃1.
In order to check that J̃2 ◦ J̃2 is minus the identity let b be a point in Q,
{V1, V2} be an orthonormal frame at TbQ and {θ1, θ2} be the dual frame
at TQ∗. Then {(V1, 0), (V2, 0), (0, θ1), (0, θ2)} form an orthonormal frame
at (TQ ⊕ TQ∗)b and in this frame J̃3 = A3, J̃1 = A1, and J̃2 = A2 where
A1, A2, and A3 are the matrices given in equation 4. Now, let q be a
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coordinate system on a neighborhood U ⊂ Q of b with q(b) = 0, such that
at the point b: ∂q1 = V1, ∂q2 = V2 and ∇∂qi

∂qj = 0, for i, j = 1, 2 (q can be
chosen as Riemann normal coordinates centered at b). Then (q, pdq) are
coordinates on TU∗ and (q, pdq, q̇∂q, ṗ∂p) are coordinates on TTU∗. The
special choice of coordinates q implies that W (0, p) = {(q̇, ṗ = 0)} and
Y (0, p) = {(q̇ = 0, ṗ)}. In these coordinates the Liouville form λ and the
canonical symplectic form ω = −dλ on TQ∗ (see example 20) are given by
λ = pdq and ω = −dλ = dq ∧ dp. Let Ji be the pull back of J̃i, i = 1, 2, 3,
by π∗ ⊕ K, and < ·, · > and ˜̃ω be the pull back of < ·, · >∼ and ω̃, re-
spectively. The fact that (π∗ ⊕ K)(0,p) maps ∂q1, ∂q2, ∂p1, and ∂p2 to
(V1, 0), (V2, 0), (0, θ1), and (0, θ2), respectively, implies that the matrix ex-
pressions of J̃i, < ·, · >∼, and ω̃ coincides with those of Ji, < ·, · >, and ˜̃ω,
respectively, and moreover ˜̃ω = ω. Finally, given a Hamiltonian function
H on (TQ∗, < ·, · >) let V0(θ) = −gradH(θ)/||gradH(θ)|| be the normal
vector to the regular level set H−1(0) at the point θ. Then the vectors
JiV0, i = 1, 2, 3, form an orthonormal frame on H−1(0) and J3V0 is the
Hamiltonian vector field of H normalized to have norm one.

Definition 32. [Canonical trivialization] Let T ∗Q be the cotangent bun-
dle of an oriented Riemannian surface Q with metric g. Let H : T ∗Q → R
be a Hamiltonian function, M = H−1(0) be a regular compact hypersur-
face, and X be the Hamiltonian vector field of (T ∗Q,ω, H) restricted to
M . Let < ·, · > be the metric on TT ∗Q and J1, J2, and J3 be the com-
plex structures on TT ∗Q, as defined in example 31. The trivialization
{V1, V2, X} of TM given by V1 = −J1gradH(x), V2 = −J2gradH(x), and
X = −J3gradH(x), for x ∈ M , will be called “the canonical trivialization
of (M, g)”. The one-form on M θ(·) =< ·, X > /||X||2 and ξ = ker θ will
be called the canonical one form and the canonical transverse bundle of
(M, g). Finally, {V1, V2} will be called the canonical trivialization of ξ.

Proposition 33 (Homotopy invariance of canonical trivializations). Let
M ⊂ T ∗Q be a hypersurface as in definition 32. Let g0 and g1 be two
Riemannian metrics on Q. Then the canonical trivializations of TM asso-
ciated to g0 and g1 are smoothly homotopic through a family of canonical
trivializations.

Proof. The two Riemannian metrics g0 and g1 are homotopic through
a smooth family of Riemannian metrics gt = tg1 + (1 − t)g0. Since all
objects, like connections, complex structures Jt, etc, used in the definition
of a canonical trivialization depend smoothly on the Riemannian metric,
there exists a smooth family of trivializations of TM associated to gt.

Examples 28 and 31 show that many important Hamiltonian manifolds
(M,ω, X) admit a trivialization of the transverse bundle ξ = ker θ where
θ(X) = 1. In general the transverse bundle ξ is trivializable if and only if
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its “first Chern class” c1(ξ) is trivial (see [28]). The first Chern class admits
a simple geometric description in this case. Let us fix a trivialization of
TM → {e1, e2, e3} ∈ R3 and consider a Riemannian metric on M such
that {e1, e2, e3} is an orthonormal frame. This trivialization can always be
chosen such that ||X|| = 1. So, X defines a Gauss map X : M → S2 where
S2 is the unit ball in R3. Let a be the area form on S2 divided by 4π (so
that

∫
S2 a = 1). The pull back σ = X∗a is closed, since a is closed, and

the integral of σ over any two-cycle Σ is an integer, since
∫
Σ

σ =
∫

X◦Σ a.
Therefore, σ determines an element [σ] of H2(M,Z). The class [σ] is the
first Chern class of the oriented bundle ξ ({V1, V2} ∈ ξ is a positively
oriented if {V1, V2, X} is positively oriented with respect to {e1, e2, e3}).
See [28], specially appendix C, for details and [16], section 4, for a discussion
of homotopy classes of oriented plane fields on three-manifolds. Notice that
in order to show that a certain Hamiltonian manifold (M, ω, X) has a non-
trivial transverse bundle ξ it is enough to find a cycle where the integral of
σ does not vanish.

Example 34. [ξ is non-trivial and [ω] 6= 0] Let S2 be the unit sphere
{x ∈ R3 : ||x|| = 1}, S1 = R/Z and M = S2 × S1. Consider the vector
field X on M with trivial S2-component and S1-component ṙ = 1, r ∈ R.
Let ω be the closed two form on M which restricts to the usual area form
on the factor S2 and such that ω(X, ·) = 0. Let ψ : S2 × R → R3 be
given by (x, r) → y = rx and θj = ψ∗dyj , j = 1, 2, 3, where dyj are
the usual cartesian coordinate forms of R3. Then {θ1, θ2, θ3} restricted to
S2 × {r = 1} provides a trivialization of TM |S2×{r=1} which can be easily
extended to TM : θj(x, r) = θj(x, 1). The Gauss map of X with respect
to this trivialization is S2 × S1 3 (x, r) → (θ1(x), θ2(x), θ3(x)) ∈ S2. Let
Σ = S2 × {r = 1} be a two-cycle in M and σ be the form on M defined
above, namely, the pull back of the area form of S2 by the Gauss map.
Then

∫
Σ

σ = 1 which implies that any transverse plane bundle to X is not
trivializable.

In examples 28 and 31 the homologies H2(M,Z) of both ω and σ were
trivial (the last one because ξ was always trivial) and in example 34 the
homologies of both ω and σ were non trivial. This would suggest that some
relation [ω] = 0 ⇒ [σ] = 0 or [ω] 6= 0 ⇒ [σ] 6= 0 could hold independently
of the vector field X. Both relations are false as it is shown in the examples
below.

Example 35. [ξ is trivial and [ω] 6= 0.] Let M = R3/Z3 be a three-
torus (where R3 has Cartesian coordinates (x1, x2, x3)), X be the vector
field ∂x1 , and ω = dx2 ∧ dx3. Then [ω] ∈ H2(M,Z) is non trivial but the
transverse bundle ξ = ker dx1 is trivial.

Example 36. ξ is non-trivial and [ω] = 0.
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Let f : T2 → S2 be a map of degree one which, for instance, can be
constructed in the following way. Let C1 be the cylinder {(x, y, z) ∈ R3 :
x2 + y2 = 1, |z| ≤ 1} and γ+ and γ− be the two circles z = +1 and z = −1
at the boundary of C1, respectively. Let S2 be given by {(x, y, z) ∈ R3 :
x2 + y2 + z2 = 1} and consider the map F̃ : C1 → S2 which maps γ+ onto
(0, 0, 1), γ− onto (0, 0,−1), and (x, y, z) ∈ C1 with |z| < 1 to (xs, ys, z) ∈ S2

where s = (1 − z2)1/2. Now, let T2 be the torus obtained extending the
cylinder C1 to |z| ≤ 2 and identifying the boundaries at z = ±2 and let F
be the extension of F̃ given by: (x, y, z) → (0, sy, 2 − z), for 1 < z ≤ 2,
with s =

√
1− (2− z)2, and (x, y, z) → (0, sy,−2 − z), for −2 ≤ z < −1,

with s =
√

1− (−2− z)2. Map F is continuous and have degree one. It
can be approximated by a C∞ map f : T2 → S2 also with degree one. Let
M be the three-torus M = R3/Z3, where R3 has Cartesian coordinates
(x1, x2, x3), and let Y be the vector field on M given by Y (x, y, z) = f(x, y)
where f is the function above with values in S2 ⊂ R3 and defined over the
two torus R2/Z2. The form σ0 associated to the Gauss map of Y is non-
trivial, since its integral over the cycle Σ = {(x, y, z) : z = 0} is one. Let
θ0 be a one-form on M such that θ0(Y ) = 1 and let ξ0 = ker θ0 be a plane
bundle transverse to Y . By theorem 7 b), M has a contact structure in
the homotopy class of non-singular plane fields that contains ξ0. Moreover,
since ξ0 is orientable the contact structure is co-orientable, see definition
3, and is given by the kernel of a globally defined contact form θ. Thus
there is a homotopy of non-singular one-forms connecting θ0 to θ. Let X
be the Reeb vector field of θ. Then there is also a homotopy of non-singular
vector-fields connecting Y and X (if t → θt is the homotopy between θ0 and
θ, choose a Riemannian metric such that X is transverse to ker θ, define
Ỹt as the vector orthogonal to ker θt such that θt(Ỹt) = 1, and at the end
make a homotopy of Ỹ0 to Y ). Finally, consider the Hamiltonian manifold
(M,ω = dθ, X) and the form σ associated to the Gauss map of X. The
homology class of [σ] ∈ H2(M,Z) is non-trivial because the Gauss maps
Σ ' T2 → S2 associated to Y and X are homotopic, therefore they have
the same degree which is equal to one.

Now, let us suppose that the Hamiltonian manifold (M,ω, X) has a
trivializable transverse bundle ξ = ker θ, where θ(X) = 1. There can
exist more than one homotopy class of such trivializations. Indeed, let
{V1, V2, X} be a given trivialization. Then any other trivialization with the
same orientation is determined by a choice of a vector field Ṽ1 = cos(f)V1+
sin(f)V2, where f : M → R/2πZ, and another one Ṽ2 such that {Ṽ1, Ṽ2}
are linear independent and have the same orientation as {V1, V2}. So,
the homotopy classes of possible oriented trivializations of ξ is the same
as the homotopy classes of maps from M to S1. The set of homotopy
classes of all continuous maps from M to S1 = R/Z endowed with the
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operation of addition given by (f1 + f2)mod(2πZ) forms an Abelian group
called Bruschlinsky group of M (or first cohomotopy group of M) which
is denoted as π1(M) (see [21] chapter 2.7). Let φ ∈ R/Z be a coordinate
system on S1 and dφ be the generator of H1(S1). To each map f : M → S1

is associated the closed one form f∗dφ whose integral over any integer cycle
is an integer. Moreover, the homology class of f∗dφ in H1(M,Z) depends
only on the homotopy class of f , so there is a natural function h∗ from
π1(M) to H1(M,Z). It can be proved (see [21] chapter 2.7) that h∗ is an
isomorphism. Therefore there are as many homotopy classes of oriented
trivializations of ξ as elements in H1(M,Z).

The Ruelle number of (M, ω,X) depends only on the homotopy class of
the trivialization of the transverse bundle ξ. An interesting discussion of
this dependence is presented in [14], section 3.2. If M is a manifold such
that H2(M,Z) = 0 then the first Chern class of ξ is necessarily trivial, so ξ
is trivializable. Moreover, by Poincaré duality H1(M,Z) is also trivial and
there is only a single homotopy class of trivializations of ξ. Therefore, for
a Hamiltonian manifold (M,ω, X) with H2(M,Z) = 0 the Ruelle number
is uniquely defined. In this case, the Arnold number, which requires that
ω is exact, is also defined. The main example of M with this property is
the three sphere. The following theorem, which will be stated for future
reference, is a collection of consequences of: some statements in example
31, definition 32, proposition 33, and the invariance of the rotation number
(definition30) with respect to homotopic trivializations (see [14] page 1376).
This theorem shows that for a Hamiltonian vector field in a cotangent
bundle of a surface it is possible to uniquely define a rotation number for
each periodic orbit and a Ruelle number to each regular level set M of
H, regardless the complexity of H2(M,Z). Notice that under the same
hypotheses of the theorem the Arnold number is defined for all regular
compact level sets of H.

Theorem 37. Let T ∗Q be the cotangent bundle of an oriented para-
compact surface Q and ω = −dλ be the canonical two-form on T ∗Q. Let
H : T ∗Q → R be a Hamiltonian function, M = H−1(0) be a regular com-
pact hypersurface, and X be the Hamiltonian vector field of (T ∗Q,ω,H)
restricted to M . Choose any Riemannian metric g on Q and define its as-
sociated canonical trivialization given in definition 32. Then the following
quantities, defined using this trivialization, do not dependend on the choice
of g:

a)The rotation number rγ of a periodic orbit γ of X, which is given by
rγ = r(x), for any x ∈ γ, where r(x) is given in definition 30.

b)The Ruelle number of (M, ω,X) given by
∫

M
r(x)Ω(x) where Ω is the

volume form of (M, ω, X).
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