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Instituto Superior Técnico, ISR and CAMGSD, Av. Rovisco Pais, 1, 1049-001
Lisbon, Portugal

E-mail: wamoliva@math.ist.utl.pt

Submitted: March 22, 2003 Accepted: November 25, 2003
Dedicated to Jorge Sotomayor on his 60th birthday.

This note concerns the analysis of conservation of energy and volume for
a series of well known examples of nonholonomic mechanical systems, with
linear and non-linear constraints, and aims to make evident some geometric
aspects related with them.

Key Words: mechanical systems, energy and volume conservation, nonholonomic
constraints.

1. INTRODUCTION

When we study a classical mechanical problem, we start by looking at
the set of all their possible configurations, in general represented by a finite
dimensional smooth differentiable manifold M , the so called configuration
space. Subsequently we have to analyze the main internal quantities, as
well as the external effects acting on configurations and velocities of the
mechanical system.

The kinetic energy is an internal quantity which depends strongly on the
geometry and on the velocities of the configurations and is formally given
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by a real valued smooth function

K : TM → R

such that restricted to each fiber of TM over M is a positive quadratic
form; this way K defines a Riemannian metric tensor on M ,

g = 2K : TM → R,

and so (M,g) has the ingredients of a smooth Riemannian manifold.
The influence of external effects are represented by a field of external

forces and is described by a differentiable map

F : TM → T ∗M

such that, to each q ∈ M , it takes the fiber TqM into the fiber T ∗q M .
Any such triple (M, K,F) represents what is called a classical mechan-

ical system.
In each concrete case we need to characterize the three elements M , K

and F , as we will see in the series of examples of section 2.
The examples of forces we will consider in the sequel are positional

forces, that is, forces F such that for any q ∈ M and any wq ∈ TqM , the
value of F(wq) is a linear form that depends only on q; for instance, if

V : M → R

is a C2 function, called a potential, the corresponding potential force
FV is defined by the condition

FV (wq) = dV (q) ∈ T ∗q M ;

FV is, in fact, a C1 positional force.
The next step is to take into account the analysis of nonholonomic aspects

of a mechanical system. One needs to describe the fact that the velocities
of the motions are not free; they have to satisfy some restrictions that can
be reduced to the fact that they belong to a special smooth submanifold C
of TM , the constraint manifold. In each particular problem we have to
identify the four data (M, K,F , C) that characterize a classical mechanical
system with constraints or simply a constrained mechanical system.

As we will see, all the examples considered in the present work have the
property that the restriction of the canonical projection τM : TM → M
to C, πC := τM |C : C → M , is a submersion, that is, τM |C as well as its
derivative at all points wq ∈ C are surjective maps. Constraints satisfying
the latter property are called regular constraints (see [22] and [32]) and in
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the present paper we will only consider regular constraints. When all fibers
of τM |C are linear homogeneous (resp. affine) spaces, C is said to be a linear
(resp. affine) constraint; otherwise C is called a non-linear constraint.
E. Cartan considered in [7] a special type of linear constraints, namely,
where the constraints are strongly non-holonomic; for a recent exposition
of E. Cartan’s work, we refer the reader to [19] and also [31].

We will state an extension of Liouville’s Theorem for constrained me-
chanical systems proved in [32] (see also [33]), and for this we need some
notation and definitions (see [32] for details).

Let πE : E → M be a vector fibre bundle, the vertical lift λE : E ⊕M

E → TE is the vector fibre bundle morphism from pr1 : E⊕M E → E into
τE : TE → E defined as

λE(u, v) :=
T

dt

∣∣∣∣
t=0

(u + tv)

for all u, v ∈ E, with πE(u) = πE(v). The image of λE is the vertical
bundle Ver(E) = ker TπE . We will omit the superscript E, when there is
no risk of confusion.

Given a constrained mechanical system (M, K,F , C), since πC is a sub-
mersion, TπC : TC → TM is an epimorphism of vector fibre bundles, so that
kerTπC is a vector sub-bundle of TC, denoted by Ver(C). In Ver(TM) con-
sider the metric induced by the metric g on M such that, for all vq ∈ TM ,
λvq : TqM → Ver(TM) is an isometry. Note that Ver(C) is also a vector
sub-bundle of the pull back i∗CVer(TM), iC : C → TM being the inclusion.
Define Wvq :=

[
Vervq (C)

]⊥. Then, we have (see [22] and [32])

i∗CVer(TM) = Ver(C)⊕C W.

This decomposition defines the projections PC and PW into the first and
second factors, respectively; with projection PC we introduce the Gibbs-
Maggi-Appell (GMA) vector field XC := PCX0, where X0 is the second
order vector field associated with the unconstrained mechanical system
(M,K,F). It can be shown (see [32]) that XC is the vector field associated
with the d’Alembert-Cheatev principle for constrained mechanical systems.
The flow defined by XC will be called the GMA flow.

Let ∇ denote the Levi-Civita connection of (M,g); the horizontal lift-
ing is the vector bundle morphism H : TM ⊕M TM → T (TM) from
pr1 : TM ⊕M TM → TM into τTM : T (TM) → TM defined as

H(u, v) :=
T

dt

∣∣∣∣
t=0

τγ
0,t(u)
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for all u, v ∈ TM , with τM (u) = τM (v) = p, where τγ
0,t : TpM → Tγ(t)M

is the parallel transport along a curve γ in M such that γ(0) = p and
Tγ
dt

∣∣∣
t=0

= v. The image of H is the horizontal space Hor(TM). We

denote by Hor(C) the image of i∗CHor(TM) by PC . We have

TC = Ver(C)⊕C Hor(C),
and Ver(C) is integrable in the sense of Frobenius.

Given a vector bundle πE : E → M with a connection ∇E , we denote by
κE : TE → E the connector, that is, given zq ∈ TE, κE(zq) ∈ E is the
unique vector that satisfies

z −HE(τE(z), TπE(z)) = λ(τE(zq), κE(z)).

We denote by 0E the null section of E. Again, we omit the superscript E
whenever there is no risk of confusion.

Given vq ∈ C, we denote by Cvq
⊂ TqM the subspace such that λvq

(Cvq
) =

Vervq
(C) and by Pvq

: TqM → Cvq
the orthogonal projection with respect

to the metric g. We denote by A : C → L(TM, TM) the mapping such
that, for any vq ∈ C, A(vq)(zq) := κ · PC ·Hvq (zq), for all zq ∈ TM .

One calls Sasaki’s metric tensor in C the unique metric tensor gC
in C such that for all vq ∈ C, λCvq

:= λvq ◦ Pvq : Cvq → Vervq (C) and
HC

vq
:= PC ◦Hvq : TqM → Horvq (C) are linear isometries.

Finally, let πE : E → M be a vector fibre bundle and f : TM → E be
a smooth fibre preserving mapping, that is, for all q ∈ M , f(TqM) ⊂ Eq.
The fibre derivative Ff : TM → L(TM,E) is the mapping such that, for
any vq ∈ TqM , Ff(vq)zq : κ · Tvqf · λCvq

(zq), for all zq ∈ TM .

Theorem 1. The Lebesgue measure in C induced by the metric tensor
gC is conserved by the GMA flow of (M,K,FV , C) if and only if, the next
condition is satisfied:

tr A(vq) +
〈
tr F∗P(vq)|Cvq×Cvq

, RA
V (vq)

〉
= 0, (1)

for all vq ∈ C, where RA
V is the reaction field determined by the d’Alembert-

Chetaev principle, that is, RA
V is characterized by

λvq (R
A
V (vq)) := −PW (X0(vq))

for all vq ∈ C.
A consequence of the latter theorem is the following important result.

Theorem 2. The Lebesgue measure in C induced by the metric tensor gC
is conserved by the GMA flow of (M, K,FV , C), for any potential function
V , if and only if, the next two conditions are satisfied:
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1. tr A(vq) = 0.
2. trF∗P(vq)|Cvq×Cvq

= 0.

These results appear in [32] and are generalizations of the results in [20]
and [17], where the case of linear and affine constraints, respectively, are
considered. The next corollary also in [32], which we will use in the sequel,
gives a geometrical obstruction on the constraint manifold for conservation
of volume by the GMA flow for all potential functions V .

Corollary 3. Suppose that the Lebesgue measure on C induced by the
metric tensor gC is preserved by the flow of the GMA flow of the constrained
mechanical system (M,K, V, C), for all potentials V ∈ F(M). Then, for
all q ∈ M such that Cq 6= ∅, Cq is a minimal submanifold of (C,gC); that
is to say, the Riemannian manifold (C,gC) admits a regular foliation by
minimal leaves.

Note that, when the constraint is linear or affine, we have,

F∗P(vq)|Cvq×Cvq
= 0,

so that the condition for conservation of volume is independent of the
potential function, that is, if the volume is conserved by some potential
function then it is conserved for all potential functions. In the general case,
the conservation of volume depends on the potential function through the
reaction field RA

V .
The main purpose of the present paper is to check conservation of the

Lebesgue measure (Riemannian volume) under the action of the GMA flow,
in a series of examples, including linear, affine and non-linear nonholonomic
constraints. General conditions for the existence of an invariant volume for
the GMA is still not known for the general case and would be itself an
interesting subject for future research. In this respect it is worth mention-
ing the work of Blackall [5] providing general conditions for invariance of
volumes, in the case of linear constraints.

Nonholonomic systems with external forces given only by a potential
function and their constraints being linear conserve the mechanical energy,
that is, the difference between the kinetic energy and the potential function
is a constant along each motion (see [25]). In the affine case, the result that
dE/dtλ.b, where λ is the Lagrange multiplier and Aq̇ = b is the constraint is
well known (which gives conservation in the linear case). Otherwise, when
the constraints are non-linear it can be shown (see [32]) that a necessary and
sufficient condition in order that the mechanical energy be conserved by the
GMA vector field, for any potential function, is that the Liouville vector
field be tangent to the constraint manifold. In particular, if the constraint
is given by homogeneous functions, the Liouville vector field is tangent to
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the constraint manifold. Also, when the constraint is a closed submanifold
of TM , conservation of mechanical energy for any potential function is
equivalent to D being linear (see [32]). In general, for a particular potential
function V , the Liouville vector field being tangent to C it is a sufficient
condition, and not necessary, as can be seen from the isokinetic example
2.3.4, which conserves energy (the kinetic energy) and the Liouville vector
field is not tangent to the constraint.

2. EXAMPLES OF NONHOLONOMIC SYSTEMS

In this section, we consider several classical mechanical systems with
constraints. The nonholonomic constraints include: (i) linear constraints,
(ii) affine constraints and (iii) non-linear constraints. Let us start with
linear constraints.

2.1. Linear constraints
The case of a linear constraint, that is, when C corresponds to a dis-

tribution D over M , the equations defining the constraint distribution are
given by local one-forms, which can be expressed by linear equations in the
velocities. Also, in the case of linear constraints the conditions in Theorem
2 for the conservation of volume simplify to (see [32] and [20]):

tr
(
BD⊥ |D⊥×MD⊥

)
= 0, (2)

where BD⊥ : TM×MD⊥ → D is the total second fundamental form of
D⊥, that is, 〈BD⊥(uq, vq), wq〉 : 〈∇XY,Z〉, for all uq, vq ∈ D⊥ and wq ∈ D,
with X a germ of vector field on M and Y and Z germs of sections of D⊥
and D, respectively, such that Xq = uq, Yq = vq and Zq = wq.

Remark 4. In order to compute condition (2) in the examples that
follow, we developed an algorithm based on the following result, whose
proof only involves simple computations: let

{
ωi

}
i=1,...,n−m

be one-forms
defining the constraint D, that is, u ∈ D ⇔ ωi(u) = 0, i = 1, . . . , n −m;
then, for all u ∈ D,

〈trBD⊥ , u〉 = ∇ξiω
i · u,

where {ξi}i=1,...,n−m is the dual basis of
{
ωi

}
i=1,...,n−m

(hereafter we use
the summation convention).

The algorithm is then:

Algorithm 1.

1. Input the local coordinates (xα), α = 1, . . . , n.
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2. Input the one-forms ωi, i = 1, . . . , n−m defining the constraint.

3. Input the kinetic energy K = 1
2g.

4. Compute the metric matrix, [gαβ ] with entries gαβ =
〈

∂
∂xα , ∂

∂xβ

〉
,

α, β = 1, . . . , n and its inverse
[
gαβ

]
.

5. Compute ξi = g](ωi), the index rising of ωi, i = 1, . . . , n−m.
6. Compute the matrix

[
hij

]
, with entries hij =

〈
ξi, ξj

〉
and the matrix

[hij ] =
[
hij

]−1, i, j = 1, . . . , n−m.
7. Compute ξi = hijξ

j , i, j = 1, . . . , n−m.

8. Compute ∇ξi
ωi = ωi

α;βξβ
i dxα, where ωi

α;β := ∂ωi
α

∂xβ − Γγ
αβωi

γ , i =
1, . . . , n−m, α, β, γ = 1, . . . , n (Γγ

αβ are the Christoffel symbols associated
to (xα), α = 1, . . . , n).
9. Compute 〈trBD⊥ , u〉 = ∇ξi

ωi · u for an arbitrary u ∈ D.

The algorithm was coded in Mathematica and it is listed in the appendix
for the convenience of the reader.

Remark 5. The condition tr
(
BD⊥ |D⊥×D⊥

)
= 0 for the conservation of

volume by the GMA flow does not depend on the integrability of D. On the
other hand, it is well known that when the constraint is integrable, the folia-
tion is invariant under the GMA flow and on each leaf it is Hamiltonian—so
conserves the phase volume of the leaf (see, for example, [25]). This ap-
parent discrepancy can be understood by observing that the Riemannian
volume corresponding to the previous condition is the volume on C asso-
ciated to Sasaki’s metric tensor gC , whereas the volume conserved by the
flow restricted to the leaves is the phase volume of each leaf (see the swell
stabilizer §2.2.2). The next simple example show the difference between the
two volumes. Consider M = R2 − {0} and the integrable linear constraint
given by dr = 0, where (r, θ) denotes the polar coordinates. The leaves are
circles so that the (local) Riemannian volume of the leaves is r2 dθ ∧ dθ̇,
whereas the (local) Sasaki’s volume of the distribution is r2 dr ∧ dθ ∧ dθ̇.

Remark 6. Note that when all data are analytic it is sufficient to prove
tr

(
BD⊥ |D⊥×D⊥

)
= 0 in an open set of M .

Remark 7. Once again, we would like to point out that in a linear
constraint the mechanical energy T − V is always conserved; so that, only
volume conservation will be computed in this section.

2.1.1. A Routh-Chaplygin sphere rolling without slipping on a surface of
revolution.

We will consider a Routh-Chaplygin sphere that has three distinct mo-
ments of inertia I1, I2 and I3, and that its center of mass may be off its
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geometrical center but lies along the principal axis associated with I3. Let
δ be the radius of the sphere and S be the surface of revolution with vertical
axis (O, ez) of a fixed orthonormal system (O, ex, ey, ez). Let us denote by
H another surface of revolution of axis (O, ez), described by all the posi-
tions of the center of the sphere; H is characterized as the set of all points
that have distance δ from S. Assume from now on that H is analytic.

Let z = Φ(r), r =
√

x2 + y2 be the equation of H. The configuration
space M is a bundle on H with fibers SO(3). Using Euler angles (see [2],
Ch. 6, p. 149, figure 126 and also [25] exercise 5.6.20, figure 5.4) and from
equations 5.74 and 5.76 of [25] the kinetic energy is given by

K =
1
2

∫

B

|q̇(t, ξ)|2 dm(ξ),

with B the reference sphere centered at O, q(t, ξ)M∗
t ξ + C(t), so q̇(t, ξ) =

ω(t)×(q(t, ξ)− C(t))+ Ċ(t), C = (x, y, Φ(r)) and Ċ = (ẋ, ẏ, Φ′(r)ṙ). Then

K =
1
2
m

∣∣∣Ċ
∣∣∣
2

+
1
2

(
I1A

2
1 + I2A

2
2 + I3A

2
3

)
+

∫

B

〈
Ċ, ω ×M∗

t ξ
〉

dm(ξ),

where ω× = Ṁ∗
t (M∗

t )−1,

A1 = φ̇ sin ψ sin θ + θ̇ cosψ

A2 = φ̇ cosψ sin θ − θ̇ sin ψ

A3 = φ̇ cos θ + ψ̇,

and m is the mass of the sphere B.
Recall that M∗

t is the rotation that takes the fixed frame (ex, ey, ez) into
the frame attached to the moving sphere (e1, e2, e3); thus

K =
1
2
m

(
ẋ2 + ẏ2 + (Φ′(r)ṙ)2

)
+

1
2

(
I1A

2
1 + I2A

2
2 + I3A

2
3

)
+

〈
Ċ, ω × (ae3)

〉
,

where |a| is the distance between the center of mass G of B and O: G =
O + aez,

ω =
(
θ̇ cos φ + ψ̇ sin θ sin φ

)
ex+

(
θ̇ sin φ− ψ̇ cosφ sin θ

)
ey+

(
φ̇ + ψ̇ cos θ

)
ez

and

e3 = M∗
t ez = sin φ sin θex − sin θ cos φey + cos θez. (3)
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After easy computations we get

K = 1
2m

(
ẋ2 + ẏ2 + (Φ′(r)ṙ)2

)
+

1
2

[
I1(φ̇ sin ψ sin θ + θ̇ cos ψ)2 + I2(φ̇ cos ψ sin θ − θ̇ sin ψ)2+

I3(φ̇ cos θ + ψ̇)2
]

+ ma
[
ẋ

(
sin θ cos φφ̇ + sin φ cos θθ̇

)
+

ẏ
(
sin θ sin φφ̇− cos θ cosφθ̇ − sin θθ̇Φ′(r)ṙ

)]
.

(4)

The case a 6= 0 and I1 = I2 6= I3 corresponds to the so called Routh
sphere and if a = 0 with three distinct principal moments of inertia one
obtains the Chaplygin sphere. In the case of a homogeneous sphere
we have a = 0 and I1 = I2 = I3. Finally, if Φ(r) = δ the sphere rolls on a
horizontal plane.

Let us compute, now, the equations for the constraints. The condi-
tion of rolling without slipping is obtained by making q̇(t, ξ) = 0 at the
point of contact q(t, ξ) of the sphere with the surface S. Then, if n =(

∂Φ
∂x , ∂Φ

∂y ,−1
)

=
(

Φ′(r)
r x, Φ′(r)

r y,−1
)

represents the normal at C(t) to H,
we have the condition:

0 = q̇(t, ξ) = ω(t)× δ

|n|
(

Φ′(r)
r

x,
Φ′(r)

r
y,−1

)
+ Ċ(t).

So we obtain the two equations for the constraints:

ẋ = δ
|n|

[
−ψ̇ sin θ cos φ + θ̇ sin φ + Φ′(r)

r y
(
φ̇ + ψ̇ cos θ

)]

ẏ = δ
|n|

[
−ψ̇ sin θ sin φ− θ̇ cosφ− Φ′(r)

r x
(
φ̇ + ψ̇ cos θ

)]
,

(5)

because the third equation

Φ′(r)ṙ = δ
|n|

[
−Φ′(r)

r y
(
ψ̇ sin θ sin φ + θ̇ cos φ

)
+

Φ′(r)
r x

(
−ψ̇ sin θ cosφ + θ̇ sin φ

)]
,

follows from the the two equations (5) above (see also [4], private com-
munication). The case in which H is a plane (and so is S), the equation
Φ′(r) = 0 leads (5) to the classical equations (see [24], p. 167):

ẋ = δ
[
−ψ̇ sin θ cos φ + θ̇ sin φ

]
= δωy

ẏ = δ
[
−ψ̇ sin θ sin φ− θ̇ cos φ

]
= −δωx.

(6)
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The potential function is obtained using (3):

V = −mg 〈ez, C(t) + ae3〉 = −mg (Φ(r) + a cos θ) . (7)

Conservation of volume of three distinct Routh-Chaplygin spheres has
been checked by using algorithm 1 in the coordinate neighborhood of M

given by the domain of the local coordinates (x, y, φ, θ, ψ). Remark 6 en-
sures that the result is global. The problems studied are: (i) the homo-
geneous sphere rolling on a general surface of revolution, which conserves
volume; (ii) the Chaplygin sphere rolling on a plane, which also conserves
volume (Koiller, in a private communication, has previously informed us
about this result). The study of conservation of volume for the particular
case of the Chaplygin sphere has been the subject of important studies:
[9], [11] and [30]. However, to the best of our knowledge, the present work
is the first to show conservation of the Riemann-Sasaki volume; and (iii)
the Routh sphere rolling on a plane, which does not conserve volume. To
prove that the GMA flow does not conserve volume, it is enough to prove
that there is a point q0 ∈ M where tr

(
BD⊥ |D⊥×D⊥

)
(q0) 6= 0. We choose

q0 given by the local coordinates x0 = 0, y00, φ0 = 0, θ0 = π/2, φ0 = 0
and ψ0 = 0, then

〈tr BD⊥(q0), η〉 − aδ

k2
1 + δ2

6= 0,

where η−δ sin(β−φ) ∂
∂r− δ cos(β−φ)

r
∂

∂β + ∂
∂θ , with (r, β) the polar coordinates,

x = r cosβ and y = r sinβ.

The two next examples appear in [18] and are due to Hamel [14].

2.1.2. The sleigh of Chaplygin and Carathéodory.

Koiller described an idealized sleigh (see figure 1a in [18]) with the three
points of contact with the plane: point A and two others sliding freely.
The constraint does not allow transversal velocities, i.e. acts against the
runners, laterally at A, so the η component of the velocity is zero. The
configuration space M = R2 × S1 has local coordinates (x, y, φ) and the
kinetic energy is given by

K =
1
2
m

(
ẋ2 + ẏ2

)
+

1
2
Jφ̇2

where m is the total mass of the sleigh and J is its moment of inertia about
a vertical axis through the center of mass C. One assumes the potential
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force F = 0 and the constraint manifold is locally given by

−aφ̇ + ẏ cos φ− ẋ sin φ = 0, a > 0,

where −aφ̇ represents the lateral effect of the constraint.
Again, conservation of volume has been checked using algorithm 1 and

the sleigh does not conserve volume. Indeed, in a point with coordinates
(x, y, φ) we have

〈tr BD⊥ , η〉 =
am cosφ

J + a2m
,

where η = ∂
∂x − sin φ

a
∂

∂φ ; so, 〈tr BD⊥ , η〉 6= 0 at (x, y, φ) if φ 6= π/2.
A particular case of the Chaplygin-Carathéodory sleigh corresponds to

the vertical knife free to slip along itself on a horizontal plane and also
free to twist about the vertical line passing through a point A of the knife:
C = A, a = 0: the configuration space is R2 × S1, the kinetic energy is

K =
1
2
m

(
ẋ2 + ẏ2

)
+

1
2
Jφ̇2,

the equation for the constraint is

ẏ cos φ− ẋ sinφ = 0,

and the external force F is assumed to be zero.
The Riemannian volume is conserved since D⊥ is integrable (it is gener-

ated by ∂
∂φ ) and admits a regular foliation of minimal leaves. We used this

problem to verify the code and the computations confirm the result.

2.1.3. The two-wheeled carriage.

The idealized system (see figure 2 in [18]) has configuration space

M = R2 × S1 × S1 × S1

with local coordinates (x, y, φ, q1, q2). Let 2r be the lateral lenght, a the
radius of the wheels, C0 the center of mass and l the distance between
C0 and (x, y). Imposing the constraint of no lateral sliding, as well as no
sliding on both wheels, one obtains the equations

ẋ sin φ− ẏ cosφ = 0

ẋ cos φ + ẏ sin φ + rφ̇ + aq̇1 = 0

ẋ cos φ + ẏ sin φ− rφ̇ + aq̇2 = 0
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defining a 2-dimensional subspace of TpM at each point p ∈ M (here
q1 and q2 denote the rolling angles of the wheels). Following [18], let m0

be the mass of the body without wheels and k0 the radius of gyration
about the vertical axis through (x, y); let m1 be the mass of a wheel, C its
axial moment of inertia and A its moment of inertia about a diameter. So
m = m0 + 2m1 is the total mass and let us set J = m0k

2
0 + 2m1r

2 + 2A.
The kinetic energy is then given by (see [18])

K =
1
2
m

(
ẋ2 + ẏ2

)
+ m0lφ̇ (ẏ cos φ− ẋ sinφ) +

1
2
Jφ̇2 +

1
2
C

(
q̇2
1 + q̇2

2

)
.

As in the previous example one assumes the potential force F0.
Using algorithm 1 we conclude that the two-wheeled carriage does not

conserve volume. Indeed, in a point with coordinates (x, y, φ, q1, q2) we
have

〈tr BD⊥ , η〉 = −1
2

a3m0l

a2J + 2Cr2
,

where η = − 1
2a cos φ ∂

∂x − 1
2a sin φ ∂

∂y − a
2r

∂
∂φ + ∂

∂q1
; so, 〈tr BD⊥ , η〉 6= 0 for

any (x, y, φ, q1, q2).

2.1.4. Wheeled top constrained inside a sphere.

Let us consider a top B constrained to move in such a way that the
angular velocity is always orthogonal to a straight line l fixed in B (see
[12], where a possible realization of this constraint is sketched in figure 1A,
p. 369).

The configuration space is M = SO(3) and choosing Oz in the reference
configuration along l, then, with respect to the Euler angles previously
defined, the constraint can be written as

ψ̇ + φ̇ cos θ = 0.

The kinetic energy K is

K = 1
2

[
I1(φ̇ sinψ sin θ + θ̇ cosψ)2 + I2(φ̇ cos ψ sin θ − θ̇ sin ψ)2+

I3(φ̇ cos θ + ψ̇)2
]
,

where I1, I2 and I3 are the principal moments of inertia of the top about
the fixed point. The potential function is V −mg 〈ez, lG〉, where lG is the
vector from the fixed point to the center of mass of the top.

The Riemannian volume is conserved since D⊥ is integrable and its leaves
are minimal (see corollary 3): D⊥ is generated by ∂

∂ψ . For the purpose of
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verifying the code, we also run this case with the program which confirmed
the geometrical result.

2.1.5. The rolling homogeneous disc (the falling penny).

In this case (see figure 2.1 p. 229 in [8]) M = R2 × SO(3) with local
coordinates (x, y, φ, θ, ψ), where (φ, θ, ψ) are the Euler angles previously
mentioned. The disc is homogeneous with mass m and radius R. We easily
see that the equations for constraints are

ẋ = −Rψ̇ cosφ

ẏ = −Rψ̇ sin φ,

the kinetic energy is

K = 1
2m

(
ẋ2 + ẏ2

)
+ 1

16mR
[
R

(
10θ̇2 + 7φ̇2 + 4ψ̇2

)
+ 5Rφ̇2 cos(2θ)+

16θ̇ sin θ (ẋ sin φ− ẏ cosφ) + 8φ̇ cos θ
(
Rψ̇ − 2ẋ cos φ− 2ẏ sin φ

)]
.

The potential function is V = −mgR cos θ.
The Riemannian volume is not conserved. In a point with coordinates

(x, y, φ, θ, ψ) we have
〈

tr BD⊥ ,
∂

∂θ

〉
=

2 sin(2θ)
3 + 2 cos(2θ)

.

So, 〈tr BD⊥ , η〉 6= 0 for θ 6= π/2 (note that θ ∈]0, π[).

2.1.6. Vertical rolling disc

A special case of the rolling disc corresponds to the vertical rolling disc
(θ = π/2). The configuration space is reduced to M = R2 × S1 × S1. In
this case we consider a rolling disc with center of mass coincident with the
geometrical center, but with possible distinct central principal moments of
inertia. The kinetic energy is then,

K = 1
2m

(
ẋ2 + ẏ2

)
+

1
2

(
I1(φ̇ sin ψ)2 + I2(φ̇ cos ψ)2 + I3ψ̇

2
)

.

and constraint equations remain the same as for the rolling homogeneous
disc:

ẋ = −Rψ̇ cosφ

ẏ = −Rψ̇ sin φ.
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The external force F is assumed to be zero.
Using algorithm 1 and taking into account remark 6, we conclude that

the Riemannian volume is conserved.

2.1.7. A nonholonomically constrained particle

In this example, due to Rosenberg [28], a free particle moves in M = R3

under the nonholonomic constraint given by

ż = yẋ,

where (x, y, z) are normal Cartesian coordinates of R3. It is interesting
to note that the associated one-form of the constraint ω = dz − ydx is a
contact form.

The kinetic energy is

K =
1
2
m

(
ẋ2 + ẏ2 + ż2

)
,

and F = 0.
Because D⊥ is integrable with leaves given by straight lines, we conclude

by remark 3 that the Riemannian volume is conserved. Once again, we
used this problem to verify the code and the computations confirm the
result.

2.1.8. The snakeboard

The snakeboard (see [21]) consists of a rigid body (the board) with two
sets of independently actuated wheels at each end of the board (see figure
8.3, p. 90 in [8]). The configuration space is M = SE(2) × S1 × S1 × S1

and the kinetic energy is

K =
1
2
m

(
ẋ2 + ẏ2

)
+

1
2
Jθ̇2+

1
2
J0

(
θ̇ + ψ̇

)2

+
1
2
J1

(
θ̇ + φ̇1

)2

+
1
2
J2

(
θ̇ + φ̇2

)2

.

The snakeboard is constrained not to slide sideways, so that

− sin(θ + φ1)ẋ + cos(θ + φ1)ẏ − r cosφ1θ̇ = 0

− sin(θ + φ2)ẋ + cos(θ + φ2)ẏ + r cosφ2θ̇ = 0;

the external force F is assumed to be zero.
Using algorithm 1, we compute 〈tr BD⊥ , η〉 in a arbitrary point

(x, y, θ, ψ, φ1, φ2)
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and arbitrary η ∈ D:

〈tr BD⊥ , η〉 =
2 m r2 η1 (sin(2 φ1)+sin(2 φ2))

J+3 m r2+2 m r2 cos(2 φ1)+(−J+m r2) cos(2 (φ1−φ2))+2 m r2 cos(2 φ2)

where η = η1Y1 + η2Y2 + η3Y3 + η4Y4 and

Y1 = −
(r (cos(θ + φ1 − φ2) + cos(θ − φ1 + φ2) + 2 cos(θ + φ1 + φ2)) csc(φ1 − φ2))

2

∂

∂x
−

(r csc(φ1 − φ2) (cos(φ2) sin(θ + φ1) + cos(φ1) sin(θ + φ2)))
∂

∂y
+

∂

∂θ

Y2 =
∂

∂θ

Y3 =
∂

∂φ1

Y4 =
∂

∂φ2
.

So, the Riemannian volume is conserved if and only if φ1 = (−1)k+1φ2 +
k
2π, k ∈ Z such that φ1, φ2 ∈]− π, π[ and J1 = J2. The case φ1 = −φ2 has
been studied by Ostrowski in [26] (see also [6]).

2.1.9. Lie groups with left invariant metric and constraint

In the case where the configuration space M is a Lie group, we are able
to write the conditions in Theorem 2 as algebraic equations involving the
structural constants of the corresponding Lie algebra.

Let (G, 〈, 〉) be a Lie group with a left invariant metric, and D a left
invariant m dimensional distribution on G (see [35] and [36]). Note that
D is completely determined by a m dimensional linear subspace of its Lie
algebra g.

Let us choose an orthonormal basis {ξ1, . . . , ξm, ξm+1, . . . , ξn} of g such
that {ξ1, . . . , ξm} is a basis of De (e := idG) and {ξm+1, . . . , ξn} is a basis
of D⊥e . The left invariant vector fields corresponding to these elements of
g will be denoted by the same letters. We denote, as usual, the Christoffel
symbols corresponding to these elements by Γi

jk :=
〈∇ξj ξk, ξi

〉
.

The condition (2) can then be written as the following equality:

n∑
α=m+1

Γi
αα = 0, i = 1, . . . , m.

To bring the structure constants of the Lie algebra g, ci
jk := 〈[ξj , ξk], ξi〉,

into evidence we recall that (see, for instance, [34] and [19])

Γi
jk =

1
2

(
ci
jk + cj

ik + ck
ij

)
.
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So the GMA flow associated with the left invariant constraint D conserves
the Riemannian volume (for any potential function), if and only if, the
following algebraic equation holds

n∑
α=m+1

cα
iα = 0, i = 1, . . . , n

2.1.10. Semi-simple Lie groups under Cartan decomposition

Here we present a class of examples of nonholonomic constrained mechan-
ical systems defined by the so called Cartan decomposition of semisimple
Lie groups.

Let us start by recalling the following definitions and results for semisim-
ple Lie algebras (see [15]):

1. A Lie algebra g is called semisimple if the Killing form κ(X, Y ) =
tr (adXadY ) on g × g is non-degenerate. An analytical Lie group is
semisimple if its Lie algebra is semisimple.

2. Let g be a Lie algebra. Then θ ∈ Aut(g) is an involution if θ2 = 1.

3. If g is a real semisimple Lie algebra, then an involution θ on g is called
a Cartan involution if the symmetric bilinear form

κθ(X,Y ) = −κ(X, θY )

is positive definite, where κ is the so called Killing form of g.

4. Every real semisimple Lie algebra has a Cartan involution. Moreover
any two Cartan involutions are conjugate via Int(g).

5. Any Cartan involution yields a Cartan Decomposition g = k⊕p, with

k = {X ∈ g | θ(X) = X},
p = {X ∈ g | θ(X) = −X},

where k is a maximal compactly embedded subalgebra of g.

6. The following properties hold:

(i) [k, k] ⊂ k, [k, p] ⊂ p, [p, p] ⊂ k,

(ii) κθ(k, p) = κ(k, p) = 0,

(iii) κ|k is negative definite, κ|p is positive definite.



CONSERVATION OF ENERGY AND VOLUME 399

On a semisimple analytical Lie group G with Lie algebra g, let us consider
the left invariant distribution defined by De = p and the left invariant
metric associated with an arbitrary metric on g such that p and k are
orthogonal, for instance, 〈X, Y 〉 = κθ(X,Y ), for all X, Y ∈ g. One assumes
that there are no external forces acting on the system.

As concrete examples, we mention the so called pseudo-rigid bodies (see
[25]), whose configuration space is SL(n). Also, for any X ∈ sl(n), θ(X) =
−X†, X† being the transpose of X.

Remark 8. A totally geodesic distribution is a distribution invariant
under the geodesic spray of the Levi-Civita connection. So, if D⊥ is totally
geodesic we have Bs

D⊥
∣∣
D⊥×D⊥ = 0 and then the GMA flow conserves

volume. Semi-simple Lie groups with the Cartan decomposition satisfy
this latter property.

2.2. Affine constraints

In this section we consider two examples of affine constraints. In this case
C corresponds to an affine bundle A characterized by a pair A = (D, Xa),
where D is a smooth distribution and Xa ∈ Γ∞(D⊥) is a smooth section of
D⊥. Then a vector vq ∈ TqM is compatible with the constraint if and only
if vq −Xa(q) ∈ Dq. The conditions for the conservation of volume (when
A is oriented as a manifold) are equivalent to ([17]):

tr
(
BD⊥ |D⊥×D⊥

)
= 0,

and

LXaΘ = 0,

where Θ is the nowhere vanishing global section of (D⊥)∗ ∧ · · · ∧ (D⊥)∗

(dim(D⊥) times) compatible with the metric, in the sense that for a posi-
tively oriented orthonormed basis of D⊥, {ξi}i=m+1,...,n, we have

Θ(ξm+1, . . . , ξn) = 1.

2.2.1. A homogeneous ball on a rotating plate.

Following [6] let us consider a model of a homogeneous sphere that rolls
without slipping on a horizontal plate (see also [27]); assume also that
the plate rotates with a constant angular velocity Ω about a vertical axis
passing through the origin of the coordinates (x, y) (see figure 8.2, p. 87
in [6]). The configuration space is M = R2 × SO(3). Let m be the mass
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of the sphere and a its radius; call mk2 its moment of inertia about any
diameter. Then the kinetic energy is

K =
1
2
m

(
ẋ2 + ẏ2

)
+

1
2
mk2(ω2

x + ω2
y + ω2

z)

where

ωx = θ̇ cosφ + ψ̇ sin θ sin φ

ωy = θ̇ sin φ− ψ̇ sin θ cos φ

ωz = φ̇ + ψ̇ cos θ.

The affine constraints are given by

ẋ− aωy = −Ωy
ẏ + aωx = Ωx

(8)

that is

ẋ− a
(
θ̇ sin φ− ψ̇ sin θ cos φ

)
= −Ωy

ẏ + a
(
θ̇ cosφ + ψ̇ sin θ sin φ

)
= Ωx.

From (8), we see that the vector field Xa defining the constraint

A = D + Xa

can be written as

Xa = −Ω y ξ1 − Ωx ξ2

= − k2 y Ω
k2 + R2

∂

∂x
+

k2 xΩ
k2 + R2

∂

∂y
+

R Ω cot(θ) (y cos(φ)− x sin(φ))
k2 + R2

∂

∂φ
+

R Ω (x cos(φ) + y sin(φ))
k2 + R2

∂

∂θ
+

R Ω csc(θ) (− (y cos(φ)) + x sin(φ))
k2 + R2

∂

∂ψ

where {ξ1, ξ2} is the dual basis of the one-forms defining the constraints
{ω1, ω2}:

ω1 := dx− a (sin φdθ − sin θ cosφ dψ)

ω2 := dy + a (cos φdθ + sin θ sin φ dψ) .
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The section Θ needed for the verification of volume conservation is

Θ =
k2m

k2 + R2
ω1 ∧ ω2

and the external force is F = 0.
The distribution D is the same as the one for a sphere rolling on a plane,

so we obtain tr
(
BD⊥ |D⊥×D⊥

)
= 0. Finally, in order to check if there is

conservation of the Riemannian volume we only need to verify if LXa
Θ = 0.

But,

LXaΘ =
k2m

k2 + R2

[
(LXa

ω1) ∧ ω2 + ω1 ∧ LXa
ω2

]
,

and

LXaω1 = −Ωdy +
R2xΩ

k2 + R2
dφ +

R2xΩ cos θ

k2 + R2
dψ

LXa
ω2 = Ωdx +

R2yΩ
k2 + R2

dφ +
R2yΩcos θ

k2 + R2
dψ.

So,

LXaΘ|xθ =
k2m

k2 + R2
Ωa sin φ 6= 0,

and the Riemannian volume is not conserved by the GMA flow.
In order to check conservation of energy, we use the local solution z =

x + iy given by (see [27]):

z(t) = z0 +
iw0

κ
(1− eiκt)

where κ = 2
7Ω, z0 := z(0) and w0 = ẋ0 + iẏ0 := ż(0) and ωz = const

(ωx and ωy can be determined from the constraint equations (8)).
A simple computation then shows that:

dK
dt = 1

14R2

[
5 k2 mΩ

(
2 (x0 ẋ0 + y0 ẏ0) Ω cos( 2 t Ω

7 )+(
7 ẋ2

0 + 2 ẋ0 y0 Ω + ẏ0 (7 ẏ0 − 2 x0 Ω)
)

sin( 2 t Ω
7 )

)] 6= 0,

and the mechanical (kinetic) energy is not conserved. However, it is inter-
esting to note that in average dK

dt = 0.

2.2.2. Swell Stabilizer

In [10] a swell stabilizer (stabilisateur de houle) is considered, where a
gyroscope is placed in a ship in order to stabilize the motion due to sea
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swell. The gyroscope casing is mobile with respect to the bridge of the ship
about an axis perpendicular to the longitudinal axis of the ship, the center
of mass of the gyroscope being a distance d above the center of mass of
the boat. The configuration space is R2 × S1. If θ designate the angle of
the mast of the ship with the vertical, α the angle of the casing with the
bridge and φ the angle of rotation of the gyroscope, then the kinetic energy
is locally given by,

K
1
2

[
Aα̇2 + I(α)θ̇2 + C

(
φ̇ + θ̇ sin α

)2
]

,

where I(α) = I1 + md2 + A cos2 α, I1, (A,C) are the moments of inertia of
the ship and gyroscope, respectively, and m is the mass of the gyroscope.

The constraint is then

α̇ = aθ̇ + bθ,

with a > 0 chosen big enough to stabilize the ship. Finally, the potential
function representing the swell is V = k cos θ, with k > 0.

To verify volume conservation we run the code with the previous data
to obtain

〈
tr BD⊥, η

〉
=

a3 A2 cosα sin α

(I1 + d2 m + A cos α2) (a2 A + I1 + d2 m + A cos α2)
,

where η = a ∂
∂α + ∂

∂θ . So, the GMA flow does not conserve the Riemannian
volume associated with Sasaki’s metric gA.

It is interesting to note that for b = 0 the constraint is linear and inte-
grable, so that the GMA flow restricted to the leaves is Hamiltonian and
conserves the phase volume of the leaf. But, as we have seen from the pre-
vious computation, the GMA does not conserve the Riemannian volume
associated with gA (see remark 5).

Conservation of energy can be checked by showing that

∂E

∂xi
ẋi +

∂E

∂ẋi
ẍi = bθλ,

where λ is the (non-zero) Lagrange multiplier; so we conclude that the
GMA flow does not conserve mechanical energy E = T − V , except when
b = 0, case in which the constraint is linear.

2.3. Non-linear constraints

In this section we consider non-linear constraints in the velocities. After
Appell’s machine ([1]), the interest in this kind of constraint never faded
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and nowadays it remains an active area of research. In most of the examples
that follow the constraint C can be written as the inverse image of the null
section of a fibre bundle morphism. More specifically, let πE : E → M be
a vector bundle morphism, with a connection ∇E . Let f : TM → E be
a smooth fibre preserving mapping. Then, if f−1(0E) ⊂ TM is regular in
the sense defined above, C := f−1(0E) defines a regular constraint. In this
case, the conditions for conservation of volume for any potential function
simplify to:

1. tr
[(

Ff(vq)|ker F(vq)⊥

)−1

· Pf(vq)
]

= 0.

2. tr F2f(vq)
∣∣
ker Ff(vq)×ker Ff(vq)

= 0,

where Pf : TM → L(TM,S) is the parallel derivative of f ,

Pf(zq) = κS · Tf ·Hvq
(zq)

for all vq, zq ∈ TM .
On the other hand, if we want to check conservation of volume for a

given potential function V , we need to use Theorem 1. The case in which
the constraint is given by the inverse image of the null section under a fibre
bundle morphism f as above, the condition for conservation of volume in
the latter theorem becomes

tr
[(

Ff(vq)|ker F(vq)⊥

)−1

· Pf(vq)
]

+
〈
tr F2f(vq)

∣∣
ker Ff(vq)×ker Ff(vq)

,
(

Ff(vq)|ker F(vq)⊥

)−1∗((
Ff(vq)|ker F(vq)⊥

)−1

Pf(vq) · vq − P⊥vq
· gradV (q)

)〉

= 0.

(9)

2.3.1. Appell’s machine

This is the first known example of a mechanical system with a non-linear
constraint. It was proposed by Appell in [1] and consists of a heavy material
point moving in space under the constraint

ẋ2 + ẏ2 = a2ż2,

where a ∈ R is a constant (see a possible realization as the limit of the
machine shown in figure 4.9, p. 223 in [24]) . The configuration space is
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M = R3 and the kinetic energy is K = 1
2m

(
ẋ2 + ẏ2 + ż2

)
, where m is the

mass of the particle. The external force is assumed to be zero.
Since the external force and Pf are zero, equation (9) is trivially satisfied

then the GMA flow conserves the Riemannian volume.
On the other hand, a straightforward computation shows that

tr F2f(vq)
∣∣
ker Ff(vq)×ker Ff(vq)

= 2 6= 0,

so there are potential functions for which the Appell’s machine does not
converse volume.

For the conservation of energy we just observe that the constraint man-
ifold is given by a homogeneous function and so the GMA flow conserves
energy for all potential functions.

2.3.2. Benenti’s mechanism

Benenti proposed a mechanical system with a non-linear constraint, which
may be realizable (see figure in p. 211 of [3]). It consists of two masses in
the plane subject to the constraint that their instantaneous velocity must
be parallel at all times, that is,

∣∣∣∣
ẋ1 ẏ1

ẋ2 ẏ2

∣∣∣∣ = ẋ1ẏ2 − ẋ2ẏ1 = 0.

We consider a modified version of the former in order to avoid the degen-
eration of the constraint at the null section of TM . So, the exclusion of
the latter from the constraint equations leads to the constraint manifold

C :
{
(x1, x2, y1, y2, ẋ1, ẋ2, ẏ1, ẏ2) ∈ TR4 |

ẋ1ẏ2 − ẋ2ẏ1 = 0 & ẋ2
1 + ẋ2

2 + ẏ2
1 + ẏ2

2 6= 0
}

The configuration space is M = R4 and the kinetic energy is

K
1
2

[
m1(ẋ2

1 + ẏ2
1) + m2(ẋ2

2 + ẏ2
2)

]

where m1, m2 are the masses of the particles and (x1, y1), (x2, y2), the
normal Cartesian coordinates of the particles. One assumes also that F =
0.

Conservation of volume has been proved in [32]. Now we remark that
the constraint is homogeneous and so the GMA flow conserves energy for
all potential functions (see introduction).

2.3.3. Marles’s servomechanism
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In [23] Marle consider a servomechanism that can sustain a “straight
rod in equilibrium on the tip of one finger”. He takes Ox to be the line
along the finger (in horizontal motion) and Oy the vertical axis (in [32] p.
45 a sketch is proposed). The configuration space is M = R × S1, with
coordinates (x, θ), where x ∈ R is the abscissa of the point of contact of
the rod with the horizontal axis and θ ∈ S1 the angle made by the rod
with that axis. The constraint is

ẋ = h(x, θ, θ̇),

where h is some smooth known function and the kinetic energy is

K =
1
2
m

(
ẋ2 − 2lẋθ̇ sin θ

)
+

1
2
Jθ̇2

where m is the mass of the rod, l is the distance of the center of mass of
the rod (may be non homogeneous) to the point of contact and J is the
moment of inertia of the rod about the point of contact. The potential
energy is V = −mgl sin θ.

Condition 2. above for conservation of volume for any potential function
means

tr F2f
∣∣
ker Ff×ker Ff

∂2
θ̇
h(ml sin θ ∂θ̇h− J) = 0.

So, for the conservation of volume by the GMA flow for all potential func-
tions it is necessary that the constraint be affine. When we try to check
the first condition 1. we obtain a first order partial differential equation on
the function h. Computing the derivative of the mechanical energy along
the constrained motions, we obtain another condition on the function h for
the conservation of energy.

2.3.4. The isokinetic dynamics

This example, first proposed by Hoover [16], finds many interesting ap-
plications in statistical mechanics—see for example [16], [29], [13]. Other
studies of this constraint can be found in [37] and [38].

Let e > 0 and we define f : TM → RM (RM := M ⊕M R) by:

f(vq) = 〈vq, vq〉 − e,

for all vq ∈ TM , so C = f−1[0RM ] is a fibre bundle of spheres. We assume
the field of forces F = 0.

We have Pf ≡ 0 so the GMA flow conserves the Riemannian volume for
V = 0 and since F2f(vq)(uq, wq) 〈uq, wq〉, for all vq ∈ C and all uq, wq ∈
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TM , there exist potential functions for which the GMA flow does not
conserve Riemannian volume. Conservation of mechanical energy on the
level e (kinetic energy) is a trivial consequence of the constraint itself.

APPENDIX

In this appendix, we list the code used for testing the linear constraints
and one part of the affine constraints for volume conservation of the respec-
tive GMA flow. The code is written in Mathematica and for concreteness
we present the test for the Chaplygin sphere rolling on a plane.

(* ******************************************** *)
(* Program for the verification of the conservation of volume by the GMA
vector field determined by a linear constraint *)
(* ******************************************** *)
(* Definition of variables *)
ClearAll[dim]; (* dimension of the configuration space *)
ClearAll[dimDo]; (* dimension of D⊥ *)
ClearAll[xl]; (* local coordinates: position *)
ClearAll[xld]; (* local coordinates: velocity *)
ClearAll[xlf]; (* auxiliary variable *)
ClearAll[xldf]; (* auxiliary variable *)
ClearAll[A1]; (* component along e1 angular velocity in the body frame *)
ClearAll[A2]; (* component along e2 angular velocity in the body frame *)
ClearAll[A3]; (* component along e3 angular velocity in the body frame *)
ClearAll[K]; (* kinetic energy *)
ClearAll[e]; (* identity matrix *)
ClearAll[m]; (* mass of the sphere *)
ClearAll[I1]; (* moment of inertia along e1 *)
ClearAll[I2]; (* moment of inertia along e2 *)
ClearAll[I3]; (* moment of inertia along e3 *)
ClearAll[k1]; (* radius of gyration along e1 *)
ClearAll[k2]; (* radius of gyration along e2 *)
ClearAll[k3]; (* radius of gyration along e3 *)
ClearAll[x]; (* x coordinate *)
ClearAll[y]; (* y coordinate *)
ClearAll[φ]; (* Euler angle *)
ClearAll[θ]; (* Euler angle *)
ClearAll[ψ]; (* Euler angle *)
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(* ******************************************** *)
dim = 5;
dimDo = 2;
xl = {x, y, φ, θ, ψ};
xlf = {x , y , φ , θ , ψ };
xld = {xd, yd, φd, θd, ψd};
xldf = {xd , yd , φd , θd , ψd };
A1 = φd ∗ Sin[ψ] ∗ Sin[θ] + θd ∗ Cos[ψ];
A2 = φd ∗ Cos[ψ] ∗ Sin[θ]− θd ∗ Sin[ψ];
A3 = φd ∗ Cos[θ] + ψd;
I1 = m ∗ k12;
I2 = m ∗ k22;
I3 = m ∗ k32;
Φ[r ] = δ;
K[xlf, xldf ] = FullSimplify[m/2(xd2 +yd2 +(Φ′[r]∗ rd)2)+1/2(I1∗A12 +
I2 ∗A22 + I3 ∗A32)];
e[xlf ] = Table[IdentityMatrix[dim][[i]], i, 1,dim];
(* ******************************************** *)
(* Definition of variables *)
ClearAll[g]; (* covariant metric matrix *)
ClearAll[ginv]; (* contravariant metric matrix *)
(* ******************************************** *)
g[xlf ]Table[Simplify[1/2(K[xl, e[xl][[i]] + e[xl][[j]]]−
K[xl, e[xl][[i]]− e[xl][[j]]])], i, 1, dim, j, 1,dim];
ginv[xlf ] = Simplify[Inverse[g[xl]]];
(* ******************************************** *)
(* Definition of variables *)
ClearAll[Christoffel]; (* Christoffel symbols *)
(* ******************************************** *)
Christoffel[xlf ] = Table[

Simplify[Sum[ginv[xl][[i, a]]/2 ∗ (D[g[xl][[a, j]], xl[[k]]]+
D[g[xl][[a, k]], xl[[j]]]−D[g[xl][[k, j]], xl[[a]]]), a, 1,dim]],
{i, 1, dim}, {j, 1,dim}, {k, 1,dim}];

(* ******************************************** *)
(* Definition of variables *)
ClearAll[ωD]; (* constraint one-forms *)
ClearAll[wD]; (* index rising of constraint one-forms *)
(* ******************************************** *)
ωD[xlf ] = {{1, 0, 0,−δ Sin[φ], δ Sin[θ] Cos[φ]},
{0, 1, 0, δ Cos[φ], δ Sin[θ] Sin[φ]}}; wD[xlf ] = ωD[xl].ginv[xl];
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(* Local basis for the constraint distribution *)
xySol = Solve[ωD[xl].{xS, yS, φS, θS, ψS} == {0, 0}, {xS, yS}];
(* ******************************************** *)
(* Definition of variables *)
ClearAll[YD1] (* basic vector *)
ClearAll[YD2] (* basic vector *)
ClearAll[YD3] (* basic vector *)
ClearAll[YD] (* arbitrary vector in D *)
(* ******************************************** *)
Y D1 = Simplify[{xS/.xySol[[1, 1]], yS/.xySol[[1, 2]], φS, θS, ψS}/.{φS →
1, θS → 0, ψS → 0}];
Y D2 = Simplify[{xS/.xySol[[1, 1]], yS/.xySol[[1, 2]], φS, θS, ψS}/.{φS →
0, θS → 1, ψS → 0}];
Y D3 = Simplify[{xS/.xySol[[1, 1]], yS/.xySol[[1, 2]], φS, θS, ψS}/.{φS →
0, θS → 0, ψS → 1}];
Y D = Simplify[η1 ∗ Y D1 + η2 ∗ Y D2 + η3 ∗ Y D3];
(* ******************************************** *)
(* Definition of variables *)
ClearAll[h]; (* contravariant metric matrix restricted to D⊥ *)
ClearAll[hinv]; (* covariant metric matrix restricted to D⊥ *)
(* ******************************************** *)
h[xlf ] = Simplify[wD[xl].g[xl].Transpose[wD[xl]]];
hinv[xlf ] = Simplify[Inverse[h[xl]]];
(* ******************************************** *)
(* Definition of variables *)
ClearAll[ξD]; (* dual to the constraint one-forms *)
ξD[xlf ]Transpose[Table[Sum[hinv[xl][[i, j]] ∗ wD[xl][[j]],
{j, 1,dimDo}], {i, 1, dimDo}]];

(* ******************************************** *)
(* Definition of variables *)
ClearAll[Traco]; (* ∇ξiω

i *)
(* ******************************************** *)
Traco[xlf ] = Table[Sum[Sum[ξD[xl][[χ, a]] ∗ (D[ωD[xl][[a, α]], xl[[χ]]]−

Sum[Christoffel[xl][[γ, α, χ]] ∗ ωD[xl][[a, γ]], {γ, 1,dim}]),
{χ, 1, dim}], {a, 1, dimDo}], {α, 1, dim}];

(* ******************************************** *)
(* Test for volume conservation *)
VolumeTest = Simplify[Traco[xl].Y D];
Print[“Test for volume conservation: Tr(BD⊥)= ”, VolumeTest];
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10. P. Dazord, Mécanique Hamiltonienne en Présence de Constraintes, Illinois Journal
of Mathematics 38 (1994), 148—175.

11. Yu. N. Fedorov and V. V. Kozlov, Various Aspects of n-Dimensional Rigid Body
Dynamics, in Kozlov, V.V. (editor) Dynamical Systems in Classical Mechanics, vol-
ume 168 of AMS Translations series 2, 1995.

12. G. Fusco and W. M. Oliva, Dissipative Systems with Constraints, Journal of
Differential Equations 63 (1986), 362—388.

13. G. Gallavotti and D. Ruelle, SRB States and Nonequilibrium Statistical Me-
chanics Close to Equilibrium, Communication in Mathematical Physics 190 (1997),
279—285.

14. G. Hamel, Theoretische Mechanik: Eine einheitliche Einfhrung in die gesamte
Mechanik, volume 57 of Grundlehren der Mathematischen Wissenschaften, 1949;
revised edition, Springer-Verlag, Berlin-New York, 1978.



410 M.H KOBAYASHI AND W.M. OLIVA

15. S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Pure and
Applied Mathematics 80, 1978.

16. W.G. Hoover, Molecular Dynamics, Lecture Notes in Physics 258, Springer-Verlag,
1986.

17. M. H. Kobayashi and W. M. Oliva, On the Birkhoff Approach to Classical Me-
chanics, Resenhas IME-USP 6 (2003), 1—71.

18. J. Koiller, Reduction of Some Classical Non-Holonomic Systems with Symmetry,
Archive for Rational Mechanics and Analysis 118 (1992), 113—148.

19. J. Koiller, P. R. Rodrigues and P. Pitanga, Non-holonomic Connections Fol-
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