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In this paper an expository account on singularities of reversible vector
fields on manifolds and boundary singularities is presented. Also we present the
bifurcation diagram of a boundary cusp of codimension three, i.e, a Bogdanov-
Takens singular point in the boundary of the semi plane {(x, y) ∈ R2 : x ≥ 0}
whose topological unfolding is given by the quadratic three parameter family
y ∂

∂x
+(x2 +ax+ c+αy(x+ b)) ∂

∂y
, α = ±1. This study can be applied to the

analysis of the behavior of singularity of the germ of vector field X0(x, y) =
(y, 2x(x4 + x2y)) in the class of reversible vector fields.

Key Words: reversible vector field, boundary singularity, cusp of codimension
three

1. INTRODUCTION

The geometric-qualitative study of flows and general dynamical systems
on surfaces has been during many decades object of a growing interest

* Dedicated to Prof. Jorge Sotomayor on the occasion of his 60th birthday.
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in many branches of pure and applied mathematics. After the works of
Poincaré, Lyapunov and Bendixson this has become a well-established sub-
ject in mathematics and focus of considerable attention. Moreover, nowa-
days it is fairly accessible for a broad scientific audience. From various
sides, attention has been paid to the structural stability concept and spe-
cially to the results of Peixoto (mainly those published in An. Ac. Bras.
Sci , 1959 and Topology, 1962) and higher dimensional extensions (due
mainly to Smale and Anosov).

We present an elementary discussion of two aspects: classification prob-
lems arising for vector fields defined in manifolds with boundary and re-
versible systems.

The main point treated here concerns the contact between a general
vector field and the boundary of a manifold. More specifically, a tan-
gency point between the vector field and the boundary is a distinguished
singularity- an important object to be analyzed when one studies reversible
systems. We still point out that there is a natural mathematical approach
to studying such a phenomenon by means of singularity mappings theory;
see for instance [27], [31], [33].

1.1. Historical remarks
A brief historical outline of the qualitative study of bidimensional systems

follows:
In 1881 H. Poincaré performed the qualitative study of singular points

in the plane (focus, node and saddle), [18].
In 1937 A. Andronov and S. Pontrjagin [1] announced the characteri-

zation of the structural stability of a class of vector fields defined on a
compact region in the plane.

In 1959 , M. C. Peixoto and M. M. Peixoto [20] generalized this result
to a larger class of systems, still defined on a planar region homeomorphic
to a disk.

In 1962 this last theorem was extended by Peixoto [21] to flows on 2-
dimensional manifolds.

In 1964 J. Sotomayor obtained results of first order structural stability
of vector fields on surfaces (saddle node, homoclinic loop, connections of
separatrices of hyperbolic saddle points, Hopf points, etc.), see [28, 29, 30]
and also the classical book by Andronov at. al. [3].

In 1973 results on classification of flows, without periodic orbits, on ori-
entable surfaces, was obtained by M. Peixoto in [22]. See also [19], [17].

A bibliographical guide of this matter is contained in many works (for
example in [2] or in [19]).
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1.2. Structural Stability
Andronov and Pontrjagin in [1] introduced the concept of structural sta-

bility (via C0−orbital equivalence) for Cr (r ≥ 1) planar vector fields X
defined in a neighborhood of a compact region M in R2 bounded by a
smooth regular curve ∂ M. They considered the set χ∗ of all such vector
fields which are transverse to ∂ M. A general concept of structural stability
is the following.

Definition 1. A vector field X in a topological space X is said to be
structurally stable along a set C ⊂ X (respectively relative to C) if there
is a neighborhood V of X in X , such that, for every Y in the connected
component of X in C (respectively in V ∩ C), there is a homeomorphism
hY : M → M mapping arcs of orbits of Y on those of X, preserving their
orientation.

The following result was stated:

Theorem 2. A vector field X ∈ χ∗ is structurally stable in χ∗ if, and
only if,

i)all its singular points are hyperbolic,
ii)all its periodic orbits γ are hyperbolic,
iii)there is no connection between separatrices of hyperbolic saddle points.

Remark 3. We recall that a singular point p is hyperbolic if DX(p) has
no complex eigenvalues of the form ia, a ∈ R and that a periodic orbit
is hyperbolic if

∫
γ

div(X(γ(t))dt 6= 0, or equivalently,
∫

γ
k⊥(γ(s))ds 6= 0,

where k⊥ denotes the curvature of the integral solutions of X⊥ restricted
to γ and ds is arc length of γ.

In 1959, M. Peixoto and M. A. Peixoto (in [20]) generalized Theorem
2, by considering the set χ of all Cr (r ≥ 1) vector fields X defined in a
neighborhood of a compact region with a Jordan boundary curve ∂ M of
class C1 in R2. The characterization of stable vector fields is given by the
following theorem. See also [29].

Theorem 4. A vector field X ∈ χ is structurally stable in χ if and only
if,

i)all its singular points and periodic orbits are hyperbolic;
ii)there is no connection of separatrices of hyperbolic saddles;
iii)all singular points and periodic orbits are in the interior of ∂ M;
iv)any trajectory of X has at most one point of tangency with ∂ M and

this contact is quadratic;
v)any saddle separatrix is transverse to ∂ M;
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Moreover the set of structurally stable systems is open and dense in the
space χ with Cr-topology of Whitney.

Let M be a 2-dimensional manifold and χ = χr( M) be the space of all
Cr− vector fields on M with the Cr−topology. We denote by Σ0 = Σ0( M)
the set of all structurally stable vector fields in χ. For simplicity, we may call
any element of Σ0 a codimension-zero vector field of χ. When, throughout
this work, the treatment is local we use the germ terminology.

When C = X , X is said structurally stable in X .

In 1962, M. Peixoto (in [21]) proved the following result:

Theorem 5. Let X ∈ χr( M) (r ≥ 1) where M is a compact orientable
surface or compact non-orientable surface of genus 1 ≤ g ≤ 3. Then X ∈
Σ0( M) if and only if it is a Morse-Smale vector field. Moreover Σ0( M)
is open and dense in χ.

2. VECTOR FIELDS IN SURFACES WITH BOUNDARY:
LOCAL ASPECTS

In this section we discuss some results concerning the problem of clas-
sification of dynamical systems defined on manifolds with boundary under
C0-orbital equivalence. We also recall that, tools in singularity of mappings
are fundamental in this approach.

We present here the terminology, concepts and some results introduced
in [33].

2.1. Structural stability in manifolds with boundary

For simplicity we assume in this subsection that there exists h : M → R
a C∞ function having 0 as regular value with S = h−1(0) and h(q) ≥ 0 for
all q in M.

Let X ∈ χ be as above. Call S = ∂ M.

Definition 6. We say that p ∈ S is an S−singularity of X if either
X(p) = 0 or X(p) 6= 0 and Xh(p) = 0.

Definition 7. We say that p ∈ S is a fold singularity of X if X(p) 6= 0,
Dh(p)(X(p)) = Xh(p) = 0 and X(Xh(p)) 6= 0. In this case we say that
the contact between the orbit of X and S at p is quadratic.

Definition 8. Let X ∈ χ1(p). We say that p ∈ S is a cusp singularity
of X if X(p) 6= 0, Xh(p) = XXh(p) = 0 and XXXh(p) 6= 0.

A separatrix of X is an orbit which connects either: a) two saddle singular
points; b) two tangency points between the vector field and S; or c) a
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tangency point and a saddle singular point. Any equivalence between two
vector fields in χ must preserve such objects.

In [33] this result was generalized for 2-manifolds with boundary in which
the techniques and results of Theorem 4 were fundamental. These two
results are summarized as follows:

Theorem 9. Call χr
1 = χr \ Σ0 (r ≥ 3) the bifurcation set of χ. There

exists a Cr−1-immersed codimension-one submanifold Σ1 of χ such that:

i)Σ1 is dense in χ1;
ii)for any X in Σ1, there exists a neighborhood B in the intrinsic topology

of Σ1 such that any Y in B is C0 − equivalent to X;
iii)Σr

1, as well as the part of Σr
1 embedded in χ are characterized.

Following the last theorem we may of course classify the stable one-
parameter families Xλ of vector fields in χ by means of the concept of
transversality. It is usual to say that Xλ presents a codimension-one bifur-
cation at λ = 0 if X0 ∈ Σ1. This research program attempts the classifica-
tion of the codimension - k bifurcations in χr( M). It should be mentioned
that [34] contains results concerning codimension 2 bifurcations of singular-
ities of vector fields defined on manifolds with boundary. Again the main
ideas and techniques come from the former results of M. Peixoto [21] and
J. Sotomayor [28].

3. GENERIC BIFURCATION IN MANIFOLDS WITH
BOUNDARY (LOCAL SETTING)

In this section we comment briefly the boundary codimension-one singu-
larities.

Let p ∈ S and χ(p) be the space of all germs of Cr-vector fields at p.
The sets Σ0(p) and χ1(p) are defined as above.

Definition 10. A codimension-one S−singularity of X is either a cusp
singularity or an S−hyperbolic singular point p in S of the vector field
X. In the second case this means that p is a hyperbolic singular point of
X with invariant manifolds (stable, unstable and strong stable and strong
unstable) transversal to S. The set of elements X ∈ χ1(p) such that p is
an S−singularity of X will be denoted by Σ1(p).

Remark 11. Given X ∈ χ1(p), the following orbits have to be distin-
guished: a) an invariant manifold of a saddle singular point p ∈ S ; b) a
strong invariant manifold of a nodal singular point p ∈ S ; c) an orbit of
X tangent to S at p. Any C0 equivalence between two elements of χ must
necessarily preserve such objects. We may refer to them as S−separatrices
of X.
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The next result was proved in [33].

Proposition 12. Let X ∈ χ1(p) and p ∈ S. The vector field X is
structurally stable (at p ∈ S) relative to χ1(p) if and only if X ∈ Σ1(p).
Moreover, Σ1(p) is an embedded codimension-one sub manifold and dense
in χ1(p).

The following result is also in [33].

Proposition 13. (Normal forms) (1) X ∈ Σ0(p) if and only if X is
equivalent to one of the following normal forms:

•X(x, y) = (0, 1) (regular case);
•X(x, y) = (1, δx) with δ = ±1 (fold singularity).

(2) Any one-parameter family Xλ, (λ ∈ (−ε, ε)) in χ transverse to Σ1(p)
at X0, has one of the following normal forms:

• Xλ(x, y) = (1, λ + x2) (cusp singularity);
• Xλ(x, y) = (ax, x + by + λ), a = ±1, b = ±2;
• Xλ(x, y) = (x, x− y + λ);
• Xλ(x, y) = (x + y,−x + y + λ).

Remark 14. The result above has the correspondent for codimension
two boundary singularities. Some of codimension phenomenas are: quartic
tangency of a orbit with the boundary, a saddle-node, a Hopf point, a hyper-
bolic saddle with a separatrix having a quadratic contact with the bound-
ary, a node in the boundary with the strong separatrix having quadratic
contact with the boundary.

The local aspects of codimension one and two boundary singularities
was studied by Teixeira [33], [34]. Sotomayor in [27], [29] and [30] studied
the geometric structure of the systems having boundary singularities of
codimension one.

4. REVERSIBLE VECTOR FIELDS

It is generally acknowledged that time-reversal symmetry is one of the
fundamental symmetries discussed in many branches of physics. Time-
reversible systems share many properties with Hamiltonian systems. In
[15] an interesting survey on reversibility in dynamical systems is presented.
See also [26].

4.1. Basic concepts and definitions
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Let M be a C∞ compact orientable two-dimensional manifold and h :
M → R be a C∞ function having 0 as regular value. Call S = h−1(0),
M+ = h−1([0,∞)), M− = h−1((−∞, 0]).

Let ϕ : M → M be a C∞ diffeomorphism (an involution) from M onto
M such that ϕ ◦ ϕ = Id (ϕ is an involution) and Fix(ϕ) = S.

We say that a vector field X on M is ϕ− reversible (or simply reversible)
if

Dϕ(p)X(p) = −X(ϕ(p)).

Let ΩR be the space of the Cr ϕ−reversible vector fields on M endowed
with the Cr-topology (r > 2).

Any singular point of X ∈ ΩR contained in S is called a symmetric singu-
larity of the vector field X. Otherwise the singularity is called asymmetric.

We shall deal with those involutions which are germs of C∞ diffeomor-
phisms (at 0) ϕ : ( R2, 0) → ( R2, 0), satisfying ϕ ◦ ϕ = Id and
det(Dϕ(0)) = −1. The set S = Fix(ϕ) is a smooth curve in ( R2, 0). It is
well known (Montgomery-Bochner Theorem in [16]) that such an involution
is C∞ conjugated to ϕ(x, y) = (−x, y) or to φ(x, y) = (x,−y)

Let X be a (germ of) C∞ vector field on ( R2, 0) and ϕ be an involution.

We fix coordinates in ( R2, 0) in such a way that ϕ(x, y) = (−x, y) and
denote by ΩR the set of all ϕ-reversible (or just reversible) vector fields
on ( R2, 0). In these coordinates we have that S = {x = 0}. In the case
that we consider φ-reversible vector fields the fixed set of the involution is
S = {y = 0}.

Endow ΩR with the Cr-topology with r > 3.
Any singular point of X ∈ ΩR on S (fixed set of ϕ) is called a symmetric

singularity (or simply singularity) of X; otherwise it is called an asymmetric
singularity.

4.2. Relation between reversibility, quadratic boundary
tangency and stable singularities

The object of this subsection is to illustrate the connection between vec-
tor fields defined in manifolds with boundary and reversible systems.

Let X be in ΩR. In the coordinates (x, y) given above, it follows from
Division Theorem that X has the following general form:

X(x, y) = ( 1
2f(x2, y), xg(x2, y))

In the half-plane x > 0, consider

u = x2 and v = y.
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A simple calculation shows that X is transformed into:

X1(u, v) = (
√

vf(u, v),
√

vg(u, v)) in u > 0.

It follows that in x > 0, the vector field X is topologically equivalent to

Y (u, v) = (f(u, v), g(u, v)) for u > 0.

Observe now that Y can be Cr extended to a full neighborhood of 0. Due
to the symmetry properties of X (with respect to the canonical involution)
we deduce that the behavior of Y at ( M, 0) determines completely the
behavior of X at 0. So the problem now is carried out to analyze the phase
portrait of Y in M.
At a regular point the trajectory of X is always orthogonal to S. At a

singular point of X, the contact between an invariant manifold and S decays
by a factor of 1/2 in comparison with the orbit or invariant manifold of Y
passing through the same point. We illustrate this fact by assuming that
{u = vk, k > 0} is an invariant manifold of Y on the region u ≥ 0. This
implies that the curve x = yk/2 is a an invariant manifold of X on x ≥ 0.

The following proposition characterizes all stable symmetric singularities
of X in ΩR. See [33].

Proposition 15. Let X ∈ ΩR be such that X(0) = 0 and 0 is a
quadratic tangency between Y and the line {x = 0}. Then the origin is ei-
ther a saddle singular point (in the case Y h(0) = Dh(0)Y (0) = 0, Y (Y h)(0) >
0) or a simple center singular point (in the case Y h(0) = Dh(0)Y (0) =
0, Y (Y h)(0) < 0).

Remark 16. The techniques used in this the proposition can be used to
study codimension-k symmetric singularities in ΩR. See [35].

4.3. Global stability of reversible vector fields on surfaces

The main result in [36] has a close connection with the results in [4], [21],
[20], [27] and [33]. It says that:

Theorem 17. The set Σ0 of all vector fields in M which are structurally
stable is open and dense in ΩR. Moreover X ∈ Σ0 if and only if the following
conditions are satisfied:

i )all asymmetric singular points of X are hyperbolic;
ii )all asymmetric periodic orbits of X are hyperbolic;
iii)X has no saddle connection on M+ or in M−;;
iv)all symmetric singularities of X are hyperbolic saddles and simple

centers.
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v) X does not have nontrivial recurrent orbits;

Call Ω1 = ΩR \ Σ0 the bifurcation set of ΩR. There exists a Cr−1 im-
mersed codimension-one submanifold Σ1 of ΩR such that:

i)Σ1 is dense in Ω1 (both with the relative topology);
ii)for any X in Σ1, there exists a neighborhood B1 in the intrinsic topol-

ogy of Σ1 such that any Y in B1 is topologically equivalent to X, i. e., Y
is structurally stable along to Σ1;

iii)a part of Σ1 embedded in ΩR is also characterized.

In the class of reversible vector fields some persistent phenomena occur
which cannot be destroyed by perturbations in ΩR. Examples are periodic
orbits and saddle connections which meet the submanifold S. However,
concerning non trivial recurrences its are contained in M+ and ϕ( M+) =
M−. We mention for example that reversible systems on the torus do not

admit an irrational flow since S = Fix(ϕ) has two connected components
and therefore M+ is homeomorphic to a cylinder. In the bitorus, S =
Fix(ϕ) has one or three connected components. If S has three connected
components it follows that M+ has topological type of a planar region and
so no nontrivial recurrence is prohibited. In the other hand, if S has only
one connected component M+ has topological type of torus minus a disk
and so taking a Cherry flow on the torus, [19], we can construct a smooth
reversible vector field on the bitorus with nontrivial recurrences.

4.4. Local bifurcations of codimension one and two of
reversible vector fields

Let ΩR be the space of the germs of Cr reversible vector fields at 0 on
R2 endowed with the Cr topology, r > 3.

In [35] all the symmetric singularities of codimension 0, 1 and 2 are
classified. It is presented a technique which enables to classify in a simple
manner those singularities. It consists to make a change of coordinates as
describe in subsection 4.2 around the point and address the analysis of a
boundary singularity. In the theorem below the normal forms of X are in
relation to the involution φ(x, y) = (x,−y).

Theorem 18. (a) The normal forms of codimension 0 singularities in
ΩR are:

i) X0(x, y) = (0, 1
2 ),

ii) X1(x, y) = (y, 1
2x) and

ii) X2(x, y) = (−y, 1
2x).
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(b) (codimension one singularity classification) - In the space of one-
parameter families of vector fields in ΩR, an everywhere dense set is formed
by generic families such that their (C0-) normal forms are:

i) The codimension 0 normal forms in ΩR;
ii) Xλ(x, y) = (y, 1

2 (λ + x2));
iii) Xλ(x, y) = (εxy, 1

2 (2εy2 + x + λ)) with ε = ±1;
iv) Xλ(x, y) = (xy, 1

2 (λ− y2 + x));
v) Xλ(x, y) = (xy + y3, 1

2 (λ− x + y2)).

(c) (codimension two singularity classification) - In the space of two-parameter
families of vector fields in ΩR, an everywhere dense set is formed by generic
families such that their C0 - normal forms are:

i) All the normal forms listed in (a) and (b) above.
ii) Xαβ(x, y) = (y, 1

2 (bx3 + βx + α)), b = ±1;
iii) a) Xαβ(x, y) = (ay(x− y2) + βy(x + y2), 1

2 (α + (x + y2)2)) with
a = ±1;

b) Xαβ(x, y) = (y(x− y2) + βy(x + y2), 1
2 (α + a(x + y2)2)) with a = ±1;

iv) Xαβ(x, y) = (−y3 +axy(α+x2 +y4), 1
2 (ax−y2(α+x2 +y4)+β)

with a = ±1;
v) Xαβ(x, y) = (axy + αy3, 1

2 (x + ay2 + β)), with a = ±1;
vi) Xαβ(x, y) = (axy, 1

2 (αx + by2 + εx2 + β)), with ab > 0, ε = ±3,
|a| = 1 and |b| = 3 or |a| = 3 and |b| = 1.

5. A CODIMENSION THREE SINGULAR POINT ON THE
BOUNDARY

Our starting point is to consider germs of vector fields on M = {(x, y) ∈
R2 : x ≥ 0} at 0 ∈ ∂ M with nilpotent 1 − jet y∂/∂x and 2 − jet C∞

conjugated to:

X0(x, y) = y
∂

∂x
+ (x2 + αxy)

∂

∂y
, α = ±1 (1)

This codimension two singularity on the plane is known as Takens-
Bogdanov, see [5], [6], [8],[25] for the analysis of this point.

For the study of codimension three singularities on the plane see [9] and
[10] and also [8].

The following 3-parameter family of vector fields defined in M
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y
∂

∂x
+ (x2 + ax + c + αy(x + b))

∂

∂y
, α = ±1 (2)

generically unfolds X0; it will be called a quadratic typical family.
We state now the main results from [11].

Theorem 19. The bifurcation diagram of the quadratic typical family
given by equation 2 with α = ±1 is as shown in Fig. 1 below. This di-
agram is a topological cone with vertex at 0 and there are eleven distinct
phase portraits which are structurally stable (open regions of the diagram
of bifurcation) and thirteen points of codimension two. The lines in the di-
agram are the bifurcations of codimension one. The phase portrait in each
open connected region of the diagram is as shown in Fig. 2 , 3, 4 and 5.

Remark 20. In Fig. 1 is represented the restriction of the bifurcation set
to a hemisphere of a2 + b2 + c2 = 1. We observe that outside a topological
disk the family has no singular point. In fact there exists a unique non
transverse contact between the vector field and the boundary which is an
internal quadratic tangency.
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BT i - Bogdanov-Takens bifurcation

Sni - interior saddle node of cod. 1

Hi-st - interior Hopf and separatrix
tangent to the boundary

in the interior

BT i

Sn iSn i

L i

s t

Op t

s t

s t

s t
Op t

s tSn b Sn b
N b

F b Fb
N b

N b

DN bDN b

Hi_St

Hi_St
S t

Nb_St

Nb_stNb_st

Nb_st

L t

Hi

Hi

S b

H b

N b

N b N b

Nb - node in the boundary

Lp - loop tangent to the boundary

St - separatrix of saddle tangent
to the boundary

Snb- saddle node in the boundaryNb-st - node in the boundary and
connectionof strong separatrix of node
and saddle separatrix

Sb - saddle in the boundary

Fb - focus in the boundary

Hb - Hopf in the boundary

Hi- interior Hopf  point of cod. 1

DN b- degenerate node in the boundary

Li - interior loop of cod. 1

Op t - hyperbolic periodic orbit tangent
to the boundary

FIG. 1. Bifurcation diagram of the quadratic typical family

Also we consider the following singularity in the reversible context.

Y0(x, y) = (y, 2x(x4 + αx2y)), α = ±1. (3)
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FIG. 2. Bifurcation diagrams of a internal saddle node and of a Hopf singular point
in the boundary

FIG. 3. Bifurcation diagrams of a degenerate hyperbolic node in the boundary and
of a node in the boundary with a connection between the separatrices

In the reversible case this non-hyperbolic saddle singularity has codi-
mension 3, whereas in the world of smooth vector fields it has codimension
greater than 5.

A 3-parameter family of vector fields defined in R2 expressed by

y
∂

∂x
+ 2x[(x4 + αx2y) + ax2 + by + c]

∂

∂y
. (4)
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FIG. 4. Bifurcation diagrams of a interior Hopf point and a tangent separatrix of
saddle and of a tangent loop of a hyperbolic saddle point

FIG. 5. Bifurcation diagram of a interior Takens-Bogdanov point.



VECTOR FIELDS ON MANIFOLDS WITH BOUNDARY 325

generically unfolds Y0; it will be called a reversible polynomial typical family.

Theorem 21. The bifurcation diagram of the reversible typical family
given by equation 4 in the parameter space (a, b, c) is homeomorphic to that
of Fig. 1.

6. CONCLUDING REMARKS

Bidimensional differential equations is an important source of problems
and applications in various areas of science.

Concerning reversible systems on the plane and surfaces, or even higher
dimensional manifolds, we can state the following problems:

i) Period function. Given a center of a reversible system which are the
properties of the associated period function?

The period function has been extensively studied in the class of Hamil-
tonian systems. In particular, a classification of isochronous centers of
polynomial systems is still an open problem.

ii) Hilbert-Arnold problem. There exists an uniform bound for the max-
imum number of limit cycles and cylinders of periodic orbits for analytic
reversible systems on surfaces? See [4], [24] and references therein.

iii) Closing-lemma and recurrences. For reversible systems on compact
surfaces the recurrences can be eliminated by small perturbation (Cr, r ≥
1)? See [19] , [22], [23] and [12].

iv) Second order differential equations. The second order differential
equation x′′ = f(x, x′), x ∈ Rk such that f(x, x′) = f(x,−x′) defines a
reversible vector field X(x, y) = (y, f(x, y)) in Rk× Rk with the canonical
involution ϕ(x, y) = (x,−y). For k = 1 we can ask about the classification
of the phase portrait of X and, in particular, the study of problems i) and
ii) above. For k ≥ 2 we can ask if the study of this class have natural
applications in problems of differential geometry, for example, in the study
of a geodesic flow on manifolds.
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