
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS 4, 263–309 (2004)
ARTICLE NO. 64

Lines of Mean Curvature on Surfaces Immersed in R3

Ronaldo Garcia
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Instituto de Matemática e Estat́ıstica,
Universidade de São Paulo,

Rua do Matão 1010, Cidade Universitária,
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Associated to oriented surfaces immersed in R3, here are studied pairs of
transversal foliations with singularities, defined on the Elliptic region, where
the Gaussian curvature K, given by the product of the principal curvatures
k1, k2 of the immersion, is positive. The leaves of the foliations are the lines
of M-mean curvature, along which the normal curvature of the immersion is
given by a function M = M(k1, k2) ∈ [k1, k2], called a M- mean curvature,
whose properties extend and unify those of the arithmetic H = (k1 + k2)/2,

the geometric
√K and harmonic K/H = ((1/k1 + 1/k2)/2)−1 classical mean

curvatures.
The singularities of the foliations are the umbilic points and parabolic curves,
where k1 = k2 and K = 0, respectively.
Here are determined the patterns of M- mean curvature lines near the umbilic
points, parabolic curves and M-mean curvature cycles (the periodic leaves of
the foliations), which are structurally stable under small perturbations of the
immersion. The genericity of these patterns is also established.
These patterns provide the three essential local ingredients to establish suffi-
cient conditions, likely to be also necessary, for M-Mean Curvature Structural
Stability of immersed surfaces. This constitutes a natural unification and com-
plement for the results obtained previously by the authors for the Arithmetic,
[11], Asymptotic, [10, 14], Geometric, [12] and Harmonic, [13], classical cases
of Mean Curvature Structural Stability.

Key Words: umbilic point, parabolic point, mean curvature cycle, mean curva-
ture lines.
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1. INTRODUCTION

The study of families of curves defined for immersed surfaces by their
normal curvature properties has attracted the interest of generations of
mathematicians, among whom are Euler, Monge, Dupin, Gauss, Cayley,
Darboux, Gullstrand, Carathéodory and Hamburger, to mention only a
few. See [19, 32] for references.

Also dealing with families of curves, there is “The Qualitative Theory
of Differential Equations” initiated by Poincaré and consolidated with the
study of the Structural Stability and Genericity of differential equations
in the plane and surfaces, made systematic from 1937 to 1962 due to the
seminal works of Andronov Pontrjagin and Peixoto; see [1, 26]. The basic
ideas of this Theory were extended an applied by Gutierrez, Garcia and
Sotomayor to principal curvature lines [16] as well as to other differential
equations of classical geometry: the asymptotic lines [10, 14], the arith-
metic, geometric and harmonic mean curvature lines [11, 12, 13].

An overview of the ensemble of the recent works cited above reveals that
they share a common ground. In fact, there is a neat analogy in purpose,
problems and methods of analysis. The goal of this paper is to inquire more
deeply on their common features, possible mathematical discrepancies and
limitations of the methods used so far.

In principle any expression such as M= M(k1, k2) ∈ [k1, k2], involving
the principal curvatures, could be rightly called a “mean curvature”. The
solutions of the differential equation: kn([du, dv]) = M, would be called
the lines of M-mean curvature. Here, kn([du, dv]) = II(du, dv)/I(du, dv)
is the normal curvature in the direction ([du, dv]), as the quotient of the
second and first fundamental forms of an immersed surface.

The situations that appear in the works quoted above correspond to
the Principal Curvatures: M=k1 or M=k2 as well as to the Arithmetic,
Geometric and Harmonic Mean Curvatures: M = H = (k1 + k2)/2, M
= K1/2, with K = k1k2, and M = K

H . The asymptotic lines correspond
to M = 0 and are supported by the hyperbolic region of the immersion,
where K < 0. To these five functions we will refer to as the “classical”
mean curvature functions. In the work of the authors the corresponding
five quadratic differential equations and respective integral foliations with
singularities have been unified in terms of their properties of structural
stability under small perturbations of the immersed surface which supports
them. A related unification, in terms of the notion of T− systems, focusing
the local form of the equations away from singularities, was proposed by
Ogura in 1916; see [24].

In this work the essential results obtained for the “classical” mean cur-
vature functions –principal lines [16], asymptotic lines [10, 14], arithmetic,
geometric and harmonic mean curvature lines [11, 12, 13]– are extended
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to a general mean curvature function M which satisfies some mild regu-
larity assumptions. This generalization also includes interesting cases of
mean curvature functions which seem to have been overlooked previously
in geometric studies.

To make precise the requirements imposed on a function M= M(k1, k2)
to be called a mean curvature function, it is appropriate to write its ex-
pression as M = m(H, K), in terms of a function m of the H, K variables,
which when replaced by the elementary symmetric functions of (k1, k2):
H = H(k1, k2) and K = K(k1, k2) give back M(k1, k2).

Definition 1. A function M = m(H,K) is called a mean curvature
function provided the following holds:

1) It satisfies (m − H)2 ≤ H2 − K on the region H2 ≥ K ≥ 0, (mean
function condition).

2) It is continuous on the region H2 ≥ K ≥ 0, and analytic on K > 0
(basic regularity condition)

3) m(tH, t2K) = tm(H, K), t ≥ 0, (weighted homogeneity condition).

Remark 2. In terms of (k1, k2), definition 1 amounts to the following:

1) M = M(k1, k2) ∈ [k1, k2], is symmetric i.e. M(k1, k2) = M(k2, k1),
2) it is continuous everywhere and analytic on k1k2 > 0 and
3) it is homogeneous i.e. M(tk1, tk2) = tM(k1, k2).

Notice that m(H, H2) = H, the diagonal condition, also expressed by
M(k, k) = k, follows directly from the mean function condition, labelled
1). One can also pass from M(k1, k2) to m(H,K) by the following change
of variables: k1 = H −√H2 −K, k2 = H +

√
H2 −K

For more developments on the subject of Means, carried out from the
perspective of Arithmetic and Analysis, the reader is addressed to Borwein
and Borwein [4], Hardy et al. [20] and Mitrinovic [22]. Definition 1 is
adapted for our needs from [4], Chapter 8. Additional requirements will be
made to it later to deal with differential geometric problems.

Definition 1 includes the classical symmetric means and also their most
important generalizations, from which two examples are reviewed below.

Example 3. The Holder mean of order r:

Hr(k1, k2) = (
k1

r + k2
r

2
)1/r, r 6= 0; H0(k1, k2) =

√
k1k2

generalizes the classical arithmetic, geometric and harmonic mean curva-
tures, given respectively by r = 1, 0, −1. The continuity at r = 0 and the
limits limr→±∞Hr = H ±√H2 −K are well known; see [20, 22].
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Taking r as a parameter, this defines a natural transition between the
classical means and consequently between their associated differential equa-
tions and foliations with singularities.

Example 4.

The classical AG mean of Gauss and Legendre is defined by

AG(k1, k2) = I(1, 1)/I(k1, k2); I(k1, k2) =
∫ ∞

0

dt

(t2 + k1
2)1/2(t2 + k2

2)1/2
.

In Borwein and Borwein [4] can be found an enlightening study of this
mean as well as a general treatment of the basic properties of Mean Func-
tions. See also Weisstein [34] for other references on means, including
recent, non symmetric, generalizations of the AG mean.

For any mean curvature function M, as in definition 1, are defined two
transversal foliations whose leaves, called the lines of M-mean curvature,
are the solutions of the quadratic differential equation kn([du, dv]) = M.
These foliations, called here the M-mean curvature foliations, are well de-
fined and regular only on the non-umbilic part of the elliptic region of the
immersion, where the Gaussian Curvature is positive. The set where the
Gaussian Curvature vanishes, the parabolic set, is generically a regular
curve which is the border of the elliptic region. The umbilic points are
those at which the principal curvatures coincide, generically are isolated
and disjoint from the parabolic curve.

The transversal foliations, are assembled with the umbilic and parabolic
points to define the M-mean curvature configuration of an immersed sur-
face. See section 2 for precise definitions.

This paper establishes sufficient conditions, likely to be also necessary, for
the structural stability of M-mean curvature configurations, under small
perturbations of the immersion. See sections 2 and 6 for precise statements.

Three local ingredients are essential to express these sufficient conditions:
the umbilic points, endowed with their M-mean curvature separatrix struc-
ture, the M-mean curvature cycles, with the calculation of the derivative
of the Poincaré return map through which the hyperbolicity condition is
expressed and the parabolic curve, together with their parabolic tangential
singularities and associated separatrix structures.

The conclusions of this work, on the elliptic region, are complementary to
results valid independently for asymptotic foliations on the hyperbolic region
(on which the Gaussian curvature is negative), for which the separatrix
structure near the parabolic curve and the asymptotic structural stability
has been studied in [10, 14].
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This paper is organized as follows:
Section 2 is devoted to the general study of the differential equations

and general properties of M-Mean Curvature Lines. Here are given the
precise definitions of the M-Mean Curvature Configuration and of the two
transversal M-Mean Curvature Foliations with singularities into which it
splits. At the end of this section is given the definition of M-Mean Cur-
vature Structural Stability focusing on the preservation of the qualitative
properties of the foliations and the configuration under small perturbations
of the immersion.

In Section 3 the differential equation for the lines of M-mean curvature
is written in a Monge chart. The condition for the M-mean curvature
structural stability at umbilic points is explicitly stated in terms of the
coefficients of the third order jet of the real function which represents the
immersion in the Monge chart. The local M-mean curvature separatrix
configurations at stable umbilics is established for C4 immersions. The
patterns resemble those established for the three Darbouxian umbilic points
in the stable arithmetic mean curvature configurations [7, 16].

In Theorem 6 it is proved that this resemblance is due to the properties of
mean curvature functions (definition 1 and remark 2 ). This clarifies why
they appear also in the stable geometric and harmonic mean curvature
configurations studied previously in [12, 13].

In Section 4 is calculated the derivative of the Poincaré first return map
along a M-mean curvature cycle. It consists on an integral expression in-
volving M and other natural curvature functions along the cycle. Under
an additional regularity condition on M (or m), denominated positive reg-
ularity in definition 12, it is shown how to deform an immersion so that a
non hyperbolic M-mean curvature cycle turns into a hyperbolic one.

In Section 5 are studied the foliations by lines of M- mean curvature
near the parabolic set of an immersion, which typically is a regular curve.
Here it is also necessary to impose additional regularity conditions on the
functionM. Two cases are considered in detail, denominated 1-regular and
1/2-regular. See definitions 15 and 17. In the 1-regular (resp. 1/2-regular)
case, three (resp. only two) singular tangential patterns exist generically:
the folded node, the folded saddle and the folded focus (resp. only the
folded node and the folded saddle). The results of this section extend those
obtained for the harmonic, as in [13], (resp. geometric, as in [12],) mean
curvature.

In Section 6 the results presented in Sections 3, 4 and 5 are put together
to provide sufficient conditions forM-Mean Curvature Structural Stability.

The density of these conditions is established in section 7. The delicate
point here is the elimination of non-trivial recurrent M-mean curvature
lines by means of small perturbations of the immersions. The main steps
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for the somewhat technical proof of this part are explained in detail here
under suitable hypotheses.

Section 8 presents a short overview of the achievements of this paper and
points out to some possible lines for future research.

For a discussion on historic grounds of the prominence of the classical
means in Arithmetic, Geometry and Analysis and of the needs for their
generalization, the reader is addressed to the book by Borwein and Bor-
wein, [4]. Also, the essay by Wassell, [33], contains an interesting general
discussion of the Means.

2. DIFFERENTIAL EQUATIONS FOR M- MEAN
CURVATURE LINES

Let α : V2 → R3 be a Cr, r ≥ 4, immersion of an oriented smooth
surface V2 into R3. This means that Dα is injective at every point in V2.

The space R3 is oriented by a once for all fixed orientation and endowed
with the Euclidean inner product <,>.

Let N be the positive unit vector field normal to α. This means that for
any positive chart (u, v) of V2, {αu, αv, N} is a positive frame in R3.

In such chart (u, v), the first fundamental form of an immersion α is
given by:

Iα =< Dα,Dα >= Edu2 + 2Fdudv + Gdv2,
with E =< αu, αu >, F =< αu, αv >, G =< αv, αv >

The second fundamental form is given by:
IIα =< N,D2α >= edu2 + 2fdudv + gdv2,

with e =< N, αuu >= − < Nu, αu >, f =< N, αuv >= − < Nu, αv >,
g =< N, αvv >= − < Nv, αv >.

The normal curvature at a point p in a tangent direction t = [du : dv] is
given by:

kn = kn(p) =
IIα(t, t)
Iα(t, t)

.

Given a mean curvature function M as in definition 1 and remark 2,
the lines of M-mean curvature of α are regular curves on V2 along which
the normal curvature is equal to M. That is, kn = M(k1, k2) = m(H,K),
where K = Kα and H = Hα are the Gaussian and Arithmetic Mean cur-
vatures of α. See definition 1.

Therefore the pertinent differential equation for these lines is given by:

edu2 + 2fdudv + gdv2

Edu2 + 2Fdudv + Gdv2
= M(k1, k2) = m(H,K)
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where H = Eg+eG−2fF
2(EG−F 2) and K = eg−f2

EG−F 2 or equivalently, according to
remark 2, expressing in M(k1, k2) the principal curvatures in terms of
(H,K).

Or equivalently by

(g −MG)dv2 + 2(f −MF )dudv + (e−ME)du2 = 0. (1)

This equation is well defined only on the closure of the Elliptic region,
EV2

α, of α, where K > 0. It is bivalued and Cr−2, r ≥ 4, smooth on the
complement of the umbilic, Uα, and parabolic, Pα, sets of the immersion
α. In fact, on Uα, where the principal curvatures coincide, i.e., where
H2−K = 0, the equation vanishes identically; on Pα, it is univalued when
M = k2 = 2H or when M = k1 = 0.

The lines of M-mean curvature of immersions will be organized into the
M-mean curvature configuration, as follows:

Through every point p ∈ EV2
α \ (Uα ∪ Pα), pass two M-mean cur-

vature lines of α. Under the orientability hypothesis imposed on V2,
the M-mean curvature lines define two foliations: Hα,1, called the M-
minimal mean curvature foliation, along which the geodesic torsion is ne-
gative (i.e τg = −

√
(k2 −M)(M− k1)) and Hα,2, called the M-maximal

mean curvature foliations, along which the geodesic torsion is positive (i.e
τg =

√
(k2 −M)(M− k1))

By comparison with the arithmetic mean curvature directions, making
angle π/4 with the minimal principal directions, the M directions are lo-
cated between them and the principal ones, making an angle θm such that
tan θm =±

√
M−k1
k2−M , as follows from Euler’s Formula: kn(θ) = k1 cos2(θ) +

k2 sin2(θ), which leads directly to cos θm =±
√
M−k1
k2−k1

and sin θm =±
√

k2−M
k2−k1

.
The particular expression for the geodesic torsion given above results from
the formula τg = (k2 − k1) sin θ cos θ [32]. See also lemma 7 in Section 4
below.

The quadruple

HM
α = {Pα,Uα,HM

α,1,H
M
α,2}

is called the M-mean curvature configuration of α.
It splits into two foliations with singularities:

GM
α,i = {Pα,Uα,HM

α,i}, i = 1, 2.

Let V2 be also compact. Denote by Ir,s(V2) the space of Cr immersions
of V2 into the Euclidean space R3, endowed with the Cs topology.
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An immersion α is said Cs-M-local mean curvature structurally stable at
a compact set C ⊂ V2 if for any sequence of immersions αn converging to α
in Ir,s(V2) there is a neighborhood VC of C, sequence of compact subsets
Cn and a sequence of homeomorphisms mapping C to Cn, converging to
the identity of V2 such that on VC it maps umbilic and parabolic points
and arcs of the M-mean curvature foliations Hα,i to those of Hαn,i for
i = 1, 2.

An immersion α is said to be Cs-M-mean curvature structurally stable
if the compact C above is the closure of EV2

α.
Analogously, α is said to be i- Cs-M-mean curvature structurally stable

if only the preservation of elements of i-th, i=1,2 foliation with singularities
is required.

A general study of the structural stability of quadratic differential equa-
tions (not necessarily derived from normal curvature properties) has been
carried out by Gúıñez [15]. See also the work of Bruce and Fidal [5], Bruce
and Tari [6] and Davydov [8] for the analysis of umbilic points for general
quadratic and also implicit differential equations.

For a study of the topology of foliations with non-orientable singulari-
ties on two dimensional manifolds, see the works of Rosenberg and Levitt
[29, 21]. In these works the leaves are not defined by normal curvature
properties.

3. M-MEAN CURVATURE LINES NEAR UMBILIC
POINTS

Let 0 be an umbilic point of a Cr, r ≥ 4, immersion α parametrized in
a Monge chart (x, y) by α(x, y) = (x, y, z(x, y)), where

z(x, y) =
k

2
(x2 + y2) +

a

6
x3 +

b

2
xy2 +

c

6
y3 + O(4) (2)

This reduced form is obtained by means of a rotation of the x, y-axes.
See [16, 18].

Proposition 5. Assume the notation established in equation (2). Sup-
pose that the transversality condition Tm : kb(b−a) 6= 0 holds and consider
the following situations:

M1) ∆m > 0
M2) ∆m < 0 and a

b > 1
M3) a

b < 1.

Here ∆m = 4c2(2a− b)2 − [3c2 + (a− 5b)2][3(a− 5b)(a− b) + c2].
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Then for every mean curvature function M, the foliations {HM
1 ,HM

2 }
have in a neighborhood of 0, one hyperbolic sector in the M1 case, one
parabolic and one hyperbolic sector in M2 case and three hyperbolic sectors
in the case M3. These points are called Darbouxian umbilics, see Figure 1.

The separatrices of these singularities are called umbilic separatrices.

FIG. 1. M-mean curvature lines near the umbilic points Mi and their separatrices

Proof. Near 0, the functions K and H have the following Taylor expan-
sions.

K = k2 + (a + b)kx + cky + O1(2), H = k +
1
2
(a + b)x +

1
2
cy + O2(2).

Assume that M is a mean curvature function, as defined in 1 and there-
fore from (m−H)2 ≤ H2−K follows that j1M(H,H2)(0, 0) = j1H(H,H2)(0, 0).

The differential equation of the M-mean curvature lines

[g −MG]dx2 + 2[f −MF ]dxdy + [e−ME]dy2 = 0 (3)

is given by:

[(b− a)x + cy + R1(x, y)]dy2 + [4by + R2(x, y)]dxdy

−[(b− a)x + cy + R3(x, y)]dx2 = 0

where Ri, i = 1, 2, 3, represent functions of order O(x2 + y2).
Thus, at the level of first jet, the differential equation (3) is the same as

that of the arithmetic mean curvature lines given by

[g −HG]dv2 + 2[f −HF ]dudv + [e−HE]du2 = 0.

The conditions on ∆m coincide with those on ∆H , established to char-
acterize the arithmetic mean curvature Darbouxian umbilics studied in



272 R. GARCIA AND J. SOTOMAYOR

detail in [11]. Thus reducing the analysis of the umbilic points to that of
the hyperbolicity of saddles and nodes of plane vector fields, whose phase
portraits are determined only by the first jets of the vector field at the sin-
gularities, which are calculated only in terms of the first jet of the equation
(3) at the umbilic point.

Theorem 6. An immersion α ∈ Ir,s(V2), r ≥ 4, is C3−M-local mean
curvature structurally stable at Uα if and only if every p ∈ Uα is one of the
types Mi, i = 1, 2, 3 of proposition 5.

Proof. Clearly proposition 5 shows that the condition Mi, i = 1, 2, 3
together with Tm : kb(b − a) 6= 0 imply the C3− M-local mean curvature
structural stability. This involves the construction of the homeomorphism
(by means of canonical regions), mapping simultaneously minimal and max-
imal M-mean curvature lines around the umbilic points of α onto those of
a C4 slightly perturbed immersion.

We will discuss the necessity of the condition Tm : k(b− a)b 6= 0 and of
the conditions Mi, i = 1, 2, 3. The first one follows from its identification
with a transversality condition that guarantees the persistent isolation of
the umbilic points of α and its separation from the parabolic set, as well
as the persistent regularity of the Lie-Cartan surface G, obtained from
the projectivization of the equation (3). Failure of Tm condition has the
following implications:

a) b(b − a) = 0; in this case the elimination or splitting of the umbilic
point can be achieved by small perturbations.

b) k = 0 and b(b − a) 6= 0; in this case a small perturbation separates
the umbilic point from the parabolic set.

The necessity of condition Mi follows from its dynamic identification with
the hyperbolicity of the equilibria along the projective line of the vector
field obtained lifting equation (3) to the surface G. Failure of this con-
dition would make possible to change the number of M-mean curvature
separatrices at the umbilic point by means a small perturbation of the
immersion.

4. PERIODIC M-MEAN CURVATURE LINES

Let α : V2 → R3 be an immersion of a compact and oriented surface
and consider the foliations HM

α,i, i = 1, 2, given by the M-mean curvature
lines.

In terms of M and other natural geometric invariants of the immersion,
here is established an integral expression for the first derivative of the
return map of a periodic M-mean curvature line, called also a M-mean
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curvature cycle. Recall that the return map associated to a cycle is a local
diffeomorphism with a fixed point, defined on a cross section normal to the
cycle by following the integral curves through this section until they meet
again the section. This map is called holonomy in Foliation Theory and
Poincaré Map in Dynamical Systems, [23].

A M-mean curvature cycle is called hyperbolic if the first derivative of
the return map at the fixed point is different from one.

The M-mean curvature foliations Hα,i have no cycles such that the
return map reverses the orientation. Initially, the integral expression for
the derivative of the return map is obtained in class C6; see Lemma 9 and
Proposition 10.

The characterization of hyperbolicity of M-mean curvature cycles in
terms of local structural stability is given in Theorem 14 of this section.

Lemma 7. Let c : I → V2 be a M- mean curvature line parametrized
by arc length. Then the Darboux frame is given by:

T ′ = kgN ∧ T +MN
(N ∧ T )′ = −kgT + τgN
N ′ = −MT − τgN ∧ T

where τg = ±
√

(M− k1)(k2 −M). The sign of τg is positive (resp. nega-
tive) if c is maximal (resp. minimal) M-mean curvature line.

Proof. The normal curvature kn of the curve c is by the definition the
mean curvature function M. From the Euler equation kn = k1 cos2 θ +
k2 sin2 θ = M, get tan θ = ±

√
M−k1
k2−M .

Therefore, by direct calculation, the geodesic torsion is given by τg=(k2−
k1) sin θ cos θ ±

√
(M− k1)(k2 −M).

Remark 8. The expression for the geodesic curvature kg will not be
needed explicitly in this work. However, it can be given in terms of the
principal curvatures and their derivatives using a formula due to Liouville
[32], pp. 130-131. In fact, in a principal chart (u, v) the geodesic curvatures
of the coordinate curves are given by:

kg|v=v0 =
∂k1
∂v

k1 − k2
, kg|u=u0 =

∂k2
∂u

k1 − k2
.

Therefore, by Liouville formula, the geodesic curvature of a curve c(s)
parametrized by arc length and that makes an angle θ(s) with the principal
direction e1 = ∂/∂u is

kg =
dθ

ds
+ kg|v=v0 cos θ + kg|u=u0 sin θ.
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Lemma 9. Let α : V2 → R3 be an immersion of class Cr, r ≥ 6, and
c be a M - mean curvature cycle of α, parametrized by arc length and of
length L. Then the expression,

α(s, v) = c(s)+v(N∧T )(s)+[(2H(s)−M(s))
v2

2
+

A(s)
6

v3+v3B(s, v)]N(s)

where B(s, 0) = 0, defines a local chart (s, v) of class Cr−5 in a neighbor-
hood of c.

Proof. The curve c is of class Cr−1 and the map α(s, v, w) = c(s) +
v(N ∧ T )(s) + wN(s) is of class Cr−2 and is a local diffeomorphism in
a neighborhood of the axis s. In fact [αs, αv, αw](s, 0, 0) = 1. Therefore
there is a function W (s, v) of class Cr−2 such that α(s, v,W (s, v)) is a
parametrization of a tubular neighborhood of α◦c. Now for each s, W (s, v)
is just a parametrization of the curve of intersection between α(V2) and the
normal plane generated by {(N ∧ T )(s), N(s)}. This curve of intersection
is tangent to (N ∧ T )(s) at v = 0 and notice that kn(N ∧ T )(s) = 2H(s)−
M(s). Therefore,

α(s, v,W (s, v)) = c(s) + v(N ∧ T )(s)

+ [(2H(s)−M(s))v2

2 + A(s)
6 v3 + v3B(s, v)]N(s),

where A is of class Cr−5 and B(s, 0) = 0.

We now compute the coefficients of the first and second fundamental
forms in the chart (s, v) constructed above, to be used in proposition 10.

N(s, v) =
αs ∧ αv

| αs ∧ αv | = [−τg(s)v + O(2)]T (s)

− [(2H(s)−M(s))v + O(2)](N ∧ T )(s) + [1 + O(2)]N(s).

Therefore it follows that E =< αs, αs >, F =< αs, αv >, G =< αv, αv >,
e =< N, αss >, f =< N,αsv > and g =< N,αvv > are given by

E(s, v) = 1− 2kg(s)v + h.o.t

F (s, v) = 0 + 0.v + h.o.t

G(s, v) = 1 + 0.v + h.o.t
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e(s, v) = M(s) + v[τ ′g(s)− 2kg(s)H(s)] + h.o.t (4)
f(s, v) = τg(s) + {[2H(s)−M(s)]′ + kg(s)τg(s)}v + h.o.t

g(s, v) = 2H(s)−M(s) + A(s)v + h.o.t

Proposition 10. Let α : V2 → R3 be an immersion of class Cr,
r ≥ 6 and c be closed M-mean curvature line c of α, parametrized by arc
length s and of total length L. Then the derivative of the Poincaré map πα

associated to c is given by:

lnπ′α(0) =
∫ L

0

[
[M]v
2τg

+
kg

τg
(H−M)

]
ds.

Here τg=±
√

(M− k1)(k2 −M).

Proof. The Poincaré map associated to c is the map πα : Σ → Σ defined
in a transversal section to c such that πα(p) = p for p ∈ c ∩ Σ and πα(q)
is the first return of the M-mean curvature line through q to the section
Σ, choosing a positive orientation for c. It is a local diffeomorphism and is
defined, in the local chart (s, v) introduced in Lemma 9, by πα : {s = 0} →
{s = L}, πα(v0) = v(L, v0), where v(s, v0) is the solution of the Cauchy
problem

(g −M)dv2 + 2(f −MF )dsdv + (e−ME)ds2 = 0, v(0, v0) = v0.

Direct calculation gives that the derivative of the Poincaré map satisfies
the following linear differential equation:

d

ds
(

dv

dv0
) = −Nv

M
(

dv

dv0
) = − [e−ME]v

2[f −MF ]
(

dv

dv0
)

Therefore, using equation (4) it results that

[e−ME]v
2[f −MF ]

− τ ′g
2τg

− [M]v
2τg

− kg

τg
(H−M).

Integrating the equation above along an arc [s0, s1] ofM-mean curvature
line, it follows that:

dv

dv0
|v0=0 =

(τg(s1))
−1
2

(τg(s0))
−1
2

exp[
∫ s1

s0

[
[M]v
2τg

+
kg

τg
(H−M)

]
ds. (5)
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Applying (5) along the M-mean curvature cycle of length L, obtain

dv

dv0
|v0=0 = exp[

∫ L

0

[
[M]v
2τg

+
kg

τg
(H−M)

]
ds.

From the equation K = (eg−f2)/(EG−F 2) evaluated at v = 0, it follows
using the expressions in (??) that K = M[2H−M]− τ2

g . Developing this
equation it follows that τg=±

√
(M− k1)(k2 −M).

This ends the proof.

Remark 11. The study of the behavior of curvature lines near principal
cycles was carried out in [16], [18] and [9]. In this last work was established
the general integral pattern for the successive derivatives of the return map.

For the next theorem it is necessary to assume the additional property
of being positive regular for the function M = m(H, K).

Definition 12. A mean curvature function M = m(H, K), as in defi-
nition 1, is called positive regular if

M = MH + 2MMK > 0.

Proposition 13. Let α : V2 → R3 be an immersion of class Cr, r ≥ 6,
and c be a maximal M - mean curvature cycle for α, parametrized by arc
length and of length L. Consider a chart (s, v) as in lemma 9 and consider
the deformation

βε(s, v) = β(ε, s, v) = α(s, v) + ε[
A1(s)

6
v3]δ(v)N(s)

where δ = 1 in neighborhood of v = 0, with small support and A1(s) =
τg(s) > 0.

Then c is a M-mean curvature cycle of βε for all ε small. Also, provided
M is positive regular, that is, in definition 12 M > 0, c is a hyperbolic
M-mean curvature cycle for βε and ε 6= 0 is small.

Proof. In the chart (s, v), for the immersion βε, it is obtained that:

Eε(s, v) = 1− 2kg(s)v + h.o.t

Fε(s, v) = 0 + 0.v + h.o.t

Gε(s, v) = 1 + 0.v + h.o.t

eε(s, v) = M(s) + v[τ ′g(s)− 2kg(s)H(s) )] + h.o.t
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fε(s, v) = τg(s) + [(2H(s)−M(s))′ + kgτg]v + h.o.t

gε(s, v) = 2H(s)−M(s) + v[A(s) + εA1(s)] + h.o.t

In the expressions above Eε =< βs, βs >, Fε =< βs, βv >, Gε =<
βv, βv >, eε =< βss, N >, fε =< N, βsv >, gε =< N, βvv >, where
N = Nε = βs ∧ βv/ | βs ∧ βv | .

Let Mε = m(Hε, Kε). For all ε small it follows that:

(eε −MεEε)(s, 0, ε) = 0
Kεv(s, 0, ε) = εMεA1(s) + f1(kg, τg,K,H)(s)

Hεv(s, 0, ε) =
1
2
εA1(s) + f2(kg, τg,K,H)(s)

d

dε

[Mε]v|ε=0 =
1
2
[MH + 2MMK ]]A1(s).

Therefore c is a maximal M-mean curvature cycle for all βε.
Assuming that A1(s) = 4τg(s) > 0, and also that M is positive regular,

i.e. by definition 12,

M = MH + 2MMK > 0,

it results that

d

dε
(lnπ′(0))|ε=0 =

∫ L

0

d

dε

(
(Mε)v

2τg
+

kg

τg
(Hε −Mε)

)
ds

=
∫ L

0

τgMds > 0.

As a synthesis of propositions 10 and 13, the following theorem is ob-
tained.

Theorem 14. Let M be a positive regular mean curvature function. An
immersion α ∈ Ir,s(V2), r ≥ 6, is C6−local M-mean curvature struc-
turally stable at a M-mean curvature cycle c if only if,

∫ L

0

[
[M]v
2τg

+
kg

τg
(H−M)

]
ds 6= 0.
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Proof. Using propositions 10 and 13, the local topological character of
the foliation can be changed by small perturbation of the immersion, when
the cycle is not hyperbolic.

5. M-MEAN CURVATURE LINES NEAR THE
PARABOLIC CURVE

In this section will be studied the behavior of theM-mean curvature lines
near the parabolic points of an immersion, assuming that the quadratic dif-
ferential equation (1) is univalued there. This is done under two regularity
conditions imposed in definitions 15 and 17. The motivation comes from
the previous study of the classical harmonic and geometric mean curvature
functions; see [13, 11].

Definition 15. A mean curvature function M = m(H, K) is called 1-
regular if either

a) m(H, 0) = 0 and (∂m/∂K)(H, 0) > 1/(2H) > 0, or
b) m(H, 0) = 2H and (∂m/∂K)(H, 0) < −1/(2H) < 0.

Remark 16. For mean curvature functions m, with m(H, 0) = 0, it always
holds that (∂m/∂K)(H, 0) ≥ 1/(2H) > 0. The 1− regular condition states
that the inequality is strict. In fact,

∂m

∂K
(H, 0) lim

K→0

m(H, K)−M(H, 0)
K

≥ lim
K→0

H −√H2 −K

K
=

1
2H

.

Analogously for the case where m(H, 0) = 2H.

Definition 17. A mean curvature function M = m(H, K) is called 1/2-
regular if either

a) m(H, 0) = 0, m(H, K) = m(H,
√

K) for some analytic function m(H, S)
which furthermore satisfies (∂m/∂S)(H, 0) > 0, or

b) m(H, 0) = 2H, m(H, K) = m(H,
√

K) for some analytic function
m(H, S) which furthermore satisfies (∂m/∂S)(H, 0) < 0.

The natural examples for cases a) in the definitions above are the Har-
monic( m = K/H) and Geometric (m =

√
K) mean curvatures. For cases

b), take m = 2H −K/H and m = 2H −√K.

5.1. M-mean curvature lines near a parabolic line: the
1-regular, case a)

Let 0 be a parabolic point of a Cr, r ≥ 6, immersion α parametrized in
a Monge chart (x, y) by α(x, y) = (x, y, z(x, y)), where
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z(x, y) =
k

2
y2 +

a

6
x3 +

b

2
xy2 +

d

2
x2y +

c

6
y3 +

A

24
x4 +

B

6
x3y

+
C

4
x2y2 +

D

6
xy3 +

E

24
y4 +

∑

i+j=5

rij
xiyj

i!j!
+ O(6) (6)

The coefficients of the first and second fundamental forms are given by:

E(x, y) = 1 + O(4)

F (x, y) =
1
2
akx2y + kdxy2 +

k

b
y3 + O(4)

G(x, y) = 1 + k2y2 + kdx2y + 2kbxy2 + kcy3 + 0(4)

e(x, y) = ax + dy +
1
2
Ax2 + Bxy +

1
2
Cy2 +

1
6
r50x

3 +
1
2
r41x

2y

+
1
2
(r32 − ak2)xy2 +

1
6
(r23 − 3k2d)y3 + O(4)

f(x, y) = dx + by +
1
2
Bx2 + Cxy +

1
2
Dy2 +

1
6
r41x

3 +
1
2
r32x

2y (7)

+
1
2
(r23 − k2d)xy2 +

1
6
(r14 − 3k2b)y3 + O(4)

g(x, y) = k + bx + cy +
1
2
Cx2 + Dxy +

1
2
(E − k3)y2 +

1
6
r32x

3

+
1
2
(r23 − k2d)x2y +

1
2
(r14 − 3bk2)xy2

+
1
6
(r05 − 6k2c)y3 + O(4)

The Gaussian and the Mean curvatures are given by

K(x, y) = k(ax + dy) +
1
2
(Ak + 2ab− 2d2)x2 + (Bk + ac− bd)xy

+
1
2
(Ck + 2cd− 2b2)y2 +

1
6
(kr50 + 3Ab + 3aC − 6Bd)x3

+
1
2
(kr32 − 4ak3 + 2cB + aE − 3bC)xy2

+
1
2
(kr41 + cA + 2aD − 3Cd)x2y

+
1
6
(kr23 + 3cC + 3Ed− 6bD − 12k3d)y3 + O(4), (8)
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H(x, y) =
1
2
k +

1
2
(a + b)x +

1
2
(c + d)y +

1
4
(A + C)x2

+
1
2
(B + D)xy +

1
4
(E + C − 3k3)y2 +

1
12

(r50 + r32)x3

+
1
4
(r32 + r14 + k2(2d− 9b− a))xy2

+
1
4
(r41 + r23 + k2(a− 3d))x2y

+
1
12

(r23 + r05 + k2(3b− 9c− 3d))y3 + O(4)

Let M be a 1- regular function. Write

M(x, y) = m(H,K)(x, y) = (m0 + m1x + m2y + O(2))K(x, y).

The coefficients of the quadratic differential equation (1) are given by
L, M, N as follows:

L = g −MG, M = 2(f −MF ), N = e−ME.

L = k + (b− akm0)x + (c− km0d)y

+
1
2
[C + (2d2 − 2ab−Ak)m0 − 2akm1]x2

+ [D + (bd− ac− kB)m0 − km1d− akm2]xy

+
1
2
[(2b2 − kC − 2cd)m0 − k3 + E − 2km2d]y2 + O(3)

M = 2dx + 2by + Bx2 + 2Cxy + Dy2 + O(3) (9)
N = a(1− km0)x + d(1− km0)y

+
1
2
[(2d2 − 2ab−Ak)m0 + A− 2akm1]x2

+ [B + (bd− ac− kB)m0 − km1d− akm2]xy

+
1
2
[(2b2 − 2cd− kC)m0 − km2d + C]y2 + O(3)

Lemma 18. Let 0 be a parabolic point and consider the local parametriza-
tion (x, y, z(x, y)) as above. If k > 0 and a2+d2 6= 0 then the set of parabolic
points is locally a regular curve normal to the vector (a, d) at 0.

i)If a 6= 0 the parabolic curve is transversal to the minimal principal
direction (1, 0).
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ii)If a = 0 then the parabolic curve is tangent to the principal direction
given by (1, 0) and has quadratic contact with the corresponding minimal
principal curvature line if dk(Ak − 3d2) 6= 0.

Proof. If a 6= 0, from the expression of K given by equation (8) it follows
that the parabolic line is given by x = − d

ay + O1(2) and so is transversal
to the principal direction (1, 0) at (0, 0).

If a = 0, from the expression of K given by equation (8) it follows that the
parabolic line is given by y = 2d2−Ak

2dk x2+O2(3) and that y = − d
2kx2+O3(3)

is the principal line tangent to the principal direction (1, 0). Now the
condition of quadratic contact 2d2−Ak

2dk 6= − d
2k is equivalent to dk(Ak −

3d2) 6= 0.

Proposition 19. Let 0 be a parabolic point and the Monge chart (x, y)
as above. Suppose M is 1−regular at (k, 0) with ∂m/∂K(k, 0) = m0 > 1/k.

i)If a 6= 0 then the meanM-curvature lines are transversal to the parabolic
curve and the mean curvatures lines are shown in the Figure 2, the cuspidal
case.

ii)If a = 0 and σ = (Ak−3d2) 6= 0 then the mean M- curvature lines are
shown in the Figure 2. In fact, if σ > 0 then the M-mean curvature lines
are folded saddles. Otherwise, if σ < 0 then the M-mean curvature lines
are folded nodes or folded focus according to δ = [d2(km0 − 25) + 8Ak] be
positive or negative. The two separatrices of these tangential singularities,
folded saddle and folded node, as illustrated in the Figure 2 below, are called
parabolic separatrices.

Proof. Consider the quadratic differential equation

H(x, y, [dx : dy]) = Ldy2 + Mdxdy + Ndx2 = 0

and the Lie-Cartan line field X of class Cr−3 defined by

x′ = Hp

y′ = pHp

p′ = −(Hx + pHy), p =
dy

dx

where L, M and N are given by equation (9).
If a 6= 0 the vector Y is regular and therefore theM-mean curvature lines

are transversal to the parabolic line and at parabolic points these lines are
tangent to the principal direction (1, 0).
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FIG. 2. M-mean curvature lines near a parabolic point (cuspidal, folded saddle,
folded node and folded focus) and their separatrices

If a = 0, direct calculation gives H(0) = 0, Hx(0) = 0, Hy(0) =
−kd, Hp(0) = 0.

DX(0) =




2d 2b 2k
0 0 0

a31 a32 a33




where,

a31 = (Ak−2d2)m0−A, a32 = (kB−bd)m0−B+kdm1+, a33 = (km0−3)d.

The non vanishing eigenvalues of DX(0) are
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λ1 =
1
2
[

d(km0 − 1)−
√

(−1 + km0)(d2(km0 − 25) + 8Ak)
]
,

λ2 =
1
2
[

d(km0 − 1) +
√

(−1 + km0)(d2(km0 − 25) + 8Ak)
]

Therefore, λ1λ2 = 2(1− km0)(Ak − 3d2).
It follows that 0 is a hyperbolic singularity provided σ(Ak− 3d2) 6= 0. If

σ > 0 then theM-mean curvature lines are folded saddles and if σ < 0 then
the M-mean curvature lines are folded nodes ( [d2(km0 − 25) + 8Ak] > 0)
or folded focus ( [d2(km0 − 25) + 8Ak] > 0). See Figure 2.

Theorem 20. Assume that the M-mean curvature function M is 1-
regular as in definition 15, case a). An immersion α ∈ Ir,s(V2), r ≥ 6,
is C6−local M-mean curvature structurally stable at a tangential parabolic
point p if only if, the condition σδ 6= 0 in proposition 19 holds.

Proof. Direct from Lemma 18 and proposition 19, the local topological
character of the foliation can be changed by small perturbation of the
immersion when δσ = 0.

5.2. M-mean curvature lines near a parabolic line: the
1/2-regular, case a)

Let 0 be a parabolic point of a Cr, r ≥ 6, immersion α parametrized in
a Monge chart (x, y) by α(x, y) = (x, y, z(x, y)), where z is as in equation
(5).

The coefficients of the first and second fundamental forms are given by
expressions (7).

The Gaussian and Arithmetic Mean curvatures are given by equation
(8).

Below is established the typical behavior of M- mean curvature lines for
a function M = M1

√K, as in definition 17.
Squaring both members of the differential equation kn(x, y, [dx : dy]) =

M1

√K to remove the square root singularity, gives the following quartic
differential equation:

A40dx4 + A31dx3dy + A22dx2dy2 + A13dxdy3 + A04dy4 = 0 (10)

where,
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A40 = e2(EG− F 2)− E2(eg − f2)M2
1

A31 = 4ef(EG− F 2)− 4EF (eg − f2)M2
1

A22 = (4f2 + 2eg)(EG− F 2)− (2EG + 4F 2)(eg − f2)M2
1

A13 = 4fg(EG− F 2)− 4FG(eg − f2)M2
1

A04 = g2(EG− F 2)−G2(eg − f2)M2
1

Writing

M1(x, y) = m(H(x, y),K(x, y)) = m0 + m1x + m2y + O(2),

the coefficients of the quartic differential equation (10) are given by

A40 = −km2
0(ax + dy) +

1
2
[2a2 + m2

0(2d2 − 2ab−Ak)− 4akm0m1]x2

+ [2ad− (Bk + bd− ac)m2
0 − 2km0(dm1 + am2)]xy

+
1
2
[2d2 + m2

0(2b2 − 2cd− Ck)− 4kdm0m2]y2 + 0(3)

A31 = 4dax2 + 4(d2 + ab)xy + 4dby2 + 0(3)
A22 = 2k(1−m2

0)(ax + dy) (11)
+ [m2

0(2d2 − 2ab− kA)− 4akm0m1 + Ak + 2ab + 4d2]x2

+ [10bd + 2ac + 2kB − 4km0(m1d + am2) + 2m2
0(bd− kB − ac)]xy

+ [(2b2 − kC − 2cd)m2
0 − 4m0m2kd + kC + 2cd + 4b2]y2 + 0(3)

A13 = 4k(dx + by) + (2Bk + 4bd)x2 + 4(Ck + cd + b2)xy

+ (2kD + 4bc)y2 + 0(3)
A04 = k2 + k(2b− am2

0)x + k(2c− dm2
0)y

+
1
2
[2b2 + 2kC − 4akm0m1 + m2

0(2d2 − 2ab−Ak)]x2

+ [2kD + 2bc + m2
0(bd− kB − ac)− 2km0(m1d + m2a)]xy

+
1
2
[2c2 − 2k4 + 2kE + m2

0(2b2 − kC − 2cd)− 4m0m2d]y2 + 0(3)

Lemma 21. Let 0 be a parabolic point and consider the local parametriza-
tion (x, y, z(x, y)) as above.

i)If k > 0 and a2 + d2 6= 0 then the set of parabolic points is locally a
regular curve normal to the vector (a, d) at 0.
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ii)If a 6= 0 the parabolic curve is transversal to the minimal principal
direction (1, 0).

iii)If a = 0 then the parabolic curve is tangent to the principal direction
given by (1, 0) and has quadratic contact with the corresponding minimal
principal curvature line if dk(Ak − 3d2)m2

0 6= 0.

Proof. If a 6= 0, from the expression of K given by equation (8) it follows
that the parabolic line is given by x = − d

ay + O1(2) and so is transversal
to the principal direction (1, 0) at (0, 0).

If a = 0, from the expression of K given by equation (8) it follows that the
parabolic line is given by y = 2d2−Ak

2dk x2+O2(3) and that y = − d
2kx2+O3(3)

is the principal line tangent to the principal direction (1, 0). Now the
condition of quadratic contact 2d2−Ak

2dk 6= − d
2k is equivalent to dk(Ak −

3d2) 6= 0.

Proposition 22. Let 0 be a parabolic point and the Monge chart (x, y)
as above and M be a mean curvature function 1/2-regular, case a).

i)If a 6= 0 then theM-mean curvature lines are transversal to the parabolic
curve, as shown in Figure 3, the cuspidal case.

ii)If a = 0 and σ = dk(Ak − 3d2)m2
0 6= 0 then the M- mean curvature

lines are shown in the Figure 3. In fact, if σ > 0 then the M- mean
curvature lines are folded saddles. Otherwise, if σ < 0 then the M-mean
curvature lines are folded nodes. The two separatrices of these tangential
singularities, folded saddle and folded node, as illustrated in Figure 3 are
called parabolic separatrices.

FIG. 3. M-mean curvature lines near a parabolic point (cuspidal, folded saddle and
folded node) and their separatrices

Proof. Consider the quartic differential equation,

H(x, y,
dy

dx
) = A04(

dy

dx
)4 + A13(

dy

dx
)3 + A22(

dy

dx
)2 + A31

dy

dx
+ A40 = 0
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and the Lie-Cartan line field of class Cr−3 defined by

x′ = Hp

y′ = pHp

p′ = −(Hx + pHy), p =
dy

dx

where Aij are given by equation (11).
If a 6= 0 the vector Y is regular and therefore the M-mean curvature

lines are transversal to the parabolic curve. If a = 0, the parabolic curve
is tangent to the principal direction (1, 0).

For a = 0, direct calculation gives H(0) = 0, Hx(0) = 0, Hy(0) =
−kd, Hp(0) = 0.

Therefore, solving the equation H(x, y(x, p), p) = 0 near 0 it follows, by
the Implicit Function Theorem, that:

y = y(x, p) =
2d2 −Ak

2kd
x2 − r50k

2d + 6Akbd− 3BAk2 − 6d3b

6k2d2
x3 + O(4).

Therefore the vector field Y given by the differential equation below

x′ = Hp(x, y(x, p), p)
p′ = −(Hx + pHy)(x, y(x, p), p)

is given by

x′ =
4d3

k
x3 + 12d2x2p + 12kdxp2 + 4k2p3 + O(4)

p′ = (Ak − 2d2)m2
0x + kdm2

0p + O(2).

The singular point 0 is isolated and the eigenvalues of the linear part of
Y are given by λ1 = 0 and λ2 = m2

0kd. The correspondent eigenvectors
are given by f1 = (1, (2d2 −Ak)/dk) and f2 = (0, 1).

Performing the calculations, restricting Y to the center manifold W c of
class Cr−3, T0W

c = f1, it follows that

Yc = −2
3

(Ak − 3d2)3

kd3
x3 + 0(4)

It follows that 0 is a topological saddle or node of cubic type provided
σ(Ak − 3d2)km2

0d 6= 0. If σ > 0 then the M- mean curvature lines are
folded saddles and if σ < 0 then the M- mean curvature lines are folded
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nodes. In the case σ > 0, the center manifold W c is unique, [31], cap.
V , page 319, and so the saddle separatrices are well defined. See Figure 4
below.

FIG. 4. Phase portrait of the vector field Y near singularities

Notice that due to the constrains of the problem treated here, the non
hyperbolic saddles and nodes, which in the standard theory would bifur-
cate into three singularities, are actually structurally stable (do not bifur-
cate).

Remark 23. The reader may find a more complete study of the partial
hyperbolicity structure in the theorem above, which can be expressed in
the context of normal hyperbolicity, in the paper of Palis and Takens [25].

For a deeper analysis of the lost of the hyperbolicity condition and the
consequent bifurcations, the reader is addressed to the book of Roussarie
[28].

Remark 24. As in the analysis of geometric mean curvature lines near
a parabolic point, see [12], the singularity of the Lie-Cartan vector field
above is semi-hyperbolic of order 3. However, the terms of third order
of the functions Aij of equation (11) have no contribution to the orbit
structure around the singularity. This was confirmed by computer algebraic
calculations.

Theorem 25. Assume that the M-mean curvature function M is 1/2-
regular as in definition 17, case a).

An immersion α ∈ Ir,s(V2), r ≥ 6, is C6−local M- mean curvature
structurally stable at a tangential parabolic point p if only if, the condition
σ 6= 0 in proposition 22 holds.

Proof. Direct from Lemma 21 and proposition 22, the local topological
character of the foliation can be changed by small perturbation of the
immersion when σ = 0.
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5.3. M- mean curvature lines near a parabolic line: the
1-regular, case b)

Let 0 be a parabolic point of a Cr, r ≥ 6, immersion α parametrized in
a Monge chart (x, y) by α(x, y) = (x, y, z(x, y)), where

z(x, y) =
k

2
x2 +

a

6
x3 +

b

2
xy2 +

d

2
x2y +

c

6
y3 +

A

24
x4 +

B

6
x3y (12)

+
C

4
x2y2 +

D

6
xy3 +

E

24
y4 +

∑

i+j=5

rij
xiyj

i!j!
+ O(6)

The coefficients of the first and second fundamental forms are given by:

E(x, y) = 1 + k2x2 + kax3 + 2kdx2y + kbxy2 + O(4)

F (x, y) =
1
2
kdx3 + kbx2y +

1
2
kcxy2 + O(3)

G(x, y) = 1 + O(4)

e(x, y) = k + ax + dy +
1
2
(A− k3)x2 + Bxy +

1
2
Cy2

+
1
6
(r50 − 6ak2)x3 + (r41 − 3k2d)x2y

+
1
2
(r32 − k2b)xy2 +

1
6
r23y

3 + O(4)

f(x, y) = dx + by +
1
2
Bx2 + Cxy +

1
2
Dy2 (13)

+
1
6
(r41 − 3dk2)x3 + (r32 − k2b)x2y

+
1
2
r23xy2 +

1
6
r14y

3 + O(4)

g(x, y) = bx + cy +
1
2
Cx2 + Dxy +

1
2
Ey2

+
1
6
(r32 − 3k2b)x3 +

1
2
(r23 − k2c)x2y

+
1
2
r14xy2 +

1
6
r05y

3 + O(4)

The Gaussian and the Mean curvatures are given by
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K(x, y) = k(bx + cy) +
1
2
(2ab + kC − 2d2)x2 + (ac− bd + kD)xy

+
1
2
(2cd + kE − 2b2)y2 +

1
6
(3Ab− 12k3b + 3aC + kr32 − 6dB)x3

+
1
2
(2aD − 4k3c− 3dC + Ac + r23k)x2y

+
1
2
(2Bc + aE − 3bC + r14k)xy2

+
1
6
(3cC − 6bD + 3dE + kr05)y3 + O(4), (14)

H(x, y) =
1
2
k +

1
2
(b + a)x +

1
2
(c + d)y +

1
4
(C + A− 3k3)x2

+
1
2
(D + B)xy +

1
4
(E + C)y2 +

1
12

(r50 + r32 − 3k2(b + 6a))x3

+
1
4
(r41 + r23 − k2(c + 9d))x2y +

1
4
(r32 + r14 − 3k2b)xy2

+
1
12

(r23 + r05)y3 + O(4)

Let M be a 1- regular function. Write

M(x, y) = m(H,K)(x, y) = 2H− (m0 + m1x + m2y + O(2))K(x, y).

The coefficients of the quadratic differential equation (1) are given by
L, M, N as follows:

L = g −MG, M = 2(f −MF ), N = e−ME.

L = −k + (kbm0 − a)x + (kcm0 − d)y

+
1
2
[m0(kC + 2ab− 2d2) + 2kbm1 + 3k3 −A]x2

+ [m0(ac + kD − bd) + k(cm1 + bm2)−B]xy

+
1
2
[m0(kE + 2cd− 2b2)− C + 2kcm2]y2 + O(3)

M = 2dx + 2by + Bx2 + 2Cxy + Dy2 + O(3) (15)

N = (−1 + km0)(bx + cy) +
1
2
[m0(2ab + kC − 2d2) + 2kbm1 − C]x2

+ [m0(ac + kD − bd) + k(bm2 + cm1)−D]xy

+
1
2
[m0(2cd− 2b2 + kE) + 2kcm2 − E]y2 + O(3)
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Lemma 26. Let 0 be a parabolic point and consider the local parametriza-
tion (x, y, z(x, y)) as above.

i)If k > 0 and b2 + c2 6= 0 then the set of parabolic points is locally a
regular curve normal to the vector (b, c) at 0.

ii)If b 6= 0 the parabolic curve is transversal to the maximal principal
direction (1, 0).

iii)If b = 0 then the parabolic curve is tangent to the maximal principal
direction given by (1, 0) and has quadratic contact with the corresponding
maximal principal curvature line if d(2d− c)− kC 6= 0.

Proof. If b 6= 0, from the expression of K given by equation (14) it
follows that the parabolic line is given by y = − b

cx + O1(2) and so is
transversal to the maximal principal direction (1, 0) at (0, 0).

If b = 0, from the expression of K given by equation (14) it follows that
the parabolic line is given by y = 2d2−Ck

2ck x2 + O2(3) and that y = d
2kx2 +

O3(3) is the principal line tangent to the principal direction (1, 0). Now the
condition of quadratic contact 2d2−kC

2ck 6= d
2k is equivalent to d(2d−c)−kC 6=

0.

Proposition 27. Let 0 be a parabolic point and the Monge chart (x, y)
as above. Suppose M is 1−regular, case b), at (k, 0) with ∂m/∂K(k, 0) =
−m0 < −1/k < 0.

i)If b 6= 0 then the M- mean curvature lines are transversal to the
parabolic curve and the mean curvatures lines are shown in the Figure 2,
the cuspidal case.

ii)If b = 0 and σ = (cd − 2d2 + kC)kcm2
0 6= 0 then the M- mean cur-

vature lines are shown in the Figure 2. In fact, if σ > 0 then the M-
mean curvature lines are folded saddles. Otherwise, if σ < 0 then the
mean M- curvature lines are folded nodes or folded focus according to
δ = (km0 − 1)(c2 + 8kC + 8d(c − 2d)) be positive or negative. The two
separatrices of these tangential singularities, folded saddle and folded node,
as illustrated in the Figure 2 of proposition 19, are called parabolic separa-
trices.

Proof. Consider the quadratic differential equation

H(x, y, [dx : dy]) = Ldy2 + Mdxdy + Ndx2 = 0

and the Lie-Cartan line field X of class Cr−3 defined by
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x′ = Hp

y′ = pHp

p′ = −(Hx + pHy), p =
dy

dx

where L, M and N are given by equation (15).
If b 6= 0 the vector Y is regular and therefore the M- mean curvature

lines are transversal to the parabolic line and at parabolic points these lines
are tangent to the principal direction (1, 0).

If b = 0, direct calculation gives H(0) = 0, Hx(0) = 0, Hy(0) =
c(km0 − 1), Hp(0) = 0.

DX(0) =




2d 0 −2k
0 0 0

a31 a32 a33


 (16)

where,
a31 = C + m0(2d2 − kC), a32 = D − (kD + ac)m0 − kcm1,

a33 = c− 2d− kcm0.

The non vanishing eigenvalues of DX(0) are

λ1 =
1
2
[

c(1− km0)−
√

(−1 + km0)(km0c2 − c2 + 8kC + 8d(c− 2d))
]
,

λ2 =
1
2
[

c(1− km0) +
√

(−1 + km0)(km0c2 − c2 + 8kC + 8d(c− 2d))
]

Therefore, λ1λ2 = 2(1− km0)(kC + cd− 2d2).
It follows that 0 is a hyperbolic singularity provided σ = (cd − 2d2 +

kC)kcm2
0 6= 0. If σ > 0 then the M-mean curvature lines are folded

saddles and if σ < 0 then the M-mean curvature lines are folded nodes
( (c2+8kC+8d(c−2d)) > 0) or folded focus ( (c2+8kC+8d(c−2d)) < 0).

Theorem 28. Assume that the M-mean curvature function M is 1-
regular as in definition 15, case b). An immersion α ∈ Ir,s(V2), r ≥ 6,
is C6−local M-mean curvature structurally stable at a tangential parabolic
point p if only if, the condition σδ 6= 0 in proposition 19 holds.

Proof. Direct from Lemma 21 and proposition 27, the local topological
character of the foliation can be changed by small perturbations of the
immersion when δσ = 0.
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5.4. M- mean curvature lines near a parabolic line: the
1/2-regular, case b)

Below are formulated two results describing the typical behavior and
generecity of M- mean curvature lines for a function M = 2H−M1

√K.

Proposition 29. Let 0 be a parabolic point and the Monge chart (x, y)
as in equation (12). Suppose that M is a mean curvature function 1/2-
regular, case b).

i)If b 6= 0 then theM-mean curvature lines are transversal to the parabolic
curve, as shown in Figure 3, the cuspidal case.

ii)If b = 0 and σ = (cd − 2d2 + kC)kcm2
0 6= 0 then the M-mean curva-

ture lines are shown in the Figure 3. In fact, if σ > 0 then the M-mean
curvature lines are folded saddles. Otherwise, if σ < 0 then theM- mean
curvature lines are folded nodes.

Proof. Similar to that of proposition 22.

Theorem 30. Assume that the M- mean curvature function M is 1/2-
regular as in definition 17, case b).

An immersion α ∈ Ir,s(V2), r ≥ 6, is C6−local M- mean curvature
structurally stable at a tangential parabolic point p if only if, the condition
σ 6= 0 in proposition 29 holds.

Proof. Similar to that of theorem 20.

6. ON M- MEAN CURVATURE STRUCTURAL STABILITY

In this section the results of sections 3, 4 and 5 are put together to
provide sufficient conditions for M-mean curvature stability.

Theorem 31. Let M be a mean curvature function which is positive
regular, 1-regular or 1/2-regular. See definitions 12, 15 and 17.

Then the set of immersions Gi(V2), i = 1, 2 which satisfy conditions
i),..., v) below are i-Cs-M-mean curvature structurally stable and Gi, i =
1, 2 is open in Ir,s(V2), r ≥ s ≥ 6.

i)The parabolic curve is 1-regular or 1/2-regular: K = 0 implies dK 6= 0
and the tangential singularities are folded saddles, nodes and foci.

ii)The umbilic points are of type Mi, i = 1, 2, 3.
iii)The cycles of HM

α,i are hyperbolic.
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iv)The foliations HM
α,i have no separatrix connections. This means that

there is noM-mean curvature line joining two umbilic or tangential parabolic
singularities and being separatrices at both ends. See propositions 5, 19, 22,
27 and 29.

v)The limit set of every leaf of HM
α,i is a parabolic point, umbilic point or

a M-mean curvature cycle.

Proof. The openness of Gi(V2) follows from the local structure of the
M-mean curvature lines near the umbilic points of types Mi, i = 1, 2, 3,
near the parabolic points (cusp, saddles, foci and nodes), near the M-
mean curvature cycles and by the absence of umbilic M-mean curvature
separatrix connections and the absence of recurrences. The equivalence can
be performed by the method of canonical regions and their continuation as
was done in [16, 18] for principal lines, and in [14], for asymptotic lines.

Notice that Theorem 31 can be reformulated so as to give the M-mean
stability of the configuration rather than that of the separate foliations.
To this end it is necessary to consider the folded extended lines, that is
to consider the line of one foliation that arrive at the parabolic set at a
given transversal point as continuing through the line of the other foliation
leaving the parabolic set at this point, in a sort of “billiard”. This gives
raise to the extended folded cycles and separatrices that must be preserved
by the homeomorphism mapping simultaneously the two foliations.

Therefore the third, fourth and fifth hypotheses above should be modified
as follows:

iii’) the extended folded periodic cycles should be hyperbolic,
iv’) the extended folded separatrices should be disjoint,
v’) the limit set of extended lines should be umbilic points, parabolic

singularities and extended folded cycles.

The class of immersions which verify the extended five conditions i), ii),
iii’), iv’), v’) of a compact and oriented manifold V2 will be denoted by
G(V2).

This procedure has been adopted by the authors in the case of asymptotic
lines by the suspension operation in order to pass from the foliations to the
configuration and properly formulate the stability results. See [14].

Remark 32. In the space of convex immersions Ir,s
c (S2) ( Kα > 0), the

sets G(S2) and G1(S2) ∩ G2(S2) coincide.

The density result involving the five conditions above is formulated now.

Theorem 33. Let M be a mean curvature function which is positive
regular, 1-regular or 1/2-regular. See definitions 12, 15 and 17.
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Then the sets Gi, i = 1, 2, are dense in Ir,2(V2), r ≥ 6.
In the space Ir,2

c (S2) the set G(S2) is dense.

The main ingredients for the proof of this theorem are the Lifting and
Stabilization Lemmas, essential for the achievement of condition five, are
developed in next section.

7. DENSITY OF M-MEAN CURVATURE STRUCTURALLY
STABLE IMMERSIONS

In this section will be proved an approximation theorem for the class
of immersions or surfaces having structurally stable M- mean curvature
configuration.

The proof of Theorem 33 follows from the elimination of M- mean cur-
vature recurrences and the stabilization of the M- mean curvature sep-
aratrices. The steps are basically those followed by C. Gutierrez and J.
Sotomayor in the case of principal curvature lines, see [17, 18]. The main
ideas goes back to M. Peixoto [26] and C. Pugh [27] to solve the similar
problem of elimination of recurrences for vector fields on surfaces. See also
the book by W. de Melo and J. Palis [23].

In what follows will be established the main technical lemmas necessary
to obtain the Lifting Lemma, essential to control the effect on M-mean
curvature lines under suitable deformations of the immersion. There is no
lost of generality to assume that the immersion is C∞ or Cω in the proof
of the density theorem.

In what follows a chart whose coordinates lines are M-mean curvature
lines will be called a M-mean curvature chart for the immersion α.

Lemma 34. Let α : V2 → R3 be an immersion of class C∞ and (u, v) :
(U,D) → (V, I × I) be a positive M-mean curvature chart on V2, where
I = [−1, 1]. Suppose that, for ε small, β = αε = α + εϕN is an immersion
and ϕ be a smooth function on U which satisfies: ϕ(−1, v) = ϕ(1, v) =
ϕu(−1, v) = ϕu(1, v) = ϕuu(−1, v) = ϕuu(1, v) = 0. Then the M-mean
curvature line of αε on D which passes through q in {u = −1}∩{−1 < v <
1} meets the segment of abscissa {u = 1} at a point whose v−coordinate
vε has a derivative with respect to ε given by:

d

dε
(vε)|ε=0 =

∫ 1

−1

E[2MMK +MH ]
4τg

√
EG− F 2

ϕvvdu +
∫ 1

−1

A1(u)ϕvdu (17)

+
∫ 1

−1

A2(u)ϕdu

where A1 and A2 are functions of the coefficients of the first and second
fundamental form of α.
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Proof. Suppose that for ε small,

β(u, v, ε) = αε(u, v) = α(u, v) + εϕ(u, v)N(u, v)

is an immersion.
The v-coordinate, v = v(u, q, ε), of the point where the line of M-mean

curvature through the point q in {u = −1}∩{−1 < v < 1} meets the curve
with abscissa {u}, satisfies the following Cauchy Problem with parameter
ε.

(e−ME) + 2(f −MF )
dv

du
+ (g −MG)(

dv

du
)2 = 0, v(−1, ε) = q (18)

Since (u, v) is a M-mean curvature chart, it results that
dv

du
(u, q, 0) = 0,

(e−ME)(u, v, 0) = (g −MG)(u, v, 0) = 0,

(f −MF )(u, v, 0) = τg

√
EG− F 2 (19)

=
√

(k2 −M)(M− k1)
√

EG− F 2 6= 0

Differentiating the equation (18) with respect to ε, evaluated on (u, v(q), ε),
making ε = 0 and using (19) it follows that

dvε

dε
=

∂vε

∂ε
(u, q, ε)|ε=0

satisfies the following Cauchy Problem:

d

du
(
dvε

dε
) = − [eε −MεE −MEε]

2(f −MF )
(u, v(q), 0) (20)

dvε

dε
(−1, q, 0) = 0

The structure equations for the immersion α are given by:

Nu =
fF − eG

EG− F 2
αu +

eF − fE

EG− F 2
αv

Nv =
gF − fG

EG− F 2
αu +

fF − gE

EG− F 2
αv

αuu = Γ1
11αu + Γ2

11αv + eN (21)
αuv = Γ1

12αu + Γ2
12αv + fN

αvv = Γ1
22αu + Γ2

22αv + gN
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The functions Γk
ij are the Christoffel symbols whose expressions in terms

of E, F and G in a chart are (u, v) are given by:

Γ1
11 = GEu−2FFu+FEv

2(EG−F 2) , Γ2
11 = 2EFu−EEv−FEu

2(EG−F 2) ,

Γ1
12 = GEv−FGu

2(EG−F 2) , Γ2
12 = EGu−FEv

2(EG−F 2) ,

Γ1
22 = 2GFv−GGu−FGv

2(EG−F 2) , Γ2
22 = EGv−2FFv+FGu

2(EG−F 2) .

By direct calculation, it is obtained that

βu = (1 + εϕ
fF − eG

EG− F 2
)αu + εϕ

eF − fE

EG− F 2
αv + εϕuN (22)

βv = εϕ
gF − fG

EG− F 2
αu + (1 + εϕ

fF − gE

EG− F 2
)αv + εϕvN

βuu = [Γ1
11 + εϕ

(
Γ1

11

fF − eG

EG− F 2
+ Γ1

12

eF − fE

EG− F 2
+ (

fF − eG

EG− F 2
)u

)

+ 2εϕu
fF − eG

EG− F 2
]αu (23)

+ [Γ2
11 + εϕ

(
Γ2

11

fF − eG

EG− F 2
+ Γ2

12

eF − fE

EG− F 2
+ (

eF − fE

EG− F 2
)u

)

+ 2εϕu
eF − fE

EG− F 2
]αv

+ [e + εϕ
2efF − e2G− f2E

EG− F 2
+ εϕuu]N

βuv = [Γ1
12 + εϕ

(
Γ1

12

fF − eG

EG− F 2
+ Γ2

22

eF − fE

EG− F 2
+ (

fF − eG

EG− F 2
)v

)

+ εϕu
gF − fG

EG− F 2
+ εϕv

fF − eG

EG− F 2
]αu

+ [Γ2
12 + εϕ

(
Γ2

12

fF − eG

EG− F 2
+ Γ2

12

eF − fE

EG− F 2
+ (

eF − fE

EG− F 2
)v

)
(24)

+ εϕu
fF − gE

EG− F 2
+ εϕv

eF − fE

EG− F 2
]αv

+ [f + εϕ(f
fF − eG

EG− F 2
+ g

eF − fE

EG− F 2
+ εϕuv]N
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βvv = [Γ1
22 + εϕ

(
Γ1

22

fF − gE

EG− F 2
+ Γ1

12

gF − fG

EG− F 2
+ (

gF − fG

EG− F 2
)u

)

+ 2εϕv
gF − fG

EG− F 2
]αu

+ [Γ2
22 + εϕ

(
Γ2

22

fF − gE

EG− F 2
+ Γ2

12

gF − fG

EG− F 2
+ (

fF − gE

EG− F 2
)v

)
(25)

+ 2εϕv
fF − gE

EG− F 2
]αv

+ [g + εϕ(g
fF − gE

EG− F 2
+ f

gF − fG

EG− F 2
) + εϕvv]N

Also,

∂

∂ε
(|βu ∧ βv|)|ε=0 = −2ϕH

√
EG− F 2 (26)

Therefore, using the equations (22) - (26) the following is obtained.

Eε = −2ϕe, Fε = −2ϕf, Gε = −2ϕg

eε = ϕuu + ϕ[
2efF − e2G− f2F

EG− F 2
]− ϕuΓ1

11 − ϕvΓ2
11

fε = ϕuv + ϕ[f
fF − eG

EG− F 2
+ g

eF − fE

EG− F 2
]− ϕuΓ1

12 − ϕvΓ2
12 (27)

gε = ϕvv + ϕ[g
fF − gE

EG− F 2
+ f

gF − fG

EG− F 2
]− ϕuΓ1

22 − ϕvΓ2
22.

Let

H =
Eg + eG− 2fF

2(EG− F 2)
, K =

eg − f2

EG− F 2
. (28)

Then, using equations (27) and (28), it follows that

Kε(EG− F 2) = ϕK1 + ϕu(2Γ1
12f − gΓ1

11 − eΓ1
22) (29)

+ ϕv(2Γ2
12f − gΓ2

11 − eΓ1
22) + gϕuu − 2fϕuv + eϕvv

2Hε(EG− F 2) = ϕH1 − ϕuΓ1
22 − ϕvΓ1

22 + ϕvv
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where,

K1 = K1(e, f, g, E, F, G)(u, v, 0), H1 = H1(e, f, g, E, F, G)(u, v, 0).

Now as M = m(H,K) it follows, from equations (19) and (29), that

d

dε
Mε = MHHε +MKKε

=
ϕvv

EG− F 2
(
EMH

2
+ EMMK) + (.)ϕ + (.)ϕu + (.)ϕv + (.)ϕuv

Therefore,

d

dε

( e−ME

2(f −MF )
)|ε=0 =

E(MH + 2MMK)
4(EG− F 2)(f −MF )

ϕvv (30)

+ (.)ϕ + (.)ϕu + (.)ϕv + (.)ϕuv + (.)ϕuu

Here (.) denote functions involving M(H,K) and the coefficients of the
first and second fundamental forms of α.

Using (30) when integrating the variational equation (20) and performing
the partial integration with boundary conditions on the function ϕ, the
expression for (dvε

dε )|ε=0 is achieved, as stated in (17).

Lemma 35. Let α : V2 → R3 be an immersion of class C∞ and (u, v) :
(U,D) → (V, I × I) be a positive M-mean curvature chart on V2, where
I = [−1, 1]. Suppose that MH + 2MMK > 0, i.e, M is positive regular.
Then there exists a smooth function ϕ : V2 → [0, 1] whose support is
contained in D such that, if ε is small enough then, for every ε in [−r, r],
β = α + εϕN is an immersion and the M-mean curvature line for β on
D which passes through q in {u = −1} ∩ {−1 < v < 1} meets the segment
{u = 1} × {−1 < v < 1} at a point vε(q) so that the map ε → vε(q) is
strictly increasing.

Proof. Let ρ be a real smooth function with values in [0, 1], identically
equal to 1 on a neighborhood of 0 and with support contained in I.

Let ϕ = ϕ(u, v) = b v2

2 ρ(u)ρ(v) and take r > 0 small so that for any ε in
[−r, r], β = αε = α + εϕN is a smooth immersion. Let v(u), u ∈ I, be the
v−coordinate of the M-mean curvature lines of αε = α + εϕN such that
vε(q) = q. As ϕ(u, 0) = ϕv(u, 0) = 0 and ϕvv(u, 0) = bρ(u) by lemma 34
applied to the family of immersions αε it follows that
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∂v

∂ε
(u, ε)|(0,0) =

∫ 1

−1

E(MH + 2MMK)
4τg

√
EG− F 2

ρ(u)du = c > 0.

This implies that the map ε → vε(q) is strictly increasing. This proves the
lemma.

Lemma 36. Let α : V2 → R3 be an immersion and (u, v) : (U,D) →
(V, I × I) be a positive M-mean curvature chart for α on V2, where I =
[−1, 1]. Assume also that M is positive regular. Then given any η > 0,
there are numbers d, c ∈ (0, 1

12 ) such that for every r ∈ (0, d] and q in {u =
−1} ∩ {− 1

2 < v < 1
2}, there exists a smooth function ϕ : V2 → [0, 1] whose

support is contained in Dr = v−1(v(q) + rI) and ||ϕ||2,V , the C2−norm of
ϕ on V , in the (u, v)−coordinate chart, is less than η.

Furthermore, for every ε ∈ I, αε = α + εϕN is an immersion and the
M-mean curvature line for αε on D which passes through q in {u = −1}∩
{−1 < v < 1} meets the segment {u = 1} ∩ {−1 < v < 1} at a point vε(q)
so that the map ε → vε(q) is strictly increasing and its image contains the
interval [v(q)− 2cε, v(q) + 2cε].

Proof. Let ρ be a real smooth function with values in [0, 1], identically
equal to 1 on 5

6I and with support contained in 6
7I. Let also η > 0 be

given. There are real numbers c > 0 and b such that for all (u0, v0) in I× I
it follows that,

6|b|(||ρ||2)2 < η (31)

∫ 0

−1

b
E(MH + 2MMK)(u, v0)

4τg

√
EG− F 2

ρ(u)du <
1
4

(32)

∫ 1

−1

b
E(MH + 2MMK)(u, v0)

4τg

√
EG− F 2

ρ(u)du > 3c (33)

Let ψ be a smooth real function on U × I × I, defined by
ψ(u, v; v0, ε) = bε (v−v0)

2

2 ρ(u).
It will be proved that if d = d(η) ∈ (0, 1

12 ) is small enough, then for every
ε ∈ (0, d) and q with u(q) = −1 and v(q) = v0 in 1

2I, the smooth function
ϕ(.) = ϕ(.; v(q), ε) defined on V2 by

ϕ(u, v; v0, ε) = ψ(u, v; v0, ε)ρ(
v − v0

|ε| )
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whose support is contained in Dr, satisfies the conditions required by the
lemma.

In fact, suppose d > 0 is so small that for any (v0, ε) ∈ I × dI, αv0,ε =
α + ψ(.; v0, ε)N is an immersion.

Let v(u; v0, ε), u ∈ I and v ∈ 4
5I, be the v−coordinate of a M-mean

curvature line of αε through the point q, with u(q) = −1 and v(q) = v0. As
ψ(u, v0; v0, ε) = 0, using (31), (32) and (33), it follows from lemmas 34 and
35, applied to the family of immersions αv0,ε, depending on the parameter
ε, that for all (u, v0) in I × 3

4I,
∂v
∂ε (1, v0, 0) > 2c and ∂v

∂ε (1, v0, 0) < 1
3 .

Hence, as I is compact and ∂v
∂ε (1, v0, ε) depends continuously on (v0, ε),

taking d > 0 small enough, it holds that for all (u; v0, ε) in I × 1
2I × dI,

∂v
∂ε (1, v0, 0) > c and ∂v

∂ε (1, v0, 0) < 1
2 .

Therefore from the Mean Value Theorem, for all (u; v0, ε) in I × 1
2I × dI

v(1; v0, ε) ≥ v0 + cε, if ε ≤ 0
v(1; v0, ε) ≤ v0 + cε, if ε < 0 and (34)

|v(u; v0, ε)− v0| ≤ |ε|
2

Without lost of generality, η > 0 can be assumed to be so small that for
ε ∈ I, αε = α + εϕN is an immersion. Notice that for all v in v(q) + 5

6εI,
ρ( v−v0

|ε| ) = 1. Therefore for all ε in I and all (u, v) in I × (v(q) + 5
6εI),

ϕ(u, v; v0, ε) = ψ(u, v; v0, ε). From this and by |v(u; v0, ε) − v0| ≤ |ε|
2 it

follows that the M-mean curvature lines of (α + ψ(., v0, ε)N)|D′ and those
of the α + ϕ(., v0, ε)N |D′ coincide, where D′ = v−1[v(q) + 5

6εI]. Hence, the
assertion that the map vε(q) is strictly increasing and its image contains
the interval [v(q)− 2cε, v(q) + 2cε] follows from equation (34).

Lemma 37. [Lifting Lemma] Let α : V2 → R3 be an immersion
of class C∞ with a minimal M-mean curvature line γ̃, oriented from a
starting point q, whose ω−limit set contains a nontrivial minimal recurrent
M- mean curvature line γ. Assume also that M is positive regular. Then
given any η > 0, p ∈ γ and anyM-mean curvature chart (u, v) : (U,D, p) →
(V, I × I, 0) where I = [−1, 1], there is a M-mean curvature chart (s, t) :
D′ → I × I for α on V2 and a smooth function ϕ : V2 → [0, 1] such that:
i) the support of ϕ is contained in D ∩D′ and ||ϕ||2,V , the C2−norm of ϕ
on V , is less than η.
ii) There are arcs of minimalM-mean curvature lines [b, a] ⊂ [q, a] ⊂ γ̃ such
that a, b are in the arc {s = −1} and [b, a]∩D′ = [q, a]∩D′ ⊂ [a, a′]∪ [b, b′],
where a′ and b′ are the points on {u = 1}, defined by t(a′) = t(a) and
t(b′) = t(b).
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Moreover the minimalM-mean curvature lines for αε on D′ which passes
through a ( resp. b) meets the segment {u = 1} at a point vε(a) ( resp.
vε(b)) in such way that for some values of ε ∈ [0, 1], it coincides with a′ and
b′. See Figure 5.

Proof. See [17, 18].

Proposition 38. Let α : V2 → R3 be an immersion of class C∞ with
umbilic set Uα 6= ∅ and having a nontrivial minimal recurrent M-mean cur-
vature line γ and let A be a subset of V2 formed by finitely many minimal
M-mean curvature lines that are either minimal M-mean curvature sepa-
ratrix connections or minimal M-mean curvature cycles. Assume also that
M is positive regular. Then there is a point p ∈ γ \A such that given any
chart (u, v) : (U, p) → (V, 0) on a neighborhood U of p, where U is disjoint
of A, there is a sequence of smooth functions ϕn on V2, whose support is
contained in U such that ||ϕn||2,V , the C2−norm of ϕn, in the coordinate
chart (u, v), tends to 0 and such that the immersions αn = α+ϕnN satisfy
the following alternatives:
i) αn has a M-mean curvature cycle γn not completely contained in V2\U .
Moreover if there is a minimal M-mean curvature cycle of α (i.e. disjoint
of U) which together with γn bound a cylinder in V2 then this cylinder
contains an umbilic point of α.
ii) αn has at least one minimal M-mean curvature separatrix connection
more than the immersion α does.

Proof. See [17, 18].

Proposition 39. Let α : V2 → R3 be an immersion of class C∞ and
let A be a subset of V2 formed by finitely many minimal M-mean curvature
lines that are either minimal M-mean curvature separatrix connections or
minimal M-mean curvature cycles. Assume also that M is positive regular.

Then there is a sequence of immersions αn = α + ϕnN , C2-converging
to α, such that the support of ϕn is disjoint from Ā = A ∪ Uα and αn has
no non trivial minimal recurrent M- mean curvature lines.

Proof. See [17, 18].

Let α : V2 → R3 be an immersion whose umbilic points are of type
Mi, i = 1, 2, 3 and all tangential parabolic singularities are folded saddles,
nodes and foci. A minimal M- mean curvature separatrix Γ of an umbilic
or parabolic point p is said to be stabilized provided:

i) it is not a minimal M- mean curvature separatrix connection for α;
ii) its limit sets are umbilic points, parabolic point or attracting or re-

pelling minimal M- mean curvature cycles, and
iii) α is in the C6-interior of the set of immersions that satisfy i) and

ii); i.e., for any sequence of immersions αn, C6-converging to αn, the se-
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quence of separatrices Γn, of an umbilic or a tangential parabolic point pn,
converging to the separatrix Γ of p, verify i) and ii) for αn.

Lemma 40. [Stabilization Lemma] Any immersion α : V2 → R3 of
class C∞ is the C2-limit of a sequence of immersions whose umbilic points
are all of type Mi, i = 1, 2, 3, section 3, all tangential parabolic singularities
are folded saddles, nodes and foci, and furthermore:

i)their minimal M-mean curvature separatrices are all stabilized;
ii)the ω-limit set of any oriented minimal M-mean curvature line is ei-

ther an umbilic or a cuspidal parabolic point or a minimal M-mean curva-
ture cycle, and

iii)for any s ≥ 6, α is in the Cs-interior of the set of immersions satis-
fying i) and ii).

Proof. See [17, 18].

Remark 41. In all lemmas and propositions above the same conclusions
hold for the maximal M-mean curvature lines provided the corresponding
hypotheses are made also in this case.

7.1. Proof of the Density Theorem 33

Part 1: Elimination of nontrivial recurrences
By proposition 39 the recurrent lines can always be destroyed by a finite

sequence of small local C2−perturbations of the immersion α. Each per-
turbation creates either a new M-mean curvature cycle or a new M- mean
curvature separatrix connection.

Initially will be considered the elimination of the minimal recurrent M-
mean curvature lines.

The key points involved in the argument will be given below.
Let γ be a non trivial minimal recurrent M- mean curvature line.
Assume first that γ is orientable, i.e, it is possible to give an orientation

in γ such that on a M- mean curvature chart it is induced by an orienta-
tion defined locally on the M- mean curvature line field by the chart. The
recurrent lines on vector fields and those of M- mean curvature foliations
on the Torus, in section 5, are of this type. In this case there is a piecewise
smooth simple closed curve of the form [b,a]∪ [b;a], with [a, b] ⊂ γ and a
near b, that can be slightly perturbed to obtain a minimal M- mean cur-
vature cycle for the approximating immersion. Here, and in what follows,
[b;a] means an arc of a maximal M- mean curvature line and [b,a] is an
arc of a minimal M- mean curvature line. The arrangement of these points
are illustrated in Figure 5. a.
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FIG. 5. Recurrences of M- mean curvature lines

When the recurrence is oscillatory (i.e. non–orientable), then there is
no such simple closed curve available. In this case there are minimal M-
mean curvature separatrices accumulating on p. These separatrices can be
connected by means of a small perturbation of the immersion. The M-
mean curvature lines, for M = H, M =

√K and M = K/H, on the
ellipsoid, presents this type of recurrence, see [11], [12] and [13]. This
situation is illustrated in Figure 5. b.

The possibility of finding perturbations as those described above is es-
tablished in the Lifting Lemma 37 and Proposition 38.

This is done as follows.
Consider a non trivial recurrent minimal separatrix γ′ of an umbilic or

parabolic point q. Take p ∈ γ and a M − mean curvature chart (u, v) :
(D, p) → (I × I, 0).

By lemma 34, arbitrarily close to {v = 0}, two points a, b in {u =
−1} ∩ γ′ can be selected such that v(b)− v(a) = 2r > 0 and (b,a) has the
following spacing property relatively to the maximal M- mean curvature
arc [a;b] :

(b,a) is disjoint from {v(a)− (3/2)r < v < v(b) + (3/2)r} ∩ {u = −1}.
It results from this that a local version of the lifting argument (Lemma

35) can be applied to obtain, by means of an ε− small C2-perturbation
supported on {v(a) − (3/2)r < v < v(b) + (3/2)r}, the following. Given
η > 0, there is a constant c = c(η, (u, v)) > 0, which does not depend
on how close a and b are, such that, for every x ∈ [a;b], the M- mean
curvature line through the point x can reach any point of the segment
{u = 1} ∩ {v(x)− 2cr < v < v(x) + 2cr}.

Consider first the assumption that c = 1.
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If [b,a] \ {v(a)− 3r
2 < v < v(b)+ 3r

2 } = (b′,a), with b′ ∈ {u = 1}, then,
via a perturbation, a minimal M- mean curvature cycle can be obtained.
This is illustrated in Figure 5.a.

If, however, [b,a] \ {v(a)− 3r
2 < v < v(b) + 3r

2 } = (b′,a′) with b′,a′ ∈
{u = 1}, it seems to be difficult to approximate [b′,a′] by a minimal M-
mean curvature cycle. Nevertheless, by moving a′ towards b′, one can
generate a continuous family of minimal M- mean curvature arcs with
endpoints in {u = 1}. In this process the resulting endpoints become close
to each other but cannot coincide. Using this it is proved that the limit set
of this family of minimal M- mean curvature arcs must contain an umbilic
or parabolic point q′ and an arc [p′,q′], of a minimal M- mean curvature
separatrix of q′, intersecting

{v(a)− 3r
2 < v < v(b) + 3r

2 } ∩ {u = 1}
at a point of (b′;a′). In this situation, via a perturbation, a minimal M-
mean curvature separatrix connection between q and q′ can be produced.
This is illustrated in Figure 5.b.

In general, c > 0 is much smaller than 1 and the analysis is done by
showing that lemma 35 can be used a number n of times, where n is of
the order of 1/c, to finally obtain enough lifting as to make possible the
application of the arguments above. The n intervals [ai;bi] which play the
same role as that performed by [a;b] and on which Lemma 35 is to be used,
are described below.

If a and b are close enough to each other and (a,b) is long enough,
it is proved that there is a family {[at;bt]; t ∈ [1, n]} of pairwise disjoint
maximal M- mean curvature arcs such that:

i) [a1;b1] = [a;b],
ii) the curves at ∈ γ̃,bt ∈ γ̃ are regular,
iii) for all i ∈ {1, 2, ..., n}, [ai;bi] is contained in {u = ±1}, and (bi,ai)\

{v = v(bi), v(ai)} is disjoint from Di. Here Di = {v(ai) − ri < v <
v(bi) + ri} ⊂ {− 1

2 < v < 1
2} with 2ri = |v(bi)− v(ai)| and, finally,

iv) the sets Di, i ∈ {1, 2, ..., n}, are pairwise disjoint.

See Figure 6 keeping in mind that Di is the sub rectangle of D with vertical
edges {s̃ = xi} and {s̃ = x′i}. See also Figure 6 keeping in mind that Di is
the rectangle with vertices z′i, zi, w′

i, and wi.

By lemma 35, the amount of lifting gained in each set Di is 2c times ri

and it is carried to [ai+1;bi+1], rescaled almost linearly, by the M- mean
curvature foliation. Consequently, as nc is near 1, all of these lifting can
be added up as required.

So, all recurrent minimal M- mean curvature lines can be eliminated.
To eliminate the recurrent maximal M- mean curvature lines of HM

α,2, it
is necessary to perform the same deformation analysis as above, applied to
this case, with no fundamental change.
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FIG. 6. Lifting of M- mean curvature lines

The M- mean curvature separatrices of HM
α,1 are stabilized taking care

to consider the C2−deformations of the immersion α, with support in M-
mean curvature charts disjoint from the nowhere dense set A (see propo-
sition 39) consisting of the minimal M- mean curvature separatrices and
the minimal M- mean curvature cycles. So the stabilized minimal M-
mean curvature separatrices and minimal M- mean curvature cycles are
preserved and these deformations do not produce any new non trivial re-
currence for the minimal M- mean curvature lines.

Therefore the immersion α can be approximated in the C2 − topology
by an immersion α1 having all minimal and maximal M- mean curvature
separatrices stabilized.
Part 2: Conclusion of the Proof of Theorem 33

The first step is to approximate an immersion α of compact and oriented
surface V2 by an immersion having all umbilic points of the type Mi,
i = 1, 2, 3, proposition 5, and all parabolic points of types as described in
propositions 19, 22, 27 and 29.

This can be done by the Transversality Theorem establishing the condi-
tion T = b(b− a) 6= 0 and by a finite number of small local changes on the
coefficients of the third jet of the immersion at the umbilic points. Similar
for parabolic points, see [3].

Next approximate the immersion α in Cs-sense by an analytic immersion,
which will be denoted by α1. There are two cases to consider.
Case 1. The region EV2

α1
is diffeomorphic to an annulus and the immersion

α1 is without umbilics and tangential parabolic singularities.
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By using proposition 39 it is possible to obtain an analytic immersion
α′, C2 close to α1 having only finitely many M- mean curvature cycles, all
of which have finite multiplicity.

The resulting immersion α′ can be deformed around a M- mean curva-
ture cycle to a obtain an immersion with a hyperbolic M- mean curvature
cycle. If this immersion is approximated by an analytic one, α′′, will have
only finitely many M- mean curvature cycles, all of which with finite mul-
tiplicity. In either case, using proposition 13, α′′ can be approximated by
an immersion α̃, all whose M- mean curvature cycles are hyperbolic, which
belong to the class Gi(V2), i = 1, 2, since conditions i), iii), iv) and v) are
guaranteed by the Stabilization Lemma 37. This ends the proof in this
case.
Case 2. The analytic immersion α1 has separatrices which can be asso-
ciated to umbilic points, all are of the types Mi, i = 1, 2, 3, or parabolic
tangential singularities as in section 5.

In this case, as shown in Part 1, the immersion α1 can be taken so that
both, minimal and maximal M- mean curvature separatrices are stabilized
and without non trivial recurrences. The next step, using proposition 13, is
to deform the immersion in order to obtain an immersion with all minimal
and maximal M- mean curvature cycles hyperbolic. This ends the proof.

Remark 42. With the proof of Theorem 33 for a fairly general M, we
have completed the density results formulated in [12] and [13] for the par-
ticular cases M =

√K and M = K
H .

8. CONCLUDING REMARKS

This paper presents a theory of unification and generalization for the
classical mean curvature lines on a surface immersed in R3. See section 1
and the papers [10, 11, 12, 13, 14]. To this end the notion of mean curvature
function was introduced, assimilating and adapting for our purposes in
Geometry the general properties for the Means studied in Arithmetic and
Analysis. See Chapter 8 of Borwein and Borwein [4].

The Structural Stability, with its well established achievements in the
Differential Equations of Geometry, has been set as a primary goal and a
test for the penetration of the generalization proposed in this paper. The
methods developed in previous specific works dealing with the classical
means have been further elaborated and adapted to apply to the general
case of differential equations of M-mean curvature lines treated here.

It has been established that the umbilic points and the cycles of the
M-mean curvature foliations present a remarkable analogy with those of
the classical Arithmetic, Geometric and Harmonic - mean curvature corre-
sponding cases. See sections 3 and 4.
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The study of the parabolic singularities revealed new interesting aspects.
The analysis presented here was possible by imposing special regularity
conditions on the general mean curvature function M. Nevertheless, sig-
nificant cases were covered. The results achieved, however, do not apply
to the classic AG mean (example 4), which has a parabolic pattern not re-
ducible to algebraic form called 1/k-regularity. See section 5 for the study
of the cases k = 1, 2.

The development of the transcendental analysis needed to study the
parabolic singularities of AG mean can be regarded as the first problem
of interest left open in this paper.

Additional pertinent problems – such as the studies of bifurcations and
of immersions of higher dimension and co-dimension – already proposed in
the particular cases of classical mean curvatures, make sense and carry a
renewed challenge in the present generalized setting.

By taking the function M as a functional parameter, or itself depending
or a real parameter, as in the case of the Holder Mean of order r denotedHr

in example 3, the bifurcation analysis of the transition between different
classical differential equations of geometry and pertinent foliations with
singularities gains new vitality.

The most intriguing and elusive of these problems may be the Closing
Lemma. In fact, to prove how to raise the class proximity class from C2

to C3 in Theorem 33 is not known even for the case principal foliations.
See section 7 and [17, 18]. Also to achieve the C1 density for Structural
Stability of folded, “billiard”, non-convex configurations is also an open
problem in all cases of nets, including asymptotic ones. See section 6 and
[14].

In remark 42 it is pointed out how this work completes the proofs of
density results stated in previous papers, [12] and [13], for the particular
cases of geometric and harmonic means.
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