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1. INTRODUCTION

Integrability is a topic of great interest in the study of differential equa-
tions. We take this notion to mean that a system of differential equations
has a sufficient number of independent first integrals belonging to some
specified class. But, we note that the term “integrable” is used in several
other ways (see [6] and [14]). The purpose of this paper is to show that
every n-dimensional linear system with constant coefficients is Darboux
integrable in the sense that n − 1 independent explicit Darboux integrals
can be constructed.

Darboux integrals have been studied extensively for polynomial differ-
ential systems. Darboux constructed first integrals for planar polynomial
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systems that have sufficiently many invariant algebraic curves (see [5]).
Subsequently, Darboux’s methods were generalized in various directions
(see [2],[3],[4],[7],[11]).

The integrability of linear systems has been studied by several authors.
The existence of a common integral for two coupled linear systems is dis-
cussed in [9], where coupled linear systems of dimension three (which satisfy
the Frobenius compatibility condition) are proved to have a common first
integral. First integrals are constructed using integrating factors in [12].
Rational first integrals are obtained for linear systems in [13] using the Dar-
boux theory related to the existence of sufficiently many invariant curves.
The class of linear systems with no rational first integrals is determined in
[10].

The existence of first integrals can be important in applications. For
example, a quadratic first integral is used in [1] for the stability analy-
sis of a linearized Hamiltonian system with two degrees of freedom that
models certain gyroscopic motions. We also mention that the preservation
of first integrals for certain linear systems by Runge-Kutta integration is
investigated in [8].

The precise statements of our results are given in Section 2; the proofs
are given in Section 3. It is perhaps surprising to compare the simplicity
of the general solution of a linear system with the complexity of its first
integrals, which are listed in Section 2. In this paper we will consider real
linear systems. But, as we point out in Section 3, similar results for complex
linear systems can be obtained with minor modifications. The special case
of Hamiltonian linear systems will be considered in a future publication.

2. MAIN RESULTS

Before to state the main results of this work, we need to introduce the
following functions.

H1 (x) = x1,

Hl(x) =
l∑

j=1

(−1)j+1
xjxl+1−j , with l ≥ 3 odd,

Hl(x) = xl−2
1 xl − 1

(l − 1)!
xl−1

2 +
l−1∑
j=2

(−1)j

(l − j)!
xj−2

1 xl−j
2 xj , l ≥ 4, even.

(1)
Notice that Hl only depends on x1, · · · , xl. If we define σl, for l 6= 2, as

σl =





1 if l = 1,
2 if l > 1 is odd,
l − 1 if l is even,

(2)
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then Hl is a homogeneous polynomial of degree σl.
We consider the linear differential system

ẋ = Ax, (3)

where A is a n−dimensional real square matrix. In Theorems 1 and 2 it is
assumed that the matrix A has been reduced to its real canonical Jordan
form and that all its eigenvalues are real. Therefore, the matrix A has α
real eigenvalues λτ which correspond to diagonal blocks Rτ of the form

Rτ =




λτ 0 · · · 0

0 λτ
. . .

...
...

. . . . . . 0
0 · · · 0 λτ




, (4)

and it has β real eigenvalues µj which correspond to blocks Sj of the form

Sj =




µj 0 . . . 0
1 µj 0 . . .
0 1 . . . .
. 0 . . . .
. . . . µj 0
0 . . 0 1 µj




. (5)

If all the eigenvalues of At are real, then the space Rn can be decomposed
as

Rn =

(
α⊕

τ=1

Vτ

) ⊕



β⊕

j=1

Uτ


 , (6)

in such a way that A |Vτ = Rτ and A |Uj = Sj . Moreover, the subspaces
Vτ and Uτ are invariant under the linear application determined by A.
We denote by rτ and sj the dimensions of the linear spaces Vτ and Uj ,
respectively. We define dr and ds by dr = r1+· · ·+rα and ds = s1+· · ·+sβ .
So, we have the equality n = dr + ds. Also, we will use the following
notation: Y πjy is the projection onto the subspace Yj of Y =

⊕
Yj of

y ∈ Y, and Y πj
l y is the projection of Y πjy onto the l coordinate of the

subspace Yj . The transpose of matrix A is denoted by At.

Theorem 1. Suppose that the matrix A of system (3) has all its eigen-
values real and that it has been reduced to its real canonical Jordan form
and α > 0. Let a ∈ V1 be an eigenvector of At with eigenvalue λ1. The
functions Hl are defined as in (1). Then, system (3) has n−1 independent
first integrals which can be chosen in the following way.
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(a)There are r1 − 1 first integrals of the form

F1 = 〈a, x〉 / 〈b, x〉 , (7)

with b 6= a an eigenvector of At in V1.

(b)For each k = 2, · · · , α, there are rk first integrals of the form

F2 = 〈a, x〉λk / 〈b, x〉λ1 , (8)

with b ∈ Vk an eigenvector of At.
(c)For each k = 1, · · · , β, there are sk − 1 first integrals of the form

F3 = 〈a, x〉σlµk /
[
Hl

(
Uπkx

)λ1
]
, (9)

with l = 1, 3, 4, · · · , sk.

(d)There are β first integrals of the form

F4 = 〈a, x〉 / exp
(
λ1

(
Uπk

2x/Uπk
1x

))
, (10)

with k = 1, · · · , β.

Theorem 2. Let A be a matrix as in Theorem 1 with α = 0. Then
system (3) has n − 1 independent first integrals which can be constructed
in the following way.

(a)There are s1 − 2 first integrals of the form

F1 (x) = H1

(
Uπ1x

)σl
/Hl

(
Uπ1x

)
, (11)

with l = 3, 4, · · · , s1.

(b)For each k = 2, · · · , β, there are sk − 1 first integrals of the form

F2 (x) = H1

(
Uπ1x

)σlµk
/Hl

(
Uπkx

)µ1
, (12)

with l = 1, 3, 4, · · · , sk.

(c)There are β first integrals of the form

F3 (x) = H1

(
Uπ1x

)
/ exp

(
µ1

(
Uπk

2x/Uπk
1x

))
, (13)

with k = 1, · · · , β.
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If the matrix A has complex eigenvalues we need to add to decomposition

(6) an invariant subspace W =
(

j⊕
k=1

Wk

) ⊕(
δ⊕

u=1
Mu

)
of even dimension

ω, such that A |Wk
has the form

Pk =




Λk 0 · · · 0

0 Λk
. . .

...
...

. . . . . . 0
0 · · · 0 Λk




, (14)

where Λk =
(

ak −bk

bk ak

)
with bk 6= 0. On the other hand, A |Mu

is of the

type

Qu =




Λu 0 · · · 0

I Λu
. . .

...

0
. . . . . . 0

0 0 I Λu




, (15)

with I =
(

1 0
0 1

)
. The eigenvalue corresponding to the block Pk is νk =

ak + bki and the one corresponding to the block Qu is ξu = au + bui.
Let wk be the dimension of Wk and let mu be the dimension of Mu. The
numbers wk and mu are even, for each k = 1, · · · , γ and u = 1, · · · , δ.

Furthermore, we have the equality ω =
(

γ∑
k=1

wk

)
+

(
δ∑

u=1
mu

)
= dw + dm.

So, n = dr + ds + dw + dm and Rn has the decomposition

Rn =

(
α⊕

τ=1

Vτ

)⊕



β⊕

j=1

Uj


⊕ (

γ⊕

k=1

Wk

) ⊕ (
δ⊕

u=1

Mu

)
. (16)

Let (x1, x2, · · · , xwk
) be the coordinates of a point x in Wk. We de-

fine the complex space W c
k as the set of all points of the form C (x) =

(x1 + ix2, · · · , xwk−1 + ixwk
) . Analogously, we define the space M c

u corre-
sponding to Mu. Notice that Wk and Mu are realifications of W c

k and M c
u,

respectively. Then W c
a = C (Wa) and M c

a = C (Ma) .

Theorem 3. Suppose that the matrix A of system (3) has been reduced
to its real canonical Jordan form and that the decomposition of Rn is given
by (16) with γ > 0. Then, system (3) has n− 1 independent first integrals
which can be constructed in the following way.



238 M. FALCONI AND J. LLIBRE

(a)There are (w1/2)− 1 first integrals of the form

F1 (x) = Re
{
W cπ1

1

(
C

(
Wπ1x

))
/W cπ1

j

(
C

(
Wπ1x

))}
, (17)

with j = 2, · · · , w1/2; and there are w1/2 first integrals of the form

F2 (x) = Re
{[

W cπ1
1

(
C

(
Wπ1x

))]ν1
/

[
W cπ1

j (C (Wπ1x))
]ν1

}
, (18)

with j = 1, · · · , w1/2.
(b)For each k = 2, · · · , γ, there are wk/2 first integrals of the form

F3 (x) = Re
{[

W cπ1
1

(
C

(
Wπ1x

))]νk
/

[
W cπk

l

(
C

(
Wπ1x

))]ν1
}

, (19)

and wk/2 first integrals of the form

F4 (x) = Re
{[

W cπ1
1

(
C

(
Wπ1x

))]νk
/

[
W cπk

l (C (Wπ1x))
]ν1

}
, (20)

with l = 1, · · · , wk/2.
(c)For each u = 1, · · · , δ, there are (mu/2)− 1 first integrals of the form

F5 (x) = Re
{[

W cπ1
1

(
C

(
Wπ1x

))]σjξu
/ [Hj (C (Mπux))]ν1

}
, (21)

and (mu/2)− 1 first integrals of the form

F6 (x) = Re
{[

W cπ1
1

(
C

(
Wπ1x

))]σjξu
/

[
Hj

(
C (Mπux)

)]ν1
}

, (22)

with j = 1, 3, · · · ,mu/2.
(d)For each u = 1, · · · , δ, there are two first integrals given by

F7 (x) = Re

{
W cπ1

1

(
C

(
Wπ1x

))

exp (ν1 [M cπu
2 (C (Wπux)) /M cπu

1 (C (Wπux))])

}
, (23)

and

F8 (x) = Re





W cπ1
1

(
C

(
Wπ1x

))

exp
(
ν1

[
M cπu

2 (C (Wπux))/M cπu
1 (C (Wπux))

])


 . (24)

(e)For all τ = 1, · · · , α, there are rτ first integrals of the form

F9 (x) =
[(

Wπ1
1x

)2
+

(
Wπ1

2x
)2

]λτ

/ 〈aj , x〉2Re{ν1} , (25)

where aj is an eigenvector of At with eigenvalue λτ , j = 1, · · · , rτ .
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(f)For all j = 1, · · · , β, there are sj − 1 first integrals of the form

F10 (x) =
[(

Wπ1
1x

)2
+

(
Wπ1

2x
)2

]σkµj

/
[
Hk

(
Uπjx

)]2Re{ν1}
, (26)

with k = 1, 3, 4, · · · , sj .

(g)There are β first integrals of the form

F11 (x) =
[(

Wπ1
1x

)2
+

(
Wπ1

2x
)2

]
/ exp

(
2Re {ν1}

[
Uπj

2x/Uπj
1x

])
, (27)

j = 1, · · · , β.

The last case γ = 0 is described in the following theorem.

Theorem 4. Let A be a matrix as in Theorem 3 with γ = 0 and δ >
0. Then, system (3) has n − 1 independent first integrals which can be
constructed in the following way.

(a)There are m1/2− 2 first integrals of the form

F1 (x) = Re
{[

H1

(
C

(
Mπ1x

))]σl
/

[
Hl

(
C

(
Mπ1x

))]}
, (28)

with l = 3, · · · ,m1/2. Furthermore, there are m1/2−1 first integrals of the
form

F2 (x) = Re
{[

H1

(
C

(
Mπ1x

))]σjξ1
/

[
Hj

(
C (Mπ1x)

)]ξ1
}

, (29)

with j = 1, 3, 4, · · · ,m1/2.

(b)For each u = 2, · · · , δ, there are mu/2− 1 first integrals of the form

F3 (x) = Re
{[

H1

(
C

(
Mπ1x

))]σlξu
/ [Hj (C (Mπux))]ξ1

}
, (30)

and there are mu/2− 1 first integrals of the form

F4 (x) = Re
{[

H1

(
C

(
Mπ1x

))]σlξu
/

[
Hj

(
C (Mπux)

)]ξ1
}

, (31)

with l = 1, 3, · · · ,mu/2.

(c)For each u = 1, · · · , δ, there are two first integrals given by

F5 (x) = Re

{
H1

(
C

(
Mπ1x

))

exp (ξ1 [M cπu
2 (C (Mπ1x)) /M cπu

1 (C (Mπ1x))])

}
, (32)
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and

F6 (x) = Re





H1

(
C

(
Mπ1x

))

exp
(
ξ1

[
M cπu

2 (C (Mπ1x)) /M cπu
1 (C (Mπ1x))

])


 . (33)

(d)For all τ = 1, · · · , α, there are rτ first integrals of the form

F7 (x) =
[(

Mπ1
1x

)2
+

(
Mπ1

2x
)2

]λτ

/ 〈aj , x〉2Re{ξ1} , (34)

where aj is an eigenvector of At corresponding to the eigenvalue λτ , j =
1, · · · , rτ .

(e)For all j = 1, · · · , β, there are sj − 1 first integrals of the form

F8 (x) =
[(

Mπ1
1x

)2
+

(
Mπ1

2x
)2

]σkµj

/
[
Hk

(
Uπjx

)]2Re{ξ1}
, (35)

with k = 1, 3, 4, · · · , sj .
(f)There are β first integrals of the form

F9 (x) =
[(

Mπ1
1x

)2
+

(
Mπ1

2x
)2

]
/ exp

(
2Re {ξ1}

[
Uπj

2x/Uπj
1x

])
, (36)

j = 1, · · · , β.

3. PROOFS OF THE RESULTS

Consider the linear differential system

ẋ = Ax, (37)

where x = (x1, x2, · · · , xn) ∈ Kn and A is a n × n constant matrix in K.
The field K is R or C.

A hypersurface f = 0 is an invariant (algebraic) hypersurface of (37) if
f is a non–constant polynomial in C [x] and there exists a constant k ∈ C
such that the equation

〈Ax,∇f〉 = kf (38)

holds. As it is usual the gradient is denoted by ∇ = (∂/∂x1, · · · , ∂/∂xn) .
Note that if k = 0, then f is a first integral of system (37).

A function F (x) = exp (g (x) /f (x)) is an exponential factor of (37), if
f = 0 is an invariant algebraic hypersurface, g is a polynomial and there
exists a constant k ∈ C, such that

〈Ax,∇F 〉 = kF. (39)



FIRST INTEGRALS FOR LINEAR SYSTEMS 241

The constant k as used in (38) is known as cofactor of the invariant
algebraic curve f = 0. When used as in (39) is called the cofactor of the
exponential factor F.

Invariant hypersurfaces and exponential factors are useful to construct
first integrals. This is proved in the following lemma (see [3]).

Lemma 5. Let f1 and f2 be a couple of functions which satisfy equations
(38) or (39) with cofactors λ1 and λ2, respectively. If λ1α1 + λ2α2 = 0,
then H = fα1

1 fα2
2 is a first integral of system (37).

Proof : We must prove that 〈Ax,∇H〉 = 0. From the expression of H
follows

〈Ax,∇H〉
= 〈Ax,∇fα1

1 fα2
2 〉 = 〈Ax, fα1

1 ∇fα2
2 + fα2

2 ∇fα1
1 〉

=
〈
Ax, α2f

α1
1 fα2−1

2 ∇f2 + α1f
α2
2 fα1−1

1 ∇f1

〉
= α2f

α1
1 fα2−1

2 〈Ax,∇f2〉+ α1f
α2
2 fα1−1

1 〈Ax,∇f1〉
= α2λ2f

α1
1 fα2

2 + α1λ1f
α1
1 fα2

2 = (α1λ1 + α2λ2) fα1
1 fα2

2 = 0.

Now we analyze some properties of the solutions of equations (38) and
(39).

Lemma 6. Let f = 0 be an invariant hypersurface of system (37) and let
g and h be non–constant homogeneous polynomials having different degrees.
If f = g + h, then g = 0 and h = 0 are invariant hypersurfaces of system
(37).

Proof : Let d1 be the degree of g and let d2 be the degree of h. Note
that d1 6= d2. Suppose that f = g + h, then equation (38) is equivalent
to 〈Ax,∇g (x)〉 + 〈Ax,∇h (x)〉 = k (g (x) + h (x)) . When we compare the
degrees in both sides of this equation, we see that it holds if and only if
〈Ax,∇g (x)〉 = kg (x) and 〈Ax,∇h (x)〉 = kh (x) .

So, in the following if f = 0 is an invariant hypersurface of degree d we
can assume that f is a homogeneous polynomial of degree d.

Lemma 7. If F = exp (f/g) is an exponential factor of system (37),
then either f and g are polynomials with the same degree or f2/g is a first
integral, where f2 is the part of f of degree higher than the degree of g.

Proof : According to the definition of exponential factor, we have

〈Ax,∇ exp (f/g)〉 = k exp (f/g) , (40)

or equivalently
〈

Ax, exp (f/g)
g∇f − f∇g

g2

〉
= k exp (f/g) .
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Then it follows that

〈Ax, g∇f − f∇g〉 = kg2.

In the following r denotes the degree of g and s is the degree of f. Suppose
that r ≥ s. All the left side terms in the last equation have degree no
greater than r + s, whereas on the right side there are terms of degree 2r.
Therefore, we necessarily have that r + s = 2r. As a consequence r = s. So,

we must consider the case when s > r. In this case,
f

g
=

f1

g
+

f2

g
, where

f2 is the polynomial having all the terms of f whose degree is greater than
r. From (40) we obtain the equality

k =
〈

Ax,∇f1

g
+∇f2

g

〉
=

〈
Ax,∇f1

g

〉
+

〈
Ax,∇f2

g

〉
.

It follows that

〈Ax, g∇f2 − f2∇g〉+ 〈Ax, g∇f1 − f1∇g〉 = kg2.

Since the degree of the polynomial 〈Ax, g∇f2 − f2∇g〉 is greater than both
of the degrees of 〈Ax, g∇f1 − f1∇g〉 and kg2, the last equation implies that
〈Ax, g∇f2 − f2∇g〉 = 0. Hence, f2/g is a first integral.

Lemma 8. The hyperplane f (x) =
n∑

j=1

ajxj = 0 is invariant under sys-

tem (37) if and only if a = (a1,··· ,an) is an eigenvector of At. Moreover,
the cofactor of f = 0 is the eigenvalue of the eigenvector a.

Proof : We prove the “only if” part, the “if” part follows similarly. Let

f (x) =
n∑

j=1

ajxj = 0 be an invariant hyperplane of (37) with cofactor

k. Then ∇f (x) = a and equality (38) can be written as 〈Ax, a〉 =
k 〈x, a〉 ,which is equivalent to 〈x, (At − kI) a〉 = 0. Since the above equa-
tion holds for all x ∈ Kn, we obtain that (At − kI) a = 0. This means that
a is an eigenvalue of At and that the cofactor k is its eigenvalue.

We say that the spectrum of a matrix A is complete in Kn if there
is a basis of eigenvectors of A. We have the following proposition as a
consequence of Lemma 8.

Proposition 9. If the spectrum {λj | j = 1, · · · , n} of A is complete,
then system (37) has n− 1 independent first integrals of the form

Hj =
〈a1, x〉λj

〈aj , x〉λ1
,
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where aj is an eigenvector of At with eigenvalue λj , j = 1, · · · , n. The
eigenvalues are taking into account according to their multiplicities.

Proof : Let {a1,a2, · · · , an} be a basis of eigenvectors, corresponding to
the eigenvalues λ1, λ2, · · · , λn (repeated if necessary). We denote by kj =

− λ1

λj+1
, j = 1, · · · , n − 1, and fj (x) = 〈aj , x〉 , j = 1, · · · , n. Then, by

Lemmas 5 and 8, it follows that Hj = f1f
kj

j+1 is a first integral of system
(37) for each j = 1, · · · , n− 1. Now, we will prove that these first integrals
are independent. The gradient of Hj is given by

∇Hj = f
kj

j+1a1 + kjf1f
kj−1
j+1 aj+1, j = 1, · · · , n− 1.

Let x0 be a point in

(
n−1⋂
j=1

{Hj = lj}
)

⋂ {f1 6= 0} , such that ∇Hj (x0) 6= 0

for all j = 1, · · · , n− 1. We write ∇Hj (x0) = αj+1a1 + βj+1aj+1. Suppose
that there exist n − 1 numbers in C, cj+1, j = 1, · · · , n − 1, with at least
one different from zero such that

n−1∑

j=1

cj+1∇Hj (x0) =
n−1∑

j=1

cj+1 (αj+1a1 + βj+1aj+1) = 0.

From this expression and after a rearrangement of the terms, we obtain an
equation of the form




n−1∑

j=1

cj+1αj+1


 a1 +

n−1∑

j=1

cj+1βj+1aj+1 = 0.

From the linear independence of the vectors aj , j = 1, · · · , n, we get
n−1∑
j=1

cj+1αj+1 = 0, and cj+1βj+1 = 0 for j = 1, · · · , n − 1. Without loss

of generality, it is assumed that c2 6= 0, which implies that β2 = 0. Since
β2 = k1f1 (x0) fk1−1

2 (x0) , we have that either f1 (x0) = 0 or f2 (x0) = 0.
But f2 (x0) is different from zero because ∇H1 (x0) = fk1

2 (x0) a1 6= 0.
Hence f1 (x0) = 0. This contradicts the choice of x0. Therefore, the set
{∇Hj (x0)}j=1,··· ,n−1 is an independent linear set.

Proposition 9 corresponds to Theorem 1 when K = R and β = 0. So, the
problem of the integrability of system (3) when K = R reduces to study
the case when either the real spectrum is not complete or the spectrum has
complex eigenvalues. If the spectrum of a K−matrix A is not complete,
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then its canonical Jordan form contains blocks of the form



λ 0 0 0 0 0
1 λ 0 0 0 0
0 1 . 0 0 0
0 0 . . 0 0
0 0 0 . λ 0
0 0 0 0 1 λ




. (41)

Let D be the matrix whose principal subdiagonal is (1, 1, · · · 1) and any
other entry is zero, that is

D =




0 0 0 0 0 0
1 0 0 0 0 0
0 1 . 0 0 0
0 0 . . 0 0
0 0 0 . 0 0
0 0 0 0 1 0




. (42)

Lemma 10. The linear differential systems ẋ = (λI + D) x and ẋ =
Dx have the same invariant hypersurfaces h=0 and the same exponential
factors F=exp(f/g), when h, f and g are homogeneous polynomials with f
and g of the same degree. Here, I is the identity matrix with the same size
as D.

Proof : We will prove that the invariant hypersurfaces and the exponential
factors of the above form for the system ẋ = (λI + D)x, are invariant
hypersurfaces and exponential factors for the system ẋ = Dx. The converse
direction is proved in a similar way.

Let f = 0 be an invariant hypersurface of ẋ = (λI + D)x with cofactor
k where f is a homogeneous polynomial of degree d. Hence

< (λI + D)x,∇f > = kf.

Therefore

λ < x,∇f > + < Dx,∇f > = kf.

From the Euler’s Theorem for homogeneous functions, we get < x,∇f >
= df. We denote by k1 = k − λd, hence f is a solution of the equation

< Dx,∇f > = k1f.

That is, f = 0 is an invariant hypersurface of the system

ẋ = Dx.
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Analogously, let F = exp (f/g) be an exponential factor of ẋ = (λI + D)x =
Ax with cofactor k. Then

< Ax,∇F >= F

〈
Ax,∇f

g

〉
= kF.

From 〈
Ax,∇f

g

〉
=

〈
Ax,

g∇f − f∇g

g2

〉
,

we have that

< (λI + D)x, g∇f − f∇g >= kg2.

Since f and g are homogeneous polynomials with the same degree, the last
equation is equivalent to

< Dx, g∇f − f∇g >= kg2.

Indeed, < (λI + D)x, g∇f−f∇g >=< λx, g∇f−f∇g > + < (λI + D)x,
g∇f − f∇g > . The Euler’s Theorem for homogeneous functions implies
< λx, g∇f − f∇g >= 0.

This prove that F = exp (f/g) is an exponential factor of the linear
system ẋ = Dx.

From Lemma 10, the search of first integrals of the system

ẋ = (λI + D) x, (43)

using the Darboux Theory of integrability based on the invariant hypersur-
faces and exponential factors can be reduced to find first integrals of the
system

ẋ = Dx. (44)

Remark 11. We observe in the proof of Lemma 10 that the cofactor of
the exponential factor does not depend on λ and it is the same for both
systems (43) and (44). However, if f = 0, is an invariant hypersurface
of degree d of system (44) with cofactor k1, then f = 0 is an invariant
hypersurface of system (43), with cofactor k = k1 + λd. In particular, if f
is a homogeneous polynomial first integral of degree d of (44), then f = 0
is just an invariant hypersurface of (43) with cofactor k = λd.

Lemma 12. Let f be a homogeneous polynomial. Then f = 0 is an
invariant hypersurface of system (44) if and only f is a polynomial first
integral of the same system.
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Proof : Let f (x1, x) be a homogeneous polynomial of degree r. Here, we
denote x = (x2, · · · , xn) . Hence, f (x1, x) = xr

1 +xr−1
1 h1 (x)+xr−2

1 h2 (x)+
· · ·+ x1hr−1 (x) + hr (x), where hi is a homogeneous polynomial of degree
i. Assume that f satisfies the equation

< D (x1, x) ,∇f (x1, x) >= kf (x1, x) . (45)

The gradient of f can be written as

∇f (x1, x) = B (x1, x) + G (x1, x) ,

where B (x1, x) = hr−1 (x)∇x1 + ∇hr (x) , and G = ∇f − B. So x1 is a
factor of G. Then, < D(x1, x),∇f(x1, x) >=< D(x1, x), B(x1, x) > + <
D(x1, x), G(x1, x) > .

Note that x1 is a factor of < D (x1, x) , G (x1, x) > and since B (x1,x) =

(hr−1(x),
∂hr

∂x2
, · · · ,

∂hr

∂xn
), we obtain that

< D(x1,x), B(x1, x) > =
〈

(0, x1, · · · , xn−1) ,

(
hr−1(x),

∂hr

∂x2
, · · · ,

∂hr

∂xn

)〉

= x1
∂hr

∂x2
+ x2

∂hr

∂x3
+ · · ·+ xn−1

∂hr

∂xn
.

From the equality

< D(x1, x), B(x1, x) > + < D(x1, x), G(x1, x) >= kf(x1, x),

we get

x2
∂hr

∂x3
+ · · ·+ xn−1

∂hr

∂xn
= khr (x) .

This is equivalent to

< D1x,∇hr (x) >= khr (x) , (46)

where D1 is the matrix D in dimension n−1. The last equation with n−1
variables is similar to equation (45). Therefore, it determines a recurrence
relation. So, the lemma holds if we prove that (45) implies k = 0, when
the dimension of system (44) is 2.
Let f (x, y) = arx

r + ar−1x
r−1y + ar−2x

r−2y2 + · · · + a0y
r be a homo-

geneous polynomial in two variables of degree r. We assume that the
equation < D (x, y) ,∇f (x, y) > = kf (x, y) is satisfied with D of di-
mension 2. We identify the homogeneous polynomial f with the vec-
tor (ar, ar−1, ar−2, · · · , a0) , of Rr+1. Then the homogeneous polynomial
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x ∂f/∂y can be identified with (ar−1, 2ar−2, · · · , ra0, 0) . Hence, equation
(46) can be written in the form

(kar, kar−1, kar−2, · · · , ka0) = (ar−1, 2ar−2, · · · , ra0, 0) .

This last equation corresponds to a homogeneous linear equation in the
variables a0, a1, . . . , ar having determinant (−k)r+1

. So it has a non–zero
solution if and only if k = 0.

Proposition 13. System (44) with x = (x1, . . . xn) has the following
independent first integrals.

(a)H1 = x1.

(b)Hl =
l∑

j=1

(−1)j+1xjxl+1−j with 3 ≤ l ≤ n, l odd.

(c)Hk = xk−2
1 xk − 1

(k − 1)!
xk−1

2 +
k−1∑
j=2

(−1)j

(k − j)!
xj−2

1 xk−j
2 xj with 4 ≤ k ≤

n, k even. Moreover,
(d)f (x) = exp (x2/x1) is an exponential factor with cofactor 1.

Proof : The proof of (a) is trivial. For each odd l such that 3 ≤ l ≤ n, we
have that ∇Hl = 2 (xl,−xl−1, · · · , x1, 0, · · · , 0) . Therefore, 〈Dx,∇Hl〉 =
2(0, x1, · · ·xl−1, xl,
· · ·xn−1) (xl,−xl−1, · · · , x1, 0, · · · , 0) = 0. So, the function Hl is a first
integral and (b) is proved.

We consider Hk as in the statement (c) of the lemma. After some com-
putations, we have

∂Hk

∂x2
=

k−1∑
j=2

(−1)j

(k − j − 1)!
xj−2

1 xk−j−1
2 xj ,

∂Hk

∂xr
=

(−1)r

(k − r)!
xr−2

1 xk−r
2 , 3 ≤ r ≤ k.

Then

k−1∑

j=1

xj
∂Hk

∂xj+1
= x1

∂Hk

∂x2
+

k∑

j=3

xj−1
∂Hk

∂xj

=
k∑

j=3

(−1)j−1

(k − j)!
xj−2

1 xk−j
2 xj−1 +

k∑

j=3

(−1)j

(k − j)!
xj−2

1 xk−j
2 xj−1 = 0.

So, the function Hk is a first integral, and (c) is proved.
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Statement (d) follows easily by direct computations. Finally, we will
prove that the first integrals given in (a), (b) and (c) are linearly inde-
pendent. Any set of vectors {vj , j = 1, · · · , r}, where the jth component
vj,j of vj is not zero and any other component in the right hand side of
vj,j is zero, is a linearly independent set. Hence, the first integrals H1,
Hl and Hk, are independent at every point with x1 6= 0, since the gradi-
ent ∇Hl is of the form (α1, · · · , αl−1, x1, 0, · · · , 0) and ∇Hk is of the form(
β1, · · · , βk−1, x

k−2
1 , 0, · · · , 0

)
.

The next corollary follows easily from Proposition 2 and Remark 1.

Corollary 14. If system (3) is given by the matrix A = λI + D, then

(a)The function F (x) = exp (x2/x1) is an exponential factor with cofac-
tor 1.

(b)The hypersurfaces H1 (x) = x1 = 0, Hl =
l∑

j=1

(−1)j+1xjxl+1−j =

0 for odd l such that 3 ≤ l ≤ n, and Hl = xl−2
1 xk − 1

(l − 1)!
xl−1

2 +

l−1∑
j=2

(−1)j

(l − j)!
xj−2

1 xl−j
2 xj = 0 for even l such that 4 ≤ l ≤ n, are invariant

with cofactor λ, 2λ and (l − 1)λ, respectively.

Now, we shall prove Theorems 1 and 2. For convenience, we use the
notation introduced in Section 2.

Proof of Theorem 1: Note that A restricted to
(

α⊕
τ=1

Vτ

)
has a complete

spectrum. Let{vτ,t}rτ

t=1 be an ordered basis of Vτ , where vτ,t is an eigen-
vector of A. So, we get dr eigenvectors of A, which generate the invari-
ant hypersurfaces fτ,t (x) =< vτ,t, x >= 0, τ = 1, · · · , α, t = 1, · · · , rτ ,
with cofactor λτ . Hence, statements (a) and (b) of Theorem 1 follows from
Proposition 9.

Let {ωj,t}sj

t=1 be an ordered basis of Uj. Suppose that the matrix Sj has
the form (41) for each j = 1, · · · , β. So, from Corollary 14 we obtain sj − 1
invariant hypersurfaces gj,t (x) = Ht

(
Uπjx

)
= 0, t = 1, 3, · · · , sj with

cofactor σtµj . Here, the function Ht is given as in Corollary 14, according
to the parity of the index t. Using Lemma 5 each couple of functions
(f1,1, gj,t) generates the first integral of the form (9) described in statement
(c) of Theorem 1.

We can check easily that Fj (x) = exp(Uπj
2x/Uπj

1x) is an exponential
factor with cofactor µj (see Corollary 14(a)). In this way, using Lemma 5 we
obtain β couples of functions (f1,1, Fj) which determine the first integrals
of the form (10) in Theorem 1(d). The independence of this set of n − 1
first integrals follows easily from the decomposition (6) of Rn.



FIRST INTEGRALS FOR LINEAR SYSTEMS 249

Proof of Theorem 2: If α = 0, then Rn =
β⊕

j=1

Uj . From Lemma 10 and

Corollary 14, it follows that each subspace Uj has sj − 1 invariant hyper-
surfaces given by gj,t (x) = Ht

(
Uπjx

)
= 0, t = 1, 3, · · · , sj , and the expo-

nential factors Fj (x) = exp
(
Uπj

2x/Uπj
1x

)
, j = 1, · · · , β. Using Lemma 5

the couple of functions (g1,1, g1,t) , for 3 ≤ t ≤ s1, generate the first inte-
grals of the form (11) in Theorem 2(a). The first integrals of the form (12)
are constructed with the functions (g1,1, gj,t) , where 2 ≤ j ≤ β , t 6= 2 and
t ≤ sj . Finally, the couples (g1,1, Fj) , j = 1, · · · , β, are used to obtain the
integrals of the form (13).

The independence of this set of n − 1 first integrals follows easily from
the decomposition (6) of Rn.

If the matrix A has no real eigenvalues, then it is necessary to analyze
how to construct first integrals of linear differential systems whose matrix
is a real Jordan block of the form (14) or (15).

Let Q be the following square 2m× 2m matrix

Q =




Λ 0 · · · 0

ε1I
. . . 0

...

0
. . . . . . 0

0 0 εm−1I Λ




. (47)

Here I =
(

1 0
0 1

)
, Λ =

(
a −b
b a

)
and εj ∈ {0, 1} for each j = 1, · · · ,m−

1.
Now, we associate to the linear system

ẋ = Qx, (48)

defined in the 2m−dimensional real space, {x = (x1, · · · , x2m) | xj ∈ R}
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the complex linear system




ż1

...

...
żm

ż1

...

...
żm




=




λ 0 · · · 0
ε1 0

0
. . . . . .

0 εm−1 λ
. . .

...
. . . 0 λ

. . .
...

. . . ε1 0
. . . . . . 0

0 · · · 0 εm−1 λ







z1

...

...
zm

z1

...

...
zm




,

where λ = a + bi and zj = x2j−1 + x2ji, for all j = 1, · · · ,m. This system
is denoted by

Ż = B (λ)Z, (49)

where Z = (z1, · · · , zm, z1, · · · , zm) = (z, z) , B (λ) =
(

B1 0
0 B2

)
, B1 =

λI + D1, B2 = λI + D1 and

D1 =




0 · · · 0

ε1
. . .

...

0
. . . 0

0 0 εm−1 0




. (50)

We define the partial derivatives with respect to zj and with respect to zj

by

∂H

∂zj
=

1
2

(
∂H

∂x2j−1
− ∂H

∂x2j
i

)
,

∂H

∂zj
=

1
2

(
∂H

∂x2j−1
+

∂H

∂x2j
i

)
,

respectively. Now, we have the following result.

Lemma 15. If F (Z) = 0 is an invariant hypersurface or F is an ex-
ponential factor of system (49), with cofactor k, then G (x1, · · · , x2m) =
F (Z) , determines an invariant hypersurface or an exponential factor of
system (48) with cofactor k,respectively. Moreover, if F is a first integral
of (49) then Re (F ) and Im (F ) are first integrals of (48).
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Proof: We denote the derivative
∂F

∂u
by Fu. Given a function F = F (Z) ,

we get the equality

〈B (λ)Z,∇ZF (Z)〉 = λz1Fz1 + (ε1z1 + λz2) Fz2 + · · ·+ (εm−1zm−1+
λzm)Fzm + λz1Fz1 +

(
ε1z1 + λz2

)
Fz2 + · · ·+ (

εm−1zm−1 + λzm

)
Fzm

=
[
λz1Fz1 + λz1Fz1

]
+ ε1 [z1Fz2 + z1Fz2 ] +

[
λz2Fz2 + λz2Fz2

]
+ · · ·+

εm−1 [zm−1Fzm
+ zm−1Fzm ] +

[
λzmFzm + λzmFzm

]
.

On the other hand, it is easy to see that (α + βi) fu + (α− βi) fu =
αfu1 + βfu2 , where f = f (u) = f (u1 + u2i) . Hence

〈BZ,∇ZF (Z)〉 = [(ax1 − bx2)Fx1 + (bx1 + ax2)Fx2 ] + ε1[x1Fx3+
x2Fx4 ] + [(ax3 − bx4)Fx3 + (bx3 + ax4)Fx4 ] + · · ·+ εm−1[x2m−3Fx2m−1+
x2m−2Fx2m ] +

[
(ax2m−1 − bx2m) Fx2m−1 + (bx2m−1 + ax2m) Fx2m

]
= (ax1 − bx2)Fx1 + (bx1 + ax2)Fx2 + (ε1x1 + ax3 − bx4) Fx3+
(ε1x2 + bx3 + ax4)Fx4 + · · ·+ (εm−1x2m−3 + ax2m−1 − bx2m) Fx2m−1+
(εm−1x2m−2 + bx2m−1 + ax2m)Fx2m

= 〈Qx,∇xG (x)〉 .

The lemma follows easily from this equality.

In the proofs of Theorems 3 and 4 we use again the notation introduced
in Section 2. The 2m× 2m diagonal matrix whose m first diagonal entries
take the value α and the remaining diagonal entries take the value β is
denoted by Lm (α, β).

Proof of Theorem 3: Let νk be the eigenvalue of A |Wk
, k = 1, · · · , γ. In

correspondence with system (3) restricted to Wk, we consider the system
Ż = Lωk/2 (νk, νk) Z, where Z = (z, z) , z ∈ W c

k . This system has ωk

invariant hypersurfaces given by

(i) hj (Z) = zj = 0, with cofactor νk, and gj (Z) = zj = 0 with cofactor
νj , j = 1, · · · , ωk/2.

Analogously, let ξu be the eigenvalue of A |Mu , u = 1, · · · , δ. System (3)
restricted to Mu corresponds to the system Ż = B (ξu) Z, where Z = (z, z) ,
z ∈ M c

u. As in Corollary 14 this system has mu− 2 invariant hypersurfaces
and 2 exponential factors, which are constructed in the following way:

(ii) mu/2 − 1 invariant hypersurfaces of the form G (z, z̄) = Hl (z) = 0,
l = 1, 3, · · · ,mu, whose cofactors are σlξu.

(iii) mu/2− 1 invariant hypersurfaces of the form G (z, z̄) = Hl (z̄) = 0,
l = 1, 3, · · · ,mu, whose cofactors are σlξ̄u.

(iv) Two exponential factors given by F1 (z, z̄) = exp (z2/z1) and F2(z,
z̄) = exp(z̄2/z̄1), with cofactor 1.
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We assume now that γ > 0. From (i) and Lemma 15, it follows that sys-
tem (3) has ωk/2 invariant hypersurfaces of the form fj,k = W cπk

j (C(W
πkx)) = 0, with cofactor νk, and ωk/2 invariant hypersurfaces f j,k =
W cπk

j (C (Wπkx)) = 0, with cofactor ν̄k. The first integrals of type (17) are

given by Re
(

f1,1

fj,1

)
, for j = 2, · · · , ω1/2; and the ones of type (18) are given

by Re

(
f ν̄1
1,1

f̄ν1
j,1

)
, for j = 1, · · · , ω1/2. The first integrals of type (19) and

(20) are obtained from
fνk
1,1

fν1
j,1

and
f ν̄k
1,1

f̄ν1
j,1

, with k = 2, · · · , γ, j = 1, · · · , ωk/2.

Again from Lemma 15 and (iii), it follows that system (3) has mu/2 −
1 invariant hypersurfaces of the form gl,u = Hl (C (Mπux)) = 0, whose
cofactors are σlξu; and mu/2−1 invariant hypersurfaces of the form ḡl,u =

Hl

(
C (Mπux)

)
= 0, whose cofactors are σlξu. So, the first integrals of type

(21) are defined by Re

(
fσlξu

1,1

gν1
l,u

)
, and the ones of type (22) are defined by

Re

(
fσlξ̄u

1,1

ḡν1
l,u

)
. Here, l = 1, 3, · · · ,mu/2 and u = 1, · · · , δ.

Now, from (iv) we get two exponential factors

Fu = exp [M cπu
2 (C (Mπux)) /M cπu

1 (C (Mπux))] ,

F̄u = exp
[
M cπu

2 (C (Mπux))/M cπu
1 (C (Mπux))

]
,

with cofactor 1, for each u = 1, · · · , δ. The first integrals of types (23) and

(24) can be obtained from
f1,1

F ν1
u

and
f1,1

F̄ ν1
u

, respectively by taking the real

part of them.
We consider τ = 1, · · · , α, and j = 1, · · · , rτ . Given an eigenvector aj

with eigenvalue λj , from Lemma 8 it follows that pj,τ (x) = 〈aj , x〉 = 0 is
an invariant hypersurface with cofactor λj . A direct computation shows
that h =

(
Wπ1

1x
)2 +

(
Wπ1

2x
)2 = 0 is an invariant hypersurface with

cofactor 2Re (ν1) . So, the integrals of type (25) are defined by
hλj

p
2Re(ν1)
j,τ

.

From Corollary 14, Hk

(
Uπjx

)
= 0 is an invariant hypersurface with co-

factor σkµj , and exp
(
Uπj

2x/Uπj
1x

)
is an exponential factor with cofac-

tor 1, for each j = 1, · · · , β and k = 1, · · · , sj . Therefore, the functions
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hσkµj

(Hk (Uπjx))2Re(ν1)
and

h
(
exp

(
Uπj

2x/Uπj
1x

))2Re(ν1)
determine the first

integrals of types (26) and (27), respectively.

Proof of Theorem 4: The first integrals of types (17)−(24) do not exist
anymore, when γ = 0. The first integrals of types (28) and (29) are con-
structed with the quotients

g1,1

gl,1
and

g1,1

ḡj,1
, respectively, with 3 ≤ l ≤ m1/2

and j = 1, · · · ,m1/2. Similarly, to construct the first integrals of types (30)
and (31), we use the function g1,1 and the functions gl,u and ḡl,u, respec-
tively, with u = 2, · · · , δ, and l = 1, · · · ,mu/2. The first integrals of types
(32) and (33) are defined by

g1,1

Fu
and

g1,1

F̄u
, respectively, with u = 1, · · · , δ.

Since g =
(
Mπ1

1x
)2+

(
Mπ1

2x
)2 = 0 is an invariant hypersurface with cofac-

tor 2Re (ξ1) , the first integrals of types (34), (35) and (36) are constructed
in the same way as in the proof of Theorem 3.

We conclude this work with a final remark about the first integrals of a
complex linear system

ż = Az, (51)

where A is a complex n× n matrix and z ∈ Cn. In this case, the canonical
Jordan Form of A consists of blocks of the form (41) and diagonal blocks (of
course, some of these kind of blocks could be missed). Therefore, the first
integrals of (51) are obtained from Theorem 1 and Theorem 2, substituting
x by z.
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Springer–Verlag, Berlin, (1979).

8. S. Maeda, On inheritance of quadratic first integral of linear system via Runge–
Kutta methods, J. Math. Tokushima Univ. 31 (1997), 63–67.

9. J. Moulin Ollagnier and J.M. Strelcyn, On first integrals of Linear systems,
Frobenius integrability theorem and linear representations of Lie algebras, Lect.
Notes in Math. 1455, Springer−Verlag (1991), 243−271.

10. A. Nowicki, On the nonexistence of rational first integrals for systems of linear
differential equations, Linear Algebra Appl. 235 (1996), 107–120.

11. M. J. Prelle and M. F. Singer, Elementary first integrals of differential equations,
Trans. Amer. Math. Soc. 279 (1983), 215−229.

12. W. T. Van Horssen, On integrating factors for ordinary differential equations,
Nieuw Arch. Wisk. 15 (1997), 15−26.

13. J. A. Weil, First integrals and Darboux polynomials of homogenous linear differen-
tial systems, Lect. Notes in Computer Science 948, Spinger–Verlag (1995), 469–484.

14. V.E. Zakharov, What is integrability?, Springer Series in Nonlinear Dynamics,
Springer−Verlag, (1991).


