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Here we review some recent results that give a rather complete description
of the dynamics of almost all mappings in real analytic families of unimodal
maps

1. THE RESULTS

We will review here some recent results on the rich dynamics and bi-
furcation structure in one dimensional families of real analytic unimodal
maps.

The domain of our maps will be normalized to be the interval I = [−1, 1],
also called the phase space. A unimodal map is a smooth map f : I → I
with a unique non-degenerate critical point. Normalizing, we can assume
that the critical point is 0 and f(1) = f(−1) = −1. The non- degeneracy
hypothesis on the critical point is that the second derivative D2f(0) is
negative. Let Uω denotes the set of real analytic maps so normalized. The
parameter space P is a compact interval. An analytic family of unimodal
map is a mapping t ∈ P 7→ ft ∈ Uω such that the (t, x) 7→ ft(x) is real
analytic in both variables. A prototype example is the quadratic family:
qt(x) = −tx2 + t− 1 where P = [ 12 , 2].

We say that f is S − unimodal if its Schwarzian derivative,

Sf =
D3f

Df
− 3

2

(
D2f

Df

)2
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is negative for all x 6= 0. If such map has a periodic attractor then the basin
of this periodic point contains the critical point and also has full Lebesgue
measure in I. Hence, in this case, for almost all points x in the interval,
the limit

λ(f) = lim
n→∞

1
n

log |Dfn(x)|

exists and is negative. An important result by Keller, [9], states that the
above limit exists almost everywhere for any map with negative Schwarzian
derivative. Furthermore, λf > 0 if and only if there exists a probability
measure µ which is f -invariant and absolutely continuous with respect to
Lebesgue and

λf =
∫

log |Df |dµ

is the Lyapunov exponent of the measure µ. Also, if δx denotes the Dirac
measure at x we have that

1
n

n−1∑

j=0

δfj(x)

converges weakly to µ for Lebesgue almost all x ∈ I; the support of the
measure µ is a cycle of intervals, i.e., a finite number of disjoint closed
intervals that are in the same orbit of f . Therefore, if λf 6= 0 there is a
unique invariant probability measure that describes the statistical behavior
of Lebesgue almost all orbits, the measure being a Dirac measure if λf <
0 or absolutely continuous if λf > 0. In the first case we say that the
dynamics is regular and in the second one it is stochastic. More generally,
we say that an invariant measure µ of a dynamical system f is a physical
measure if the time average 1

n

∑n−1
j=0 δfj(x) converges weakly to µ for a

set of positive Lebesgue measure called the ergodic basin of µ. Hence, if
λf 6= 0, f has a unique physical measure which is either atomic or absolutely
continuous. The borderline case, λf = 0, different situations may occur: i)
there is a unique atomic physical measure supported on a parabolic fixed
point; ii) there is a unique physical measure supported in a Cantor set
which is the closure of the critical orbit (infinitely renormalizable maps) or
some more pathological cases like iii) there is a physical measure supported
on a repelling periodic orbit or iv) there is no physical measure, [7].

An analytic family of unimodal maps ft is non-trivial if there is a param-
eter value s such that the critical value of fs lands in a repelling periodic
point and this combinatorics is not constant. Notice that this is a very
mild condition: a family is trivial if either the combinatorics is constant in
the family or the period of each periodic point of each map in the family
is a power of two.
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As a consequence of the main result in [1], in any non-trivial family
of real analytic unimodal maps with negative Schwarzian derivative and
quadratic critical point, the set of parameter values corresponding to maps
in the borderline case has Lebesgue measure zero. On the other hand
by [10], the set of parameter values corresponding to maps with regular
dynamics (λ(f) < 0), is open and dense. By [8], the set of parameter
values corresponding to maps with stochastic dynamics (λ(f) > 0) has
positive measure. As we will explain below, this result holds for all non-
trivial family of real analytic maps and also for typical families of smooth
maps. In fact even more is true as was proved by Avila-Moreira [2]: we
can extend the set of excluded parameter values and give a very precise
description of the remaining stochastic maps and still prove that the set
of all excluded parameters has not only Lebesgue measure zero but also
Hausdorff dimension smaller than one. In the next section we will give
more details about this development.

2. SOME TOOLS

2.1. Renormalization and Principal Nest
We start with a short discussion on the combinatorics of unimodal in-

terval maps. Let J be an interval around the critical point and DJ ⊂ J
be the set of points x ∈ J such that there exists an integer r(x) ≥ 1 with
fr(x)(x) ∈ J and f j(x) 6= J for j < r(x). The mapping RJ : DJ → J ,
RJ(x) = fr(x)(x) is the first return map to J . To get a nice structure
for the first return map it is convenient to consider only the so called nice
intervals: the forward orbit of the boundary of J does not meet the interior
of J , [24]. In this case, if a component of the domain of the first return
map does not contain the critical point it is mapped diffeomorphically onto
J and if it contains the critical point it is folded into J and its boundary
is mapped in one of the boundary points of J ; this component is called
the central interval of J and it is also a nice interval. If the domain of
the first return map coincides with J we say that J is a restrictive interval
and that f is renormalizable. Clearly, in this case, J is a periodic interval
and two iterates of the interior of J either coincide or are pairwise disjoint.
The first return maps is then conjugate by a Moebius transformation ( or
affine transformation if the original map is even) to a unimodal map. The
simplest example of a nice interval is the interval T0 = [α′, α] where α > 0
is the orientation reversing fixed point of f and f(α′) = α. It generates a
sequence of nice intervals as follows: T1 is the central interval associated
to the first return map R0 to T0 and, inductively, Ti+1 is the central in-
terval associated to the first return map Ri to Ti. This sequence, which
Lyubich in [13] calls the principal nest, is infinite, unless the critical point
never returns to Ti for some i. We say that Ri is a central return if Ri(0)
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belongs to Ti+1. If the number of non-central returns is finite, i.e, all the
returns to Ti are central returns for i ≥ i0 then there exists an n such that
Ri(0) = fn(0) for all i ≥ i0 and the intersection of the T ′is is a restrictive
interval of period n. Therefore, if the critical point is recurrent and non-
periodic, then either the sequence of non-central returns is infinite or the
mapping is renormalizable. For each i we can also consider the mapping
Li, called the landing map, that to each point not in Ti but whose positive
orbit intersects Ti associates the first iterate that belongs to Ti. Clearly,
the first return map Ri to Ti is the composition of f with the landing map
Li.

2.2. Cross-Ratio and Distortion Estimates
To describe the distortion properties and the geometry of the domain

of the return maps the main tool, introduced in [28], is the control of the
distortion of the cross-ratio of two nested intervals under diffeomorphic
iterates. If M is an interval compactly contained in another interval T , the
cross-ratio of the pair (T,M) is

C(T, M) =
|T ||M |
|L||R|

where |T | denotes the length of the interval T and R, L are the components
of T \M . If h:T → R is a diffeomorphism onto its image, the distortion of
the cross-ratio is denoted by

C(h; T,M) =
C(h(T ), h(M))

C(T, M)
.

The crucial fact is that if f is a C2 unimodal map and l > 0 then there
exists a positive constant Cl such that if

∑n−1
i=0 |f i(T )| ≤ l and fn|T is a

diffeomorphism, then C(fn; T, M) > Cl. The constant Cl is equal to one
for all l if f has negative Schwarzian derivative. In general it depends only
on f and converges to 1 as l → 0.

The relevance of this estimate is related to the real Koebe Lemma: there
exists a positive constant D = D(τ, C) such that for any C1 diffeomorphism
h: T → R such that C(h;T ′,M ′) > C for every M ′ ⊂ T ′ ⊂ T and also
C(h(T ), h(M)) < τ 1 then the distortion of f at the middle interval M ,
D(f, M) = supx,y∈M{ |Df(x)|

|Df(y)|}, is bounded by D. The constant D tends
to 1 as (τ, C) → (0, 1). This estimate from below of the distortion of the
cross-ratio under iteration of a C2 unimodal map is the main ingredient
of the proof in [28] of the non-existence of wandering intervals 2 which

1This means that M is well inside T .
2The non-existence of wandering intervals was proved earlier for maps of negative

Schwarzian derivative in [5]
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implies that each component of the closure of the backward critical orbit is
eventually mapped into a periodic interval whose return map is monotone.
In particular if the critical point is recurrent but non-periodic and the map
is non-renormalizable, then the lengths of the intervals in the principal
nest converges to zero. Also if such map is infinitely renormalizable, the
lengths of the restrictive intervals converge to zero. Another important
consequence of this estimates obtained in [22] is that the number of such
periodic intervals disjoint from the critical orbit is finite as is the period of
non-hyperbolic periodic points. In particular a real analytic unimodal map
has at most a finite number of non-hyperbolic and of attracting periodic
points.

2.3. Hyperbolicity
Another important notion in dynamics is that of hyperbolicity which

in one dimension is the following: a closed, forward f-invariant set Λ is
hyperbolic if there exit constants C > 0 and λ > 1 such that

|Dfn(x)| ≥ Cλn,∀x ∈ Λ, n ∈ N.

An important criteria for hyperbolicity was established in [19] for C2 maps
(and earlier in [20] for maps with negative Schwarzian derivative): if Λ is
closed, forward f-invariant, does not contain critical point and all periodic
points in Λ are hyperbolic and repelling, then Λ is a hyperbolic set. It
is not difficult to see that the set of parameter values in a non-trivial real
analytic family corresponding to maps that have at least one non-hyperbolic
periodic point is countable. Hence for almost all parameter values, any
invariant set that does not contain the critical point is hyperbolic. In
particular, for a unimodal map f with all periodic points hyperbolic, the so
called Kupka-Smale maps, the set of points whose orbit does not intersect
a neighborhood J of the critical point and are not in the basin of some
attracting periodic point is hyperbolic.

A first important consequence of hyperbolicity is that if an interval T
lies in a small neighborhood of a hyperbolic set as well as all its iterates up
to fn(T ) then fn(T ) is exponentially bigger than T , the sum of the lengths
of its iterates up to fn(T ) is bounded by a constant (that depends only on
C, λ), times the length of the last iterate and the distortion of fn in T is
bounded by a constant that depends only on the hyperbolicity constants.
This implies, in particular, using Lebesgue density theorem, that every
hyperbolic set has zero Lebesgue measure.

A second consequence of hyperbolicity is its persistence under C2 per-
turbations of the mapping: if Λ is a hyperbolic set of f then there exists a
neighborhood N of f and for each g ∈ N a hyperbolic set Λg of g and a
continuous family of homeomorphisms hg: Λ → Λg that conjugates f and
g, hg ◦ f = g ◦ hg, see [29].
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2.4. Non-recurrent critical orbits
If all periodic points of a unimodal map f are hyperbolic and the criti-

cal point is not recurrent then either the critical point is in the basin of a
periodic attractor and the mapping is structurally stable under C2 pertur-
bations or the critical value f(0) belongs to a hyperbolic set. The second
situation is not persistent under perturbation, in fact, it was proved in
[31] that the set of parameter values in a non-trivial real analytic family
of mappings for which this situation occur has zero Lebesgue measure, see
also [2].

2.5. Recurrent Critical Orbit
So we are led to consider maps with recurrent critical points and having

all periodic points hyperbolic and also perturbations of such maps.
For C3 unimodal maps with all periodic points hyperbolic one can com-

bine the above two distortion estimates to give a lower bound estimate for
the cross-ration distortion C(fn;T, J) that depends only on the length of
the last iterate as long as it does not intersect the immediate basin of peri-
odic attractor, [11]. Refining this idea it was proved in [6] that if f is real
analytic, non-renormalizable with all periodic points hyperbolic then if i is
big enough, there exists a neighborhood N of f in the C3 topology and a
real analytic diffeomorphism h: I → I such that the i′s interval Ti of the
principal nest of f has a continuation Ti(g) such that the first return map of
h ◦ g ◦ h−1 to h(Ti(g)) has negative Schwarzian derivative. Combining this
with the finiteness of the periodic attractors one can extend all the results
proved for maps with negative Schwarzian derivatives to slightly modified
results for maps without this restriction. In particular we can state the
following result for the decay of geometry.

Theorem 1. Let f be a C3 non-renormalizable map with all periodic
points hyperbolic and recurrent critical point. Let Ti be the principal nest
of f and k(n) be the sequence of non-central returns. Then there exist
constants C > 0 and λ < 1 such that

|Tk(n)|
|Tk(n)−1|

≤ Cλn

The above theorem was proved by Lyubich in [13] for maps with nega-
tive Schwarzian derivatives using heavy results from holomorphic dynamics
and was extended by Kozlowski to smooth maps using the arguments we
discussed before. Recently Weixiao Shen gave a new and simple proof in
[32] using only the real methods we have discussed.

Let now f be a map with recurrent critical points and at most a finite
number of restrictive intervals. Let Ti be the principal next of the first
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return map to the smallest restrictive interval. Let J1 denotes the domain
of the first landing map of f to J0 = Ti that contains the critical value
f(0) and J2, J3, . . . denote the other components. Clearly f maps each Jk

diffeomorphically onto either J0 or to another component Jl(k) and there
exists an integer m(k) such that the restriction of the landing map to Jk

coincides with fm(j) which maps an interval J̃k ⊃ Jk diffeomorphically onto
Ti−1. Assuming furthermore that all periodic points of f are hyperbolic
we get from the cross-ratio estimates we have discussed before that the
non-linearity (which is the logarithmic of the distortion) of fm(k) in Jk

is bounded by a constant times the scaling factor |Ti|
|Ti−1| and hence it is

very small at deep intervals of non-central return in the principal nest.
Furthermore, the complement of the domain of the first landing map is the
union of a hyperbolic set with some connected components of the basin of
attracting periodic points. This structure persists in a neighborhood N of
f : for each g ∈ N there is a homeomorphism hg depending continuously on
g such that gm(k)(hg(Jk)) = hg(J0), hg(J0) is the i’s element of the principal
nest of the return map of g to the corresponding restrictive interval.

A map f ∈ U3 is quasiquadratic if any nearby map g ∈ U3 is topo-
logically conjugate to some quadratic map. We denote by QQ ⊂ U3 the
space of quasiquadratic maps. By the theory of Milnor-Thurston [21] and
Guckenheimer [5], a map f ∈ U3 with negative Schwarzian derivative is
quasiquadratic, so the quadratic family is contained in QQ.

Theorem 2 (Martens & Nowicki [25]). Let f be a non-renorma-
lizable quasiquadratic map and λn = |Tn|/|Tn−1| be its scaling factors. If

∑ √
λn < ∞

then f is stochastic.

This result together with Theorem 1 implies the following combinatorial
criterion:

Theorem 3. Let f be a mapping with recurrent critical point which is
not infinitely renormalizable. Suppose that the first return map of f to its
smallest restrictive interval is a quasiquadratic map and that all but finitely
many levels in the principal nest of this quasiquadratic map are non-central.
Then f is stochastic.

So we are led to consider three subsets of real analytic maps: the set IR
of infinitely renormalizable maps; the set IC of Kupka-Smale mappings
that renormalizes to a quasiquadratic map with infinitely many intervals
of central return and of non-central return in the principal nest and the
set NQ of Kupka-Smale mappings whose renormalization to the smallest
restrictive interval has a periodic attractor but the critical orbit is recurrent
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and non-periodic. The issue now is to prove that in a nontrivial family of
real analytic maps the set of parameter values corresponding to maps in
one of these three subsets has zero Lebesgue measure. For this we will need
some very strong complex analytic tools.

In the special but fundamental case of the quadratic family the third set
is empty and Lyubich proved in [16] that the first two subsets have Lebesgue
measure zero by a strong geometric reason: each interval in the parameter
space contains a sub-interval in the complement of these sets with compa-
rable size. The main strategy in [1] is to prove that the parameter space of
a non-trivial real analytic family of quasi-quadratic maps contains a closed
and countable subset such that for each component of the complement there
exists a quasi-symmetric 3 homeomorphism φ onto a sub-interval of [ 12 , 2]
such that ft is topologically conjugate to qφ(t). Since the above geometric
conditions are preserved by quasi-symmetric homeomorphisms the result
remains true for the family ft. This decomposition of the parameter space
is accomplished by proving that some Banach manifolds of quasiquadratic
maps decomposes in a union of connected codimension one submanifolds,
each in the same conjugacy class, and that this decomposition has a lami-
nation structure with quasi-symmetric holonomy almost everywhere. The
result follows by proving that a non-trivial analytic family in such Banach
manifolds is transversal to the leaves of this lamination except probably in
a countable closed subset of the parameter space.

Let Ωa be the set of points in the complex plane whose distance to the
interval I is at most a. The set Ha of complex analytic maps on Ωa having
a continuous extension to the closure of Ωa is a complex Banach space if
endowed with the supp norm. The subset of real maps F , i.e, F (z) = F (z),
is a real Banach space. The subset Ua of such mappings whose restriction to
the interval I is unimodal is an open subset of an affine subspace together
with the codimension one submanifold of Ulam-Neumann (or Chebyshev)
maps f , i.e, f(0) = 1. Any real analytic family of unimodal maps is an
analytic curve in Ua for some a. The hybrid class of a mapping f ∈ Ua is
the set H(f) of mappings that are topologically conjugate to f and, if f
is regular, has the same multiplier as f in the attracting periodic point.
To each mapping f we associate the complex vector space Tf (H(f)) of all
complex holomorphic vector fields v on Ωa that extend continuously to the
boundary, that vanish, together with their first derivative, at 0 and such
that there exists a quasiconformal vector field α 4 such that the equation

3A homeomorphism h is k-quasi-symmetric if for any consecutive intervals L, R of the

same size, 1
k

<
|h(L)|
|h(R)| < k

4A continuous vector field v ≡ v(z)/dz on an open set U ⊂ C is called K-
quasiconformal if it has locally integrable distributional partial derivatives ∂v and ∂̄v,
and ‖∂̄v‖∞ ≤ K.
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v(z) = α(f(z))− f ′(z)α(z). (1)

is satisfied along the critical orbit. This is clearly a complex vector space.
Using the implicit function theorem it is easy to prove that if some iter-
ate of the critical point of f is a repelling periodic point then the hybrid
class is a real analytic submanifold whose tangent space is the real slice
of the above vector space. To prove that the hybrid classes define a lami-
nation with quasisymmetric transversal holonomy in a neighborhood of an
infinitely renormalizable map one uses the complex bounds of [33], [12],
[17], the implicit function theorem and the lamination structure of germs
of quadratic like maps established in [16].

Now suppose that the mapping f ∈ IC extends to a holomorphic map-
ping on Ωa, the set of points in the complex plane whose distance to the
interval I is at most a. Let Ti be a very deep interval in the principal nest of
the return map to the smallest restrictive interval having a very big scaling
factor and so that all the components of the domain of the landing map to
Ti are much smaller than a. Starting with a round disk U0 with diameter
J0, and using some elementary facts of hyperbolic geometry, we construct
a family Uk, k ≥ 0 of disk neighborhoods of Jk such that fm(k) maps Uk

holomorphically onto U0 and extends to a univalent mapping from Ũk ⊃ Uk

onto a conformal disk Ũ0 ⊃ U0 with the modulus of the annulus Ũ0 \ U0

very big. It follows that the closure of two disks Uk are disjoint and the
image of U0 is either disjoint of Uk or contains the closure of Uk and the
complement is an annulus of big modulus. The restriction of f to the union
of the conformal disks Uk is called in [1], puzzle map and the U ′

ks are called
puzzle pieces. Now this puzzle structure persists under perturbations of f
in the space of complex analytic maps on Ωa having a continuous extension
to the closure of Ωa which is a complex Banach space when endowed with
the supp norm. This means that there exists a neighborhoodN of f and for
each g ∈ N a homeomorphism Hg:N → N such that gm(k) maps Hg(Uk)
onto Hg(U0) univalently and Hg conjugates f with g in the boundary of
the puzzle pieces. Furthermore, for every x ∈ N , the mapping g 7→ Hg(x)
is holomorphic. This is what is called a holomorphic motion of the complex
plane 5 Let Xλ = hλX∗. The construction of this holomorphic motions is
done by observing firstly that since the set of boundary points of the puzzle
pieces in the real line is a hyperbolic set for f it does move holomorphically
in a neighborhood of f . We then construct by hand a holomorphic motion
of a finite number of puzzle pieces. The remaining puzzle pieces are very

5Given a domain V in a complex Banach space E with a base point ∗ and a set
X∗ ⊂ C, a holomorphic motion of X∗ over V is a family of injections hλ : X∗ → C,
λ ∈ V, such that h∗ = Id and hλ(z) is holomorphic in λ for any z ∈ X∗.
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near this moving hyperbolic set and its motion is controlled by hyperbol-
icity. Then we use the fundamental theorem on extension of holomorphic
motion of [34], [3]: a holomorphic motion of any set over a ball on a com-
plex Banach space extends to a holomorphic motion of the whole plane
over a smaller ball. Furthermore the corresponding homeomorphisms are
quasi-conformal and the quasi-conformality constant is uniformly bounded
if we shrink the neighborhood. Using the control on the distortion, an in-
finitesimal pull-back theorem in [1] and the non-existence of invariant line
field in the filled Julia set of the puzzle map, one obtain the following key
estimate.

‖α‖qc ≤ L‖v‖a, v ∈ Tg (2)

where ‖α‖qc is the supremum of the L∞ norm of ∂β for all normalized
quasiconformal vector fields that coincide with α at the critical orbit.

The final step of the proof of the lamination structure is the existence
of a transversal vector, i.e, a holomorphic vector field that does not satisfy
the equation 1. This is an infinitesimal C1 closing-lemma type argument
together with holomorphic approximation.

To extend the result beyond the set of quasiquadratic maps it is nec-
essary to prove that the parameter values in a non trivial analytic family
corresponding to maps in the set NQ has zero Lebesgue measure. In this
case, since the mapping has a periodic attractor that does not attract the
critical point, we cannot relate it to the quadratic family. The strategy in
[2] is to construct a decomposition of the parameter space in neighborhoods
of the original maps corresponding to some dynamical decomposition of the
phase space that persists. To find bounds for the geometry of this decom-
position the main tool is again the theory of holomorphic motions in the
same spirit as in [15], where this strategy was used in the quadratic family.
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