On the Orbit Structure of \mathbb{R}^n -Actions on *n*-Manifolds

José Luis Arraut^{*}

Departamento de Matemática, Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo - Campus de São Carlos, Caixa Postal 668, 13560-970 São Carlos SP, Brazil E-mail: arraut@icmc.usp.br

and

Carlos Maquera[†]

Departamento de Matemática, Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo - Campus de São Carlos, Caixa Postal 668, 13560-970 São Carlos SP, Brazil E-mail: cmaquera@icmc.usp.br

Submitted: June 22, 2003 Accepted: July 1, 2004

Dedicated to Professor Sotomayor 60^{th} birthday

We begin by proving that a locally free C^2 -action of \mathbb{R}^{n-1} on $T^{n-1} \times [0, 1]$ tangent to the boundary and without compact orbits in the interior has all non-compact orbits of the same topological type. Then, we consider the set $A^2(\mathbb{R}^n, N)$ of C^2 -actions of \mathbb{R}^n on a closed connected orientable real analytic *n*-manifold *N*. We define a subset $\mathscr{A}_n \subset A^r(\mathbb{R}^n, N)$ and prove that if $\varphi \in \mathscr{A}_n$ has a $T^{n-1} \times \mathbb{R}$ -orbit, then every *n*-dimensional orbit is also a $T^{n-1} \times \mathbb{R}$ -orbit. The subset \mathscr{A}_n , is big enough to contain all real analytic actions that have at least one *n*-dimensional orbit. We also obtain information on the topology of *N*.

Key Words: Action of \mathbb{R}^n , orbit structure.

^{*} Partially supported by FAPESP of Brazil Grant 00/05385-8.

[†] Partially supported by FAPESP of Brazil Grant 99/11311-8 and 02/09425-0.

¹⁶⁹

1. INTRODUCTION

In this paper we begin by proving the following result that is a generalization of Corollary 2.6 in [5].

THEOREM A. ψ be a locally free C^2 -action of \mathbb{R}^{n-1} on $T^{n-1} \times [0,1]$, $n \geq 2$, tangent to the boundary. If there are no compact orbits in the interior, then all non-compact orbits have the same topological type.

Due to the theorem below, there is no restriction in assuming that the manifold with boundary, in Theorem A, is $T^{n-1} \times [0, 1]$.

THEOREM B (Chatelet - Rosenberg, [4]). Let N be a compact orientable n-manifold with non-empty boundary. Suppose that ψ is a C^2 locally free action of \mathbb{R}^{n-1} on N, then N is diffeomorphic to $T^{n-1} \times [0, 1]$.

N will denote a closed connected orientable real analytic *n*-manifold with $n \geq 2$. Let \mathcal{H}_n be the family of orientable *n*-manifolds obtained by glueing two copies of $T^{n-2} \times D^2$. \mathcal{H}_2 contains only S^2 and \mathcal{H}_3 consists of 3-manifolds that admit a Heegaard splitting of genus one. Denote by $A^r(\mathbb{R}^n, N)$ the set of C^r -actions of \mathbb{R}^n on N, $2 \leq r \leq \omega$, with C^r infinitesimal generators. It was proved in [2] that if $\varphi \in A^{\omega}(\mathbb{R}^n, N)$, then all *n*-dimensional orbits of φ have the same topological type, i.e., are $T^k \times \mathbb{R}^{n-k}$ -orbits for some fixed k, $0 \leq k \leq n$. Moreover, if the type is $T^{n-1} \times \mathbb{R}$, then N is either homeomorphic to T^n or $N \in \mathcal{H}_n$. It is not difficult to construct counterexamples of this results when $r = \infty$. In this paper we define a subset $\mathscr{A}_n \subset A^2(\mathbb{R}^n, N)$, see Definition 2, which contains all actions $\varphi \in A^{\omega}(\mathbb{R}^n, N)$ that have at least one *n*-dimensional orbit. Then, we prove:

THEOREM C. If $\varphi \in \mathscr{A}_n$ has one $T^{n-1} \times \mathbb{R}$ -orbit, then every ndimensional orbit is also a $T^{n-1} \times \mathbb{R}$ -orbit. Moreover,

(1) if $\operatorname{Sing}_{n-2}^{c}(\varphi) = \emptyset$, then N is a T^{n-1} bundle over S^{1} ;

(2) if $\operatorname{Sing}_{n-2}^{c}(\varphi) \neq \emptyset$, then $\operatorname{Sing}_{n-2}^{c}(\varphi)$ is the union of two T^{n-2} -orbits and $N \in \mathcal{H}_{n}$.

The connection between the two main results is that the first is used in the proof of third. It would be interesting to obtain analogous results for actions in $A^2(\mathbb{R}^n, N)$ that have one $T^k \times \mathbb{R}^{n-k}$ -orbit with $0 \le k < n-1$.

ACKNOWLEDGMENT

We are grateful to the Referee for the suggestions that let us to improve the presentation of the paper.

2. PRELIMINARIES AND PROOF OF RESULTS

M will denote a closed connected and orientable real analytic *m*-manifold. A C^r -action of a Lie group G on M is a C^r -map $\varphi: G \times M \to M, 1 \leq r \leq \omega$, such that $\varphi(e, p) = p$ and $\varphi(gh, p) = \varphi(g, \varphi(h, p))$, for each $g, h \in G$ and $p \in M$, where e is the identity in G. $\mathcal{O}_p = \{\varphi(g, p); g \in G\}$ is called the φ -orbit of p. $G_p = \{g \in G; \varphi(g, p) = p\}$ is called the *isotropy group* of p. For each $p \in M$ the map $g \mapsto \varphi(g, p)$ induces an injective immersion of the homogeneous space G/G_p in M with image \mathcal{O}_p . When $G = \mathbb{R}^n$, the possible φ -orbits are injective immersions of $T^k \times \mathbb{R}^\ell$, $0 \leq k + \ell \leq n$, where $T^k = S^1 \times \cdots \times S^1$, k times.

For each $0 \leq i \leq n-1$ let $\operatorname{Sing}_i(\varphi) = \{p \in M; \dim \mathcal{O}_p = i\}$ and $\operatorname{Sing}(\varphi) = \bigcup_{i=0}^{n-1} \operatorname{Sing}_i(\varphi)$. If $p \in \operatorname{Sing}(\varphi)$, \mathcal{O}_p is called a *singular orbit* and when $p \in \operatorname{Sing}_0(\varphi)$, \mathcal{O}_p is also called a *point orbit* and p a *fixed point* by φ . We also write $p \in \operatorname{Sing}_i^c(\varphi)$, $i = 1, \ldots, n-1$, when \mathcal{O}_p is a T^i -orbit. If $\operatorname{Sing}(\varphi) = M$, we call φ a *singular action*.

For each $w \in \mathbb{R}^n \setminus \{0\} \varphi$ induces a C^r -flow $(\varphi_w^t)_{t \in \mathbb{R}}$ given by $\varphi_w^t(p) = \varphi(tw, p)$ and its corresponding C^{r-1} -vector field X_w defined by $X_w(p) = D_1\varphi(0, p) \cdot w$. If $\{w_1, \ldots, w_n\}$ is a base of \mathbb{R}^n the associated vector fields X_{w_1}, \ldots, X_{w_n} determine completely the action φ and are called a set of infinitesimal generators of φ . Note that $[X_{w_i}, X_{w_j}] = 0$ for any two of them.

DEFINITION 1. Let $\varphi \in A^r(\mathbb{R}^n, N)$ and $p \in N$.

a) φ is of type j at p, $0 \le j \le n$, if there exists a neighborhood V of p such that the union of the j-dimensional orbits of $\varphi|_V$ form an open and dense subset of V.

b) φ is *j*-finite at *p*, if there exists a neighborhood *V* of *p* that intersects only a finite number of *j*-dimensional orbits.

Let $V \subset N$. We will denote the boundary of V in N by Front(V).

DEFINITION 2. We say that $\varphi \in \mathscr{A}_n \subset A^2(\mathbb{R}^n, N)$, where dim N = n, if φ is of type n and n-finite at each $p \in \operatorname{Sing}_i(\varphi)$ with $0 \leq i \leq n - 3$, $\operatorname{Sing}_{n-2}(\varphi) = \operatorname{Sing}_{n-2}^c(\varphi)$ and for each $p \in \operatorname{Sing}_{n-2}^c(\varphi)$ there exists a neighborhood V_p of \mathcal{O}_p in N that satisfies one of the following two properties:

(1) V_p is φ -invariant, homeomorphic to $T^{n-2} \times D^2$, where D^2 is an open disk, $V_p \cap (\bigcup_{i=1}^{n-2} \operatorname{Sing}_i(\varphi)) = \mathcal{O}_p$ and $\operatorname{Front}(V_p)$ is either a T^{n-1} -orbit or a T^{n-2} -orbit.

(2) V_p contains at most a finite number of *i*-dimensional orbits with i = n - 1, n.

Infinitesimal generators adapted to a T^{n-1} -orbit. Assume that \mathcal{O}_p is a T^{n-1} -orbit of $\varphi \in A^r(\mathbb{R}^n, N)$ and let G_p be its isotropy group.

Call G_p^0 the connected component of G_p that contains the origin and let H be a (n-1)-dimensional subspace of \mathbb{R}^n such that $\mathbb{R}^n = H \oplus G_p^0$. Note that $G_p \cap H$ is isomorphic to \mathbb{Z}^{n-1} . Let $\{w_1, \ldots, w_n\}$ be a base of \mathbb{R}^n such that $\{w_1, \ldots, w_{n-1}\}$ is a set of generators of $G_p \cap H$, $w_n \in G_p^0$ and write $X_i = X_{w_i}; i = 1, \ldots, n$. Note that if $q \in \mathcal{O}_p$, then for every $k \in \{1, \ldots, n-1\}$ the orbit of X_k by p is periodic of period one and also $X_n(q) = 0$. We shall say that X_1, \ldots, X_n is a set of *infinitesimal generators adapted to* \mathcal{O}_p . The action $\psi_{\varphi} \in A^r(\mathbb{R}^{n-1}, N), r \geq 2$, with infinitesimal generators X_1, \ldots, X_{n-1} will be called the *action induced* by φ and \mathcal{O}_p . The understanding of the holonomy of \mathcal{O}_p as an orbit of ψ_{φ} will bring light on the orbit structure of φ in the neighborhood of \mathcal{O}_p .

Let \mathcal{O}_p be a T^{n-1} -orbit of $\psi \in A^r(\mathbb{R}^{n-1}, N)$, $\{w_1, \ldots, w_{n-1}\}$ be a set of generators of its isotropy group G_p and $X_1 = X_{w_1}, \ldots, X_{n-1} = X_{w_{n-1}}$. For each $k \in \{1, \ldots, n-1\}$, let $\psi_k \in A^r(\mathbb{R}^{n-2}, N)$ be the action defined by $X_1, \ldots, X_{k-1}, X_{k+1}, \ldots, X_{n-1}$. Put a Riemannian metric on N and let ξ be the norm one vector field defined in a neighborhood of \mathcal{O}_p that is orthogonal to the orbits of ψ . Let S_k be the circle orbit of X_k through $p, k = 1, \ldots, n-1$, and consider the ring $A = S^1 \times (-1, 1)$ with coordinates (θ, x) . Define $f_k : A \to N$ by $f_k(\theta, x) = \xi^x \circ X_k^{\theta}(p)$ and note that $f_k(S^1 \times \{0\}) = S_k$ and $f_k(0,0) = p$. Fix $k \in \{1,\ldots,n-1\}$. Since S_k , as a submanifold of \mathcal{O}_p , is transversal to the orbits of ψ_k , there exists $\varepsilon > 0$ such that f_k restricted to $A_{\varepsilon} = S^1 \times (-\varepsilon, \varepsilon)$ is an embedding transversal to the orbits of ψ_k . Let $D_k^{n-2}(\delta) = \{t = (t_1,\ldots,t_{k-1},t_{k+1},\ldots,t_{n-1}); t_j \in (-\delta,\delta)\}$ and consider the C^r -map $h_k : A_{\varepsilon} \times D_k^{n-2}(1) \to N$ defined by $h_k(\theta, x, t) = \psi_k(t, f_k(\theta, x))$. There exists $\delta > 0$ such that h_k restricted to $A_{\varepsilon} \times D_k^{n-2}(\delta)$ is a diffeomorphism onto its image V_k . Moreover, in these coordinates the infinitesimal generators of φ take the form:

$$X_{i}(\theta, x, t) = \frac{\partial}{\partial t_{i}}, \quad i = 1, \dots, k - 1, k + 1, \dots, n - 1$$
$$X_{k}(\theta, x, t) = \sum_{k \neq j=1}^{n-1} a_{jk}(\theta, x) \frac{\partial}{\partial t_{j}} + b_{k}(\theta, x) \frac{\partial}{\partial \theta} + c_{k}(\theta, x) \frac{\partial}{\partial x}.$$
(1)

A map like h_k will be called a *cylindrical coordinate system adapted to* \mathcal{O}_p at S_k . The vector field

$$\widehat{X}_k = b_k(\theta, x) \frac{\partial}{\partial \theta} + c_k(\theta, x) \frac{\partial}{\partial x}$$

defines a local flow on A_{ε} having $S^1 \times \{0\} \subset A_{\varepsilon}$ as an orbit. When $\psi = \psi_{\varphi}$ for some $\varphi \in A^r(\mathbb{R}^n, N)$, then we also have

$$X_n(\theta, x, t) = \sum_{k \neq j=1}^{n-1} a_{jk}(\theta, x) \frac{\partial}{\partial t_j} + d_k(\theta, x) \frac{\partial}{\partial \theta} + e_k(\theta, x) \frac{\partial}{\partial x}$$

172

The vector fields \widehat{X}_k and $\widehat{X}_n = d_k \partial / \partial \theta + e_k \partial / \partial x$ define a local C^r -action $\widehat{\varphi}_k$ of \mathbb{R}^2 on A having $S^1 \times \{0\}$ as a singular orbit.

The ring $\Sigma_k = f_k(A_{\varepsilon})$ is transversal to the orbits of ψ and so is $J = \bigcap_{k=1}^{n-1} \Sigma_k$. Note that $p \in J$. The vector fields $\widehat{Y}_k = (f_k)_* \widehat{X}_k$ and $\widehat{Y}_n = (f_k)_* \widehat{X}_n$ are tangent to Σ_k and define a local C^r -action of \mathbb{R}^2 on Σ_k . The map $\alpha_k : [0,1] \to \Sigma_k$ given by $\alpha_k(\tau) = \widehat{Y}_k^{\tau}(p)$ is a parametrization of S_k . Let $\omega_k : (J,p) \to (J,p)$ be the Poincaré map of α_k and

$$\operatorname{Hol}: \pi_1(\mathcal{O}_p, p) \cong \mathbb{Z}^k \to \operatorname{Diff}^r(J, p) \tag{2}$$

the holonomy of \mathcal{O}_p as a leaf of the foliation defined by the orbits of ψ . Then, $\omega_k = \operatorname{Hol}([\alpha_k])$. Write J as the union of two intervals $J^+ \cup J^-$ with $J^+ \cap J^- = \{p\}$. Since \mathcal{O}_p is two-sided in N, each ω_i leaves $J^+ (J^-)$ invariant.

Remark 3. Note that $\{X_1, \ldots, X_{k-1}, \widehat{X}_k, X_{k+1}, \ldots, X_{n-1}, \widehat{X}_n\}$ define a local \mathbb{R}^n -action $\widehat{\varphi}$ on $A \times D_k^{n-2}(\varepsilon)$ and that $\mathcal{O}_{(\theta,x,t)}(\widehat{\varphi}) = \mathcal{O}_{(\theta,x,t)}(h_k \circ \varphi \circ h_k^{-1})$ for each $(\theta, x, t) \in A \times D_k^{n-2}(\varepsilon)$.

The local C^r -action $\widehat{\varphi}_k$, $k = 1, \ldots, n-1$, of \mathbb{R}^2 on A and the next lemma will be used in the proof of Proposition 9.

LEMMA 4. Let \mathcal{O}_p be a T^{n-1} -orbit of $\psi \in A^2(\mathbb{R}^{n-1}, N)$ and assume that ψ has no T^{n-1} -orbits, aside \mathcal{O}_p , in a neighborhood V of \mathcal{O}_p . Then there exists a neighborhood I^+ of p in J^+ such that for each $k \in \{1, \ldots, n-1\}$ one of the following statements is verified:

(1) $\omega_k|_{I^+} = id$; *i.e.*, every \widehat{Y}_k -orbit near S_k is periodic.

(2) Either $\omega_k|_{I^+}$ or $(\omega_k|_{I^+})^{-1}$ is a topological contraction, i.e., every \widehat{Y}_k -orbit near S_k spirals towards S_k .

Proof. We give the proof for k = n - 1; the other cases are similar. Assume that ω_{n-1} does not satisfy (2). Then, there is a sequence $\{q_l \in J^+; l \in \mathbb{N}\}$ such that $\omega_{n-1}(q_l) = q_l$ and $\lim_{l\to\infty} q_l = p$. We claim that p is an isolated fixed point of ω_j for at least one $j \in \{1, \ldots, n-2\}$. Otherwise, for each $1 \leq j \leq n-2$ there exists a sequence $\{q_{jk} \in J^+; k \in \mathbb{N}\}$ such that $\omega_j(q_{jk}) = q_{jk}$ and $\lim_{k\to\infty} q_{jk} = p$. If $q_{jk} \in V$ and $\omega_i(q_{jk}) = q_{jk}$ for each $i \in \{1, \ldots, n-1\}$, then the ψ -orbit of q_{jk} is a T^{n-1} -orbit. Therefore, for each $q_{jk} \in V$ there exists $i \neq j$ such that $\omega_i(q_{jk}) \neq q_{jk}$. Let $q_k = \lim_{m\to\infty} \omega_i^m(q_{jk}) \neq p$. It follows from the commutativity of ω_i and ω_j that $q_k \in \operatorname{Fix}(\omega_i) \cap \operatorname{Fix}(\omega_j)$. If $\omega_\ell(q_k) \neq q_k$, then $p \neq \lim_{m\to\infty} \omega_\ell^m(q_k) \in \operatorname{Fix}(\omega_\ell) \cap \operatorname{Fix}(\omega_j)$ with $q \neq p$. But, this would implie that \mathcal{O}_q is a T^{n-1} -orbit, contradicting one of the hypothesis. Thus, it exists $j \in \{1, \ldots, n-2\}$ such that p is an isolated fixed point of ω_j , i.e., there exists a neighborhood I^+ of p in J^+ such that $I^+ \cap \text{Fix}(\omega_j) = \{p\}$. By N. Kopell Lemma [6], $\omega_{n-1}|_{I^+} = id$. Hence, ω_{n-1} satisfies (1).

In the proof of Lemma 4 it is not essential that ω_k be the Poincaré map of the \widehat{Y}_k -orbit S_k . It is only used that the holonomy of \mathcal{O}_p is abelian.

Proof (of Theorem A). It is a classical result in foliation theory that the leave structure of a foliation in the neighborhood of a compact leaf is determined by the holonomy of such leaf. The holonomy of the orbit $T^{n-1} \times \{0\}$, given in Lemma 4, guarantees that there exist $d \in (0,1)$ and $s \in \{0, \ldots, n-2\}$ such that every ψ -orbit by points in $T^{n-1} \times [0,d)$ is homeomorphic to $T^s \times \mathbb{R}^{n-s-1}$. We claim that the saturated V of $T^{n-1} \times [0,d)$ by ψ is equal to $T^{n-1} \times [0,1)$ and this would conclude the proof. In fact, if $V \neq T^{n-1} \times [0,1)$, then $\operatorname{Front}(V) \cap T^{n-1} \times \{1\} = \emptyset$. Let $C \neq T^{n-1} \times \{0\}$ be a connected component of $\operatorname{Front}(V)$. C is a compact ψ -invariant subset and contains a minimal subset μ . By a theorem of Sacksteder [7, Theorem 7], μ can not be an exceptional minimal set. Thus μ is a compact orbit. This contradiction proves that $V = T^{n-1} \times [0, 1)$.

Proposition 5 below plays an important role in the proof of Theorem C and to prove it we have to prove first Lemma 7.

PROPOSITION 5. If $\varphi \in A^2(\mathbb{R}^n, N)$ has an orbit \mathcal{O} diffeomorphic to $T^{n-1} \times \mathbb{R}$, then Front (\mathcal{O}) is the union of at most two T^k -orbits with $k \in \{n-2, n-1\}$.

Theorem 6 below will be used in the proof of Lemma 7.

THEOREM 6 ([1]). Let N be a closed and connected n-manifold, $n \ge 3$, and G a Lie group diffeomorphic to \mathbb{R}^{n-1} acting in class C^2 . Assume that the set K of singular points of the action is a non-empty finite subset. Then:

- (i) K contains only one point,
- (ii) N is homeomorphic to S^n .

LEMMA 7. Let $\psi \in A^2(\mathbb{R}^{m-1}, M^m)$, $m \geq 3$, and $p \in Fix(\psi)$ be an isolated singularity. Then, there exists a neighborhood V of p in M^m which does not contain any T^{m-1} -orbit.

Proof. Suppose the assertion of the lemma is false. Let V be a neighborhood of p homeomorphic to open n-disk such that $V \cap \operatorname{Sing}(\psi) = \{p\}$ and assume that there is a T^{m-1} -orbit $\mathcal{O} \subset V$. $V \setminus \mathcal{O} = C_1 \cup C_2$, where C_1 and C_2 are disjoint connected components. Assume that $\operatorname{Front}(C_1) = \mathcal{O}$. There are two possibilities, either $p \in C_1$ or $p \in C_2$. If $p \in C_2$, then ψ is locally free on $N = C_1 \cup \mathcal{O}$ and, by Theorem B, N should be homeomorphic to $T^{m-1} \times [0, 1]$. This contradicts the fact that $\operatorname{Front}(C_1) = \mathcal{O}$. If

 $p \in C_1$, then ψ is an action on N having p as the only singular point. Let P be the double of N and $\xi \in A^2(\mathbb{R}^{m-1}, P)$ such that ξ restricted to N is equal to ψ . Then ξ has exactly two singular points and this contradicts the Theorem 6.

Proof (Proof of Proposition 5). Front(\mathcal{O}) has at most two connected components and each one of them contains at least a compact orbit. Let C be a connected component and $\mathcal{O}_0 \subset C$ a T^k -orbit with isotropy group G_0 . We will show that $C = \mathcal{O}_0$. Assume, for a moment, that C contains another orbit \mathcal{O}_1 and take $p \in \mathcal{O}_0$ and $q \in \mathcal{O}_1$. Let u_1, \ldots, u_{n-1} be a set of generators of G, the isotropy group of \mathcal{O} . Then, all X_{u_i} -orbits through \mathcal{O} are periodic of period one. Even more, there are sequences $\{p_j \in \mathcal{O}; j \in \mathbb{N}\}$ and $\{t_{ij} \in [0, 1]; i = 1, 2 \ldots, n-1 \text{ and } j \in \mathbb{N}\}$ such that

$$\lim_{j \to \infty} p_j = p \text{ and } \lim_{j \to \infty} \varphi \Big(\sum_{i=1}^{n-1} t_{ij} u_i, p_j \Big) = q.$$

For each i = 1, ..., n-1, we can assume, extracting a subsequence if necessary, that $t_{ij} \to t_i \in [0, 1]$. Then $\varphi(\sum_{i=1}^{n-1} t_i u_i, p) = q$, which contradicts the fact that $\sum_{i=1}^{n-1} t_i u_i \in G_0$.

Now, we will show that $k \in \{n-2, n-1\}$. Assume, for a moment, that k < n-2, then m = n - k > 2. Let $p \in \mathcal{O}_0$ and $\{X_1, \ldots, X_n\}$ be a set of infinitesimal generators of φ such that the orbit through pof X_i , $i = 1, \ldots, k$, is periodic and $X_i(p) = 0$, $i = k + 1, \ldots, n$. Let $h: V_p \to D_{\varepsilon}^n$ be a chart of N such that if $(\theta, x) \in D_{\varepsilon}^n = D_{\varepsilon}^k \times D_{\varepsilon}^{n-k}$, then the vector fields X_i in this chart can be writen

$$X_{i}(\theta, x) = \frac{\partial}{\partial \theta_{i}}, \quad i = 1, \dots, k$$

$$X_{k+i}(\theta, x) = \sum_{j=1}^{k} a_{ji}(x) \frac{\partial}{\partial \theta_{j}} + \sum_{j=k+1}^{n} a_{ji}(x) \frac{\partial}{\partial x_{j}}, \quad i = 1, \dots, m$$
(3)

A chart like the one above is called *adapted to* \mathcal{O}_0 *at p*. The vector fields

$$\widehat{X}_i = \sum_{j=k+1}^n a_{ji}(x)\frac{\partial}{\partial x_j}, \quad i = 1, \dots, m,$$

define a local action φ_T of \mathbb{R}^m on D_{ε}^m having $0 \in D_{\varepsilon}^m$ as a fixed point. The image of $\mathcal{O} \cap V_p$ by h intersects D^m in a $T^{m-1} \times \mathbb{R}$ -orbit $\widehat{\mathcal{O}}$ of φ_T such that $0 \in D^m$ is a connected component of $\operatorname{Front}(\widehat{\mathcal{O}})$ and, therefore, an isolated singular point of φ_T . The generators u_1, \ldots, u_{m-1} of the isotropy group of $\widehat{\mathcal{O}}$ define a local action of \mathbb{R}^{m-1} on D^m and this action has T^{m-1} -orbits arbitrarily close to 0. This contradicts Lemma 7 and proves that $k \in \{n-2, n-1\}$.

The closure of $V \subset N$, in N, is denoted by cl(V).

COROLLARY 8. Let \mathcal{O} be an T^{n-1} -orbit of $\varphi \in A^1(\mathbb{R}^n, N)$ and V be a neighborhood of \mathcal{O} such that $V \setminus \mathcal{O}$ has exactly two connected components V_1 and V_2 . Assume that there exist points $p, q \in V_1$ such that dim $\mathcal{O}_p = n$, $\mathcal{O}_p \neq \mathcal{O}_q$ and $\operatorname{cl}(\mathcal{O}_p) \supset \mathcal{O} \subset \operatorname{cl}(\mathcal{O}_q)$. Then, \mathcal{O}_p is not a $T^{n-1} \times \mathbb{R}$ -orbit.

PROPOSITION 9. Assume that $\varphi \in A^2(\mathbb{R}^n, N)$ with $n \geq 2$. If \mathcal{O} is a $T^k \times \mathbb{R}^{n-k}$ -orbit with $k \leq n-2$, then $\operatorname{cl}(\mathcal{O})$ can not contain a T^{n-1} -orbit.

Let us prove this proposition. If $X \in \mathfrak{X}^r(M^2)$, let $\mathcal{C}(X)$ be the set of diffeomorphisms $f \in \text{Diff}^r(M^2)$ that preserve orbits of X. Assume that the orbit γ_p of X by p is periodic of period τ . Let Σ be a cross section to X at p and $P_X : (\Sigma, p) \to (\Sigma, p)$ be Poincaré map.

PSfrag replacements

$$g(\Sigma_p \cap V_p)$$

FIG. 1.

LEMMA 10. There exists a cross section $\Sigma_p \subset \Sigma$ and a neighborhood $\mathscr{V} \subset \text{Diff}^r(M^2)$ of the identity map in the C^0 topology such that every $f \in \mathscr{C}(X) \cap \mathscr{V}$ induces a local diffeomorphism $f_X : (\Sigma_p, p) \to (\Sigma_p, p)$ of class C^r , with $f_X \circ P_X = P_X \circ f_X$.

Proof. Let $\tau > 0$ be the period of γ_p . We can assume that $\Sigma = h^{-1}(\{0\} \times (-1,1))$, where $h: V \to (-1,1)^2$ is a flow box for X at p. Let $\pi: V \to \Sigma$ be the projection along of the orbits of X and recall that $P_X = \pi \circ X^{\tau}$. Put $U = h^{-1}((-1/2, 1/2)^2)$ and $\Sigma_{\varepsilon} = h^{-1}(\{0\} \times (-\varepsilon, \varepsilon))$. There exists a neighborhood \mathscr{V} of $id \in \text{Diff}^r(M^2)$, in the C^0 topology, and $\varepsilon > 0$ such that $f(U) \subset V$ and $f(\Sigma_{\varepsilon}) \subset U$ for each $f \in \mathscr{V}$ and also $X^{\tau}(\Sigma_{\varepsilon}) \subset U$. Choose $\Sigma_p = \Sigma_{\varepsilon}$. For each $f \in \mathcal{V}$ there is defined a map $f_X : \Sigma_p \to \Sigma$ by $f_X(q) = \pi(f(q))$. We are going to show that $f_X \circ P_X = P_X \circ f_X$. Let $[x, y] \subset \Sigma$ be the arc with extremes x and y and define $x \leq y$ if $[p, x] \subseteq [p, y]$. Assume that $P_X(q) \leq q$ for every $q \in \Sigma_p$. For a fixed $f \in \mathcal{V}$ there are two possibilities $f_X(q) \geq q$ or $f_X(q) \leq q$. Let us consider the case $P_X(q) \leq q$ and $f_X(q) \geq q$. If $P_X(q) = q$, i.e., the orbit of q by X is periodic, then the orbit by $f_X(q)$ is also closed, therefore $f_X \circ P_X(q) = f_X(q) = P_X \circ f_X(q)$. If $P_X(q) < q$, then $f_X(P_X(q))$ belongs to the orbit of X by $f_X(q)$ and $P_X(q) \leq f_X(P_X(q)) < f_X(q)$. Thus, $f_X \circ P_X(q) = P_X \circ f_X(q)$. The other cases are analogous.

FIG. 2.

Proof (of Proposition 9). We begin proving this proposition for n = 2. Let $\varphi \in A^2(\mathbb{R}^2, N)$ and assume that there exist an \mathbb{R}^2 -orbit P such that its closure, cl(P), contains an S¹-orbit \mathcal{O}_0 . Let U be neighborhood of \mathcal{O}_0 homeomorphic to a cylinder such that every φ -orbit through a point in U has dimension greater or equal to one. It exists due to the fact that N is orientable, see Figure 2. If $U \setminus \mathcal{O}_0 = U_1 \cup U_2$, then either $P \subset U_1$ or $P \subset U_2$. Assume that $P \subset U_1$. Let G_0 be the isotropy group of \mathcal{O}_0 and $X_i = X_{w_i}$, i = 1, 2, where $\{w_1, w_2\}$ is a set of generators of G_0 such that $w_1 \notin G_0^0$ and $w_2 \in G_0^0$. Note that $X_2|_{\mathcal{O}_0} \equiv 0$ and \mathcal{O}_0 is a periodic orbit of X_1 . Let Σ be a transversal section to X_1 at $p \in \mathcal{O}_0$ and $P_{X_1}: (\Sigma, p) \to (\Sigma, p)$ be the Poincaré. There exists a neighborhood Σ_0 of p in $\Sigma \cap cl(U_1)$ such that P_{X_1} has no fixed points in Σ_0 . Otherwise, there would be circle orbits in U_1 arbitrarily close to \mathcal{O}_0 not allowing the plane P to approach \mathcal{O}_0 . Thus, either $P_{X_1|_{\Sigma_0}}$ or $(P_{X_1|_{\Sigma_0}})^{-1}$ is a topological contraction. Then, there exists at least one \mathbb{R} -orbit \mathcal{O} contained in Front(P) such that $cl(\mathcal{O}) \supset \mathcal{O}_0$. This implies that $G_{\mathcal{O}}$, the isotropy group of \mathcal{O} , coincides with G_0^0 . Let \mathscr{V} be as in the Lemma 10 and $\delta > 0$ such that $X_2^t \in \mathscr{V}$ for all $t \in (-\delta, \delta)$. Fix a $t \neq 0$ in the interval $(-\delta, \delta)$ and put $f = X_2^t$. It follows from the commutativity of X_1 with X_2 that

 $f \in \mathcal{C}(X_1)$. Note that $f_{X_1}(q) = q$ if $q \in \mathcal{O} \cap \Sigma_0$ and that $f_{X_1}(q) \neq q$ if $q \in P$. By Lemma 10, $f_{X_1} \circ P_{X_1} = P_{X_1} \circ f_{X_1}$ and by N. Kopell Lemma $f_{X_1} = id$. This contradiction completes the proof in the case n = 2.

Assume now that $n \geq 3$ and that there exist a $T^k \times \mathbb{R}^{n-k}$ -orbit P, with k < n-1, such that cl(P) contains a T^{n-1} -orbit \mathcal{O}_0 . If G_0 and G_P are the isotropy groups of \mathcal{O}_0 and P, respectively, then $G_P \subset G_0$. Let X_1, \ldots, X_n the infinitesimal generators adapted to \mathcal{O}_0 such that the linear (n-2)-subspace H of \mathbb{R}^n generated by $\{w_1, \ldots, w_{n-2}\}$ contains G_P . There exists a neighborhood V of \mathcal{O}_0 such that the action $\psi_{\varphi} \in$ $A^2(\mathbb{R}^{n-1}, N)$ induced by φ and \mathcal{O}_0 , i.e., generated by X_1, \ldots, X_{n-1} , has not T^{n-1} -orbits inside V. Otherwise, by Corollary 8, either P is an $T^{n-1} \times \mathbb{R}$ -orbit or $\mathcal{O}_0 \not\subset \operatorname{cl}(P)$. If \mathcal{O} is a $T^s \times \mathbb{R}^{n-s-1}$ -orbit of φ such that $\mathcal{O} \subset \mathrm{cl}(P)$, then $\mathcal{O}_0 \subset \mathrm{cl}(\mathcal{O})$ and s < n-1. Consequently, if $G_{\mathcal{O}}$ is the isotropy group of \mathcal{O} , then $G_{\mathcal{O}} \subset G_0$ and $G_{\mathcal{O}}^0 = G_0^0$. Since k, s < n - 1, we can assume that $H \cap G_{\mathcal{O}}$ is isomorphic to \mathbb{Z}^s and $w_{n-1}, w_n \notin H$. Let $p \in \mathcal{O}_0$ and consider $\omega_1, \ldots, \omega_{n-1}$ as in the proof of Lemma 4. By Lemma 4 ω_{n-1} (or ω_{n-1}^{-1}) is a topological contraction. Therefore, if $q \in$ $\Sigma_{n-1} \cap P$, then $\mathcal{O}_{h_{n-1}^{-1}(q)}(\widehat{\varphi}_{n-1})$ is a \mathbb{R}^2 -orbit in A that contains the $\widehat{\varphi}_{n-1}\text{-orbit }S^1\times\{0\}$ in its closure. By the first part of the proof this is a contradiction.

Remark 11. Let $\varphi \in \mathscr{A}_n$, $p \in \operatorname{Sing}_{n-2}^c(\varphi)$ and V_p a neighborhood of \mathcal{O}_p .

(a) Assume that V_p satisfies (1) and $\operatorname{Front}(V_p)$ is a T^{n-1} -orbit. Since $r \geq 2$, it follows by Proposition 9, that there is no $T^s \times \mathbb{R}^{n-s}$ -orbit with $s \neq n-1$ inside V_p . Thus, we can say that one of the following possibilities is satisfied:

- (a1) $V_p \setminus \mathcal{O}_p$ is a $T^{n-1} \times \mathbb{R}$ -orbit;
- (a2) V_p contains infinitly many $T^{n-1} \times \mathbb{R}$ -orbits;
- (a3) $V_p \setminus \mathcal{O}_p$ contains only (n-1)-dimensional orbits.

(b)Assume now that V_p satisfies (2), then:

(b1) if there is one $T^s \times \mathbb{R}^{n-s-1}$ -orbit, $s \neq n-1$, such that its closure contains \mathcal{O}_p , then every *n*-orbit in $V_p \setminus \mathcal{O}_p$ is not homeomorphic to $T^{n-1} \times \mathbb{R}$;

(b2) if there are no $T^s \times \mathbb{R}^{n-s-1}$ -orbits, $s \neq n-1$, which contain \mathcal{O}_p in its closure, then there is only one *n*-orbit and it is homeomorphic to $T^{n-1} \times \mathbb{R}$.

PROPOSITION 12. Let \mathcal{O}_0 be a T^{n-1} -orbit of $\varphi \in A^2(\mathbb{R}^n, N)$. Then, there exists a φ -invariant neighborhood V_0 of \mathcal{O}_0 , such that every connected component U of $V_0 \setminus \mathcal{O}_0$ satisfies one of the following properties: (1) U is an $T^{n-1} \times \mathbb{R}$ -orbit;

(2) U contains infinitely many T^{n-1} -orbits approaching \mathcal{O}_0 and every n-dimensional orbit inside U is a $T^{n-1} \times \mathbb{R}$ -orbit;

(3) There exist $s \in \{0, 1, ..., n-2\}$ such that U is the union of $T^s \times \mathbb{R}^{n-s-1}$ -orbits.

Proof. By the continuity of the infinitesimal generators of φ there is a neighborhood V of \mathcal{O}_0 such that every orbit by points in V_0 has dimension at least n-1. Since $r \geq 2$, it follows from Proposition 9 that there are no $T^s \times \mathbb{R}^{n-s}$ -orbits, $s \neq n-1$ approaching \mathcal{O}_0 . Therefore, if U is one connected component of $V \setminus \mathcal{O}_0$, then there are two possibilities:

(i) There are infinitely many n-orbits in U approaching F. In this case we will show that (2) is verified. The other possibility is that there exists a sequence $\{\mathcal{O}_i\}_{i\in\mathbb{N}}$ of n-dimensional orbits inside U, which are not homeomorphic to $T^{n-1} \times \mathbb{R}$ and that approach \mathcal{O}_0 . Since $\operatorname{cl}(\mathcal{O}_i) \cap \operatorname{Sing}_j(\varphi) = \emptyset$ for each $j \in \{0, \ldots, n-2\}$, then the compact set $\operatorname{cl}(\mathcal{O}_i) \setminus \mathcal{O}_i$ is the union of (n-1)-dimensional orbits, of which at least one is compact, this contradicts the Proposition 9.

(ii) There are only a finite number of n-orbits in U. If it happens to exist a $T^{n-1} \times \mathbb{R}$ -orbit \mathcal{O} such that $\operatorname{Front}(\mathcal{O}) \supset \mathcal{O}_0$, then we can assume that $U = \mathcal{O}$, therefore (1) is verified. If there is no such $T^{n-1} \times \mathbb{R}$ -orbit, then we can assume that the orbit of each $p \in U$ is (n-1)-dimensional. We also can assume that φ has no T^{n-1} -orbits inside U, otherwise (2) is verified. Reducing the size of V, if necessary, it follows from Lemma 4 that there exist $s \in \{0, \ldots, n-2\}$ such that \mathcal{O}_p is a $T^s \times \mathbb{R}^{n-s-1}$ -orbit for each $p \in U$. Thus, (3) is verified and this completes the proof.

Figure 3 illustrates Theorem C for some $\varphi \in \mathscr{A}_2$.

FIG. 3.

Proof (of Theorem C). Let \mathcal{O} be a $T^{n-1} \times \mathbb{R}$ -orbit and \mathscr{U} the family of all φ -invariant neighborhoods $U \supset \mathcal{O}$ homeomorphic to $T^{n-1} \times \mathbb{R}$ that do

not contain a $T^s \times \mathbb{R}^{n-s}$ -orbit with s < n-1. The inclusion relation defines a parcial order in \mathscr{U} and by Zorn's Lemma there exists a maximal element U_M in \mathscr{U} . We are going to show that $N \setminus U_M$ is either a T^{n-1} -orbit or the union of two T^{n-2} -orbits. Assume that $N \setminus U_M$ has non-empty interior, then $\operatorname{cl}(U_M) \setminus U_M$ has two connected components. By Definition 2 at each $p \in \text{Sing}_i(\varphi), i = 1, \dots, n-3, \varphi$ is of type n and n-finite. This fact and Lemma 5 implie that $(cl(U_M) \setminus U_M) \cap Sing_i(\varphi) = \emptyset, i = 1, \dots, n-3.$ Moreover, there exists one connected component F of $cl(U_M) \setminus U_M$ that is not a T^{n-2} -orbit. We know that F is φ -invariant and will show that $F \cap \operatorname{Sing}_{n-2}^{c}(\varphi) = \emptyset$. In fact, if there exists $p \in F$ such that \mathcal{O}_{p} is a T^{n-2} -orbit and V_p is a neighborhood of \mathcal{O}_p that satisfies Definition 2 (1), then $U_M \cup V_p$ would be a member of $\mathscr U$ containing U_M properly. If V_p satisfies condition (2), then, since $F \neq \mathcal{O}_p$, there are $T^s \times \mathbb{R}^{n-s-1}$ -orbits, $s \neq n-1$, arriving at \mathcal{O}_p and by Remark 11 we would have $T^l \times \mathbb{R}^{n-l}$ -orbits, $l \neq n-1$, inside U_M . Therefore F is an T^{n-1} -orbit. If (1) or (2) of Proposition 12 is verified, then there exists an open φ -invariant set V homeomorphic to $T^{n-1} \times \mathbb{R}$, which does not contain $T^s \times \mathbb{R}^{n-s}$ -orbits with $s \neq n-1$ and such that Front $(V) \subset F$. If (3) of Proposition 12 is verified, then by Theorem B there exists an open φ -invariant set V homeomorphic to $T^{n-1} \times \mathbb{R}$ and such that $\operatorname{Front}(V) \subset F$. The open set $U_M \cup V \in \mathscr{U}$ and contains properly U_M , but this contradicts the fact that U_M is maximal. Thus, $\operatorname{Front}(U_M) = N \setminus U_M$.

Assume that $\operatorname{Sing}_{n-2}^{c}(\varphi) = \emptyset$, then $\operatorname{Front}(U_M)$ is homeomorphic to T^{n-1} . Therefore, N is T^{n-1} bundle over S^1 . If $\operatorname{Sing}_{n-2}^{c}(\varphi) \neq \emptyset$, then $\operatorname{Front}(U_M)$ is the union of two T^{n-2} -orbits consequently, $N \in \mathcal{H}_n$.

REFERENCES

- J. A. ÁLVAREZ LÓPEZ, J. L. ARRAUT AND C. BIASI, Foliations by planes and Lie group actions. Ann. Pol. Math., 82,1, (2003), 61–69.
- 2. J. L. ARRAUT AND C. A. MAQUERA, Structural stability of singular actions of \mathbb{R}^n having a first integral. Submitted for publication, (2003).
- C. CAMACHO, Morse-Smale ℝ²-actions on two manifolds. Dynamical Systems, Editor M. M. Peixoto, Academic Press, (1973), 71–75.
- G. CHATELET, H. ROSENBERG, Manifolds which admits ℝⁿ actions. IHES, 43, (1974), 245–260.
- G. CHATELET, H. ROSENBERG AND D. WEIL, A classification of the topological types of ℝ²-actions on closed orientable 3-manifolds. Publ. Math. IHES, 43, (1974), 261– 272.
- N. KOPELL, Commuting Diffeomorphisms, Proc. Amer. Math. Soc. Symp., 14, (1968), 165–184.
- 7. R. SACKSTEDER, Foliations and pseudogroups, Amer. J. Math. 87, (1965), 79-102.