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1. INTRODUCTION

In this paper we begin by proving the following result that is a general-
ization of Corollary 2.6 in [5].

THEOREM A. ¢ be a locally free C?-action of R*™ ! on Tn1 x
[0,1], n > 2, tangent to the boundary. If there are no compact orbits
in the interior, then all non-compact orbits have the same topological type.

Due to the theorem below, there is no restriction in assuming that the
manifold with boundary, in Theorem A, is 771 x [0, 1].

THEOREM B (Chatelet - Rosenberg, [4]). Let N be a compact ori-
entable n-manifold with non-empty boundary. Suppose that v is a C? lo-
cally free action of R"~% on N, then N is diffeomorphic to T"~1 x[0,1].

N will denote a closed connected orientable real analytic n-manifold
with n > 2. Let H, be the family of orientable nm-manifolds obtained by
glueing two copies of T"~2 x D2. 'H, contains only S? and H3 consists
of 3-manifolds that admit a Heegaard splitting of genus one. Denote by
A"™(R™ N) the set of C"-actions of R® on N, 2 < r < w, with C"
infinitesimal generators. It was proved in [2] that if ¢ € A¥(R™, N), then
all m-dimensional orbits of ¢ have the same topological type, i.e., are
T*k x R* *-orbits for some fixed k, 0 < k < n. Moreover, if the type
is T"~! x R, then N is either homeomorphic to T" or N € H,, . It is
not difficult to construct counterexamples of this results when r = co. In
this paper we define a subset <, C A%(R", N), see Definition 2, which
contains all actions ¢ € A¥(R", N) that have at least one n-dimensional
orbit. Then, we prove:

TueoreM C. If ¢ € o, has one T"! x R-orbit, then every n-
dimensional orbit is also a T ! x R-orbit. Moreover,
(1) if Sing$_o(p) =0, then N is a T"1 bundle over S*;
(2) if Sing,_5(p) # 0, then Sing!,_o(p) is the union of two T"2-orbits
and N € H,, .

The connection between the two main results is that the first is used in
the proof of third. It would be interesting to obtain analogous results for
actions in A?(R™, N) that have one T* x R"~*-orbit with 0 <k <n —1.
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2. PRELIMINARIES AND PROOF OF RESULTS

M will denote a closed connected and orientable real analytic m-manifold.
A C7-action of a Lie group G on M isa C"-map ¢ : GXM — M, 1 <r <
w, such that ¢(e,p) = p and (gh,p) = ©(g,p(h,p)), for each g,h € G
and p € M, where e is the identity in G. O, = {¢(g,p); g € G} is called
the @-orbit of p. G, ={g € G; p(g,p) = p} is called the isotropy group
of p. For each p € M the map g — ¢(g,p) induces an injective immersion
of the homogeneous space G/G, in M with image O,. When G = R",
the possible @-orbits are injective immersions of TF x R, 0 < k + /¢ < n,
where TF = S x --- x S', k times.

For each 0 < i < n —1 let Sing;(p) = {p € M;dimO, = ¢} and
Sing () = U=, Sing, (). If p € Sing(p), O, is called a singular orbit and
when p € Sing(¢), O, is also called a point orbit and p a fized point by
¢. We also write p € Sing{(¢), i =1,...,n—1, when O, is a T"-orbit.
If Sing(p) = M, we call ¢ a singular action.

For each w € R™\ {0} ¢ induces a C"-flow (¢!,)ier given by ¢! (p) =
o(tw,p) and its corresponding C"~!-vector field X,, defined by X, (p) =
D1¢(0,p) - w. If {wy,...,w,} is a base of R™ the associated vector fields

Xuwys- .-, Xy, determine completely the action ¢ and are called a set of
infinitesimal generators of . Note that [X,,, X,;] = 0 for any two of
them.

DEFINITION 1. Let ¢ € A"(R™,N) and p € N.

a) ¢ is of type j at p, 0 < j < n, if there exists a neighborhood V
of p such that the union of the j-dimensional orbits of |y form an open
and dense subset of V.

b) ¢ is j-finite at p, if there exists a neighborhood V' of p that inter-
sects only a finite number of j-dimensional orbits.

Let V C N. We will denote the boundary of V' in N by Front(V).

DEFINITION 2. We say that ¢ € 7, C A%2(R", N), where dim N = n,
if ¢ is of type n and n-finite at each p € Sing,(p) with 0 < i < n —
3, Sing,_5(¢) = Sing!_5(p) and for each p € Sing; ,(¢) there exists
a neighborhood V,, of O, in N that satisfies one of the following two
properties:

(1) V,, is ¢-invariant, homeomorphic to 7"~2x D? | where D? is an open
disk, V, N (U=2Sing;()) = O, and Front(V,,) is either a T '-orbit or
a T™ 2-orbit.

(2) V,, contains at most a finite number of i-dimensional orbits with
i=n—1,n.

Infinitesimal generators adapted to a 7" '-orbit. Assume that
O, is a T" lorbit of p € A"(R",N) and let G, be its isotropy group.
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Call Gg the connected component of G}, that contains the origin and let
H be a (n — 1)-dimensional subspace of R™ such that R" = H @ G} .
Note that G, N H is isomorphic to Z"~'. Let {wi,...,w,} be a base of
R™ such that {ws,...,w,—1} is a set of generators of G, N H, w, € Gg
and write X; = X, ;¢ = 1,...,n. Note that if ¢ € O,, then for every
k€ {l,...,n— 1} the orbit of X; by p is periodic of period one and
also X, (¢g) = 0. We shall say that Xi,...,X,, is a set of infinitesimal
generators adapted to O, . The action ¢, € A"(R""! N), r > 2, with
infinitesimal generators Xi,..., X, _1 will be called the action induced by
¢ and O, . The understanding of the holonomy of O, as an orbit of 1,
will bring light on the orbit structure of ¢ in the neighborhood of O, .
Let O, be a T" l-orbit of ¢ € A"(R""1,N), {wq,...,w,—1} be a set

of generators of its isotropy group G, and X7 = Xy, ,..., Xpn—1 =Xy, 4 -
For each k € {1,...,n — 1}, let ¢, € A"(R""2,N) be the action defined
by X1,..., Xk-1, Xkt1,--.,Xn—1. Put a Riemannian metric on N and

let ¢ be the norm one vector field defined in a neighborhood of O, that
is orthogonal to the orbits of ¥. Let Sy be the circle orbit of X} through
p, k=1,...,n—1, and consider the ring A = S'x(—1,1) with coordinates
(0,z). Define fr: A — N by fr(0,2) =£%0X?(p) and note that f;,(S* x
{0}) = Sk and fx(0,0) = p. Fix k € {1,...,n — 1}. Since Si, as a
submanifold of O, , is transversal to the orbits of 1), there exists € > 0
such that f restricted to A. = S' x (—¢,€) is an embedding transversal
to the orbits of ¥y . Let D} 2(0) = {t = (t1,- -« s th—t1sthg1s-- - s tn—1)it; €
(=3,6)} and consider the C"-map hy : A. x D" ?(1) — N defined by
hi(0,z,t) = Vi (t, fr(6,2)). There exists § > 0 such that hy restricted to
A x D}72(8) is a diffeomorphism onto its image V. Moreover, in these
coordinates the infinitesimal generators of ¢ take the form:

Xi(0,z,t) = %, i=1,....,k—1,k+1,...,n—1

T

K d 9 9 (1)
X (0,x,t) = k;ﬁzj;lajk(e,x)a_tj + bk(Q,m)% + ck(ﬁ,x)%.

A map like hy will be called a cylindrical coordinate system adapted to O,
at Sy . The vector field
~ 0 0
X = — —
defines a local flow on A. having S' x {0} C A. as an orbit. When
1 =1, for some ¢ € A"(R", N), then we also have

n—1

d d d
Xo(0,2,t)= > 0k (0,) 5= + di(0, 2) 55 + ex(0,3) 5.
k#j=1 J
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The vector fields )?k and )A(n = dp0/00+ e,,0/0x define a local C"-action
Pk of R? on A having S! x {0} as a singular orbit.

The ring ¥ = fr(A:) is transversal to the orbits of ¢ and sois J =
ﬂz;llEk. Note that p € J. The vector fields ?k = (fk)*)/(:k and }/}n =
(fk)*)?n are tangent to ¥, and define a local C"-action of R? on Xj.
The map «y : [0,1] — Xy, given by (1) = ?,g (p) is a parametrization of
Sk. Let wg : (J,p) — (J,p) be the Poincaré map of «j, and

Hol : m1(Op ,p) = Z" — Dift"(J, p) (2)

the holonomy of O, as a leaf of the foliation defined by the orbits of
¥. Then, wy = Hol([ag]). Write J as the union of two intervals J* U .J~
with JtNJ~ = {p}. Since O, is two-sided in N, each w; leaves JT (J7)
invariant.

Remark 3. Note that {X1,... Xr—1, X5, Xit1s- - Xn_1, Xp} define a
local R"-action @ on A x D} (e) and that O ,.)(P) = O(ge.t)(hy 0
@ohy ') for each (0,z,t) € Ax Dy ?(e).

The local C™-action @, k=1,...,n —1, of R? on A and the next
lemma will be used in the proof of Proposition 9.

LEMMA 4. Let O, be a T" '-orbit of ¢ € A*>(R"™',N) and assume
that v has no T" -orbits, aside O, in a neighborhood V of O,.
Then there exists a neighborhood I™ of p in J* such that for each
ke{l,...,n—1} one of the following statements is verified:

(1) wi|r+ =1id; i.e., every Yie-orbit near Sy is periodic.
(2) Either wi|r+ or (wk|r+)~t is a topological contraction, i.e., every
Yy -orbit near Sy spirals towards Sy, .

Proof. We give the proof for k£ = n — 1; the other cases are similar.
Assume that w,_1 does not satisfy (2). Then, there is a sequence {q; €
J*;1 € N} such that w,_1(q) = ¢ and lim;_., ¢ = p. We claim that p is
an isolated fixed point of w; for at least one j € {1,...,n—2}. Otherwise,
for each 1 < j < n — 2 there exists a sequence {q;x € J*;k € N} such
that w;(gjx) = gjx and limg_oo gjr = p. If ¢jr € V and w;(gjx) = g¢jk
for each i € {1,...,n — 1}, then the ¢-orbit of ¢, is a T™ '-orbit.
Therefore, for each ¢; € V' there exists ¢ # j such that w;(g;x) # ¢jx - Let
Gk = limy, oo W™ (gji) # p. It follows from the commutativity of w; and w;
that g, € Fix(w;) NFix(w;). If we(gr) # g, then p # lim,, oo w)*(qr) €
Fix(w¢) NFix(w;) NFix(w;). Repeating this process, if necessary, we obtain
a point ¢q € ﬂ?;llFix(wi) with ¢ # p. But, this would implie that O,
is a T~ !-orbit, contradicting one of the hypothesis. Thus, it exists j €
{1,...,n — 2} such that p is an isolated fixed point of w;, i.,e., there
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exists a neighborhood It of p in J* such that It NFix(w;) = {p}. By
N. Kopell Lemma [6], wy,—1|7+ = id. Hence, w,_; satisfies (1). |

In the proof of Lemma 4 it is not essential that wy be the Poincaré map
of the Yj-orbit S . It is only used that the holonomy of O, is abelian.

Proof (of Theorem A). It is a classical result in foliation theory that
the leave structure of a foliation in the neighborhood of a compact leaf
is determined by the holonomy of such leaf. The holonomy of the orbit
Tn=1 x {0}, given in Lemma 4, guarantees that there exist d € (0,1)
and s € {0,...,n — 2} such that every t-orbit by points in T"~! x [0,d)
is homeomorphic to 7% x R"*~!, We claim that the saturated V of
T x [0,d) by v is equal to T""! x [0,1) and this would conclude the
proof. In fact, if V # T""1 x[0,1), then Front(V)NT""! x {1} = 0. Let
C #T" 1 x {0} be a connected component of Front(V). C is a compact
y-invariant subset and contains a minimal subset u. By a theorem of
Sacksteder 7, Theorem 7], p can not be an exceptional minimal set. Thus
 is a compact orbit. This contradiction proves that V = T""1 x[0,1). |

Proposition 5 below plays an important role in the proof of Theorem C
and to prove it we have to prove first Lemma 7.

PROPOSITION 5. If ¢ € A%(R",N) has an orbit O diffeomorphic to
Tn=1 x R, then Front(O) is the union of at most two T*-orbits with
kEe{n—-2n—-1}

Theorem 6 below will be used in the proof of Lemma 7.

THEOREM 6 ([1]). Let N be a closed and connected n-manifold, n >
3, and G a Lie group diffeomorphic to R"~1 acting in class C?. Assume
that the set K of singular points of the action is a non-empty finite subset.
Then:

(i) K contains only one point,

(ii) N is homeomorphic to S™.

LEMMA 7. Let ¢ € A2R™~L, M™), m > 3, and p € Fix(y)) be an
isolated singularity. Then, there exists a neighborhood V' of p in M™
which does not contain any T™ -orbit.

Proof. Suppose the assertion of the lemma is false. Let V' be a neigh-
borhood of p homeomorphic to open n-disk such that V N Sing(y) = {p}
and assume that there is a 7™ !-orbit O C V. V\O = C;UCy, where C;
and Cy are disjoint connected components. Assume that Front(Cy) = O.
There are two possibilities, either p € C1 or p € Co. If p € Cy, then ¥
is locally free on N = C; U O and, by Theorem B, N should be homeo-
morphic to T™~! x [0,1]. This contradicts the fact that Front(C;) = O. If
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p € Cq, then v is an action on N having p as the only singular point. Let
P be the double of N and ¢ € A2(R™~1, P) such that ¢ restricted to N
is equal to ¥. Then £ has exactly two singular points and this contradicts
the Theorem 6. |

Proof (Proof of Proposition 5). Front(O) has at most two connected
components and each one of them contains at least a compact orbit. Let
C be a connected component and Oy C C' a T*-orbit with isotropy group
Go. We will show that C' = Ogy. Assume, for a moment, that C' contains
another orbit O; and take p € Oy and ¢ € Oy. Let uy,...,u,_1 be
a set of generators of G, the isotropy group of O. Then, all X, -orbits
through O are periodic of period one. Even more, there are sequences
{p; € 0;j € N} and {t;; € [0,1];i=1,2...,n—1 and j € N} such that

n—1

lim p; =p and lim (p( Z tijui,pj) =q.
J—00 J—00 =1
For each i =1,...,n— 1, we can assume, extracting a subsequence if nec-

essary, that ¢;; — t; € [0,1]. Then @(ngll t;u;, p) = q, which contradicts
the fact that Z?;ll tiu; € Gy .

Now, we will show that k € {n —2,n — 1}. Assume, for a moment,
that k <mn —2, then m =n—k > 2. Let p € Op and {X1,...,X,}
be a set of infinitesimal generators of ¢ such that the orbit through p
of X;, i =1,...,k, is periodic and X;(p) =0, i = k+1,...,n. Let
h:V, — DI be a chart of N such that if (§,z) € D = D¥ x D*~* | then
the vector fields X; in this chart can be writen

Xi(a,l‘) = %, iZl,...,k‘
kl n 3)
9 . (
Xi+i(0,2) = Zaji(l‘)w-l- Z aji(x)%, i=1,...,m
j=1 I j=k+1 J

A chart like the one above is called adapted to Og at p. The vector fields

551': Z cm(ar)%, iil,...,m,

j=k+1 J

define a local action ¢, of R™ on D" having 0 € D7* as a fixed point.
The image of O NV, by h intersects D™ in a T™ ! x R-orbit O of
¢, such that 0 € D™ is a connected component of Front(@) and, there-
fore, an isolated singul‘imr point of ¢, . The generators wq,...,um—1 of

the isotropy group of O define a local action of R™~! on D™ and this
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action has T™ l-orbits arbitrarily close to 0. This contradicts Lemma, 7
and proves that k € {n—2,n—1}. |

The closure of V C N, in N, is denoted by cl(V).

COROLLARY 8. Let O be an T" t-orbit of ¢ € AL(R",N) and V be a
neighborhood of O such that V' \ O has exactly two connected components
Vi and Vo. Assume that there exist points p,q € Vi such that dim O, =
n, O, # O, and cl(0,) D O C cl(O,). Then, O, isnot a T"~! x R-orbit.

PROPOSITION 9.  Assume that ¢ € A2(R*,N) with n > 2. If O is a
TF x R"*_orbit with k < n—2, then cl(O) can not contain a T"*-orbit.

Let us prove this proposition. If X € X" (M?), let C(X) be the set of
diffeomorphisms f € Diff"(M?) that preserve orbits of X. Assume that
the orbit ~y, of X by p is periodic of period 7. Let X be a cross section
to X at p and Py : (X,p) — (X,p) be Poincaré map.

FIG. 1.

LEMMA 10. There exists a cross section ¥, C ¥ and a neighborhood
¥ C Diff"(M?) of the identity map in the C° topology such that every
fel(X)NY induces a local diffeomorphism fx : (£,,p) — (£,,p) of
class C", with fx oPx = Pxo fx.

Proof. Let 7 > 0 be the period of v,. We can assume that ¥ =
h=t({0} x (—=1,1)), where h : V — (=1,1)? is a flow box for X at p.
Let m:V — X be the projection along of the orbits of X and recall that
Px =moX7. Put U =h"1((-1/2,1/2)?) and . = h=1({0} x (—¢,¢)).
There exists a neighborhood ¥ of id € Diff"(M?), in the C° topology,
and € > 0 such that f(U) C V and f(X.) C U for each f € ¥ and



ON THE ORBIT STRUCTURE OF RN-ACTIONS 177

also X7(X.) C U. Choose ¥, = X.. For each f € ¥ there is defined
amap fx : ¥, — X by fx(¢) = 7(f(q)). We are going to show that
fxoPx = Pxofx. Let [z,y] C ¥ be the arc with extremes z and y and
define <y if [p,z] C [p,y]. Assume that Px(¢) < ¢ for every ¢ € .
For a fixed f € ¥ there are two possibilities fx(¢) > ¢ or fx(q) < q.
Let us consider the case Px(q) < ¢ and fx(q) > ¢. If Px(q) = g, ie.,
the orbit of ¢ by X is periodic, then the orbit by fx(gq) is also closed,
therefore fxoPx(q) = fx(q) = Pxofx(q). If Px(q) <g, then fx(Px(q))
belongs to the orbit of X by fx(q) and Px(q) < fx(Px(q)) < fx(q).
Thus, fx o Px(q) = Px o fx(q). The other cases are analogous. |

Proof (of Proposition 9). We begin proving this proposition for n = 2.
Let ¢ € A%2(R? N) and assume that there exist an R2-orbit P such that
its closure, cl(P), contains an S'-orbit Op. Let U be neighborhood of
Oy homeomorphic to a cylinder such that every ¢-orbit through a point
in U has dimension greater or equal to one. It exists due to the fact that
N is orientable, see Figure 2. If U\ Og = Uy UUs, then either P C U;
or P C Uy. Assume that P C U;. Let Gy be the isotropy group of Oq
and X; = X,,., i = 1,2, where {w,ws} is a set of generators of Gy such
that wy € GY and wy € GY. Note that Xs|p, = 0 and Oy is a peri-
odic orbit of X;. Let X be a transversal section to X; at p € Oy and
Px, : (¥,p) — (2,p) be the Poincaré. There exists a neighborhood ¥
of p in ¥Ncl(Uy) such that Px, has no fixed points in 3. Otherwise,
there would be circle orbits in U; arbitrarily close to Oy not allowing the
plane P to approach Oy. Thus, either Py, |5, or (Px,|s,)”! is a topo-
logical contraction. Then, there exists at least one R-orbit O contained
in Front(P) such that cl(O) D Op. This implies that G, the isotropy
group of O, coincides with GY. Let ¥ be as in the Lemma 10 and 6 > 0
such that X§ € ¥ for all t € (=4,0). Fix a t # 0 in the interval (—4,4)
and put f = XI. It follows from the commutativity of X; with X5 that
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f € C(Xy). Note that fx,(q) = ¢ if ¢ € ONXy and that fx, (¢) # ¢ if
g € P. By Lemma 10, fx, o Px, = Px, o fx, and by N. Kopell Lemma
fx, = id. This contradiction completes the proof in the case n = 2.
Assume now that n > 3 and that there exist a 7% x R* *-orbit P,
with k < n — 1, such that cl(P) contains a T" !-orbit Oy. If Gy and
Gp are the isotropy groups of Oy and P, respectively, then Gp C Gy .
Let Xi,...,X, the infinitesimal generators adapted to Oy such that the
linear (n — 2)-subspace H of R™ generated by {wi,...,w,_2} contains
Gp. There exists a neighborhood V' of Oy such that the action 1, €
A?2(R""! N) induced by ¢ and Oy, i.e., generated by Xi,..., X, 1,
has not 7™ !l-orbits inside V. Otherwise, by Corollary 8, either P is an
T~ xR-orbit or O ¢ cl(P). If O isa T° x R"~*~lorbit of ¢ such that
O C cl(P), then Oy C cl(O) and s < n — 1. Consequently, if Go is the
isotropy group of O, then Go C Gy and G% = GY. Since k,s <n — 1,
we can assume that H N Gp is isomorphic to Z* and w,_1,w, ¢ H.
Let p € Oy and consider wy,...,w,—1 as in the proof of Lemma 4. By
Lemma 4 w,_1 (or w;ﬁl) is a topological contraction. Therefore, if ¢ €
Yn_1 N P, then Oh;il(q)(anfl) is a R2-orbit in A that contains the

Pn_1-orbit S x {0} in its closure. By the first part of the proof this is a
contradiction. |

Remark 11. Let ¢ € 7, , p € Sing,_,(¢) and V, a neighborhood of
O, .
(a) Assume that V), satisfies (1) and Front(V},) is a 7™ !-orbit. Since
r > 2, it follows by Proposition 9, that there is no T° x R™ ®-orbit with
s #n—1 inside V,. Thus, we can say that one of the following possibilities
is satisfied:

(al) V, \ O, is a T"~! x R-orbit;
(a2) V, contains infinitly many 7"~ x R-orbits;
(a3) V, \ O, contains only (n — 1)-dimensional orbits.

(b)Assume now that V,, satisfies (2), then:

(b1) if there is one T° x R"~*~l.orbit, s # n — 1, such that its closure
contains O, then every n-orbit in V,\O, is not homeomorphic to T 1x
R;

(b2) if there are no T x R"*~l.orbits, s # n — 1, which contain O,
in its closure, then there is only one n-orbit and it is homeomorphic to
T 1 x R.

PROPOSITION 12. Let Oy be a T" ‘-orbit of ¢ € A%(R™, N). Then,
there ezists a p-invariant neighborhood Vi of Opy, such that every con-
nected component U of Vo \ Oy satisfies one of the following properties:



ON THE ORBIT STRUCTURE OF RN-ACTIONS 179

(1) U is an T"' x R-orbit;

(2) U contains infinitely many T"'-orbits approaching Oy and every
n-dimensional orbit inside U is a T"™1 x R-orbit;

(3) There exist s € {0,1,...,n— 2} such that U is the union of T*® X
R~ orbits.

Proof. By the continuity of the infinitesimal generators of ¢ there is a
neighborhood V' of Oy such that every orbit by points in V{ has dimension
at least n — 1. Since r > 2, it follows from Proposition 9 that there are
no 7% x R" *-orbits, s # n — 1 approaching Oy . Therefore, if U is one
connected component of V'\ Oq, then there are two possibilities:

(i) There are infinitely many n-orbits in U approaching F. In this case
we will show that (2) is verified. The other possibility is that there exists a
sequence {0, }ien of n-dimensional orbits inside U, which are not homeo-
morphic to 7"~ ! x R and that approach Q. Since cl(O;)N Sing; () = 0
for each j € {0,...,n—2}, then the compact set cl(O;)\O; is the union of
(n—1)-dimensional orbits, of which at least one is compact, this contradicts
the Proposition 9.

(ii) There are only a finite number of n-orbits in U. If it happens to exist
a T" 1 x R-orbit O such that Front(O) D O, then we can assume that
U = O, therefore (1) is verified. If there is no such T"~! x R-orbit, then we
can assume that the orbit of each p € U is (n — 1)-dimensional. We also
can assume that ¢ has no 7" l-orbits inside U, otherwise (2) is verified.
Reducing the size of V, if necessary, it follows from Lemma 4 that there
exist s € {0,...,n — 2} such that O, is a T® x R"~*~lorbit for each
p € U. Thus, (3) is verified and this completes the proof. |

Figure 3 illustrates Theorem C for some ¢ € % .

FIG. 3.

Proof (of Theorem C). Let O bea T" ! xR-orbit and % the family of
all p-invariant neighborhoods U D O homeomorphic to 7"~ ! xR that do
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not contain a T xR"~*-orbit with s < n—1. The inclusion relation defines
a parcial order in % and by Zorn’s Lemma there exists a maximal element
Unr in % . We are going to show that N\ U, is either a T~ !-orbit or the
union of two 7™~ 2-orbits. Assume that N \ Up; has non-empty interior,
then cl(Ups) \ Upsr has two connected components. By Definition 2 at each
p € Sing,(p), i = 1,...,n — 3, ¢ is of type n and n-finite. This fact
and Lemma 5 implie that (cl(Ups) \ Unr) N Sing,;(p) =0, i =1,...,n—3.
Moreover, there exists one connected component F' of cl(Ups) \ Uy that
is not a 7" 2-orbit. We know that F is ¢-invariant and will show that
F N Sing;,_,(¢) = 0. In fact, if there exists p € F such that O, is a
T"2-orbit and V,, is a neighborhood of O, that satisfies Definition 2 (1),
then Ups UV, would be a member of % containing Ujs properly. If V,
satisfies condition (2), then, since F' # O, , there are T° x R"~*~1-orbits,
s #n — 1, arriving at O, and by Remark 11 we would have T x R"~L
orbits, [ # n—1, inside Uy . Therefore F is an T" l-orbit. If (1) or (2)
of Proposition 12 is verified, then there exists an open ¢-invariant set V'
homeomorphic to 77~ xR, which does not contain T x R*~5-orbits with
s #n—1 and such that Front(V) C F. If (3) of Proposition 12 is verified,
then by Theorem B there exists an open p-invariant set ¥V homeomorphic
to T"~! xR and such that Front(V) C F. The open set Uy UV € % and
contains properly Uy, but this contradicts the fact that Up; is maximal.
Thus, Front(Up) = N\ Uy -

Assume that Singf_,(¢) = 0, then Front(Ujps) is homeomorphic to
T"~1. Therefore, N is T"~! bundle over S'. If Sing$ ,(p) # 0, then
Front(Uy,) is the union of two 7™ 2-orbits consequently, N € H,,. |
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