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We begin by proving that a locally free C2-action of R
n−1 on Tn−1× [0, 1]

tangent to the boundary and without compact orbits in the interior has all
non-compact orbits of the same topological type. Then, we consider the set
A2(Rn, N) of C2-actions of R

n on a closed connected orientable real analytic
n-manifold N. We define a subset An ⊂ Ar(Rn, N) and prove that if ϕ ∈ An

has a Tn−1×R-orbit, then every n-dimensional orbit is also a Tn−1×R-orbit.
The subset An , is big enough to contain all real analytic actions that have at
least one n-dimensional orbit. We also obtain information on the topology of
N.
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1. INTRODUCTION

In this paper we begin by proving the following result that is a general-
ization of Corollary 2.6 in [5].

Theorem A. ψ be a locally free C2-action of R
n−1 on Tn−1 ×

[0, 1], n ≥ 2, tangent to the boundary. If there are no compact orbits

in the interior, then all non-compact orbits have the same topological type.

Due to the theorem below, there is no restriction in assuming that the
manifold with boundary, in Theorem A, is T n−1 × [0, 1].

Theorem B (Chatelet - Rosenberg, [4]). Let N be a compact ori-

entable n-manifold with non-empty boundary. Suppose that ψ is a C2 lo-

cally free action of R
n−1 on N, then N is diffeomorphic to T n−1× [0, 1].

N will denote a closed connected orientable real analytic n-manifold
with n ≥ 2. Let Hn be the family of orientable n-manifolds obtained by
glueing two copies of T n−2 ×D2. H2 contains only S2 and H3 consists
of 3-manifolds that admit a Heegaard splitting of genus one. Denote by
Ar(Rn, N) the set of Cr-actions of R

n on N, 2 ≤ r ≤ ω, with Cr

infinitesimal generators. It was proved in [2] that if ϕ ∈ Aω(Rn, N), then
all n-dimensional orbits of ϕ have the same topological type, i.e., are
T k × R

n−k-orbits for some fixed k, 0 ≤ k ≤ n. Moreover, if the type
is Tn−1 × R, then N is either homeomorphic to T n or N ∈ Hn . It is
not difficult to construct counterexamples of this results when r = ∞. In
this paper we define a subset An ⊂ A2(Rn, N), see Definition 2, which
contains all actions ϕ ∈ Aω(Rn, N) that have at least one n-dimensional
orbit. Then, we prove:

Theorem C. If ϕ ∈ An has one Tn−1 × R-orbit, then every n-
dimensional orbit is also a T n−1 × R-orbit. Moreover,

(1) if Singcn−2(ϕ) = ∅, then N is a Tn−1 bundle over S1;

(2) if Singcn−2(ϕ) 6= ∅, then Singcn−2(ϕ) is the union of two Tn−2-orbits

and N ∈ Hn .

The connection between the two main results is that the first is used in
the proof of third. It would be interesting to obtain analogous results for
actions in A2(Rn, N) that have one T k ×R

n−k-orbit with 0 ≤ k < n− 1.

ACKNOWLEDGMENT

We are grateful to the Referee for the suggestions that let us to improve the presen-
tation of the paper.



ON THE ORBIT STRUCTURE OF R
N -ACTIONS 171

2. PRELIMINARIES AND PROOF OF RESULTS

M will denote a closed connected and orientable real analytic m-manifold.
A Cr-action of a Lie group G on M is a Cr-map ϕ : G×M →M, 1 ≤ r ≤
ω, such that ϕ(e, p) = p and ϕ(gh, p) = ϕ(g, ϕ(h, p)), for each g, h ∈ G
and p ∈M, where e is the identity in G. Op = {ϕ(g, p); g ∈ G} is called
the ϕ-orbit of p. Gp = {g ∈ G; ϕ(g, p) = p} is called the isotropy group

of p. For each p ∈M the map g 7→ ϕ(g, p) induces an injective immersion
of the homogeneous space G/Gp in M with image Op . When G = R

n,
the possible ϕ-orbits are injective immersions of T k × R

`, 0 ≤ k + ` ≤ n,
where T k = S1 × · · · × S1, k times.

For each 0 ≤ i ≤ n − 1 let Singi(ϕ) = {p ∈ M ; dimOp = i} and
Sing(ϕ) = ∪n−1

i=0 Singi(ϕ). If p ∈ Sing(ϕ), Op is called a singular orbit and
when p ∈ Sing0(ϕ), Op is also called a point orbit and p a fixed point by
ϕ. We also write p ∈ Singci (ϕ), i = 1, . . . , n − 1, when Op is a T i-orbit.
If Sing(ϕ) =M, we call ϕ a singular action.

For each w ∈ R
n \ {0} ϕ induces a Cr-flow (ϕt

w)t∈R given by ϕt
w(p) =

ϕ(tw, p) and its corresponding Cr−1-vector field Xw defined by Xw(p) =
D1ϕ(0, p) ·w. If {w1, . . . , wn} is a base of R

n the associated vector fields
Xw1

, . . . , Xwn
determine completely the action ϕ and are called a set of

infinitesimal generators of ϕ. Note that [Xwi
, Xwj

] = 0 for any two of
them.

Definition 1. Let ϕ ∈ Ar(Rn, N) and p ∈ N.
a) ϕ is of type j at p, 0 ≤ j ≤ n, if there exists a neighborhood V

of p such that the union of the j-dimensional orbits of ϕ|V form an open
and dense subset of V.

b) ϕ is j-finite at p, if there exists a neighborhood V of p that inter-
sects only a finite number of j-dimensional orbits.

Let V ⊂ N. We will denote the boundary of V in N by Front(V ).

Definition 2. We say that ϕ ∈ An ⊂ A2(Rn, N), where dimN = n,
if ϕ is of type n and n-finite at each p ∈ Singi(ϕ) with 0 ≤ i ≤ n −
3, Singn−2(ϕ) = Singcn−2(ϕ) and for each p ∈ Singcn−2(ϕ) there exists
a neighborhood Vp of Op in N that satisfies one of the following two
properties:

(1) Vp is ϕ-invariant, homeomorphic to T n−2×D2, where D2 is an open
disk, Vp ∩ (∪n−2

i=1 Singi(ϕ)) = Op and Front(Vp) is either a Tn−1-orbit or
a Tn−2-orbit.

(2) Vp contains at most a finite number of i-dimensional orbits with
i = n− 1, n.

Infinitesimal generators adapted to a T n−1-orbit. Assume that
Op is a Tn−1-orbit of ϕ ∈ Ar(Rn, N) and let Gp be its isotropy group.
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Call G0p the connected component of Gp that contains the origin and let
H be a (n − 1)-dimensional subspace of R

n such that R
n = H ⊕ G0p .

Note that Gp ∩H is isomorphic to Z
n−1. Let {w1, . . . , wn} be a base of

R
n such that {w1, . . . , wn−1} is a set of generators of Gp ∩H, wn ∈ G

0
p

and write Xi = Xwi
; i = 1, . . . , n. Note that if q ∈ Op , then for every

k ∈ {1, . . . , n − 1} the orbit of Xk by p is periodic of period one and
also Xn(q) = 0. We shall say that X1, . . . , Xn is a set of infinitesimal
generators adapted to Op . The action ψϕ ∈ Ar(Rn−1, N), r ≥ 2, with
infinitesimal generators X1, . . . , Xn−1 will be called the action induced by
ϕ and Op . The understanding of the holonomy of Op as an orbit of ψϕ

will bring light on the orbit structure of ϕ in the neighborhood of Op .
Let Op be a Tn−1-orbit of ψ ∈ Ar(Rn−1, N), {w1, . . . , wn−1} be a set

of generators of its isotropy group Gp and X1 = Xw1
, . . . , Xn−1 = Xwn−1

.
For each k ∈ {1, . . . , n − 1}, let ψk ∈ A

r(Rn−2, N) be the action defined
by X1, . . . , Xk−1 , Xk+1, . . . , Xn−1 . Put a Riemannian metric on N and
let ξ be the norm one vector field defined in a neighborhood of Op that
is orthogonal to the orbits of ψ. Let Sk be the circle orbit of Xk through
p, k = 1, . . . , n−1, and consider the ring A = S1×(−1, 1) with coordinates
(θ, x). Define fk : A→ N by fk(θ, x) = ξx ◦Xθ

k(p) and note that fk(S
1×

{0}) = Sk and fk(0, 0) = p. Fix k ∈ {1, . . . , n − 1}. Since Sk , as a
submanifold of Op , is transversal to the orbits of ψk , there exists ε > 0
such that fk restricted to Aε = S1 × (−ε, ε) is an embedding transversal
to the orbits of ψk . Let D

n−2
k (δ) = {t = (t1, . . . , tk−1, tk+1, . . . , tn−1); tj ∈

(−δ, δ)} and consider the Cr-map hk : Aε × Dn−2
k (1) → N defined by

hk(θ, x, t) = ψk(t, fk(θ, x)). There exists δ > 0 such that hk restricted to
Aε ×Dn−2

k (δ) is a diffeomorphism onto its image Vk . Moreover, in these
coordinates the infinitesimal generators of ϕ take the form:

Xi(θ, x, t) =
∂

∂ti
, i = 1, . . . , k − 1, k + 1, . . . , n− 1

Xk(θ, x, t) =

n−1∑

k 6=j=1

ajk(θ, x)
∂

∂tj
+ bk(θ, x)

∂

∂θ
+ ck(θ, x)

∂

∂x
.

(1)

A map like hk will be called a cylindrical coordinate system adapted to Op

at Sk . The vector field

X̂k = bk(θ, x)
∂

∂θ
+ ck(θ, x)

∂

∂x

defines a local flow on Aε having S1 × {0} ⊂ Aε as an orbit. When
ψ = ψϕ for some ϕ ∈ Ar(Rn, N), then we also have

Xn(θ, x, t) =

n−1∑

k 6=j=1

ajk(θ, x)
∂

∂tj
+ dk(θ, x)

∂

∂θ
+ ek(θ, x)

∂

∂x
.
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The vector fields X̂k and X̂n = dk∂/∂θ+ek∂/∂x define a local Cr-action
ϕ̂k of R

2 on A having S1 × {0} as a singular orbit.
The ring Σk = fk(Aε) is transversal to the orbits of ψ and so is J =

∩n−1
k=1Σk . Note that p ∈ J. The vector fields Ŷk = (fk)∗X̂k and Ŷn =

(fk)∗X̂n are tangent to Σk and define a local Cr-action of R
2 on Σk .

The map αk : [0, 1]→ Σk given by αk(τ) = Ŷ τ
k (p) is a parametrization of

Sk . Let ωk : (J, p)→ (J, p) be the Poincaré map of αk and

Hol : π1(Op , p) ∼= Z
k → Diffr(J, p) (2)

the holonomy of Op as a leaf of the foliation defined by the orbits of
ψ. Then, ωk = Hol([αk]). Write J as the union of two intervals J+ ∪ J−

with J+∩J− = {p}. Since Op is two-sided in N, each ωi leaves J+ (J−)
invariant.

Remark 3. Note that {X1, . . . Xk−1, X̂k, Xk+1, . . . , Xn−1, X̂n} define a
local R

n-action ϕ̂ on A × Dn−2
k (ε) and that O(θ,x,t)(ϕ̂) = O(θ,x,t)(hk ◦

ϕ ◦ h−1k ) for each (θ, x, t) ∈ A×Dn−2
k (ε).

The local Cr-action ϕ̂k , k = 1, . . . , n − 1, of R
2 on A and the next

lemma will be used in the proof of Proposition 9.

Lemma 4. Let Op be a Tn−1-orbit of ψ ∈ A2(Rn−1, N) and assume

that ψ has no Tn−1-orbits, aside Op , in a neighborhood V of Op .
Then there exists a neighborhood I+ of p in J+ such that for each

k ∈ {1, . . . , n− 1} one of the following statements is verified:

(1) ωk|I+ = id; i.e., every Ŷk-orbit near Sk is periodic.

(2) Either ωk|I+ or (ωk|I+)−1 is a topological contraction, i.e., every

Ŷk-orbit near Sk spirals towards Sk .

Proof. We give the proof for k = n − 1; the other cases are similar.
Assume that ωn−1 does not satisfy (2). Then, there is a sequence {ql ∈
J+; l ∈ N} such that ωn−1(ql) = ql and liml→∞ ql = p. We claim that p is
an isolated fixed point of ωj for at least one j ∈ {1, . . . , n−2}. Otherwise,
for each 1 ≤ j ≤ n − 2 there exists a sequence {qjk ∈ J+; k ∈ N} such
that ωj(qjk) = qjk and limk→∞ qjk = p. If qjk ∈ V and ωi(qjk) = qjk
for each i ∈ {1, . . . , n − 1}, then the ψ-orbit of qjk is a Tn−1-orbit.
Therefore, for each qjk ∈ V there exists i 6= j such that ωi(qjk) 6= qjk . Let
qk = limm→∞ ωm

i (qjk) 6= p. It follows from the commutativity of ωi and ωj

that qk ∈ Fix(ωi) ∩ Fix(ωj). If ω`(qk) 6= qk , then p 6= limm→∞ ωm
` (qk) ∈

Fix(ω`)∩Fix(ωi)∩Fix(ωj). Repeating this process, if necessary, we obtain
a point q ∈ ∩n−1

i=1 Fix(ωi) with q 6= p. But, this would implie that Oq

is a Tn−1-orbit, contradicting one of the hypothesis. Thus, it exists j ∈
{1, . . . , n − 2} such that p is an isolated fixed point of ωj , ı́.,e., there
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exists a neighborhood I+ of p in J+ such that I+ ∩ Fix(ωj) = {p}. By
N. Kopell Lemma [6], ωn−1|I+ = id. Hence, ωn−1 satisfies (1).

In the proof of Lemma 4 it is not essential that ωk be the Poincaré map
of the Ŷk-orbit Sk . It is only used that the holonomy of Op is abelian.

Proof (of Theorem A). It is a classical result in foliation theory that
the leave structure of a foliation in the neighborhood of a compact leaf
is determined by the holonomy of such leaf. The holonomy of the orbit
Tn−1 × {0}, given in Lemma 4, guarantees that there exist d ∈ (0, 1)
and s ∈ {0, . . . , n− 2} such that every ψ-orbit by points in T n−1 × [0, d)
is homeomorphic to T s × R

n−s−1. We claim that the saturated V of
Tn−1 × [0, d) by ψ is equal to T n−1 × [0, 1) and this would conclude the
proof. In fact, if V 6= Tn−1 × [0, 1), then Front(V )∩ T n−1 ×{1} = ∅. Let
C 6= Tn−1 × {0} be a connected component of Front(V ). C is a compact
ψ-invariant subset and contains a minimal subset µ. By a theorem of
Sacksteder [7, Theorem 7], µ can not be an exceptional minimal set. Thus
µ is a compact orbit. This contradiction proves that V = T n−1× [0, 1).

Proposition 5 below plays an important role in the proof of Theorem C
and to prove it we have to prove first Lemma 7.

Proposition 5. If ϕ ∈ A2(Rn, N) has an orbit O diffeomorphic to

Tn−1 × R, then Front(O) is the union of at most two T k-orbits with

k ∈ {n− 2, n− 1}.

Theorem 6 below will be used in the proof of Lemma 7.

Theorem 6 ([1]). Let N be a closed and connected n-manifold, n ≥
3, and G a Lie group diffeomorphic to R

n−1 acting in class C2. Assume
that the set K of singular points of the action is a non-empty finite subset.

Then:

(i) K contains only one point,

(ii) N is homeomorphic to Sn.

Lemma 7. Let ψ ∈ A2(Rm−1,Mm), m ≥ 3, and p ∈ Fix(ψ) be an

isolated singularity. Then, there exists a neighborhood V of p in Mm

which does not contain any Tm−1-orbit.

Proof. Suppose the assertion of the lemma is false. Let V be a neigh-
borhood of p homeomorphic to open n-disk such that V ∩ Sing(ψ) = {p}
and assume that there is a Tm−1-orbit O ⊂ V. V \O = C1∪C2 , where C1
and C2 are disjoint connected components. Assume that Front(C1) = O.
There are two possibilities, either p ∈ C1 or p ∈ C2 . If p ∈ C2 , then ψ
is locally free on N = C1 ∪ O and, by Theorem B, N should be homeo-
morphic to Tm−1× [0, 1]. This contradicts the fact that Front(C1) = O. If
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p ∈ C1 , then ψ is an action on N having p as the only singular point. Let
P be the double of N and ξ ∈ A2(Rm−1, P ) such that ξ restricted to N
is equal to ψ. Then ξ has exactly two singular points and this contradicts
the Theorem 6.

Proof (Proof of Proposition 5). Front(O) has at most two connected
components and each one of them contains at least a compact orbit. Let
C be a connected component and O0 ⊂ C a T k-orbit with isotropy group
G0 . We will show that C = O0 . Assume, for a moment, that C contains
another orbit O1 and take p ∈ O0 and q ∈ O1 . Let u1, . . . , un−1 be
a set of generators of G, the isotropy group of O. Then, all Xui

-orbits
through O are periodic of period one. Even more, there are sequences
{pj ∈ O; j ∈ N} and {tij ∈ [0, 1]; i = 1, 2 . . . , n− 1 and j ∈ N} such that

lim
j→∞

pj = p and lim
j→∞

ϕ
( n−1∑

i=1

tijui, pj

)
= q.

For each i = 1, . . . , n− 1, we can assume, extracting a subsequence if nec-
essary, that tij → ti ∈ [0, 1]. Then ϕ(

∑n−1
i=1 tiui, p) = q, which contradicts

the fact that
∑n−1

i=1 tiui ∈ G0 .
Now, we will show that k ∈ {n − 2, n − 1}. Assume, for a moment,

that k < n − 2, then m = n − k > 2. Let p ∈ O0 and {X1, . . . , Xn}
be a set of infinitesimal generators of ϕ such that the orbit through p
of Xi , i = 1, . . . , k, is periodic and Xi(p) = 0 , i = k + 1, . . . , n. Let
h : Vp → Dn

ε be a chart of N such that if (θ, x) ∈ Dn
ε = Dk

ε ×D
n−k
ε , then

the vector fields Xi in this chart can be writen

Xi(θ, x) =
∂

∂θi
, i = 1, . . . , k

Xk+i(θ, x) =
k∑

j=1

aji(x)
∂

∂θj
+

n∑

j=k+1

aji(x)
∂

∂xj
, i = 1, . . . ,m

(3)

A chart like the one above is called adapted to O0 at p. The vector fields

X̂i =

n∑

j=k+1

aji(x)
∂

∂xj
, i = 1, . . . ,m,

define a local action ϕ
T

of R
m on Dm

ε having 0 ∈ Dm
ε as a fixed point.

The image of O ∩ Vp by h intersects Dm in a Tm−1 × R-orbit Ô of

ϕ
T

such that 0 ∈ Dm is a connected component of Front(Ô) and, there-
fore, an isolated singular point of ϕ

T
. The generators u1, . . . , um−1 of

the isotropy group of Ô define a local action of R
m−1 on Dm and this
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action has Tm−1-orbits arbitrarily close to 0. This contradicts Lemma 7
and proves that k ∈ {n− 2, n− 1}.

The closure of V ⊂ N, in N, is denoted by cl(V ).

Corollary 8. Let O be an T n−1-orbit of ϕ ∈ A1(Rn, N) and V be a

neighborhood of O such that V \O has exactly two connected components

V1 and V2 . Assume that there exist points p, q ∈ V1 such that dimOp =
n, Op 6= Oq and cl(Op) ⊃ O ⊂ cl(Oq). Then, Op is not a Tn−1×R-orbit.

Proposition 9. Assume that ϕ ∈ A2(Rn, N) with n ≥ 2. If O is a

T k×R
n−k-orbit with k ≤ n−2, then cl(O) can not contain a T n−1-orbit.

Let us prove this proposition. If X ∈ X
r(M2), let C(X) be the set of

diffeomorphisms f ∈ Diffr(M2) that preserve orbits of X. Assume that
the orbit γp of X by p is periodic of period τ. Let Σ be a cross section
to X at p and PX : (Σ, p)→ (Σ, p) be Poincaré map.

PSfrag replacements

g(Σp ∩ Vp)

Σ

PX(q)

PX(fX(q))

V
Up

p

γp

Of(p)(X)q
f(q)

FIG. 1.

Lemma 10. There exists a cross section Σp ⊂ Σ and a neighborhood

V ⊂ Diffr(M2) of the identity map in the C0 topology such that every

f ∈ C(X) ∩ V induces a local diffeomorphism fX : (Σp , p) → (Σp , p) of

class Cr, with fX ◦ PX = PX ◦ fX .

Proof. Let τ > 0 be the period of γp . We can assume that Σ =
h−1({0} × (−1, 1)), where h : V → (−1, 1)2 is a flow box for X at p.
Let π : V → Σ be the projection along of the orbits of X and recall that
PX = π ◦Xτ . Put U = h−1((−1/2, 1/2)2) and Σε = h−1({0} × (−ε, ε)).
There exists a neighborhood V of id ∈ Diffr(M2), in the C0 topology,
and ε > 0 such that f(U) ⊂ V and f(Σε) ⊂ U for each f ∈ V and
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also Xτ (Σε) ⊂ U. Choose Σp = Σε . For each f ∈ V there is defined
a map fX : Σp → Σ by fX(q) = π(f(q)). We are going to show that
fX ◦PX = PX ◦fX . Let [x, y] ⊂ Σ be the arc with extremes x and y and
define x ≤ y if [p, x] ⊆ [p, y]. Assume that PX(q) ≤ q for every q ∈ Σp .
For a fixed f ∈ V there are two possibilities fX(q) ≥ q or fX(q) ≤ q.
Let us consider the case PX(q) ≤ q and fX(q) ≥ q. If PX(q) = q, i.e.,
the orbit of q by X is periodic, then the orbit by fX(q) is also closed,
therefore fX◦PX(q) = fX(q) = PX◦fX(q). If PX(q) < q, then fX(PX(q))
belongs to the orbit of X by fX(q) and PX(q) ≤ fX(PX(q)) < fX(q).
Thus, fX ◦ PX(q) = PX ◦ fX(q). The other cases are analogous.

PSfrag replacements

P

O0

O

FIG. 2.

Proof (of Proposition 9). We begin proving this proposition for n = 2.
Let ϕ ∈ A2(R2, N) and assume that there exist an R

2-orbit P such that
its closure, cl(P ), contains an S1-orbit O0 . Let U be neighborhood of
O0 homeomorphic to a cylinder such that every ϕ-orbit through a point
in U has dimension greater or equal to one. It exists due to the fact that
N is orientable, see Figure 2. If U \ O0 = U1 ∪ U2 , then either P ⊂ U1
or P ⊂ U2 . Assume that P ⊂ U1 . Let G0 be the isotropy group of O0
and Xi = Xwi

, i = 1, 2, where {w1, w2} is a set of generators of G0 such
that w1 6∈ G00 and w2 ∈ G00 . Note that X2|O0

≡ 0 and O0 is a peri-
odic orbit of X1 . Let Σ be a transversal section to X1 at p ∈ O0 and
PX1

: (Σ, p) → (Σ, p) be the Poincaré. There exists a neighborhood Σ0
of p in Σ ∩ cl(U1) such that PX1

has no fixed points in Σ0 . Otherwise,
there would be circle orbits in U1 arbitrarily close to O0 not allowing the
plane P to approach O0 . Thus, either PX1

|Σ0
or (PX1

|Σ0
)−1 is a topo-

logical contraction. Then, there exists at least one R-orbit O contained
in Front(P ) such that cl(O) ⊃ O0 . This implies that GO, the isotropy
group of O, coincides with G00. Let V be as in the Lemma 10 and δ > 0
such that Xt

2 ∈ V for all t ∈ (−δ, δ). Fix a t 6= 0 in the interval (−δ, δ)
and put f = Xt

2. It follows from the commutativity of X1 with X2 that
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f ∈ C(X1). Note that fX1
(q) = q if q ∈ O ∩ Σ0 and that fX1

(q) 6= q if
q ∈ P. By Lemma 10, fX1

◦ PX1
= PX1

◦ fX1
and by N. Kopell Lemma

fX1
= id. This contradiction completes the proof in the case n = 2.

Assume now that n ≥ 3 and that there exist a T k × R
n−k-orbit P,

with k < n − 1, such that cl(P ) contains a T n−1-orbit O0 . If G0 and
GP are the isotropy groups of O0 and P, respectively, then GP ⊂ G0 .
Let X1, . . . , Xn the infinitesimal generators adapted to O0 such that the
linear (n − 2)-subspace H of R

n generated by {w1, . . . , wn−2} contains
GP . There exists a neighborhood V of O0 such that the action ψϕ ∈
A2(Rn−1, N) induced by ϕ and O0 , i.,e., generated by X1, . . . , Xn−1 ,
has not Tn−1-orbits inside V. Otherwise, by Corollary 8, either P is an
Tn−1×R-orbit or O0 6⊂ cl(P ). If O is a T s×R

n−s−1-orbit of ϕ such that
O ⊂ cl(P ), then O0 ⊂ cl(O) and s < n − 1. Consequently, if GO is the
isotropy group of O, then GO ⊂ G0 and G0O = G00 . Since k, s < n − 1,
we can assume that H ∩ GO is isomorphic to Z

s and wn−1, wn /∈ H.
Let p ∈ O0 and consider ω1, . . . , ωn−1 as in the proof of Lemma 4. By
Lemma 4 ωn−1 (or ω−1n−1) is a topological contraction. Therefore, if q ∈
Σn−1 ∩ P, then Oh

−1

n−1
(q)(ϕ̂n−1) is a R

2-orbit in A that contains the

ϕ̂n−1-orbit S
1 × {0} in its closure. By the first part of the proof this is a

contradiction.

Remark 11. Let ϕ ∈ An , p ∈ Singcn−2(ϕ) and Vp a neighborhood of
Op .
(a) Assume that Vp satisfies (1) and Front(Vp) is a Tn−1-orbit. Since
r ≥ 2, it follows by Proposition 9, that there is no T s × R

n−s-orbit with
s 6= n−1 inside Vp . Thus, we can say that one of the following possibilities
is satisfied:

(a1) Vp \ Op is a Tn−1 × R-orbit;

(a2) Vp contains infinitly many T n−1 × R-orbits;

(a3) Vp \ Op contains only (n− 1)-dimensional orbits.

(b)Assume now that Vp satisfies (2), then:

(b1) if there is one T s × R
n−s−1-orbit, s 6= n− 1, such that its closure

contains Op , then every n-orbit in Vp\Op is not homeomorphic to T n−1×
R;

(b2) if there are no T s × R
n−s−1-orbits, s 6= n − 1, which contain Op

in its closure, then there is only one n-orbit and it is homeomorphic to
Tn−1 × R.

Proposition 12. Let O0 be a Tn−1-orbit of ϕ ∈ A2(Rn, N). Then,

there exists a ϕ-invariant neighborhood V0 of O0 , such that every con-

nected component U of V0 \ O0 satisfies one of the following properties:
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(1) U is an Tn−1 × R-orbit;

(2) U contains infinitely many T n−1-orbits approaching O0 and every

n-dimensional orbit inside U is a T n−1 × R-orbit;

(3) There exist s ∈ {0, 1, . . . , n − 2} such that U is the union of T s ×
R
n−s−1-orbits.

Proof. By the continuity of the infinitesimal generators of ϕ there is a
neighborhood V of O0 such that every orbit by points in V0 has dimension
at least n − 1. Since r ≥ 2, it follows from Proposition 9 that there are
no T s × R

n−s-orbits, s 6= n − 1 approaching O0 . Therefore, if U is one
connected component of V \ O0 , then there are two possibilities:
(i) There are infinitely many n-orbits in U approaching F. In this case
we will show that (2) is verified. The other possibility is that there exists a
sequence {Oi}i∈N of n-dimensional orbits inside U, which are not homeo-
morphic to Tn−1×R and that approach O0 . Since cl(Oi)∩Singj(ϕ) = ∅
for each j ∈ {0, . . . , n−2}, then the compact set cl(Oi)\Oi is the union of
(n−1)-dimensional orbits, of which at least one is compact, this contradicts
the Proposition 9.
(ii) There are only a finite number of n-orbits in U. If it happens to exist
a Tn−1 × R-orbit O such that Front(O) ⊃ O0, then we can assume that
U = O, therefore (1) is verified. If there is no such T n−1×R-orbit, then we
can assume that the orbit of each p ∈ U is (n − 1)-dimensional. We also
can assume that ϕ has no T n−1-orbits inside U, otherwise (2) is verified.
Reducing the size of V, if necessary, it follows from Lemma 4 that there
exist s ∈ {0, . . . , n − 2} such that Op is a T s × R

n−s−1-orbit for each
p ∈ U. Thus, (3) is verified and this completes the proof.

Figure 3 illustrates Theorem C for some ϕ ∈ A2 .

FIG. 3.

Proof (of Theorem C ). Let O be a T n−1×R-orbit and U the family of
all ϕ-invariant neighborhoods U ⊃ O homeomorphic to T n−1×R that do
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not contain a T s×R
n−s-orbit with s < n−1. The inclusion relation defines

a parcial order in U and by Zorn’s Lemma there exists a maximal element
UM in U . We are going to show that N \UM is either a Tn−1-orbit or the
union of two Tn−2-orbits. Assume that N \ UM has non-empty interior,
then cl(UM )\UM has two connected components. By Definition 2 at each
p ∈ Singi(ϕ), i = 1, . . . , n − 3, ϕ is of type n and n-finite. This fact
and Lemma 5 implie that (cl(UM ) \ UM ) ∩ Singi(ϕ) = ∅, i = 1, . . . , n− 3.
Moreover, there exists one connected component F of cl(UM ) \ UM that
is not a Tn−2-orbit. We know that F is ϕ-invariant and will show that
F ∩ Singcn−2(ϕ) = ∅. In fact, if there exists p ∈ F such that Op is a
Tn−2-orbit and Vp is a neighborhood of Op that satisfies Definition 2 (1),
then UM ∪ Vp would be a member of U containing UM properly. If Vp
satisfies condition (2), then, since F 6= Op , there are T s×R

n−s−1-orbits,
s 6= n − 1, arriving at Op and by Remark 11 we would have T l × R

n−l-
orbits, l 6= n− 1, inside UM . Therefore F is an Tn−1-orbit. If (1) or (2)
of Proposition 12 is verified, then there exists an open ϕ-invariant set V
homeomorphic to Tn−1×R, which does not contain T s×R

n−s-orbits with
s 6= n− 1 and such that Front(V ) ⊂ F. If (3) of Proposition 12 is verified,
then by Theorem B there exists an open ϕ-invariant set V homeomorphic
to Tn−1×R and such that Front(V ) ⊂ F. The open set UM ∪V ∈ U and
contains properly UM , but this contradicts the fact that UM is maximal.
Thus, Front(UM ) = N \ UM .

Assume that Singcn−2(ϕ) = ∅, then Front(UM ) is homeomorphic to
Tn−1. Therefore, N is Tn−1 bundle over S1. If Singcn−2(ϕ) 6= ∅, then
Front(UM ) is the union of two Tn−2-orbits consequently, N ∈ Hn .
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