On the Orbit Structure of \mathbb{R}^{n}-Actions on n-Manifolds

José Luis Arraut*
Departamento de Matemática, Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo - Campus de São Carlos, Caixa Postal 668, 13560-970 São Carlos SP, Brazil
E-mail: arraut@icmc.usp.br
and
Carlos Maquera ${ }^{\dagger}$
Departamento de Matemática, Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo - Campus de São Carlos, Caixa Postal 668, 13560-970 São Carlos SP, Brazil
E-mail: cmaquera@icmc.usp.br

Submitted: June 22, 2003 Accepted: July 1, 2004
Dedicated to Professor Sotomayor $60^{\text {th }}$ birthday

We begin by proving that a locally free C^{2}-action of \mathbb{R}^{n-1} on $T^{n-1} \times[0,1]$ tangent to the boundary and without compact orbits in the interior has all non-compact orbits of the same topological type. Then, we consider the set $A^{2}\left(\mathbb{R}^{n}, N\right)$ of C^{2}-actions of \mathbb{R}^{n} on a closed connected orientable real analytic n-manifold N. We define a subset $\mathscr{A}_{n} \subset A^{r}\left(\mathbb{R}^{n}, N\right)$ and prove that if $\varphi \in \mathscr{A}_{n}$ has a $T^{n-1} \times \mathbb{R}$-orbit, then every n-dimensional orbit is also a $T^{n-1} \times \mathbb{R}$-orbit. The subset \mathscr{A}_{n}, is big enough to contain all real analytic actions that have at least one n-dimensional orbit. We also obtain information on the topology of N.

Key Words: Action of \mathbb{R}^{n}, orbit structure.

[^0]
1. INTRODUCTION

In this paper we begin by proving the following result that is a generalization of Corollary 2.6 in [5].

Theorem A. ψ be a locally free C^{2}-action of \mathbb{R}^{n-1} on $T^{n-1} \times$ $[0,1], n \geq 2$, tangent to the boundary. If there are no compact orbits in the interior, then all non-compact orbits have the same topological type.

Due to the theorem below, there is no restriction in assuming that the manifold with boundary, in Theorem A, is $T^{n-1} \times[0,1]$.

Theorem B (Chatelet - Rosenberg, [4]). Let N be a compact orientable n-manifold with non-empty boundary. Suppose that ψ is a C^{2} locally free action of \mathbb{R}^{n-1} on N, then N is diffeomorphic to $T^{n-1} \times[0,1]$.
N will denote a closed connected orientable real analytic n-manifold with $n \geq 2$. Let \mathcal{H}_{n} be the family of orientable n-manifolds obtained by glueing two copies of $T^{n-2} \times D^{2}$ 。 \mathcal{H}_{2} contains only S^{2} and \mathcal{H}_{3} consists of 3 -manifolds that admit a Heegaard splitting of genus one. Denote by $A^{r}\left(\mathbb{R}^{n}, N\right)$ the set of C^{r}-actions of \mathbb{R}^{n} on $N, 2 \leq r \leq \omega$, with C^{r} infinitesimal generators. It was proved in [2] that if $\varphi \in A^{\omega}\left(\mathbb{R}^{n}, N\right)$, then all n-dimensional orbits of φ have the same topological type, i.e., are $T^{k} \times \mathbb{R}^{n-k}$-orbits for some fixed $k, 0 \leq k \leq n$. Moreover, if the type is $T^{n-1} \times \mathbb{R}$, then N is either homeomorphic to T^{n} or $N \in \mathcal{H}_{n}$. It is not difficult to construct counterexamples of this results when $r=\infty$. In this paper we define a subset $\mathscr{A}_{n} \subset A^{2}\left(\mathbb{R}^{n}, N\right)$, see Definition 2, which contains all actions $\varphi \in A^{\omega}\left(\mathbb{R}^{n}, N\right)$ that have at least one n-dimensional orbit. Then, we prove:

THEOREM C. If $\varphi \in \mathscr{A}_{n}$ has one $T^{n-1} \times \mathbb{R}$-orbit, then every n dimensional orbit is also a $T^{n-1} \times \mathbb{R}$-orbit. Moreover,
(1) if $\operatorname{Sing}_{n-2}^{c}(\varphi)=\emptyset$, then N is a T^{n-1} bundle over S^{1};
(2) if $\operatorname{Sing}_{n-2}^{c}(\varphi) \neq \emptyset$, then $\operatorname{Sing}_{n-2}^{c}(\varphi)$ is the union of two T^{n-2}-orbits and $N \in \mathcal{H}_{n}$.

The connection between the two main results is that the first is used in the proof of third. It would be interesting to obtain analogous results for actions in $A^{2}\left(\mathbb{R}^{n}, N\right)$ that have one $T^{k} \times \mathbb{R}^{n-k}$-orbit with $0 \leq k<n-1$.

ACKNOWLEDGMENT

We are grateful to the Referee for the suggestions that let us to improve the presentation of the paper.

2. PRELIMINARIES AND PROOF OF RESULTS

M will denote a closed connected and orientable real analytic m-manifold. A C^{r}-action of a Lie group G on M is a C^{r}-map $\varphi: G \times M \rightarrow M, 1 \leq r \leq$ ω, such that $\varphi(e, p)=p$ and $\varphi(g h, p)=\varphi(g, \varphi(h, p))$, for each $g, h \in G$ and $p \in M$, where e is the identity in $G . \mathcal{O}_{p}=\{\varphi(g, p) ; g \in G\}$ is called the φ-orbit of $p . G_{p}=\{g \in G ; \varphi(g, p)=p\}$ is called the isotropy group of p. For each $p \in M$ the map $g \mapsto \varphi(g, p)$ induces an injective immersion of the homogeneous space G / G_{p} in M with image \mathcal{O}_{p}. When $G=\mathbb{R}^{n}$, the possible φ-orbits are injective immersions of $T^{k} \times \mathbb{R}^{\ell}, 0 \leq k+\ell \leq n$, where $T^{k}=S^{1} \times \cdots \times S^{1}, k$ times.

For each $0 \leq i \leq n-1$ let $\operatorname{Sing}_{i}(\varphi)=\left\{p \in M ; \operatorname{dim} \mathcal{O}_{p}=i\right\}$ and $\operatorname{Sing}(\varphi)=\cup_{i=0}^{n-1} \operatorname{Sing}_{i}(\varphi)$. If $p \in \operatorname{Sing}(\varphi), \mathcal{O}_{p}$ is called a singular orbit and when $p \in \operatorname{Sing}_{0}(\varphi), \mathcal{O}_{p}$ is also called a point orbit and p a fixed point by φ. We also write $p \in \operatorname{Sing}_{i}^{c}(\varphi), i=1, \ldots, n-1$, when \mathcal{O}_{p} is a T^{i}-orbit. If $\operatorname{Sing}(\varphi)=M$, we call φ a singular action.

For each $w \in \mathbb{R}^{n} \backslash\{0\} \varphi$ induces a C^{r}-flow $\left(\varphi_{w}^{t}\right)_{t \in \mathbb{R}}$ given by $\varphi_{w}^{t}(p)=$ $\varphi(t w, p)$ and its corresponding C^{r-1}-vector field X_{w} defined by $X_{w}(p)=$ $D_{1} \varphi(0, p) \cdot w$. If $\left\{w_{1}, \ldots, w_{n}\right\}$ is a base of \mathbb{R}^{n} the associated vector fields $X_{w_{1}}, \ldots, X_{w_{n}}$ determine completely the action φ and are called a set of infinitesimal generators of φ. Note that $\left[X_{w_{i}}, X_{w_{j}}\right]=0$ for any two of them.

Definition 1. Let $\varphi \in A^{r}\left(\mathbb{R}^{n}, N\right)$ and $p \in N$.
a) φ is of type j at $p, 0 \leq j \leq n$, if there exists a neighborhood V of p such that the union of the j-dimensional orbits of $\left.\varphi\right|_{V}$ form an open and dense subset of V.
b) φ is j-finite at p, if there exists a neighborhood V of p that intersects only a finite number of j-dimensional orbits.

Let $V \subset N$. We will denote the boundary of V in N by $\operatorname{Front}(V)$.
Definition 2. We say that $\varphi \in \mathscr{A}_{n} \subset A^{2}\left(\mathbb{R}^{n}, N\right)$, where $\operatorname{dim} N=n$, if φ is of type n and n-finite at each $p \in \operatorname{Sing}_{i}(\varphi)$ with $0 \leq i \leq n-$ 3 , $\operatorname{Sing}_{n-2}(\varphi)=\operatorname{Sing}_{n-2}^{c}(\varphi)$ and for each $p \in \operatorname{Sing}_{n-2}^{c}(\varphi)$ there exists a neighborhood V_{p} of \mathcal{O}_{p} in N that satisfies one of the following two properties:
(1) V_{p} is φ-invariant, homeomorphic to $T^{n-2} \times D^{2}$, where D^{2} is an open disk, $V_{p} \cap\left(\cup_{i=1}^{n-2} \operatorname{Sing}_{i}(\varphi)\right)=\mathcal{O}_{p}$ and $\operatorname{Front}\left(V_{p}\right)$ is either a T^{n-1}-orbit or a T^{n-2}-orbit.
(2) V_{p} contains at most a finite number of i-dimensional orbits with $i=n-1, n$.

Infinitesimal generators adapted to a T^{n-1}-orbit. Assume that \mathcal{O}_{p} is a T^{n-1}-orbit of $\varphi \in A^{r}\left(\mathbb{R}^{n}, N\right)$ and let G_{p} be its isotropy group.

Call G_{p}^{0} the connected component of G_{p} that contains the origin and let H be a $(n-1)$-dimensional subspace of \mathbb{R}^{n} such that $\mathbb{R}^{n}=H \oplus G_{p}^{0}$. Note that $G_{p} \cap H$ is isomorphic to \mathbb{Z}^{n-1}. Let $\left\{w_{1}, \ldots, w_{n}\right\}$ be a base of \mathbb{R}^{n} such that $\left\{w_{1}, \ldots, w_{n-1}\right\}$ is a set of generators of $G_{p} \cap H, w_{n} \in G_{p}^{0}$ and write $X_{i}=X_{w_{i}} ; i=1, \ldots, n$. Note that if $q \in \mathcal{O}_{p}$, then for every $k \in\{1, \ldots, n-1\}$ the orbit of X_{k} by p is periodic of period one and also $X_{n}(q)=0$. We shall say that X_{1}, \ldots, X_{n} is a set of infinitesimal generators adapted to \mathcal{O}_{p}. The action $\psi_{\varphi} \in A^{r}\left(\mathbb{R}^{n-1}, N\right), r \geq 2$, with infinitesimal generators X_{1}, \ldots, X_{n-1} will be called the action induced by φ and \mathcal{O}_{p}. The understanding of the holonomy of \mathcal{O}_{p} as an orbit of ψ_{φ} will bring light on the orbit structure of φ in the neighborhood of \mathcal{O}_{p}.

Let \mathcal{O}_{p} be a T^{n-1}-orbit of $\psi \in A^{r}\left(\mathbb{R}^{n-1}, N\right),\left\{w_{1}, \ldots, w_{n-1}\right\}$ be a set of generators of its isotropy group G_{p} and $X_{1}=X_{w_{1}}, \ldots, X_{n-1}=X_{w_{n-1}}$. For each $k \in\{1, \ldots, n-1\}$, let $\psi_{k} \in A^{r}\left(\mathbb{R}^{n-2}, N\right)$ be the action defined by $X_{1}, \ldots, X_{k-1}, X_{k+1}, \ldots, X_{n-1}$. Put a Riemannian metric on N and let ξ be the norm one vector field defined in a neighborhood of \mathcal{O}_{p} that is orthogonal to the orbits of ψ. Let S_{k} be the circle orbit of X_{k} through $p, k=1, \ldots, n-1$, and consider the ring $A=S^{1} \times(-1,1)$ with coordinates (θ, x). Define $f_{k}: A \rightarrow N$ by $f_{k}(\theta, x)=\xi^{x} \circ X_{k}^{\theta}(p)$ and note that $f_{k}\left(S^{1} \times\right.$ $\{0\})=S_{k}$ and $f_{k}(0,0)=p$. Fix $k \in\{1, \ldots, n-1\}$. Since S_{k}, as a submanifold of \mathcal{O}_{p}, is transversal to the orbits of ψ_{k}, there exists $\varepsilon>0$ such that f_{k} restricted to $A_{\varepsilon}=S^{1} \times(-\varepsilon, \varepsilon)$ is an embedding transversal to the orbits of ψ_{k}. Let $D_{k}^{n-2}(\delta)=\left\{t=\left(t_{1}, \ldots, t_{k-1}, t_{k+1}, \ldots, t_{n-1}\right) ; t_{j} \in\right.$ $(-\delta, \delta)\}$ and consider the C^{r}-map $h_{k}: A_{\varepsilon} \times D_{k}^{n-2}(1) \rightarrow N$ defined by $h_{k}(\theta, x, t)=\psi_{k}\left(t, f_{k}(\theta, x)\right)$. There exists $\delta>0$ such that h_{k} restricted to $A_{\varepsilon} \times D_{k}^{n-2}(\delta)$ is a diffeomorphism onto its image V_{k}. Moreover, in these coordinates the infinitesimal generators of φ take the form:

$$
\begin{align*}
& X_{i}(\theta, x, t)=\frac{\partial}{\partial t_{i}}, \quad i=1, \ldots, k-1, k+1, \ldots, n-1 \\
& X_{k}(\theta, x, t)=\sum_{k \neq j=1}^{n-1} a_{j k}(\theta, x) \frac{\partial}{\partial t_{j}}+b_{k}(\theta, x) \frac{\partial}{\partial \theta}+c_{k}(\theta, x) \frac{\partial}{\partial x} . \tag{1}
\end{align*}
$$

A map like h_{k} will be called a cylindrical coordinate system adapted to \mathcal{O}_{p} at S_{k}. The vector field

$$
\widehat{X}_{k}=b_{k}(\theta, x) \frac{\partial}{\partial \theta}+c_{k}(\theta, x) \frac{\partial}{\partial x}
$$

defines a local flow on A_{ε} having $S^{1} \times\{0\} \subset A_{\varepsilon}$ as an orbit. When $\psi=\psi_{\varphi}$ for some $\varphi \in A^{r}\left(\mathbb{R}^{n}, N\right)$, then we also have

$$
X_{n}(\theta, x, t)=\sum_{k \neq j=1}^{n-1} a_{j k}(\theta, x) \frac{\partial}{\partial t_{j}}+d_{k}(\theta, x) \frac{\partial}{\partial \theta}+e_{k}(\theta, x) \frac{\partial}{\partial x}
$$

The vector fields \widehat{X}_{k} and $\widehat{X}_{n}=d_{k} \partial / \partial \theta+e_{k} \partial / \partial x$ define a local C^{r}-action $\widehat{\varphi}_{k}$ of \mathbb{R}^{2} on A having $S^{1} \times\{0\}$ as a singular orbit.

The ring $\Sigma_{k}=f_{k}\left(A_{\varepsilon}\right)$ is transversal to the orbits of ψ and so is $J=$ $\cap_{k=1}^{n-1} \Sigma_{k}$. Note that $p \in J$. The vector fields $\widehat{Y}_{k}=\left(f_{k}\right)_{*} \widehat{X}_{k}$ and $\widehat{Y}_{n}=$ $\left(f_{k}\right)_{*} \widehat{X}_{n}$ are tangent to Σ_{k} and define a local C^{r}-action of \mathbb{R}^{2} on Σ_{k}. The map $\alpha_{k}:[0,1] \rightarrow \Sigma_{k}$ given by $\alpha_{k}(\tau)=\widehat{Y}_{k}^{\tau}(p)$ is a parametrization of S_{k}. Let $\omega_{k}:(J, p) \rightarrow(J, p)$ be the Poincaré map of α_{k} and

$$
\begin{equation*}
\text { Hol : } \pi_{1}\left(\mathcal{O}_{p}, p\right) \cong \mathbb{Z}^{k} \rightarrow \operatorname{Diff}^{r}(J, p) \tag{2}
\end{equation*}
$$

the holonomy of \mathcal{O}_{p} as a leaf of the foliation defined by the orbits of ψ. Then, $\omega_{k}=\operatorname{Hol}\left(\left[\alpha_{k}\right]\right)$. Write J as the union of two intervals $J^{+} \cup J^{-}$ with $J^{+} \cap J^{-}=\{p\}$. Since \mathcal{O}_{p} is two-sided in N, each ω_{i} leaves $J^{+}\left(J^{-}\right)$ invariant.

Remark 3. Note that $\left\{X_{1}, \ldots X_{k-1}, \widehat{X}_{k}, X_{k+1}, \ldots, X_{n-1}, \widehat{X}_{n}\right\}$ define a local \mathbb{R}^{n}-action $\widehat{\varphi}$ on $A \times D_{k}^{n-2}(\varepsilon)$ and that $\mathcal{O}_{(\theta, x, t)}(\widehat{\varphi})=\mathcal{O}_{(\theta, x, t)}\left(h_{k} \circ\right.$ $\left.\varphi \circ h_{k}^{-1}\right)$ for each $(\theta, x, t) \in A \times D_{k}^{n-2}(\varepsilon)$.

The local C^{r}-action $\widehat{\varphi}_{k}, k=1, \ldots, n-1$, of \mathbb{R}^{2} on A and the next lemma will be used in the proof of Proposition 9.

Lemma 4. Let \mathcal{O}_{p} be a T^{n-1}-orbit of $\psi \in A^{2}\left(\mathbb{R}^{n-1}, N\right)$ and assume that ψ has no T^{n-1}-orbits, aside \mathcal{O}_{p}, in a neighborhood V of \mathcal{O}_{p}. Then there exists a neighborhood I^{+}of p in J^{+}such that for each $k \in\{1, \ldots, n-1\}$ one of the following statements is verified:
(1) $\left.\omega_{k}\right|_{I^{+}}=i d$; i.e., every \widehat{Y}_{k}-orbit near S_{k} is periodic.
(2) Either $\left.\omega_{k}\right|_{I^{+}}$or $\left(\left.\omega_{k}\right|_{I^{+}}\right)^{-1}$ is a topological contraction, i.e., every \widehat{Y}_{k}-orbit near S_{k} spirals towards S_{k}.

Proof. We give the proof for $k=n-1$; the other cases are similar. Assume that ω_{n-1} does not satisfy (2). Then, there is a sequence $\left\{q_{l} \in\right.$ $\left.J^{+} ; l \in \mathbb{N}\right\}$ such that $\omega_{n-1}\left(q_{l}\right)=q_{l}$ and $\lim _{l \rightarrow \infty} q_{l}=p$. We claim that p is an isolated fixed point of ω_{j} for at least one $j \in\{1, \ldots, n-2\}$. Otherwise, for each $1 \leq j \leq n-2$ there exists a sequence $\left\{q_{j k} \in J^{+} ; k \in \mathbb{N}\right\}$ such that $\omega_{j}\left(q_{j k}\right)=q_{j k}$ and $\lim _{k \rightarrow \infty} q_{j k}=p$. If $q_{j k} \in V$ and $\omega_{i}\left(q_{j k}\right)=q_{j k}$ for each $i \in\{1, \ldots, n-1\}$, then the ψ-orbit of $q_{j k}$ is a T^{n-1}-orbit. Therefore, for each $q_{j k} \in V$ there exists $i \neq j$ such that $\omega_{i}\left(q_{j k}\right) \neq q_{j k}$. Let $q_{k}=\lim _{m \rightarrow \infty} \omega_{i}^{m}\left(q_{j k}\right) \neq p$. It follows from the commutativity of ω_{i} and ω_{j} that $q_{k} \in \operatorname{Fix}\left(\omega_{i}\right) \cap \operatorname{Fix}\left(\omega_{j}\right)$. If $\omega_{\ell}\left(q_{k}\right) \neq q_{k}$, then $p \neq \lim _{m \rightarrow \infty} \omega_{\ell}^{m}\left(q_{k}\right) \in$ $\operatorname{Fix}\left(\omega_{\ell}\right) \cap \operatorname{Fix}\left(\omega_{i}\right) \cap \operatorname{Fix}\left(\omega_{j}\right)$. Repeating this process, if necessary, we obtain a point $q \in \cap_{i=1}^{n-1} \operatorname{Fix}\left(\omega_{i}\right)$ with $q \neq p$. But, this would implie that \mathcal{O}_{q} is a T^{n-1}-orbit, contradicting one of the hypothesis. Thus, it exists $j \in$ $\{1, \ldots, n-2\}$ such that p is an isolated fixed point of ω_{j}, í.,e., there
exists a neighborhood I^{+}of p in J^{+}such that $I^{+} \cap \operatorname{Fix}\left(\omega_{j}\right)=\{p\}$. By N. Kopell Lemma [6], $\left.\omega_{n-1}\right|_{I^{+}}=i d$. Hence, ω_{n-1} satisfies (1).

In the proof of Lemma 4 it is not essential that ω_{k} be the Poincaré map of the \widehat{Y}_{k}-orbit S_{k}. It is only used that the holonomy of \mathcal{O}_{p} is abelian.

Proof (of Theorem A). It is a classical result in foliation theory that the leave structure of a foliation in the neighborhood of a compact leaf is determined by the holonomy of such leaf. The holonomy of the orbit $T^{n-1} \times\{0\}$, given in Lemma 4, guarantees that there exist $d \in(0,1)$ and $s \in\{0, \ldots, n-2\}$ such that every ψ-orbit by points in $T^{n-1} \times[0, d)$ is homeomorphic to $T^{s} \times \mathbb{R}^{n-s-1}$. We claim that the saturated V of $T^{n-1} \times[0, d)$ by ψ is equal to $T^{n-1} \times[0,1)$ and this would conclude the proof. In fact, if $V \neq T^{n-1} \times[0,1)$, then $\operatorname{Front}(V) \cap T^{n-1} \times\{1\}=\emptyset$. Let $C \neq T^{n-1} \times\{0\}$ be a connected component of $\operatorname{Front}(V) . C$ is a compact ψ-invariant subset and contains a minimal subset μ. By a theorem of Sacksteder [7, Theorem 7], μ can not be an exceptional minimal set. Thus μ is a compact orbit. This contradiction proves that $V=T^{n-1} \times[0,1)$.

Proposition 5 below plays an important role in the proof of Theorem C and to prove it we have to prove first Lemma 7.

Proposition 5. If $\varphi \in A^{2}\left(\mathbb{R}^{n}, N\right)$ has an orbit \mathcal{O} diffeomorphic to $T^{n-1} \times \mathbb{R}$, then $\operatorname{Front}(\mathcal{O})$ is the union of at most two T^{k}-orbits with $k \in\{n-2, n-1\}$.

Theorem 6 below will be used in the proof of Lemma 7 .
THEOREM 6 ([1]). Let N be a closed and connected n-manifold, $n \geq$ 3 , and G a Lie group diffeomorphic to \mathbb{R}^{n-1} acting in class C^{2}. Assume that the set K of singular points of the action is a non-empty finite subset. Then:
(i) K contains only one point,
(ii) N is homeomorphic to S^{n}.

Lemma 7. Let $\psi \in A^{2}\left(\mathbb{R}^{m-1}, M^{m}\right)$, $m \geq 3$, and $p \in \operatorname{Fix}(\psi)$ be an isolated singularity. Then, there exists a neighborhood V of p in M^{m} which does not contain any T^{m-1}-orbit.

Proof. Suppose the assertion of the lemma is false. Let V be a neighborhood of p homeomorphic to open n-disk such that $V \cap \operatorname{Sing}(\psi)=\{p\}$ and assume that there is a T^{m-1}-orbit $\mathcal{O} \subset V . V \backslash \mathcal{O}=C_{1} \cup C_{2}$, where C_{1} and C_{2} are disjoint connected components. Assume that $\operatorname{Front}\left(C_{1}\right)=\mathcal{O}$. There are two possibilities, either $p \in C_{1}$ or $p \in C_{2}$. If $p \in C_{2}$, then ψ is locally free on $N=C_{1} \cup \mathcal{O}$ and, by Theorem B, N should be homeomorphic to $T^{m-1} \times[0,1]$. This contradicts the fact that $\operatorname{Front}\left(C_{1}\right)=\mathcal{O}$. If
$p \in C_{1}$, then ψ is an action on N having p as the only singular point. Let P be the double of N and $\xi \in A^{2}\left(\mathbb{R}^{m-1}, P\right)$ such that ξ restricted to N is equal to ψ. Then ξ has exactly two singular points and this contradicts the Theorem 6.

Proof (Proof of Proposition 5). Front(O) has at most two connected components and each one of them contains at least a compact orbit. Let C be a connected component and $\mathcal{O}_{0} \subset C$ a T^{k}-orbit with isotropy group G_{0}. We will show that $C=\mathcal{O}_{0}$. Assume, for a moment, that C contains another orbit \mathcal{O}_{1} and take $p \in \mathcal{O}_{0}$ and $q \in \mathcal{O}_{1}$. Let u_{1}, \ldots, u_{n-1} be a set of generators of G, the isotropy group of \mathcal{O}. Then, all $X_{u_{i}}$-orbits through \mathcal{O} are periodic of period one. Even more, there are sequences $\left\{p_{j} \in \mathcal{O} ; j \in \mathbb{N}\right\}$ and $\left\{t_{i j} \in[0,1] ; i=1,2 \ldots, n-1\right.$ and $\left.j \in \mathbb{N}\right\}$ such that

$$
\lim _{j \rightarrow \infty} p_{j}=p \quad \text { and } \quad \lim _{j \rightarrow \infty} \varphi\left(\sum_{i=1}^{n-1} t_{i j} u_{i}, p_{j}\right)=q
$$

For each $i=1, \ldots, n-1$, we can assume, extracting a subsequence if necessary, that $t_{i j} \rightarrow t_{i} \in[0,1]$. Then $\varphi\left(\sum_{i=1}^{n-1} t_{i} u_{i}, p\right)=q$, which contradicts the fact that $\sum_{i=1}^{n-1} t_{i} u_{i} \in G_{0}$.

Now, we will show that $k \in\{n-2, n-1\}$. Assume, for a moment, that $k<n-2$, then $m=n-k>2$. Let $p \in \mathcal{O}_{0}$ and $\left\{X_{1}, \ldots, X_{n}\right\}$ be a set of infinitesimal generators of φ such that the orbit through p of $X_{i}, i=1, \ldots, k$, is periodic and $X_{i}(p)=0, i=k+1, \ldots, n$. Let $h: V_{p} \rightarrow D_{\varepsilon}^{n}$ be a chart of N such that if $(\theta, x) \in D_{\varepsilon}^{n}=D_{\varepsilon}^{k} \times D_{\varepsilon}^{n-k}$, then the vector fields X_{i} in this chart can be writen

$$
\begin{align*}
& X_{i}(\theta, x)=\frac{\partial}{\partial \theta_{i}}, \quad i=1, \ldots, k \\
& X_{k+i}(\theta, x)=\sum_{j=1}^{k} a_{j i}(x) \frac{\partial}{\partial \theta_{j}}+\sum_{j=k+1}^{n} a_{j i}(x) \frac{\partial}{\partial x_{j}}, \quad i=1, \ldots, m \tag{3}
\end{align*}
$$

A chart like the one above is called adapted to \mathcal{O}_{0} at p. The vector fields

$$
\widehat{X}_{i}=\sum_{j=k+1}^{n} a_{j i}(x) \frac{\partial}{\partial x_{j}}, \quad i=1, \ldots, m
$$

define a local action φ_{T} of \mathbb{R}^{m} on D_{ε}^{m} having $0 \in D_{\varepsilon}^{m}$ as a fixed point. The image of $\mathcal{O} \cap V_{p}$ by h intersects D^{m} in a $T^{m-1} \times \mathbb{R}$-orbit $\widehat{\mathcal{O}}$ of φ_{T} such that $0 \in D^{m}$ is a connected component of $\operatorname{Front}(\widehat{\mathcal{O}})$ and, therefore, an isolated singular point of φ_{T}. The generators u_{1}, \ldots, u_{m-1} of the isotropy group of $\widehat{\mathcal{O}}$ define a local action of \mathbb{R}^{m-1} on D^{m} and this
action has T^{m-1}-orbits arbitrarily close to 0 . This contradicts Lemma 7 and proves that $k \in\{n-2, n-1\}$.

The closure of $V \subset N$, in N, is denoted by $\operatorname{cl}(V)$.
Corollary 8. Let \mathcal{O} be an T^{n-1}-orbit of $\varphi \in A^{1}\left(\mathbb{R}^{n}, N\right)$ and V be a neighborhood of \mathcal{O} such that $V \backslash \mathcal{O}$ has exactly two connected components V_{1} and V_{2}. Assume that there exist points $p, q \in V_{1}$ such that $\operatorname{dim} \mathcal{O}_{p}=$ $n, \mathcal{O}_{p} \neq \mathcal{O}_{q}$ and $\operatorname{cl}\left(\mathcal{O}_{p}\right) \supset \mathcal{O} \subset \operatorname{cl}\left(\mathcal{O}_{q}\right)$. Then, \mathcal{O}_{p} is not a $T^{n-1} \times \mathbb{R}$-orbit.

Proposition 9. Assume that $\varphi \in A^{2}\left(\mathbb{R}^{n}, N\right)$ with $n \geq 2$. If \mathcal{O} is a $T^{k} \times \mathbb{R}^{n-k}$-orbit with $k \leq n-2$, then $\operatorname{cl}(\mathcal{O})$ can not contain a T^{n-1}-orbit.

Let us prove this proposition. If $X \in \mathfrak{X}^{r}\left(M^{2}\right)$, let $\mathcal{C}(X)$ be the set of diffeomorphisms $f \in \operatorname{Diff}^{r}\left(M^{2}\right)$ that preserve orbits of X. Assume that the orbit γ_{p} of X by p is periodic of period τ. Let Σ be a cross section to X at p and $P_{X}:(\Sigma, p) \rightarrow(\Sigma, p)$ be Poincaré map.

FIG. 1.

Lemma 10. There exists a cross section $\Sigma_{p} \subset \Sigma$ and a neighborhood $\mathscr{V} \subset \operatorname{Diff}^{r}\left(M^{2}\right)$ of the identity map in the C^{0} topology such that every $f \in \mathcal{C}(X) \cap \mathscr{V}$ induces a local diffeomorphism $f_{X}:\left(\Sigma_{p}, p\right) \rightarrow\left(\Sigma_{p}, p\right)$ of class C^{r}, with $f_{X} \circ P_{X}=P_{X} \circ f_{X}$.

Proof. Let $\tau>0$ be the period of γ_{p}. We can assume that $\Sigma=$ $h^{-1}(\{0\} \times(-1,1))$, where $h: V \rightarrow(-1,1)^{2}$ is a flow box for X at p. Let $\pi: V \rightarrow \Sigma$ be the projection along of the orbits of X and recall that $P_{X}=\pi \circ X^{\tau}$. Put $U=h^{-1}\left((-1 / 2,1 / 2)^{2}\right)$ and $\Sigma_{\varepsilon}=h^{-1}(\{0\} \times(-\varepsilon, \varepsilon))$. There exists a neighborhood \mathscr{V} of $i d \in \operatorname{Diff}^{r}\left(M^{2}\right)$, in the C^{0} topology, and $\varepsilon>0$ such that $f(U) \subset V$ and $f\left(\Sigma_{\varepsilon}\right) \subset U$ for each $f \in \mathscr{V}$ and
also $X^{\tau}\left(\Sigma_{\varepsilon}\right) \subset U$. Choose $\Sigma_{p}=\Sigma_{\varepsilon}$. For each $f \in \mathscr{V}$ there is defined a map $f_{X}: \Sigma_{p} \rightarrow \Sigma$ by $f_{X}(q)=\pi(f(q))$. We are going to show that $f_{X} \circ P_{X}=P_{X} \circ f_{X}$. Let $[x, y] \subset \Sigma$ be the arc with extremes x and y and define $x \leq y$ if $[p, x] \subseteq[p, y]$. Assume that $P_{X}(q) \leq q$ for every $q \in \Sigma_{p}$. For a fixed $f \in \mathscr{V}$ there are two possibilities $f_{X}(q) \geq q$ or $f_{X}(q) \leq q$. Let us consider the case $P_{X}(q) \leq q$ and $f_{X}(q) \geq q$. If $P_{X}(q)=q$, i.e., the orbit of q by X is periodic, then the orbit by $f_{X}(q)$ is also closed, therefore $f_{X} \circ P_{X}(q)=f_{X}(q)=P_{X} \circ f_{X}(q)$. If $P_{X}(q)<q$, then $f_{X}\left(P_{X}(q)\right)$ belongs to the orbit of X by $f_{X}(q)$ and $P_{X}(q) \leq f_{X}\left(P_{X}(q)\right)<f_{X}(q)$. Thus, $f_{X} \circ P_{X}(q)=P_{X} \circ f_{X}(q)$. The other cases are analogous.

FIG. 2.

Proof (of Proposition 9). We begin proving this proposition for $n=2$. Let $\varphi \in A^{2}\left(\mathbb{R}^{2}, N\right)$ and assume that there exist an \mathbb{R}^{2}-orbit P such that its closure, $\operatorname{cl}(P)$, contains an S^{1}-orbit \mathcal{O}_{0}. Let U be neighborhood of \mathcal{O}_{0} homeomorphic to a cylinder such that every φ-orbit through a point in U has dimension greater or equal to one. It exists due to the fact that N is orientable, see Figure 2. If $U \backslash \mathcal{O}_{0}=U_{1} \cup U_{2}$, then either $P \subset U_{1}$ or $P \subset U_{2}$. Assume that $P \subset U_{1}$. Let G_{0} be the isotropy group of \mathcal{O}_{0} and $X_{i}=X_{w_{i}}, i=1,2$, where $\left\{w_{1}, w_{2}\right\}$ is a set of generators of G_{0} such that $w_{1} \notin G_{0}^{0}$ and $w_{2} \in G_{0}^{0}$. Note that $\left.X_{2}\right|_{\mathcal{O}_{0}} \equiv 0$ and \mathcal{O}_{0} is a periodic orbit of X_{1}. Let Σ be a transversal section to X_{1} at $p \in \mathcal{O}_{0}$ and $P_{X_{1}}:(\Sigma, p) \rightarrow(\Sigma, p)$ be the Poincaré. There exists a neighborhood Σ_{0} of p in $\Sigma \cap \operatorname{cl}\left(U_{1}\right)$ such that $P_{X_{1}}$ has no fixed points in Σ_{0}. Otherwise, there would be circle orbits in U_{1} arbitrarily close to \mathcal{O}_{0} not allowing the plane P to approach \mathcal{O}_{0}. Thus, either $\left.P_{X_{1}}\right|_{\Sigma_{0}}$ or $\left(\left.P_{X_{1}}\right|_{\Sigma_{0}}\right)^{-1}$ is a topological contraction. Then, there exists at least one \mathbb{R}-orbit \mathcal{O} contained in $\operatorname{Front}(P)$ such that $\operatorname{cl}(\mathcal{O}) \supset \mathcal{O}_{0}$. This implies that $G_{\mathcal{O}}$, the isotropy group of \mathcal{O}, coincides with G_{0}^{0}. Let \mathscr{V} be as in the Lemma 10 and $\delta>0$ such that $X_{2}^{t} \in \mathscr{V}$ for all $t \in(-\delta, \delta)$. Fix a $t \neq 0$ in the interval $(-\delta, \delta)$ and put $f=X_{2}^{t}$. It follows from the commutativity of X_{1} with X_{2} that
$f \in \mathcal{C}\left(X_{1}\right)$. Note that $f_{X_{1}}(q)=q$ if $q \in \mathcal{O} \cap \Sigma_{0}$ and that $f_{X_{1}}(q) \neq q$ if $q \in P$. By Lemma 10, $f_{X_{1}} \circ P_{X_{1}}=P_{X_{1}} \circ f_{X_{1}}$ and by N. Kopell Lemma $f_{X_{1}}=i d$. This contradiction completes the proof in the case $n=2$.

Assume now that $n \geq 3$ and that there exist a $T^{k} \times \mathbb{R}^{n-k}$-orbit P, with $k<n-1$, such that $\operatorname{cl}(P)$ contains a T^{n-1}-orbit \mathcal{O}_{0}. If G_{0} and G_{P} are the isotropy groups of \mathcal{O}_{0} and P, respectively, then $G_{P} \subset G_{0}$. Let X_{1}, \ldots, X_{n} the infinitesimal generators adapted to \mathcal{O}_{0} such that the linear $(n-2)$-subspace H of \mathbb{R}^{n} generated by $\left\{w_{1}, \ldots, w_{n-2}\right\}$ contains G_{P}. There exists a neighborhood V of \mathcal{O}_{0} such that the action $\psi_{\varphi} \in$ $A^{2}\left(\mathbb{R}^{n-1}, N\right)$ induced by φ and \mathcal{O}_{0}, i.,e., generated by X_{1}, \ldots, X_{n-1}, has not T^{n-1}-orbits inside V. Otherwise, by Corollary 8, either P is an $T^{n-1} \times \mathbb{R}$-orbit or $\mathcal{O}_{0} \not \subset \operatorname{cl}(P)$. If \mathcal{O} is a $T^{s} \times \mathbb{R}^{n-s-1}$-orbit of φ such that $\mathcal{O} \subset \operatorname{cl}(P)$, then $\mathcal{O}_{0} \subset \operatorname{cl}(\mathcal{O})$ and $s<n-1$. Consequently, if $G_{\mathcal{O}}$ is the isotropy group of \mathcal{O}, then $G_{\mathcal{O}} \subset G_{0}$ and $G_{\mathcal{O}}^{0}=G_{0}^{0}$. Since $k, s<n-1$, we can assume that $H \cap G_{\mathcal{O}}$ is isomorphic to \mathbb{Z}^{s} and $w_{n-1}, w_{n} \notin H$. Let $p \in \mathcal{O}_{0}$ and consider $\omega_{1}, \ldots, \omega_{n-1}$ as in the proof of Lemma 4. By Lemma $4 \omega_{n-1}$ (or ω_{n-1}^{-1}) is a topological contraction. Therefore, if $q \in$ $\Sigma_{n-1} \cap P$, then $\mathcal{O}_{h_{n-1}^{-1}(q)}\left(\widehat{\varphi}_{n-1}\right)$ is a \mathbb{R}^{2}-orbit in A that contains the $\widehat{\varphi}_{n-1}$-orbit $S^{1} \times\{0\}$ in its closure. By the first part of the proof this is a contradiction. 【

Remark 11. Let $\varphi \in \mathscr{A}_{n}, p \in \operatorname{Sing}_{n-2}^{c}(\varphi)$ and V_{p} a neighborhood of \mathcal{O}_{p}.
(a) Assume that V_{p} satisfies (1) and $\operatorname{Front}\left(V_{p}\right)$ is a T^{n-1}-orbit. Since $r \geq 2$, it follows by Proposition 9 , that there is no $T^{s} \times \mathbb{R}^{n-s}$-orbit with $s \neq n-1$ inside V_{p}. Thus, we can say that one of the following possibilities is satisfied:
(a1) $V_{p} \backslash \mathcal{O}_{p}$ is a $T^{n-1} \times \mathbb{R}$-orbit;
(a2) V_{p} contains infinitly many $T^{n-1} \times \mathbb{R}$-orbits;
(a3) $V_{p} \backslash \mathcal{O}_{p}$ contains only $(n-1)$-dimensional orbits.
(b)Assume now that V_{p} satisfies (2), then:
(b1) if there is one $T^{s} \times \mathbb{R}^{n-s-1}$-orbit, $s \neq n-1$, such that its closure contains \mathcal{O}_{p}, then every n-orbit in $V_{p} \backslash \mathcal{O}_{p}$ is not homeomorphic to $T^{n-1} \times$ \mathbb{R};
(b2) if there are no $T^{s} \times \mathbb{R}^{n-s-1}$-orbits, $s \neq n-1$, which contain \mathcal{O}_{p} in its closure, then there is only one n-orbit and it is homeomorphic to $T^{n-1} \times \mathbb{R}$.

Proposition 12. Let \mathcal{O}_{0} be a T^{n-1}-orbit of $\varphi \in A^{2}\left(\mathbb{R}^{n}, N\right)$. Then, there exists a φ-invariant neighborhood V_{0} of \mathcal{O}_{0}, such that every connected component U of $V_{0} \backslash \mathcal{O}_{0}$ satisfies one of the following properties:
(1) U is an $T^{n-1} \times \mathbb{R}$-orbit;
(2) U contains infinitely many T^{n-1}-orbits approaching \mathcal{O}_{0} and every n-dimensional orbit inside U is a $T^{n-1} \times \mathbb{R}$-orbit;
(3) There exist $s \in\{0,1, \ldots, n-2\}$ such that U is the union of $T^{s} \times$ \mathbb{R}^{n-s-1}-orbits.

Proof. By the continuity of the infinitesimal generators of φ there is a neighborhood V of \mathcal{O}_{0} such that every orbit by points in V_{0} has dimension at least $n-1$. Since $r \geq 2$, it follows from Proposition 9 that there are no $T^{s} \times \mathbb{R}^{n-s}$-orbits, $s \neq n-1$ approaching \mathcal{O}_{0}. Therefore, if U is one connected component of $V \backslash \mathcal{O}_{0}$, then there are two possibilities:
(i) There are infinitely many n-orbits in U approaching F. In this case we will show that (2) is verified. The other possibility is that there exists a sequence $\left\{\mathcal{O}_{i}\right\}_{i \in \mathbb{N}}$ of n-dimensional orbits inside U, which are not homeomorphic to $T^{n-1} \times \mathbb{R}$ and that approach \mathcal{O}_{0}. Since $\operatorname{cl}\left(\mathcal{O}_{i}\right) \cap \operatorname{Sing}_{j}(\varphi)=\emptyset$ for each $j \in\{0, \ldots, n-2\}$, then the compact set $\operatorname{cl}\left(\mathcal{O}_{i}\right) \backslash \mathcal{O}_{i}$ is the union of ($n-1$)-dimensional orbits, of which at least one is compact, this contradicts the Proposition 9.
(ii) There are only a finite number of n-orbits in U. If it happens to exist a $T^{n-1} \times \mathbb{R}$-orbit \mathcal{O} such that $\operatorname{Front}(\mathcal{O}) \supset \mathcal{O}_{0}$, then we can assume that $U=\mathcal{O}$, therefore (1) is verified. If there is no such $T^{n-1} \times \mathbb{R}$-orbit, then we can assume that the orbit of each $p \in U$ is $(n-1)$-dimensional. We also can assume that φ has no T^{n-1}-orbits inside U, otherwise (2) is verified. Reducing the size of V, if necessary, it follows from Lemma 4 that there exist $s \in\{0, \ldots, n-2\}$ such that \mathcal{O}_{p} is a $T^{s} \times \mathbb{R}^{n-s-1}$-orbit for each $p \in U$. Thus, (3) is verified and this completes the proof.

Figure 3 illustrates Theorem C for some $\varphi \in \mathscr{A}_{2}$.

FIG. 3.

Proof (of Theorem C). Let \mathcal{O} be a $T^{n-1} \times \mathbb{R}$-orbit and \mathscr{U} the family of all φ-invariant neighborhoods $U \supset \mathcal{O}$ homeomorphic to $T^{n-1} \times \mathbb{R}$ that do
not contain a $T^{s} \times \mathbb{R}^{n-s}$-orbit with $s<n-1$. The inclusion relation defines a parcial order in \mathscr{U} and by Zorn's Lemma there exists a maximal element U_{M} in \mathscr{U}. We are going to show that $N \backslash U_{M}$ is either a T^{n-1}-orbit or the union of two T^{n-2}-orbits. Assume that $N \backslash U_{M}$ has non-empty interior, then $\operatorname{cl}\left(U_{M}\right) \backslash U_{M}$ has two connected components. By Definition 2 at each $p \in \operatorname{Sing}_{i}(\varphi), i=1, \ldots, n-3, \varphi$ is of type n and n-finite. This fact and Lemma 5 implie that $\left(\operatorname{cl}\left(U_{M}\right) \backslash U_{M}\right) \cap \operatorname{Sing}_{i}(\varphi)=\emptyset, i=1, \ldots, n-3$. Moreover, there exists one connected component F of $\operatorname{cl}\left(U_{M}\right) \backslash U_{M}$ that is not a T^{n-2}-orbit. We know that F is φ-invariant and will show that $F \cap \operatorname{Sing}_{n-2}^{c}(\varphi)=\emptyset$. In fact, if there exists $p \in F$ such that \mathcal{O}_{p} is a T^{n-2}-orbit and V_{p} is a neighborhood of \mathcal{O}_{p} that satisfies Definition 2 (1), then $U_{M} \cup V_{p}$ would be a member of \mathscr{U} containing U_{M} properly. If V_{p} satisfies condition (2), then, since $F \neq \mathcal{O}_{p}$, there are $T^{s} \times \mathbb{R}^{n-s-1}$-orbits, $s \neq n-1$, arriving at \mathcal{O}_{p} and by Remark 11 we would have $T^{l} \times \mathbb{R}^{n-l}$ orbits, $l \neq n-1$, inside U_{M}. Therefore F is an T^{n-1}-orbit. If (1) or (2) of Proposition 12 is verified, then there exists an open φ-invariant set V homeomorphic to $T^{n-1} \times \mathbb{R}$, which does not contain $T^{s} \times \mathbb{R}^{n-s}$-orbits with $s \neq n-1$ and such that $\operatorname{Front}(V) \subset F$. If (3) of Proposition 12 is verified, then by Theorem B there exists an open φ-invariant set V homeomorphic to $T^{n-1} \times \mathbb{R}$ and such that $\operatorname{Front}(V) \subset F$. The open set $U_{M} \cup V \in \mathscr{U}$ and contains properly U_{M}, but this contradicts the fact that U_{M} is maximal. Thus, $\operatorname{Front}\left(U_{M}\right)=N \backslash U_{M}$.

Assume that $\operatorname{Sing}_{n-2}^{c}(\varphi)=\emptyset$, then $\operatorname{Front}\left(U_{M}\right)$ is homeomorphic to T^{n-1}. Therefore, N is T^{n-1} bundle over S^{1}. If $\operatorname{Sing}_{n-2}^{c}(\varphi) \neq \emptyset$, then Front $\left(U_{M}\right)$ is the union of two T^{n-2}-orbits consequently, $N \in \mathcal{H}_{n}$.

REFERENCES

1. J. A. Álvarez López, J. L. Arraut and C. Biasi, Foliations by planes and Lie group actions. Ann. Pol. Math., 82,1 , (2003), 61-69.
2. J. L. Arraut and C. A. Maquera, Structural stability of singular actions of \mathbb{R}^{n} having a first integral. Submitted for publication, (2003).
3. C. Camacho, Morse-Smale \mathbb{R}^{2}-actions on two manifolds. Dynamical Systems, Editor M. M. Peixoto, Academic Press, (1973), 71-75.
4. G. Chatelet, H. Rosenberg, Manifolds which admits \mathbb{R}^{n} actions. IHES, 43, (1974), 245-260.
5. G. Chatelet, H. Rosenberg and D. Weil, A classification of the topological types of \mathbb{R}^{2}-actions on closed orientable 3-manifolds. Publ. Math. IHES, 43, (1974), 261272.
6. N. Kopell, Commuting Diffeomorphisms, Proc. Amer. Math. Soc. Symp., 14, (1968), 165-184.
7. R. Sacksteder, Foliations and pseudogroups, Amer. J. Math. 87, (1965), 79-102.

[^0]: * Partially supported by FAPESP of Brazil Grant 00/05385-8.
 \dagger Partially supported by FAPESP of Brazil Grant 99/11311-8 and 02/09425-0.

